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It is well known that the flow past a circular cylinder at critical Reynolds number

combines flow separation, turbulence transition, reattachment of the flow and fur-

ther turbulent separation of the boundary layer. The transition to turbulence in the

boundary layer causes the delaying of the separation point and, an important reduc-

tion of the drag force on the cylinder surface known as the Drag Crisis. In the present

work, large-eddy simulations of the flow past a cylinder at Reynolds numbers in the

range 2.5 × 105-6.5 × 105 are performed. It is shown how the pressure distribution

changes as the Reynolds number increases in a asymmetric manner, occurring first on

one side of the cylinder and then on the other side to complete the drop in the drag

up to 0.23 at Re = 6.5×105. These variations in the pressure profile are accompanied

by the presence of a small recirculation bubble, observed as a small plateau in the

pressure, and located around φ = 105◦ (measured from the stagnation point). This

small recirculation bubble anticipated by the experimental measurements is here well

captured by the present computations and its position and size measured at every

Reynolds number. The changes in the wake configuration as the Reynolds number

increases are also shown and their relation to the increase in the vortex shedding fre-

quency is discussed. The power spectra for the velocity fluctuations are computed.

The analysis of the resulting spectrum showed the footprint of Kelvin-Helmholtz in-

stabilities in the whole range. It is found that the ratio of these instabilities frequency

to the primary vortex shedding frequency matches quite well the scaling proposed by

Prasad and Williamson (fKH/fvs ∝ Re0.67).

a)Electronic mail: cttc@cttc.upc.edu
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I. INTRODUCTION

Turbulent flow around bluff bodies such as a circular cylinder is of great interest for

understanding fundamental fluid mechanics problems. This flow involves extremely complex

physical phenomena such as flow separation due to the adverse pressure gradient, transition

to turbulence and the shedding of vortices due to the interaction between both separated

shear-layers1. According to Roshko2, depending on the characteristics of the flow it can be

classified into different regimes: subcritical, critical, super-critical and trans-critical. In the

subcritical regime (Re = Uref D/ν ≈ 103 − 2× 105), transition to turbulence occurs in the

separated shear-layers with the drag coefficient remaining almost constant throughout the

whole range and equal to CD ≈ 1.22–7. In this regime, the frequency of vortex shedding is

also constant St = fvsD/Uref ≈ 0.21 whereas the vortex formation length decreases with

the Reynolds number8.

In the range 2 × 105 < Re < 5 × 105, also known as the critical regime9–11, there is a

sharp decrease of the drag coefficient magnitude down to a minimum value of CD ≈ 0.2.

In this regime, transition to turbulence first occurs in one of the boundary layers and it is

characterized by the separation with further reattachment of the boundary layer, forming

a bubble similar to that observed in the flow past airfoils at low-to-moderate Reynolds

numbers12,13. This laminar separation bubble (LSB) on one side of the cylinder surface is

the cause of asymmetric forces acting on the cylinder surface with the mean lift coefficient

greater than zero (CL > 0). Flow separation in the transitional shear-layers occurs further

downstream at about 147◦ (measured from the front stagnation point)14.

In the super-critical regime (Re = 5 × 105 − 2 × 106), characterized by the presence

of two LSB on both sides of the cylinder surface, there is a plateau in the value of the

drag coefficient (CD ≈ 0.2) with symmetric separation at φ = 148◦14–16. The wake is

thinner than in the subcritical regime, with width lower than the cylinder diameter. A

point of controversy is the existence of vortex shedding at these Reynolds numbers. In fact,

there is a considerable scattering in the vortex shedding frequency measurements5,10,11,15,

whereas other authors claim that there is not vortex shedding whatsoever2,16,17. Delany and

Sorensen15 used a pressure transducer probe downstream the cylinder to measure vortex

shedding. Their results show some scattering with values falling between 0.35 − 0.45. On

the other hand, Roshko2 did not observe vortex shedding at Re < 3.5× 106. He attributed
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the inconsistency of his measurements with those of Delany and Sorensen to the narrow

wake width and the fact that his probe was located at [x, y] ≡ [7D, 0.7D] downstream the

cylinder. Later, the measurements of Bearman10, Achenbach and Heinecke5 and Schewe11

showed vortex shedding frequencies around St ≈ 0.4 − 0.5. Regarding the experimental

tests by Achenbach and Heinecke, they did notice the suppression of vortex shedding for low

aspect ratio cylinders and attributed this behavior to some three-dimensional effects and the

consequent formation of a three-dimensional wake. On the other hand, their experiments

at larger cylinder aspect ratios showed a quasi-regular flow fluctuation in this regime, in

agreement with the previous experiments of Bearman10. Further experiments on smooth

and rough cylinders by Shih et al.16 found neither vortex shedding at St > 4 × 105 nor an

increase in the Strouhal number up to 0.4 as previously reported.

The trans-critical regime (Re = 2 × 106 − 3.5 × 106) comes with a narrow-band vortex

shedding at St ≈ 0.27 and the drag coefficient increasing again up to a value of CD ≈

0.5 − 0.72,18. Indeed, there is no consensus in the magnitude of the drag coefficient at

these Reynolds numbers as few experiments have been conducted so far. With a further

increase beyond Re > 3.5 × 106, transition to turbulence in the boundary layer moves

forward the stagnation point. No evidence of the LSB has been found in this regime2,

thus being the separation of the flow fully turbulent. As a consequence of the upstream

separation, compared to the super-critical regime, the wake becomes wider with rather high

drag coefficient and base pressure.

Regarding the critical regime, many experimental works have been conducted; however,

as the flow at these high Reynolds is very sensitive to small turbulence fluctuations, surface

roughness, end conditions, etc., the scattering in the measurements is rather high. One of the

pioneer experiments carried out were conducted by Wieselsberger3, who performed a series

of measurements of the drag coefficient from laminar to super-critical Reynolds numbers,

thus encompassing the critical regime.

Fage4 and Fage and Falkner19 accomplished systematic measurements for determining

the drag of circular cylinders, but also the distribution of the pressure and the skin friction

along the cylinder circumference. Their experiments aimed at examining the boundary layer

and its transitions on the cylinder. They reported on the change in the pressure profile as

the flow enters the critical regime and the existence of an inflexion point in the pressure

curve which marks the zone where the boundary layer transitions to turbulence.
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It is now of general consensus that the LSB observed on both sides of the cylinder surface

and registered as a plateau in the pressure distribution, located after the position where the

pressure reaches a local minimum, is a characteristic of critical and super-critical regimes.

The resulting pressure distribution was observed at Re = 4.54 × 105 and 5.96 × 105 by

Bursnall and Loftin9. The authors also showed that by forcing an early transition (typical

of a higher Reynolds number), such LSB disappeared as transition moved ahead the location

at which the LSB would be occurred. The presence of this LSB was extensively discussed

by Tani12 in his review, pointing out that this phenomenon was similar to that observed in

airfoils at incidence. In fact, although not discussed in their work, it was also present in the

measurements done by Fage and Falkner19 for those Reynolds numbers where the flow was

critical, and it could be observed in both pressure distribution and skin friction around the

cylinder. Further evidence of the LSB at those Reynolds numbers has been reported in the

works of Bearman10, Achenbach and Heinecke5 and Schewe11, among others.

Another interesting feature of the flow in the critical regime is the asymmetry in the

pressure distribution due to the formation of a LSB only on one side of the cylinder. So

far, it has only been reported experimentally. The formation of this LSB is associated with

the changes in the flow and the beginning of the drag crisis. Indeed, Bearman10 in his

experiments from Re = 105 to 7.5× 105 observed this phenomenon at Re = 3.4× 105. This

bubble, on one side of the cylinder, caused an average magnitude of the lift coefficient CL

greater than zero (CL > 0). With the increase in the Reynolds number, a second bubble

then appeared on the other side of the cylinder to complete the drop in the drag off to a

value of 0.23.

Later, Schewe11 studied this flow for a large range of Reynolds numbers from subcritical to

trans-critical regimes, thus confirming the observations of Bearman and demonstrating that

this is a fundamental characteristic of the flow and not a consequence of the test conditions.

In fact, as previously observed by Bearman, he did also measured two discontinuous drops

in the drag while increasing the Reynolds number.

Related to the change in the drag are the changes in the wake topology and the way

separated shear-layers interact. Thus, variations in the vortex shedding frequency were also

detected. In fact, the magnitude of the Strouhal number (St = fvsD/Uref) was found to

increase with the Reynolds number, with a discontinuous transition from 0.21 to 0.32 in the

one-bubble zone to then rose up to 0.46 in the two-bubble zone10. Similar findings were also
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reported after Bearman10 by Achenbach and Heinecke5 and Schewe11 , though with little

difference in the values of the vortex shedding frequency.

Up-until-now, time accurate numerical simulations of the turbulent flow past a circular

cylinder have been limited to low-to-moderate Reynolds numbers (see for instance Ma et

al.20, Dong et al.21, Lehmkuhl et al.22). The main limitations of direct numerical simu-

lations (DNS) techniques are due to the large range of instantaneous scales to be solved,

which increase with the Reynolds number and require the use of very large computational

resources. Hence, in order to get rid of such limitations, turbulent flow modeling such as

Reynolds-averaged Navier-Stokes (RANS) models, detached eddy simulations (DES) and

large-eddy simulations (LES) might be an alternative to tackle such complex phenomena at

high Reynolds numbers. So far, due to limitations of the computational resources, numerical

simulations of the flow in the critical regime are scarce. One of the first attempts was carried

out by Celik and Shaffer23 using the standard k − ǫ RANS model in the range of Reynolds

numbers of 104 − 107. The results showed a fair agreement before separation, though after

separation flow prediction failed due to the inability of the model used in capturing the

flow dynamics in the wake. More recently, Vaz et al.24 compared different two- and three-

dimensional RANS and DES computations to experimental measurements at two Reynolds

numbers of Re = 9×104 and Re = 5×105. They concluded that all models predicted forces

far from the experimental values, especially at the higher Reynolds number. Travin et al.25

showed the capabilities of DES for dealing with this complex flow up to Re = 3×106. They

obtained a reasonable agreement within experimental measurements, however they were not

able of capturing the asymmetries in the flow even with the cylinder tripped on one side.

In addition to RANS and DES techniques, there have also been some numerical studies

using LES at high Reynolds numbers. Unlike RANS, in LES only the smallest (sub-grid)

scales of the flow are modeled, solving also all the temporal scales of the flow. This makes

LES suitable for modeling the complex unsteady behavior of massive separated flows past

bluff bodies26–28. Breuer29 performed challenging LES at the subcritical Reynolds number

of Re = 1.4× 105 and investigated the effect of two sub-grid scale (SGS) models. Although

results were quite satisfactory, in special those obtained with the dynamic Smagorinsky

model, further grid refinement did not improve the prediction of the flow. Later, Catalano

et al.30 used LES with wall-modeling at super-critical Reynolds numbers of 5× 105, 106 and

2× 106. Results were very promising considering the grids used and were in fair agreement
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with state-of-the-art experimental results, especially for the two lower Reynolds numbers.

Sing and Mittal31 conducted two-dimensional DNS in a large range of Reynolds numbers

up to 106 aiming at studying the relation between shear-layer instabilities and the drag crisis,

but their conclusions were limited due to the two-dimensional nature of the simulations. The

flow over a rotating cylinder at Re = 1.4× 105 and different spinning ratios from 0 to 2 was

studied by means of LES by Karabelas32. Results for the stationary cylinder were in quite

good agreement with the previous results by Breuer29. More recently, Moussaed et al.33 used

a blending of a variational multi-scale LES (VMS-LES) with a RANS model for simulating

the super-critical regime at Re = 6.5×105−1.25×106. The pressure distribution along the

cylinder circumference was reasonably good compared with experiments though they were

not able of capturing the LSB in their simulations.

In spite of the large number of experimental studies conducted so far, in the critical

regime there is a large scattering in the results obtained. This might be attributed mainly

to the difficulties in accurate measuring this flow at these Reynolds numbers together with a

large number of experimental issues such as wind tunnel blockage ratio, cylinder aspect ratio,

turbulence intensity of the free-stream flow, cylinder end conditions and surface roughness,

among others. Furthermore, most of these experimental studies have been concerned with

measurement of drag forces, skin-friction and vortex shedding frequency. On the other

hand, numerical studies have been focused on demonstrating the capabilities of numerical

simulations to deal with such complex flow rather than provide more insight into the physics

of the flow. Thus, considering the actual state-of-the-art this work aims at providing further

insight into the fluid dynamic behavior of the flow past a circular cylinder at critical Reynolds

numbers. To do this, LES of the flow at Reynolds numbers of Re = 2.5×105; 3.8×105; 5.3×

105 and 6.5 × 105 are carried out. The analysis of different flow characteristic such as the

formation of the small recirculation bubble on the cylinder surface, the delayed separation

of the flow or the changes in the vortex shedding as the Reynolds number is increased are

addressed.
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II. MATHEMATICAL AND NUMERICAL MODEL

A. Governing equations

The spatially filtered Navier-Stokes equations can be written as,

∂ui

∂xi

= 0 (1)

∂ui

∂t
+

∂uiuj

∂xj

− ν
∂2ui

∂xj∂xj

+ ρ−1 ∂p

∂xi

= −
∂Tij

∂xj

(2)

where u and p stand for the filtered velocity and pressure, respectively. ν is the kinematic

viscosity and ρ the density of the fluid. In equation 2, Tij is the subgrid scale (SGS) stress

tensor which has to be modeled. Its deviatoric part is given by,

Tij −
1

3
Tkkδij = −2νsgsS ij (3)

where S ij is the large-scale rate-of-strain tensor, S ij =
1
2
(gij + gji) being gij = ∂ui/∂xj .

δij is the Kronecker delta. To close the formulation, an appropriate expression for the

subgrid-scale viscosity should be provided. In this paper, the wall-adapting local-eddy vis-

cosity model (WALE)34 is used. This model, proposed by Nicoud and Ducros34 evaluates the

eddy viscosity using the square of the velocity gradient tensor. In its formulation, the SGS

viscosity accounts for the effects of both the strain and the rotation rates of the smallest

resolved turbulent fluctuations. In addition, it has a proper near-wall behavior (νsgs ∝ y3).

The WALE model evaluates the eddy viscosity as,

νsgs = (Cw∆)2
(Vij : Vij)

3

2

(Sij : Sij)
5

2 + (Vij : Vij)
5

4

(4)

in the above expression, Vij is the deviatoric part of the square of the velocity gradient

tensor Vij =
1
2

(

g2ij + g2ji
)

− 1
3
δijg

2
kk with g2ij = gikgkj and Cw is the model constant. Here a

value of Cw = 0.325 is used.

B. Numerical method

The methodology for solving the governing equations has been previously used with

accurate results for solving the flow over bluff bodies with massive separation by means
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of both DNS22,35,36 and LES techniques28,37. In this methodology, the governing equations

have been discretized on a collocated unstructured grid arrangement by means of second-

order spectra-consistent schemes38. Such schemes are conservative, i.e. they preserve the

symmetry properties of the continuous differential operators and, ensure both stability and

conservation of the kinetic-energy balance even at high Reynolds numbers and with coarse

grids. Furthermore, as stated by Verstappen and Veldman38, these schemes constitute a

good starting point for the formulation of SGS models. For the temporal discretization of

the momentum equation (2) an explicit two-step second-order self-adaptive scheme on a

fractional-step method has been used for the convective and diffusive terms39, while for the

pressure gradient term an implicit first-order scheme has been implemented. Further details

about the discretization can be found in Jofre et al.40 and Trias et al.41.

The resulting Poisson equation is then solved by using a direct Schur-Fourier decomposi-

tion method. This method takes advantage of the discretization used for solving the three-

dimensional domain. As three-dimensional meshes are here constructed by a constant-step

extrusion of a two-dimensional unstructured grid, the span-wise coupling of the discrete

Poisson equation yields circulant sub-matrices where a Fast Fourier Transform (FFT) based

algorithm can be used. Then, the initially coupled three-dimensional system of equations is

de-coupled into a set of two-dimensional sub-systems which are solved by means of a direct

Schur complement decomposition method (for more details the reader is referred to Borrell

et al.42).

For the computational meshes reported in this work, partitions up to 1024 CPUs depend-

ing on the size of the computational grids were considered. In terms of wall-clock time, the

cost of each simulation depends on the number of time-steps required for completing the

whole simulation and the cost per time-step. Since in the current computations a direct

Poisson solver is used, the latter is constant for a given mesh and number of CPUs. For

instance, for the largest case, the mesh size was of about 83.2 million control volumes for

which 1024 CPUs were used. For this case, the cost per iteration was of 0.324s. Considering

that about 1.8 million of iterations were required, the cost per degree of freedom was 1.79s

for all the simulation. All computations were carried out on Marenostrum III Supercom-

puter which is based on Intel SandyBridge processors working at 2.6 GHz and coupled by

means of an Infiniteband network.
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C. Computational domain and boundary conditions

The flow past a circular cylinder at critical Reynolds numbers of Re = 2.5 × 105,

3.8 × 105, 5.3 × 105 and 6.5 × 105 is considered. Here, the Reynolds number Re =

Uref D/ν is defined in terms of the cylinder diameter D and the free-stream velocity

Uref . The cases have been solved in a computational domain of dimensions [x, y, z] ≡

[−16D, 16D]; [−10D, 10D]; [0, 0.5πD] in the stream-, cross-stream and span-wise directions

respectively, with a circular cylinder of diameter D at (0,0,0). Considering the computa-

tional domain, the dimension of the transverse direction corresponds with a blockage ratio

of Ly/D = 5%, which is well within the values reported in experiments (e.g. Spitzer43 2%,

Bursnall and Loftin9 2.2%, Delany and Sorensen15 4.8 − 14%, Bearman10 8.3%, Schewe11

10%, Achenbach14 16%).

The boundary conditions at the inflow consist of a uniform velocity (u,v,w)=(1,0,0), slip

conditions in the top and bottom boundaries of the domain, while at the outlet a pressure-

based condition is used. At the cylinder surface, no-slip conditions are prescribed. As for

the span-wise direction, periodic boundary conditions are imposed.

D. Grid resolution

As commented before, the governing equations are discretized on an unstructured mesh

generated by the constant-step extrusion in the span-wise direction of a two-dimensional

unstructured grid. For constructing the meshes used in the present simulations, in the region

behind the cylinder where the level of turbulence of the flow is higher more control volumes

have been clustered, while the grids have been stretched out towards the outer regions of

the domain. Furthermore, it is worth noting that the boundary layer at the cylinder surface

is well resolved, i.e. no wall functions are used. Thus, the meshes are designed so as to keep

the non-dimensional wall distance y+ < 2. To do this, a prism layer is constructed around

the cylinder surface. A detail of the computational grid in the vicinity of the cylinder surface

is depicted in Figure 1.

With all these criteria in mind the final meshes for each Reynolds number here adopted

are given in Table I. It should be pointed out that although different grids have been

considered for each of the cases solved, for the sake of brevity results presented in this work
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FIG. 1: Details of one of the computational meshes near the cylinder (500516× 128 ≈ 64

million CVs).

TABLE I: Main parameters for the different computations. NCVt total number of control

volumes; NCV plane number of control volumes in the plane; Nplanes number of planes in the

span-wise direction

Re NCVt [×106] NCV plane Nplanes

2.5× 105 38.4 299683 128

3.8× 105 48.6 379950 128

5.3× 105 64.1 500516 128

6.5× 105 83.2 650432 128

were obtained with the grids summarized in the table. In Appendix A some details about

grid refinement studies conducted are presented. For the Reynolds numbers considered,

transition to turbulence occurs just after the boundary layer detaches from the cylinder

surface. Thus, in the present formulation the transition to turbulence is well captured by

the model, i.e. no artificial mechanism for triggering this phenomenon to occur is imposed.

Regarding the span wise size of the domain, it should be borne in mind that this distance

might be large enough to contain the largest scales, whereas at the same time grid resolution

has to be sufficient to capture the relevant scales of the flow. Notice, that a compromise

between accuracy and cost of the simulations has to be considered. Span wise two point
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FIG. 2: Location of the numerical stations

correlations have been used to verify if the size of the domain is adequate. Two point

correlations are defined as,

ℜφφ(x, δz) =
< φ′(x, t) φ′(x+ δz, t) >

< φ′2 >
(5)

where x ≡ (x, y, z), φ′ ≡ (u′, v′, w′), δz is the spacing lag and < · > denotes averaging over

time and space. In the present work different numerical probes have been located close to the

cylinder and in the near wake (see figure 2). The time signals of these stations have then been

recorded. The computed values of the two-point correlations for the stream wise (Ruu), cross

stream (Rvv) and span wise velocity fluctuations (Rww) at probe P1 ≡ [x/D = 2, y/D = 0.5]

for the different Reynolds numbers are given in figure 3. As can be seen, the correlations fall

off to approximately zero at the half size of the domain. Ruu and Rvv are in general more

narrower than Rww at every Reynolds number suggesting than the coherence in w is larger

than in the other two components. In particular, at Re = 2.5× 105 it drops off more slowly

and the correlation is not zero at the half span indicating the existence of a longer structure

of size larger than π/4. Although a larger domain would be desirable to accommodate all the

structures and eliminate the effects of the periodic boundary condition, given the limited

computational resources and the cost of the simulations, the span distance is a trade-off

between enough resolution and sufficient distance in this direction. Thus, it was preferable

to sacrifice the span size of the domain but keep a good resolution of the smallest scales.

III. RESULTS

For obtaining the numerical results presented, the simulations are started from an ini-

tially homogeneous flow field and then, are advanced in time until statistical stationary flow
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FIG. 3: Two-point correlations of the stream wise, cross stream and span wise velocity

fluctuations in the near wake (a) at Re = 2.5× 105; (b) at Re = 3.8× 105; (c) at

Re = 5.3× 105; (d) at Re = 6.5× 105

conditions are achieved and the initial transient is completely washed out. Average statistics

are then computed for a time span of about 25 shedding cycles, in order to assure that the

flow is statistically converged.

A. Local pressure and skin friction distributions

The variation of the drag coefficient with the Reynolds number is plotted in Figure

4 together with the literature available measurements. As can be seen, at these Reynolds

numbers, the measured data present a rather large scattering due to the difficulties associated

with the experiments; i.e. sensitiveness to turbulence intensity, cylinder end conditions,
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FIG. 4: Variation of the drag coefficient with the Reynolds number. Comparison with

literature. (red solid circles) Present results; (crosses) Delany and Sorensen15; (stars)

Spitzer43; (squares) Achenbach5; (solid squares) Bursnall and Loftin9: (circles) MARIN24;

(pluses) Schewe11; (triangles) Wieselsberger3; (solid triangle) Fage4

surface roughness, blockage ratio, among others. In spite of the large scattering in the

reference data, results obtained with the present simulations show a fair agreement, being

well within the range of dispersion of the experimental measurements. However, it should be

pointed out that in some experiments such as those by Fage4, the onset of the critical regime

occurs earlier at about Re = 105, whereas compared to other experiments (e.g. Schewe11,

Bursnall and Loftin9) it seems that in the present simulations the asymmetries in the flow

are detected at lower Reynolds numbers. This suggests that the onset of the critical regime

has here occurred slightly before than in those experiments. For instance, Bushnall and

Loftin9 observed the subcritical regime at Re = 2.45 × 105 and changes in the pressure

distribution were measured for Re > 3.5 × 105, although no asymmetries were reported,

the presence of a laminar separation bubble was detected at Re = 4.5 × 105 − 5.96 × 105.

Achenbach14 reported the onset of the critical regime at Re = 3× 105, however, the drop in

the drag in his measurements was rather high compared to other experiments (see figure 4).

Schewe observed asymmetries in the flow at Re = 3.5×105, whereas Bearman10 reported the

presence of a laminar separation bubble on one side of the cylinder at Re = 3.4×105 and the
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formation of a second bubble on the other side at Re = 3.8× 105. In these experiments, the

drop in the drag off to its minimum value followed a steep decrease (e.g Bearman between

Re = 2×105−4×105 and Schewe between Re = 2.5×105−3.8×105), whereas in the present

computations it occurs in a wider range, i.e. at Re = 2.5 × 105 the flow is in the critical

regime and the end of this regime is measured when the drag reaches its minimum value at

Re = 6.5 × 105. Some of these differences may stem from the fact that at these Reynolds

numbers the changes in the drag occur very rapidly, being these changes comparable to the

drag of the entire wind tunnel. This situation makes the system tunnel/cylinder unstable

and thus, the drop in the drag of the cylinder results in a small increase in the wind tunnel

speed11,16. In these conditions it is difficult to keep constant the wind tunnel velocity,

resulting in instabilities in the drag measurements.

The distribution of the local pressure on the cylinder surface at every Reynolds number

is shown in Figure 5. Experimental measurements at comparable Reynolds numbers are

also shown. The most noticeable feature of the profiles presented is the depression which

occurs first on one-side (Figure 5a) and then on both sides (Figures 5b-5d) of the cylinder

surface as the Reynolds number increases. Contrary to the subcritical regime where pres-

sure distribution along the cylinder circumference remains almost unchanged regarding the

Reynolds number, the variations observed in Figure 5 are a characteristic trait of the criti-

cal regime10,11. For the two lower Reynolds numbers, the pressure profiles are asymmetric,

pointing out that boundary layer separation and transition to turbulence occurs at different

locations in the top and bottom sides of the cylinder. As it will be also shown in section

IIIB, transition to turbulence occurs earlier in one of the separated shear-layers, whereas on

the other side the flow behavior is essentially as in the subcritical regime. The changes in

the pressure profile account also for both the magnitude and the location at which minimum

pressure occurs (see Table II). In the table, averaged data for the pressure minimum (Cp,min)

and the angular position at which this minim occurs (φCp,min), base pressure (−Cp, base),

and drag (CD) and lift (CL) coefficients are summarized. Notice that both the minimum

pressure and the location where it occurs are given for both sides of the cylinder surface.

At Re = 2.5 × 105, pressure minimum occurs near 70◦ (measured following clock-wise

direction from the stagnation point). The pressure distribution on this side of the cylinder

is similar to that observed in subcritical flows and it compares quite well with that obtained

by Cantwell and Coles44 at the subcritical Re = 1.4× 105 (see Figure 5a). On the contrary,
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FIG. 5: For caption see facing page
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FIG. 5: Local pressure distribution at different Reynolds numbers. Comparison with the

literature. (a) at Re = 2.5× 105; (b) at Re = 3.8× 105; (c) at Re = 5.3× 105; (d) at

Re = 6.5× 105

the pressure distribution on the other side of the cylinder presents a deep depression which

reaches its minimum at about 82◦(278◦) (counter-clock wise direction from the stagnation

point). These asymmetries were also reported in the experiments carried out by Shih et al.16

With the increase in the Reynolds number, the location of the minimum pressure moves

towards the rear while it gets more negative (see also Table II). In fact, at Re = 6.5 × 105

pressure minimum approaches to Cp,min = −2.53 at 85◦. At the same time, the base pressure

rises, thus increasing the magnitude of the pressure gradient. With all these variations in

the pressure distribution along the cylinder circumference, the drop in the drag up to 0.23

in this range of Reynolds numbers is completed (see values of the drag coefficient in Table

II).

Another remarkable trait is the plateau in the pressure observed at all critical Reynolds

numbers (see Figure 5). This feature is registered around φ ≈ 105◦ (measured from the stag-

nation point) and just after the pressure reaches its local minimum. This plateau followed

by a sudden pressure recovery is characteristic of the presence of a laminar separation bubble

in this zone similar to that formed on pre-stalled airfoils at moderate Reynolds numbers9,12.

The combination of both the decrease in the pressure minimum and the increase in the

back pressure makes larger the adverse pressure gradient, leading to the separation of the
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TABLE II: Pressure distribution main parameters. Pressure minimum Cp,min and its

location φCp,min; cylinder base pressure −Cp,base and drag CD and lift CL coefficients.

Re Cp,min φCp,min [◦] −Cp,base CD CL

2.5 × 105 -1.13/-2.83 70.5/278.6 0.99 0.833 -0.903

3.8 × 105 -2.46/-1.77 81.5/286.8 0.48 0.481 0.245

5.3 × 105 -2.45/-2.36 82.8/276.7 0.305 0.296 0.0614

6.5 × 105 -2.53/-2.58 85/275 0.23 0.232 0.027

boundary layer. However, just after separation transition to turbulence takes place. Then,

the shear-stresses which cause the transport of the momentum in the separated boundary

layer are responsible for the closure of the LSB. This can be observed in Figure 6 where a

close-up of both sides of the cylinder rear where the LSB appears is shown. In the figure, the

averaged flow streamlines around this zone are depicted and the background is colored by

the the averaged Reynolds stresses. As can be seen, the small recirculation bubble formed on

the cylinder rear is well captured at all Reynolds numbers. At Re = 2.5× 105, as expected,

only one bubble on the bottom side is detected. This is in agreement with the local pressure

profiles depicted in Figure 5a. Furthermore, the magnitude and location where shear-stresses

are acting is quite different on both sides of the cylinder. While on the top side (subcritical

side) transition to turbulence takes place off the cylinder surface, on the bottom side it

comes closer to the cylinder being just in the location where the LSB is formed.

With the increase in the Reynolds number, the small recirculation bubble appears on both

sides and, especially for Re = 5.3× 105 and Re = 6.5× 105, it is almost symmetric though

a little bit larger at Re = 5.3× 105. The size of the recirculation bubble at Re = 5.3× 105

is around 14◦ on average with a maximum height of about 0.0038D at its center, whereas

at Re = 6.5× 105 it is around 8◦ length and 0.003D of height. The angular position where

the LSB is located is also approximately given in the figure.

As commented before, the plateau observed in the pressure distribution is related to

the presence of a LSB in the zone. This LSB also affects the skin friction on the cylinder

surface which locally peaks at this region (see Figure 7 for details). In the figure, the local
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(a)

(b)

(c)

(d)

FIG. 6: Close-up of the LSB region. Flow average streamlines and shear-stresses at both

sides of the cylinder surface (a) at Re = 2.5× 105; (b) at Re = 3.8× 105; (c) at

Re = 5.3× 105; (d) at Re = 6.5× 105

behavior of both variables is plotted. Indeed, the skin friction falls to a minimum followed

by a steep increase in its magnitude, to then decrease again (see Figure 7). This increase

in the skin friction magnitude evidences the existence of a turbulent boundary layer that

further detaches at about φs = 148◦. The exact location where these inflection points occur

for each Reynolds numbers are given in Table III. These changes were also pointed out by

Fage and Falkner19, though in their experiments transition was triggered as earlier as at
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TABLE III: Angular positions of the recirculation bubble minimum φmin and maximum

φmax skin friction coefficient and flow separation φs on both sides of the cylinder surface.

Re Top Bottom

φmin φmax φs φmin φmax φs

2.5× 105 - - 91.5 270.6 252.9 217.7

3.8× 105 99.5 106.95 145.2 266.8 262.8 218.8

5.3× 105 100.1 110.1 148 259.4 250.7 212

6.5× 105 102.2 107.9 148 257.9 252.6 212

Re ≈ 1.1 × 105. Later, Achenbach and Heinecke5 also observed this behavior of the skin

friction. However, in their work the peak due to the transition from laminar to turbulent

flow is located somewhat closer to the cylinder rear and the pressure distribution did not

reflect the presence of a LSB, yet they measured the flow separation at φs ≈ 147◦ which is

closer to that obtained in the present simulations.

B. Instantaneous flow

The instantaneous behavior of the flow at the different Reynolds numbers is depicted in

Figure 8. Coherent structures are represented in the figure by means of the second invariant

of the velocity gradient tensor (Q-criterion)45. The method identifies a vortical structure as

a spatial region where rotation overcomes the strain. This invariant is defined as:

Q =
1

2
(ΩijΩij − SijSij) = −

1

2
(
∂ui

∂xj

∂uj

∂xi

) (6)

where Ωij and Sij stands for the skew-symmetric and symmetric components of ∇u.

In the figure, one can notice that regardless the Reynolds number and all the changes

that occur in the critical regime, a von-Kármán vortex street is formed behind the cylinder.

As it is discussed in the next section, vortex shedding is measured at all Reynolds numbers.

In spite of the similarities, the wake topology suffers an important change with a dramatic

reduction in the wake width and a variation in the location at which the boundary-layer

separates, as it can also readily be seen from Figures 9 and 10 . The stream-wise distance

19



Forces on a circular cylinder at critical Reynolds

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

 90  95  100  105  110  115  120
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

C
p

τ w
(
R
e
)
0
.
5
/
0
.
5

ρU
2

angle

Cp

τw

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

 90  95  100  105  110  115  120
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

C
p

τ w
(
R
e
)
0
.
5
/
0
.
5

ρU
2

angle

Cp

τw

FIG. 7: Detail of the pressure distribution and the skin friction at the region where the

LSB is detected. (a) Re = 5.3× 105, (b) Re = 6.5× 105

between the vortices shed also diminishes as a consequence of the increase in the vortex

shedding frequency (see next section). This gives the wake a more compact aspect as can

be observed at Re = 6.5×105, where several vortices are detected for the same length of the

wake when compared to the lower Reynolds numbers (in the figure counter-clock wise (CCR)

rotating and clock-wise (CR) rotating vortices are marked for a qualitative comparison).

At Reynolds number of Re = 2.5 × 105 (see Figure 8a), even when the flow is entering

the critical regime, the broad wake resembles that formed behind a circular cylinder at
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FIG. 8: Instantaneous wake configuration. Vortical structures represented by isocountours

of Q = 20 colored by the velocity magnitude (a) Re = 2.5× 105, (b) Re = 3.8× 105, (c)

Re = 5.3× 105, (d) Re = 6.5× 105
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subcritical Reynolds numbers, with almost parallel shear-layers detaching from the cylinder

surface. These shear-layers roll-up downstream the separation point, forming alternating

vortices which are shed into the wake as can be seen in the figure (see for instance46). The top

boundary layer separates laminarly as it does in the subcritical regime6. In the figure, CR1

vortex is being formed as the top shear-layer wraps-up, while irrotational fluid entrainment

occurs on the other side of the wake (see also Figures 9 and 10). Notwithstanding the

flow separation is asymmetric, the vortex formation process is similar to that described by

Gerrard1. Furthermore, the presence of one-bubble on one-side of the cylinder surface, as it

was shown in section IIIA by means of the pressure distribution, is well illustrated in Figure

9. In the figure, the instantaneous velocity magnitude in the near wake behind the cylinder

is depicted. On the bottom side of the cylinder, it can be seen how flow separation has been

delayed as a consequence of the increase of the pressure gradient (the difference between

the minimum pressure and that at the cylinder rear). As the flow accelerates on this side

of the cylinder, the process leading to the transition is triggered by the perturbations in the

boundary layer (see Figures 10a and 11a). This makes the transition location in the detached

boundary layer to come closer to the separation point which allows the flow reattachment

and the formation of the LSB on this side of the cylinder. This is in well agreement with

the average pressure profile obtained at this Reynolds number (see Figure 5a), where the

pressure distribution on the top side is typical of subcritical flows whereas in the bottom

side is critical.

At Re = 3.8 × 105, the flow is well within the critical regime. The pressure minimum

has started to decrease on the other side of the cylinder (see Figure 5b), which together

with the increase in the back pressure accelerates the flow triggering the transition just after

separation, although separation is non-symmetric (see Figures 10b and 11b). The combined

effects of flow separation, transition to turbulence and the increase in the shear-stresses,

makes the flow to reattach causing the formation of asymmetric LSBs and delaying the final

separation of the flow (see also figure 9b).

At Re = 5.3 × 105, the wake has not completed yet its critical transformation, however

symmetry is almost attained and the wake width has been reduced (see Figure 9c). Flow

instabilities close to the un-separated boundary layer are almost symmetric and can be

observed at an angular position larger than φ = 90◦ (Figure 11c). The formed eddies

(Figure 10c) delay the separation on both sides of the cylinder which finally occurs at
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(a) (b)

(c) (d)

FIG. 9: Instantaneous velocity magnitude profiles in the near wake. (a) Re = 2.5× 105;

(b) Re = 3.8× 105; (c) Re = 5.3× 105; (d) Re = 6.5× 105

around φ = 148◦ as qualitatively can be seen from these figures. Further downstream the

separation point, the shear-layers interact with each other near the wake center line, but the

shedding of vortices occurs at a higher frequency as will be discussed in the next section.

With the further increase in the adverse pressure gradient at Re = 6.5× 105 topological

changes are now accomplished (see Figures 8d, 9d and 10d). This increase in the pressure

difference accelerates the flow and eventually makes the turbulent shear-layers to collapse

in the wake center line. As this is happening, the recirculation zone behind the cylinder

shrinks and the wake width gets smaller than that at Re = 5.3 × 105 (see also Figures 11c

and d) .
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(a) (b)

(c) (d)

FIG. 10: Instantaneous vorticity profiles in the near wake. (a) Re = 2.5× 105; (b)

Re = 3.8× 105; (c) Re = 5.3× 105; (d) Re = 6.5× 105

C. Energy spectra

Numerical probes have been located at different positions in the near wake, in order

to capture the instantaneous behavior and spectrum of energy at the different Reynolds

numbers studied. For the unevenly sampled velocity components time series data, energy

spectrum is then calculated by using the Lomb periodogram technique47 and, by averaging

the resulting spectrum in the span-wise direction. Figure 12 shows the resulting power spec-

trum of the cross-stream velocity fluctuations for the different Reynolds numbers. Although

velocity components have been sampled at different stations, in the figure energy spectra

are given for the near wake at x/D = 2 and y/D = 0.5. As can be seen, with the exception

of the energy spectrum at Re = 3.8× 105, a sharp peak at the vortex shedding frequency is
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(a) (b)

(c) (d)

FIG. 11: Instantaneous pressure contours. (a) Re = 2.5× 105; (b) Re = 3.8× 105; (c)

Re = 5.3× 105; (d) Re = 6.5× 105

observed at all Reynolds numbers. However, the frequency at which energy peaks increases

as the Reynolds number increases as can readily be seen in Table IV. For comparison,

experimental results at comparable Reynolds numbers are also given.

These changes in the vortex shedding frequency have been reported before in the literature

by Bearman10, Achenbach and Heinecke5 and Schewe11. In the experiments of Bearman

and Schewe, they both reported an increase in the vortex shedding frequency as the drag

coefficient approaches to its minimum value. Bearman directly related these changes with

the occurrence of one-bubble on one side of the cylinder surface and the second jump in the

frequency with the establishment of the second bubble on the other side of the cylinder.

However, in the present computations, the discontinuous change from one-bubble to two-

bubble flow is not detected. Conversely, changes in the wake configuration and in the vortex
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FIG. 12: Energy spectra of the cross-stream velocity fluctuations at x/D = 2, y/D = 0.5

at different Reynolds numbers. (a) Re = 2.5× 105; (b) Re = 3.8× 105; (c) Re = 5.3× 105;

Re = 6.5× 105

shedding regime occur more gradually. On one hand, at Re = 2.5×105 when the one-bubble

flow regime is detected, vortex shedding frequency was fvs = 0.238, a value closer to that

reported for subcritical flow (fvs ≈ 0.2) rather than the value fvs ≈ 0.35. The last one

should correspond with the one-bubble regime according to Bearman10 observations. On

the other hand, at Re = 3.8 × 105 when the second bubble starts to form and, due to the

asymmetry in the flow, the vortex shedding process loses coherence and two less energetic

peaks at frequencies fvs = 0.238 and fvs = 0.358 are detected instead of a clear vortex

shedding frequency peak (see Figure 12b). This loss of coherence might be attributed to the

asymmetric vortex shedding as one of the shear-layers is bending towards the wake center line

26



Forces on a circular cylinder at critical Reynolds

whereas the other remains more stream wise aligned. This makes the interaction between

both shear-layers more random and gives the wake a less coherent appearance. Notice also

that this double peak is also observed in the energy spectrum of the shear-layer (see figure

13). In fact, the frequencies detected correspond with the values measured at Re = 2.5×105

and at Re = 5.3× 105 pointing out a fluctuation between both configurations as the second

bubble is not yet completely formed. As a result, the wake configuration and the vortices

formed are not as coherent as they are at Re = 2.5×105 or at the higher Reynolds numbers,

as can also be seen from the vortical structures depicted in Figure 8b.

Furthermore, at Re = 5.3 × 105, when the second bubble is formed and the symmetry

in the flow is almost re-established (see Figure 12c and Table IV), the frequency measured

was fvs ≈ 0.36, and its value rose up to fvs ≈ 0.44 at Re = 6.5 × 105. These changes in

the frequency of the vortex shedding seem to be related with the distance between both

shear-layers, which is shrinking as the Reynolds number approaches to Re = 6.5 × 105,

rather than with the presence of one-bubble flow as stated by Bearman10. This is somewhat

in disagreement with the previous experiments10,11. However, it should be considered that

in these experiments Reynolds number increments are carried out by small increments of

the wind tunnel speed11. Under these circumstances, the measurements might be influenced

by the previous state. Moreover, as it was also pointed out by Schewe11, fluctuations in

the transition states (when the one-bubble flow was detected) were the largest and the

wind tunnel speed was influenced by the transition states, as far as the drag changes in the

cylinder were not small enough compared with the drag of the tunnel. Similar issues were

also reported by Shih et al.16. One then wonders whether these instabilities when varying

the Reynolds number, would influence the measurements of the vortex shedding frequency.

Conversely, numerical experiments carried out in the present work start from homogenous

flow being each case independent with each other and cannot exhibit then, the hysteresis

registered experimentally11. In these results, the minimum drag coefficient measured corre-

sponds also with the wake configuration where shear-layers are brought closer together which

is consistent with both the local pressure and the energy spectra measurements. Yet, topo-

logical changes do not affect the fundamentals of the vortex formation mechanism. When

the shear-layers come closer due to the acceleration of the flow, their interaction is promoted

and thus, the periodic vortex shedding takes place at a higher frequency. This statement

is in agreement with the observations made by Gerrard1 about the mechanism of vortex
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Re 2.5× 105 3.8× 105 5.3× 105 6.5× 105

Present results 0.238 0.238/0.358 0.368 0.442

Bearman10 0.19 0.32 0.45 0.44

Achenbach&Heinecke5 0.228 0.34(2.9 × 105) 0.51 0.51

Schewe11 0.2 0.31(3 × 105) 0.45 0.44

TABLE IV: Variation of the Strouhal number with the Reynolds number. Comparison

with the literature results.

shedding in bluff bodies.

A fact that would require further attention is whether at Re > 4 × 105 vortex shedding

ceases to occur as reported in some experiments (see for instance2,16,17). However, as has been

shown, vortex shedding has been clearly measured at both Re = 5.3×105 and Re = 6.5×105.

The reason why some investigators did not detect vortex shedding atRe > 4×105 is not clear.

At these Reynolds numbers the flow is quite unstable and aspects such as a low cylinder

aspect ratio or vibrations in the wind tunnel can trigger three-dimensional effects in the

wake and the loss of coherence in the vortex shedding. Indeed, Achenbach and Heinecke5

observed these effects when they experimented with low aspect ratio cylinders and in such

cases no regular signal was detected. These effects disappeared when larger aspect ratio

cylinders were the used. It would be interesting to induce some three dimensional effects in

order to clarify this issue. However, at this time this remains a subject for further research.

In addition to the vortex shedding frequency, the analysis of the energy spectrum can

provide information about the instability of the shear-layers. It is well known that Kelvin-

Helmholtz (KH) instabilities in the shear-layer play a major role in the transition to turbu-

lence. These instabilities lead to the formation of small-scale vortices which eventually grow

up and feed the large-scale Kármán vortices. Since the work by Bloor8, consistent studies

have been performed to visualize and measure the frequency of these instabilities48–50. The

contribution of the KH instability occurs at different scales than that of the vortex shedding

and its footprint can be identified by means of a Fourier analysis. However, the signature

of KH instabilities is rapidly absorbed within the turbulent background fluctuations, and

thus cannot be detected by all probes in the near wake. In order to detect KH instabilities
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FIG. 13: Shear-layer instabilities frequency as a function of the Reynolds number. From

bottom to top: Re = 2.5× 105, Re = 3.8× 105, Re = 5.3× 105 and Re = 6.5× 105. The

KH frequency is marked in the spectra as fKH

frequency, probes should be placed in the shear-layers or close to them. Then, the energy

spectrum of selected probes (see figure 2 for details) has been computed (see figure 13).

At the Reynolds numbers studied, the onset of instabilities are located in the attached

boundary layer (see also figure 11). Thus, KH instabilities were measured at probe P3 for

Re = 2.5 × 105, P4 for Re = 3.8 × 105 and Re = 5.3 × 105 and P5 for Re = 6.5 × 105.

In these locations, the footprint of these instabilities is captured as a broadband energetic

peak at frequencies larger than that of the vortex shedding. The energy contained in the

spectra of shear-layer instabilities at Re = 2.5 × 105 and Re = 6.5 × 105 is not that high,
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as the probes depicted are located a tad off the separated shear-layer. Yet, the broadband

signature can be well captured. On the other hand, the energy spectra at Re = 3.8×105 and

Re = 5.3 × 105, which correspond with probes located at the cylinder shoulder show more

energetic peaks, as these probes are located well within the onset of these instabilities. These

observations suggest that, similar to the subcritical regime, the inception of instabilities in

the shear-layer play a major role in the transition to turbulence.

As expected, KH instabilities frequency increases with the Reynolds number8. If the

ratio of this frequency to that of the vortex shedding is computed (fKH/fvs) the obtained

dependency with the Reynolds number matches quite well with the scaling obtained by

Prasad and Williamson51,52 (see figure 14). Earlier studies8,50 suggested a ratio proportional

to Re0.5, however, Prasad and Williamson51,52 proposed a different scaling (fKH/Fvs ∝

Re0.67) based on the data of experimental measurements by different authors and their own

in the range of Reynolds numbers up to Re < 105, which later, was confirmed by other

researchers (e.g. fKH/Fvs ∝ Re0.68 by Norberg53 and fKH/Fvs ∝ Re0.69 by Thompson

and Hourigan54). In their analysis, they accounted for the variations of the base pressure

and vortex shedding frequency with the Reynolds number, and the upstream motion of
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the separation point. As in the present work transition to turbulence occurs just after

the separation of the boundary layer, this analysis proves to be valid at least for Re =

2.5× 105 − 6.5× 105. This outcome is quite interesting as no direct measurements of these

instabilities have been reported so far at Re > 105.

IV. CONCLUSIONS

Large eddy simulations of the flow past a circular cylinder at critical Reynolds numbers

of Re = 2.5× 105, 3.8× 105, 5.3× 105, 5.5× 105 have been performed. To do this, second-

order spectra-consistent numerical schemes on an unstructured grid arrangement have been

used. It is well known that in the critical regime transition to turbulence in the separated

boundary layer causes the delaying of the separation point and a steep drop in the drag

commonly referred to as the drag crisis. This phenomenon here addressed has been well

predicted by the present numerical simulations. Measurements of both drag forces and

pressure distribution along the cylinder circumference show quite well agreement with the

available experimental results. The current simulations also captured the small recirculation

bubble formed on the cylinder surface, just after the separated boundary layers transition

to turbulence. This laminar separation bubble, which is a fundamental trait of the flow

at these critical Reynolds numbers, is first formed on one side of the cylinder surface at

Re = 2.5 × 105. With the increase in the Reynolds number, in the present computations

at Re = 3.8× 105, a second bubble starts to form on the other side of the cylinder surface.

As a consequence, the flow configuration observed is asymmetric and the symmetry of the

flow is recovered as the second bubble settles on the opposite side at Re = 5.3 × 105 and

Re = 6.5 × 105. The position, as well as the characteristics dimensions of this flow feature

have been measured for all Reynolds numbers.

The changes in the pressure up to a minimum value of the drag coefficient of CD ≈ 0.23

measured at Re = 6.5 × 105 are also accompanied by changes in the wake topology and in

the vortex shedding frequency. It has been shown how the wake width is reduced as the

Reynolds number increases and the shear-layers are brought closer with the increase in the

pressure gradient. When the shear-layers approach each other as the flow accelerates, they

are forced to interact with a higher periodicity thus increasing the vortex shedding frequency

up to St ≈ 0.44 at Re = 6.5 × 105. This value is in well agreement with the experimental
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results at comparable Reynolds numbers; however, whether three-dimensional effects in the

wake are the cause of the lost of coherence observed in some experimental measurements

still remains an open question.

Regarding the shear-layer frequency, it is found that even at these high Reynolds numbers

shear-layer instabilities play a major role in the transition to turbulence. The analysis of

the data obtained in the present computations showed that the Reynolds number scaling of

the shear-layer frequency is given by fKH/fvs ∝ Re0.67 which is in agreement with that of

Prasad&Williamson52.
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Competitividad, Secretaŕıa de Estado de Investigación, Desarrollo e Innovación, Spain (ref.

ENE2009-07689) and by the Collaboration Project between Universidad Politècnica de
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Appendix A: Sensitiveness of the solutions to the grid resolution

Numerical simulations are conducted using different levels of refinement. The finer

meshes are mainly constructed by refining the wall-normal direction in order to well-solve

the boundary layer and capture the near-wall flow features such as the small LSB formed

just behind the location of the minimum pressure. Furthermore, in the near-wake zone

−1.0 ≤ y/D ≤ 1.0 and x/D ≤ 3 more control volumes are clustered in order to ensure a

mesh as smooth as possible in the region of interest. Details of the different grids used for

Re = 5.3× 105 and the results obtained are summarized in Table V. In the table, together

with the mesh size for each level of refinement the value of the largest non-dimensional wall

distance (y+max) is also given.

The drag coefficient, base pressure and Strouhal number obtained with the low-resolution

mesh (low-res in Table V) largely deviates from the results obtained with the high-resolution

mesh. On the other hand, results are in reasonable agreement for both the medium-resolution

and the high-resolution meshes, although the largest differences are observed for the base-
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Mesh NCVt [×106CVs] NCV plane y+max −Cp,min −Cp,base CD St

high-res 64 500156 1.5 2.45 0.303 0.296 0.368

medium-res 48.6 379950 12 2.42 0.372 0.329 0.341

low-res 38.4 299683 20 1.91 0.619 0.531 0.283

TABLE V: Meshes used for solving the flow at Re = 5.3× 105 and statistical flow

parameters

pressure coefficient. These differences stem from the deviation in the pressure distribution

along the cylinder circumference. If the pressure distribution is plotted for all three meshes

(see Figure 15), one can notice that the medium-resolution mesh fails in capturing the small

recirculation bubble formed on the cylinder surface. This mesh (medium-res in Table V) is

not as refined in the wall-normal direction as the high-res mesh, and this is why the LSB

cannot be captured by using this grid. Nonetheless, pressure distributions for these grids

are in quite good agreement with experimental results from the literature. In the light of

these results it is evident that the grid refinement in the vicinity of the cylinder surface is

necessary if the LSB is to be captured. Thus, the meshes used in the numerical simulations

presented throughout this paper were especially refined in the near-wall direction depending

on the Reynolds number to be solved.

REFERENCES

1J. H. Gerrard, “The mechanics of the formation region of vortices behind bluff bodies,” J.

Fluid Mech. 25, 401–413 (1966).

2A. Roshko, “Experiments on the flow past a circular cylinder at very high Reynolds num-

ber,” J. Fluid Mech. 10, 345–356 ( 1961).

3C. Wieselsberger, “New data on the laws of fluid resistance,” Tech. Rep. NACA TN-84

NACA, 1922.

4A. Fage, “Drag of circular cylinders and spheres,” Tech. Rep. R&M 1370 Aeronautical

Reasearch Committee, 1930.

5E. Achenbach and E. Heinecke, “On vortex shedding from smooth and rough cylinders in

33



Forces on a circular cylinder at critical Reynolds

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  60  120  180

C
p

angle

high-res
medium-res

low-res
Tani Re=4.65e5

Flachsbart Re=6.5e5

FIG. 15: Comparison of the pressure coefficient on the cylinder surface for the different

meshes under study at Re = 5.3× 105

the range of Reynolds numbers 6e3 to 5e6,” J. Fluid Mech. 109, 239–251 (1981).

6C. H. K. Williamson, “Vortex Dynamics in the Cylinder Wake,” Annu. Rev. Fluid Mech.

28, 477–539 (1996).

7C. Norberg, “Fluctuating lift on a circular cylinder: review and new measurements,” J.

Fluids Struct. 17, 57–96 (2003).

8M.S. Bloor, “The transition to turbulence in the wake of a circular cylinder,” J. Fluid

Mech. 19, 290–304 (1964).

9W.J. Bursnall and L.K. Jr Loftin, “Experimental investigation of the pressure distribu-

tion about a yawed circular cylinder in the critical Reynolds number range,” Tech. Rep.

TN2463, NACA, 1951.

10P.W. Bearman, “On vortex shedding from a circular cylinder in the critical Reynolds

number regime,” J. Fluid Mech. 37, 577–585 (1969).

11G. Schewe, “On the force fluctuations acting on a circular cylinder in crossflow from

subcritical up to transcritical Reynolds numbers,” J. Fluid Mech. 133, 265–285 (1983).

12I. Tani, “Low-speed flows involving bubble separations,” Prog. Aerosp. Sci., 70–103(1964).

13M. Alam and N.D. Sandham, “Direct numerical simulation of short separation bubbles

with turbulent reattachment,” J. Fluid Mech. 410, 1–28 (2000).

34



Forces on a circular cylinder at critical Reynolds

14E. Achenbach, “Distribution of local pressure and skin friction around a circular cylinder

in cross-flow up to Re=5e6,” J. Fluid Mech. 34, 625–639 (1968).

15N.K. Delany and N.E. Sorensen, “Low-speed drag of cylinders of various shapes,” Tech.

Rep. TN3038, NACA, 1953.

16W.C.L. Shih, C. Wang, D. Coles, and A. Roshko, “Experiments on flow past rough circular

cylinders at large Reynolds numbers,” J Wind Eng. Ind. Aerod. 49, 351–368 (1993).

17J.W.G. Van Nunen, “Pressure and forces on a circular cylinder in a cross flow at high

Reynolds numbers,” in Flow Induced Structural Vibrations, edited by Springer-Verlag

(Berlin, 1974) pp. 748–754.

18G.W. Jones, “Unsteady lift forces generated by vortex shedding about a large, stationary,

and oscillating cylinder at high Reynolds numbers,” Tech. Rep. NASA-TM-X-61214 NASA

Langley Research Center, 1968.

19A. Fage and V.M. Falkner, “Further experiments on the flow around a circular cylinder,”

Tech. Rep. R&M 1369 Aeronautical Reasearch Committee, 1931.

20X. Ma, G.S. Karamanos, and G.E. Karniadakis, “Dynamics and low-dimensionality of a

turbulent wake,” J. Fluid Mech. 410, 29–65 (2000).

21S. Dong, G.E. Karniadakis, A. Ekmekci, and D. Rockwell, “A combined direct numerical

simulation-particle image velocimetry study of the turbulent near wake,” J. Fluid Mech.

569, 185–207 (2006).
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