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ABSTRACT 

 

The dynamic response of disks has been deeply studied in the last years given that their dynamic 

characteristics present similarities with more complex disk-like structures used in real engineering 

applications, such as hydraulic turbine runners. Because of disk-like structures could present fatigue 

damage or critical failures as a result of resonance conditions, it is of paramount importance to determine 

their natural frequencies.  

The dynamic response of disk-like structures is heavily affected by the added mass effect when they are 

surrounded by a heavy fluid. This added mass is greatly affected by the proximity of walls. Furthermore, 

the surrounding fluid cavity has its own natural frequencies and mode shapes, called acoustic natural 

frequencies and acoustic mode-shapes. All studies of submerged and confined disks have been carried out 

considering that the acoustic natural frequencies of the surrounding fluid cavity are much higher than the 

natural frequencies of the disk, so they do not affect each other. However, in some cases the acoustic natural 

frequencies are close to the natural frequencies of the submerged structure, which can be affected 

considerably. This case has not been deeply discussed yet.  

In this paper, the influence of the acoustic natural frequencies of a cylindrical fluid cavity on the natural 

frequencies of a disk has been analysed numerically. First, the effect of the added mass of the fluid has been 

estimated when the acoustic natural frequencies of the fluid cavity are much higher than the natural 

frequencies of the disk. For this case, different geometrical and material parameters have been considered. 

Then, the parameters that affect the acoustical natural frequencies of the fluid cavity have been identified. 

Finally, the case with acoustic natural frequencies close to the structural natural frequencies is studied in 

detail and the affectation between both is discussed. All the results presented in this paper have been 

dimensionless in order to be used for a wide range of disk-like structures. 

Therefore, with this study it is possible to identify for which conditions the dynamic response of a 

generic disk-like structure will be affected by the acoustic natural frequencies of its surrounding fluid 

cylindrical cavity.  

 

Keywords 

 Disk-like structure, Acoustic frequencies, Natural frequencies, Submerged disk, Added mass, Speed of 

sound 

 

  



 

1 Introduction 

 

To determine the natural frequencies of disk-like structures could avoid resonance conditions that may 

cause fatigue damage or critical failure. This is of paramount importance in actual engineering applications, 

as is the case of hydraulic runners. Some types of hydraulic runners are disk-like structures which are 

submerged and confined in a heavy fluid and their dynamic response are greatly affected by the boundary 

conditions (Valentín et al., 2014). The fluid density, the value of the speed of sound in the fluid medium 

and geometrical dimensions have to be considered in order to understand the effect of those parameters on 

the natural frequencies and mode-shapes. Due to the similarity on the mode-shapes between the disk and 

the more complex disk-like structures such as hydraulic runners (Egusquiza et al., 2012; Huang, 2011; 

Huang et al., 2013a; Liang et al., 2007; Presas et al., 2012; Tanaka, 2011) , the dynamic response of disks 

has been deeply studied in the last years. 

Disk-like structures have been studied in many cases surrounded by low density fluid such as air. Blevins 

(2001) conducted several studies of a wide range of structures on air, such as plates and annular plates with 

different boundary conditions, in order to analytically determine the natural frequencies and mode-shapes. 

In this study and others (Bauer and Eidel, 2007; Campbell, 1924; Heo and Chung, 2004; Lamb and 

Southwell, 1921; Southwell, 1922) it is concluded that the effect of the low densities surrounding fluids in 

natural frequencies and mode-shapes of the analysed structure can be neglected.  

On the other hand, if the structure is surrounded by heavy fluid, its dynamic response is drastically 

affected. This effect is known as added mass effect, and it has been extensively used to calculate the natural 

frequencies of disk-like structures surrounded by heavy fluids such as water.  Lindholm et al. (1962),  Kwak 

(1991), Amabili and Kwak (1996), and Meyerhoff (1970) conducted experimental and numerical 

investigations in circular and rectangular plates in contact with water and they predicted the influence of 

the surrounding fluid on the dynamic response of the structure. Similarly, several studies have dealt with 

more complex structures. Rodriguez et al. (2006) carried out an experimental modal analysis of a Francis 

turbine in still water, showing a significant effect of the added mass effect in the natural frequencies. Also 

Liang et al. (2007) and Liang and Wang (2003) conducted a numerical simulation using finite element 

method (FEM) in order to analyse the influence of surrounding water in a turbine runner. According to 

these studies, the added mass effect reduces the natural frequencies of the submerged structure compared 

to those ones in air.  

When the structure is bounded by rigid walls the added mass effect is even more important, being more 

interesting the effect of the small gaps. Plenty of studies of vibrating structures submerged and near a rigid 

wall were carried out (Askari et al., 2013; Harrison et al., 2007; Kubota and Ohashi, 1991; Kubota and 

Suzuki, 1984; Naik et al., 2003; Presas et al., 2016; Rodriguez et al., 2012; Valentín et al., 2014). All these 

studies conclude that the distance disk-wall has a great influence on the added mass effect, i.e. the natural 

frequencies decreased when the disk is close to a rigid surface. However, these studies only investigated 

the natural frequencies of the structure but without considering the dynamic response of the surrounding 

fluid cavity, which for certain conditions may affect the dynamic response of the structure itself. 

A fluid cavity presents acoustic natural frequencies with corresponding mode-shapes, which are known 

as acoustic modes. Blevins (2001) investigated analytically the acoustic natural frequencies and acoustic 

modes for a wide range of cavities. These studies showed that the values of the acoustic natural frequencies 

are influenced by the geometrical parameters of the cavity as well as the fluid speed of sound. In the 

experimental domain, Graf et al. (2014) and Rossetto et al. (2001) conducted experimental and analytical 

modal analysis on a pipe and a cavity respectively, both of them analysing their eigenmodes. Nieter and 

Singh (1982) by means of an accelerometer and a microphone, developed an experimental method in order 

to obtain acoustic natural frequencies and modes for acoustics ducts. Several studies were carried out in 

order to predict the acoustic modes in aerospace industries, more precisely on ducted flows, (Dowling and 

Stow, 2003; Jourdain et al., 2013; Kousen, 1999; Scholl et al., 1998).  Nevertheless, the interaction between 



structural and acoustical part, i.e. the case of a submerged structure and confined with structural natural 

frequencies close to acoustic natural frequencies of the cavity has not been deeply discussed yet. 

In this paper, the acoustical and structural natural frequencies of a flexible disk enclosed in a rigid 

cylindrical cavity and surrounded by a heavy fluid have been analysed in detail. By means of coupled 

simulations, the influence of the acoustic natural frequencies on the dynamic response of the disk has been 

evaluated. The parameters that have a great influence on the structural and acoustic natural frequencies 

have been identified and the results are presented as a function of those. With the results presented in this 

paper, the natural frequencies of a wide range of disks submerged in a different kind of fluids with different 

confining configurations can be obtained and, moreover, it can be also determined if the acoustical natural 

frequencies of the fluid cavity have any influence on the structural dynamic response of the flexible disk.  

 

Nomenclature  𝑗 Nodal circles 

𝐵 Matrix of gradient components  k Cross sections 

𝐶𝑓 Acoustic fluid damping matrix 𝐾𝑓 Acoustic fluid stiffness matrix 

𝐶𝑠 Structural damping matrix 𝐾𝑠 Structural stiffness matrix 

𝑐 Speed of sound [m/s] 𝐿 Laplacian factor 

𝑐0 
Maximum speed of sound 

[m/s] 
𝑀𝑓 Acoustic mass matrix 

𝐷 Disk diameter [m] 𝑀𝑠 Structural mass matrix 

𝐷𝑐𝑎𝑣 Cavity diameter [m] 𝑚 Slope (acoustic mode-shapes) 

𝐷𝑐𝑎𝑣,𝑏𝑎𝑠𝑒 
Cavity diameter (Base case). 

[m] 
𝑁𝑝 

Element shape function for 

pressure 

𝐸 Young modulus [N/m2] 𝑁𝑢 
Element shape function for 

displacement 

𝐹𝑓 
Load applied on the fluid 

elements 
𝑛 Normal vector to 𝑠 

𝐹𝑠 Applied load vector 𝑝 Dynamic fluid pressure 

𝐹𝑓𝑠 Fluid force (Coupled system) 𝑅 
Area associated with each node 

(Coupled system) 

𝐹𝑠𝑓 
Structure force (Coupled 

system) 
𝑟𝑐𝑎𝑣 Cavity radius [m] 

𝑓𝑎𝑖𝑟 
Structural natural frequency in 

air. [Hz] 
𝑟𝑖𝑛𝑡 Interior radio [m] 

𝑓𝑐𝑎𝑣 
Acoustic natural frequency of 

the cavity. [Hz] 
𝑠 Interface surface of the cavity 

𝑓𝑐𝑎𝑣,𝑏𝑎𝑠𝑒 
Acoustic natural frequency of 

the cavity (Base case). [Hz] 
𝑢 Nodal displacement 

𝑓𝑓 
Structural natural frequency. 

Submerged disk. c variable. 

[Hz] 
𝑉 Volume 

𝑓𝑓,𝑐=∞ 
Structural natural frequency. 

Submerged disk. c = ∞. [Hz] 
𝑍 Coordinate 

𝐺 Radial gap [m] Percentage calculations 

𝐻𝑑𝑜𝑤𝑛 Lower fluid distance [m] δ (%) 
Difference between simulation 

and theory (structural frequencies) 

𝐻𝑡𝑜𝑡 Cavity height [m]   𝜑 (%) Influence of the density ratio 

𝐻𝑢𝑝 Upper fluid distance [m] ∆𝑛𝑜 𝑑𝑖𝑠𝑘−𝑑𝑖𝑠𝑘  (%) 

Difference between acoustic 

frequencies (without disk-with 

disk) 



ℎ𝐷 Disk thickness [m] ∆𝑠𝑖𝑚−𝑡ℎ (%) 
Difference between simulation 

and theory (acoustic frequencies) 

𝑖 Nodal diameters Acronyms  

Greek letters  CPU Central processing unit 

𝜆 Correction factor (gap) FEM Finite Element Modeller 

𝜆𝑖𝑘 Tabulated parameter FSI Fluid-Structure Interaction 

𝜈 Poisson’s ratio   

𝜌𝑓 Fluid density [kg/m3]   

𝜌0 Fluid density [kg/m3]   

𝜌𝐷 Disk material density [kg/m3]   

𝜓 
Correction factor (Density 

ratio). 
  

 

2 Numerical model 

 

In this section the numerical equations that define the dynamic response of a structure inside a fluid 

domain are described. For this purpose, the structural and fluid part are firstly considered separately and 

then the coupling between both systems is analysed. 

 

 Dynamic behaviour of structure vibrating in vacuum. 

 

The dynamic behaviour of a body vibrating in vacuum, can be described as (Liang et al., 2007): 

[𝑀𝑠]{𝑢̈} + [𝐶𝑠]{𝑢̇} + [𝐾𝑠]{𝑢} = {𝐹𝑠} (1) 

 

where [𝑀𝑠] is the structural mass matrix, [𝐶𝑠] is the structural damping matrix, [𝐾𝑠] is the structural stiffness 

matrix, {𝐹𝑠} is the applied load vector and {𝑢} is the nodal displacement vector. Natural frequencies 

structure can be calculated then assuming {𝐹𝑠} = 0, and transforming Eq. (1) in the frequency domain. 

 

 Dynamic behaviour of an acoustic cavity 

The dynamic behaviour of an acoustic cavity can be analysed considering the dynamic pressure for each 

fluid element {p} (see more details in Rodriguez et al. (2012) and Huang et al. (2013b)). 

[𝑀𝑓]{𝑝̈} + [𝐶𝑓]{𝑝̇} + [𝐾𝑓]{𝑝} = {𝐹𝑓} 
(2) 

 

Where 

[𝑀𝑓] = 1/𝑐2 ∫ {𝑁𝑝}{𝑁𝑝}
𝑇

𝑑𝑉
𝑣𝑜𝑙

, (3) 

 

[𝐶𝑓] = 𝛽/𝑐 ∫{𝑁𝑝}{𝑁𝑝}
𝑇

𝑑𝑆
𝑠

, 
(4) 

 

 

[𝐾𝑓] = ∫ {𝐵}{𝐵}𝑇𝑑𝑉
𝑣𝑜𝑙

, (5) 

 



[Mf] is the acoustic mass matrix, {Np} is the element shape function for pressure and vol is the volume 

domain of the cavity. [𝐶𝑓] is the acoustic fluid damping matrix, 𝛽 is the non-dimensional boundary 

absorption coefficient, which is defined as 𝛽 = 𝛾/𝜌0𝑐. 𝛾 is the characteristic impedance of the material at 

the boundary, 𝜌0 the fluid density and c is the speed of sound in the fluid medium. The interface surface of 

the cavity is defined as s. [𝐾𝑓] is the acoustic fluid stiffness matrix, [𝐵] = {𝐿}{𝑁𝑝}
𝑇
where {L} is the 

Laplacian vector and {𝐹𝑓} is the load applied on the fluid elements. 

 Natural frequencies of the acoustic cavity can be obtained assuming {Ff}=0 and transforming Eq. (2) 

in the frequency domain.  

 

 Dynamic behaviour of fluid-structure coupling. 

 

When a structure is in contact with an acoustic cavity (in contact by one of its surfaces or totally 

submerged) both systems are coupled. In this case the structural equations of the coupled system can be 

written using Eq. (1) and Eq. (2). 

[𝑀𝑠]{𝑢̈} + [𝐶𝑠]{𝑢̇} + [𝐾𝑠]{𝑢} = {𝐹𝑠} + {𝐹𝑓𝑠} 

[𝑀𝑓]{𝑝̈} + [𝐶𝑓]{𝑝̇} + [𝐾𝑓]{𝑝} = {𝐹𝑓} + {𝐹𝑠𝑓} 

(6) 

Where {𝐹𝑓𝑠} is the force that the fluid exerts on the structure due to the structure motion and {𝐹𝑠𝑓} the 

force that the structure motion produces on the fluid. {𝐹𝑓𝑠} and {𝐹𝑠𝑓} can be obtained respectively as: 

{𝐹𝑓𝑠} = ∫{𝑁𝑢}{𝑁𝑝}
𝑇

{𝑛} 𝑑𝑆 · 𝑝
𝑠

= 𝑅 · 𝑝 (7) 

{𝐹𝑠𝑓} = −𝜌0[𝑅]𝑇{𝑢̈} (8) 

Where {𝑁𝑢} is the element shape function for displacement and [R] represents the area associated with 

each node on the interface, which is defined as: 

[𝑅] = ∫{𝑁𝑢}{𝑁𝑝}
𝑇

{𝑛} 𝑑𝑆
𝑠

 (9) 

Where {n} is the normal vector to s.  

In order to calculate the natural frequencies, the damping can be neglected (considering a slightly 

damped system). By using Eq. (6) and the definitions for {𝐹𝑓𝑠} (7) and {𝐹𝑠𝑓} (8), taking {𝐹𝑠} = 0 and  {𝐹𝑓} =

0, the finite element matrix equations to calculate the natural frequencies of both structure and fluid parts 

coupled are written as:  

[𝑀𝑠]𝑢̈ + [𝐾𝑠]𝑢 = [𝑅]𝑝 

[𝑀𝑓]𝑝̈ + [𝐾𝑓]𝑝 = −𝜌0[𝑅]𝑇{𝑢̈} 
(10) 

 

 Transforming Eq. (10) in the frequency domain 

[−[𝑀𝑠]𝜔2 + [𝐾𝑠]]𝑢 = [𝑅]𝑝 

[−[𝑀𝑓]𝜔2 + [𝐾𝑓]𝑝] = 𝜌0[𝑅]𝑇𝜔2𝑢 

(11) 

Now p can be isolated and therefore the structural part from Eq. (11) becomes: 

[([−𝑀𝑠] − 𝜌0[𝑅][−𝑀𝑓𝜔2 + 𝐾𝑓]
−1

[𝑅]𝑇) 𝜔2 + 𝐾𝑠] 𝑢 = 0 (12) 



 Speed of sound influence 

In this section, the influence of the speed of sound of the fluid on the structural natural frequencies is 

qualitatively explained based on Eq. (12). When the speed of sound tends to infinite, the acoustic mass 

matrix tends to zero. Therefore Eq. (12) can be written as: 

[([−𝑀𝑠] − 𝜌0[𝑅][𝐾𝑓]
−1

[𝑅]𝑇) 𝜔2 + 𝐾𝑠] 𝑢 = 0 (13) 

 

Solving the Eq. (13), the structural natural frequencies of the coupled system when the speed of sound 

tends to infinite can be calculated. In this situation the term [𝑅][−𝐾𝑓]
−1

𝜌0[𝑅]𝑇, which is directly added to 

[𝑀𝑠], can be considered as fluid added mass on the structural part (Amabili and Kwak, 1996; Kubota and 

Suzuki, 1984). Figure 1a shows qualitatively this situation 

For 𝑐 < ∞, the acoustic mass matrix becomes [𝑀𝑓] ≠ 0. In this case Eq. (12) defines the structural 

natural frequencies. As one can see, the fluid added mass of the structural part comprises now the acoustic 

mass matrix and the fluid stiffness matrix. Considering the situation of 0 ≪ 𝑐 so that the acoustic natural 

frequencies are much higher than the structural frequencies (Figure 1b), it can be seen that the influence on 

the structural natural frequency of this new term,[𝑀𝑓], is almost negligible. 

Reducing the speed of sound, 𝑀𝑓 becomes more significant on the fluid added mass term. In this case 

(Figure 1c), [𝑀𝑓], has a relevant contribution on the fluid added mass (increasing this term) and therefore 

the structural natural frequencies start to decrease compared with the previous case. 



 
Figure 1. Influence of the speed of sound c on the structural modes, considering 𝜌0 as a constant value. a) Structural mode 

with c=∞ b) Structural mode with no influence of the acoustical mode. c) Structural mode affected by the acoustical mode. 

 

3 FEM model 

FEM numerical models have been demonstrated in many works to correctly estimate the natural 

frequencies of submerged structures using acoustic elements for modelling the surrounding fluid (Escaler 

et al., 2017; Huang et al., 2013a; Liang et al., 2007; Liang and Wang, 2003; Rodriguez et al., 2012; Valentín 

et al., 2014). Furthermore, the acoustic natural frequencies of the fluid cavity can be also determined using 

this method (Graf et al., 2014). This numerical method has been used to obtain all the results presented in 

the present paper. 

The FEM model used consists of an annular disk submerged in a closed fluid cavity. The main 

dimensions of the model are shown in Figure 2. In order to study the influence of all the geometrical 

parameters, as well as material characteristics and boundary conditions, several simulations were carried 

out. One base case was defined in order to change all the different parameters one by one. The dimensions 

of this base case were based on the ones studied experimentally by Valentín et al. (2014). 



The geometrical parameters that have been studied in this paper are the disk diameter (D) and the disk 

thickness (ℎ𝐷). The boundary conditions that have been changed in the fluid cavity are the upper fluid 

distance (𝐻𝑢𝑝), the lower fluid distance (𝐻𝑑𝑜𝑤𝑛) and the radial gap (G) (see Figure 2). Moreover, both disk 

and fluid material densities (𝜌𝐷,𝜌𝑓) were varied as well as the speed of sound of the fluid (c). Table 1 

summarizes all the parameters changed by simulation and in which range they were studied. 

 

Table 1. Parameters changed by simulation 

Parameter From to Base case 

hD/D 0.01 0.10 0.04 
Hup/D 0.20 0.38 0.20 

Hdown/D 0.02 0.20 0.20 
G/D 0.0007 0.014 0.0014 
ρf/ρD 0.000127 1.0 0.127 

c 0 Infinite 1430 m/s 

 

The numerical model was solved using ANSYS v16.2 (Ansys®, 2013). To take into account the fluid 

effect on the disk-like structure, the nodes of the solid parts in contact with the fluid are defined as Fluid-

Structure Interaction (FSI) interface. This type of simulation assumes that the fluid is inviscid, irrotational, 

compressible and without mean flow. The disk is fixed in axial and radial directions by its interior diameter. 

Hexahedral mesh was selected to perform the simulations, using SOLID185 and FLUID30 elements type 

for the solid and fluid respectively. A mesh sensitivity study was performed in order to obtain the optimal 

mesh. This optimal mesh resulted to have approximately 38000 elements and it had less than 1% error with 

respect to the densest mesh tested. Simulations were conducted on an Intel® i7™ CPU at 2.67 GHz using a 

parallelized solver for 6 computational cores, and computation times ranged from 10 min to 15 min. 

 

 
Figure 2. Detail of the mesh and the boundary conditions.  

To analyse separately the influence of the added mass effect of the fluid and the influence of the acoustic 

part on the natural frequencies of the disk, three types of simulations were performed. First type of 

simulations were done with speed of sound infinite, flexible disk and varying geometrical (position and 

size of the disk and cavity) and material parameters (density of the disk and of the fluid). In this case the 

structural natural frequencies of the submerged and confined disk can be determined without any influence 



of the acoustic natural frequencies of the cavity, as one can see in Figure 1a . Therefore, in this situation 

only the added mass effect considered in previous studies affects the natural frequencies of the disk. 

Second type of simulations were done with variable speed of sound and totally rigid disk and walls. 

Size, dimensions and gaps of the fluid cavity were varied for this type of simulations.  Therefore, the focus 

of these simulations is to determine the natural frequencies and mode shapes of the acoustical cavity without 

any influence of the structural part. Figure 1b represents this situation. 

Finally, in order to study the natural frequencies of the submerged and confined disk affected by both 

the fluid added mass and the dynamic behaviour of the acoustic cavity (see Figure 1c), coupled simulations 

considering both fluid and structure were performed. The results were normalized to be used with different 

kind of geometrical dimensions and material characteristics.  

 

4 Results and discussions 

 

 Structural natural frequencies and mode shapes of the disk. 

The mode-shapes of a disk are defined by its number of nodal diameters (i) and nodal circles (j), (i,j) 

(see Table 2), (Blevins, 2001; Valentín et al., 2014). 

 

Table 2. Mode-shapes of the disk. 

Mode-shapes 

 

   

 

(i,j) (1,0) (2,0) (3,0) (4,0) 

 

The values of the natural frequencies of those mode-shapes in air can be easily obtained using reference 

(Blevins, 2001) and also with numerical simulations (Valentín et al., 2014). These natural frequencies 

depend basically on the geometry and material of the disk (diameter, thickness, density, Young modulus 

and Poisson’s ratio).  

For the base case (ℎ𝐷/𝐷 = 0.04),the differences between the structural natural frequencies calculated 

by simulation using the FEM model and by the ones obtained theoretically in Blevins (2001) are listed in 

Table 3. 

Table 3. Structural natural frequencies in air. Difference between simulation and theory. 

Mode-shape (i,j) δ (%) 

(1,0) -1.93 

(2,0) -3.58 

(3,0) -5.10 

(4,0) -5.63 

 

Numerical results obtained with simulations are within deviations of 1.93% to 5.63% from the 

theoretical results. Therefore, numerical simulations are taken as a valid method to estimate natural 

frequencies of the structure in vacuum with good accuracy.  

 

 Added mass effect of the fluid 

As predicted by many studies  (see for example (Kwak, 1991; Lindholm et al., 1962; Meyerhoff, 1970)), 

submerging the structure into a heavy fluid (liquid) reduces its natural frequencies values due to the fluid 



added mass. Fluid added mass depends on the geometrical dimensions of the fluid cavity, such as axial and 

radial gaps, and the structure and fluid densities. Nevertheless, the mode shapes of the submerged disk-like 

structure remains approximately the same than in the air (Amabili and Kwak, 1996).  The effects of all 

these parameters have been studied in the present paper. It is interesting to point out that, as predicted by 

Coutu et al. (2012), Gauthier et al. (2017), Seeley et al. (2012) and Blevins (2001) there is an increase on 

the damping for a straight flow whilst fluid added mass is not significantly affected. Because of that, the 

values of structural natural frequencies remains practically equal for both the fluid still case and straight 

flow case. On the other hand, the case of rotational flow of a disk enclosed by a cylindrical cavity, is 

analytically, numerically and experimentally discussed by Presas et al. (2015b), Presas et al. (2015a) and 

Presas et al. (2016). 

As explained in Section 3 with regard to the first type of simulations, to only take into account the added 

mass effect, the speed of sound of the fluid was considered as infinite (fluid incompressible) for this type 

of simulations. With respect to other studies (Askari et al., 2013; Valentín et al., 2014) , the added mass 

factors obtained in these simulations are presented normalized for a wide range of geometrical and material 

characteristics of disks and fluid cavity (Figure 3, Figure A1-Figure A4 in Appendix A). 

Figure 3 shows the results obtained for (2,0) mode-shape of the disk submerged in heavy fluid for the 

different parameters studied. Axial (𝐻𝑢𝑝) and radial (G) gaps have been normalized using the disk diameter 

(D). In order to take the effect of the axial gap in only one side of the disk,  𝐻𝑑𝑜𝑤𝑛 has been selected large 

enough to not affect the natural frequencies of the disk (increasing this value would not change the natural 

frequencies). The effect of considering a rigid wall in both axial sides of the disk, has been deeply discussed 

by (Presas et al., 2016). Generally, it is shown that the added mass effect is slightly increased when having 

this second gap.  

Different ratios of disk thickness/disk diameter (ℎ𝐷/D) have been studied. The fluid used for those 

simulations is water, with a density of 1000 kg/m3,whereas the disk material is stainless steel with a density 

of 7850 kg/m3 (𝜌𝑓 𝜌𝐷⁄ = 0.127). Introducing all the aforementioned parameters in this figure, the parameter 

δ can be obtained. Only modes with nodal diameters and no nodal circles have been considered in this 

study. In order to consider different G/D ratios, the correction factor 𝜆 has been introduced (Eq. (14)). This 

factor can be found in the table inside Figure 3 and Figure A1-Figure A4 in Appendix A. 

  



 
Figure 3. Fluid added mas factor. (2,0) mode-shape. Density ratio=0.127. Ψ=1. 

Moreover, to consider different fluid-structure density ratios than water-stainless steel, several 

simulations were also carried out for 0.02< 𝜌𝑓/𝜌𝐷< 0.4. The 𝜌𝐷 was considered as a constant value and 𝜌𝑓 

was changed. Figure 4 shows the correction factor (ψ) (Eq. (14)) for different 𝜌𝑓/𝜌𝐷 ratios and different 

Hup/D for the mode (2,0) and constant hD/D and G/D. The inverse procedure (changing 𝜌𝐷 and taking 𝜌𝑓 as 

constant) was also done and results obtained showed exactly the same values 

The curves shown in Figure 4, can be approximated with a quadratic equation with a good accuracy 

for the represented range (R2=0.99). The coefficients for this equation can be found in Appendix A (Table 

A1-Table A4) for different configurations of hD/D and G/D and different mode-shapes. 

 

 

Figure 4. Influence of the density ratio on the added mass factor. (2,0) mode-shape. hD/D=0.08; G/D=0.0014. 
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Finally, the natural frequency of the submerged disk with speed of sound infinite (𝑓𝑓 𝑐=∞) is calculated 

using Eq. 14 introducing the parameters δ, λ and ψ, obtained in Figure A1-Figure A4 and Table A1-Table 

A4 (see Appendix A). 

𝑓𝑓,𝑐=∞

𝑓𝑎𝑖𝑟
= (𝛿 − 𝜆) · 𝜓 (14) 

  

Figure 5 shows the added mass factor obtained using Eq. (14) for three geometrical configurations. These 

results are experimentally validated by Valentín et al. (2014) and Valentín et al. (2016) using the base case 

configuration and also by Presas et al. (2016), using a different disk and cavity dimensions. Numerical 

results presents a good agreement with the experimental ones. Then, the numerical simulations are validated 

to study fluid-structure interaction problems. 

 

 
Figure 5. Added mass factor. Experimental results. 

 Acoustical natural frequencies of the fluid cavity 

In order to know how acoustic natural frequencies can affect the structural natural frequencies of the 

disk, it is necessary to study first how acoustic mode-shapes are and which parameters can affect the 

acoustical natural frequencies. One of this parameters is the flowing velocity of the fluid which has been 

taken into account in some studies and results show that it acts as a damper of the acoustic mode (Brevart 

and Fuller, 1993; Tsuji et al., 2002). Therefore, the acoustic natural frequencies and acoustic mode shapes 

do not substantially change. For high velocity and low pressure flows where a significant cavitation volume 

can exist, the local speed of sound can be affected and therefore the acoustic natural frequencies can be 

drastically reduced as experimentally demonstrated by Shamsborhan et al. (2010) and Ruchonnet et al. 

(2012). This particular case is not discussed in the present paper. 

For a cylindrical cavity with still fluid, the acoustical natural frequencies (𝑓𝑐𝑎𝑣) and its mode-shapes can 

be easily obtained using Eq. (15) extracted from Blevins (2001). The mode-shapes are formed again by 

nodal diameters (i), nodal circles (j), and number of cross sections (k) where the pressure is zero. The 

natural frequencies are linearly dependent on the speed of sound (c) and inversely proportional to the cavity 

radius (𝑟𝑐𝑎𝑣) and the cavity height (𝐻𝑡𝑜𝑡). 

𝑓𝑐𝑎𝑣,𝑡ℎ =
𝑐

2 · 𝜋
(

𝜆𝑖𝑗
2

𝑟𝑐𝑎𝑣
2 +

𝑘2𝜋2

𝐻𝑡𝑜𝑡
2)

1/2

 (15) 
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𝜆𝑖𝑗 is a parameter that depends on the mode-shape and it is given in  Table 4. For this study only modes 

with nodal diameters have been considered, hence j=0. 

 

 

 

 

 

 

Table 4. Parameter 𝜆𝑖𝑗. (Blevins, 2001). 

Mode-shape (i,j) 𝜆𝑖𝑗 

(0,0) 0 

(1,0) 1.8412 

(2,0) 3.0542 

(3,0) 4.2012 

(4,0) 5.3176 

These values have to be considered to calculate natural frequencies of a cylindrical cavity without any 

structure inside. Nevertheless, in the present case of study, the cavity contains a disk (Figure 2). To see 

which is the difference between considering or not the disk inside the cylindrical cavity for its acoustic 

natural frequencies, the second type of numerical simulations (see Section 3) with and without disk inside 

the fluid cavity were carried out for the dimensions of the base case. Results showed (see Table 5) that for 

the modes without any cross section (k=0), there is practically no difference, but for k>0 modes, this 

consideration is important. Therefore, Eq. (15) is only valid for the mode-shapes of the acoustical cavity 

with k=0 when a disk is submerged inside. For this case, the agreement between theory (Eq. (15)) and 

simulation is very good. In order to simplify nomenclature, modes with k=0 are henceforth named as global 

modes and modes with k=1 are named as modes with cross section. 

  



Table 5. Acoustic natural frequencies and mode-shapes of the cavity. Comparison between theory and simulation using the 

base case configuration. 

 Mode-shape picture ∆𝑠𝑖𝑚−𝑡ℎ (%) ∆𝑛𝑜 𝑑𝑖𝑠𝑘−𝑑𝑖𝑠𝑘  (%) 

 k k k 

i 0 1 0 1 0 1 

0 

- 

 

- 0.00 - -84.82 

1 

  

-5.21 -1.07 -0.02 -53.38 

2 

  

-0.54 -0.23 -0.02 -33.45 

3 

  

-0.16 -0.17 -0.07 -22.62 

4 

  

-0.28 -0.19 -0.03 -16.07 

 

 

To evaluate the influence of the different geometrical parameters mentioned before (see Table 1) on the 

acoustic natural frequencies of the fluid cavity, the second type of simulations were performed again but 

changing these parameters. Results are shown in the following paragraphs. 

 

4.3.1 Influence of the total height and axial gap. 

Firstly, the length of the cavity (𝐻𝑡𝑜𝑡) has been changed maintaining the same distance above and below 

the disk (𝐻𝑢𝑝 = 𝐻𝑑𝑜𝑤𝑛) and then, several unsymmetrical configurations (𝐻𝑢𝑝 ≠ 𝐻𝑑𝑜𝑤𝑛) remaining 𝐻𝑡𝑜𝑡 

constant have been studied in order to understand how the acoustical natural frequencies of the fluid cavity 

are affected. Results are presented in a normalized way for a certain value of c. 

Figure 6 shows the results obtained by changing 𝐻𝑡𝑜𝑡, where global mode-shapes (a) and modes with 

cross section (b) are illustrated separately. The fluid depth (𝐻𝑡𝑜𝑡) is normalized against the diameter of the 

disk. The acoustic natural frequencies of the cavity,𝑓𝑐𝑎𝑣, are normalized against the acoustic natural 

frequencies obtained in the base case (Table 1 (𝑓𝑐𝑎𝑣,𝑏𝑎𝑠𝑒)). 



  
Figure 6. Total height. (a) Influence on the global modes, k=0. (b) Influence on the modes with cross section, k=1.  

It is shown that varying 𝐻𝑡𝑜𝑡, the acoustic frequency for the global modes remains practically constant 

(Figure 6a). However, for the modes with cross section (Figure 6b) the acoustic natural frequency value 

tends to decrease when increasing 𝐻𝑡𝑜𝑡 . These results (with disk inside the cavity) perfectly agree the 

theoretical results obtained with Eq. (15). 

The effect of varying 𝐻𝑢𝑝 along the Z coordinate is illustrated in Figure 7. Acoustic natural frequencies 

for global modes (k=0) are not affected when 𝐻𝑢𝑝 decrease. However, in the modes with cross section, the 

axial gap has a greater effect on the (1,1) mode-shape for a 𝐻𝑢𝑝 𝐷⁄  > 0.35 than on the higher ones ((2,1), 

(3,1), (4,1)). Therefore, the position of the disk is only important for modes with cross section (k=1) but 

not for the global modes (k=0). 

 

  
Figure 7. Influence of the axial gap on the acoustic natural frequencies.(a) Global modes. (b) Modes with cross section, k=1.  

 

4.3.2 Influence of the radial gap  

Regarding the radial gap, acoustic natural frequencies were studied for different values of G.  The 

simulations were carried out for 7·10-4 < G/D <1.4·10-2. Figure 8 shows the influence on the acoustic natural 

frequencies when G is changed. Global modes are slightly affected by the increment of G, (a reduction of 

3% on the frequencies for a G/D =1.4·10-2 have been found). The influence of G on the acoustic natural 

frequencies is higher for modes with cross section (Figure 8b). (1,0) mode-shape show higher differences 

than the higher ones ((2,0)-(4,0)) for a big radial gap (G/D =1.4·10-2).  
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Figure 8. Influence of the radial gap on the acoustic frequencies. (a) Global modes. (b) Modes with cross section. 

 

4.3.3 Influence of the cavity diameter 

The variations of the acoustic natural frequencies by changing Dcav and maintaining the same radial gap 

(G) are seen in Figure 9. In the x-axis, Dcav have been normalized using the Dcav of the base case. In this 

case, it is appreciated that the importance of Dcav is high on the global mode-shapes as well as the modes 

with cross section, showing an increment on the acoustic natural frequencies between 75% and 200% for a 

Dcav/Dcav, base<0.5; i.e. the higher the diameter of the disk is, the lower the acoustic natural frequencies are. 

This conclusion can be obtained also analysing Eq. (15). 

 

 
Figure 9. Influence of the diameter of the disk on acoustic natural frequencies. 

Geometrical factors that can affect the acoustic natural frequencies of the cavity have been analysed. 

Modes with cross section are affected by the axial and radial gaps, as well as by the diameter of the cavity. 

The diameter of the cavity is the only parameter which affect considerably both mode-shapes, global modes 

and counther-phase modes. Global modes remain nearby constant when changing the rest of geometrical 

factors.  This is an interesting conclusion because, no mather how the other dimensions are, the acoustic 

natural frequencies associated with the global mode-shapes can be simply obtained applying Eq. (15). 
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 Coupled simulation 

In this section the influence of the acoustic natural frequencies on the structural natural frequencies of 

the disk submerged in a fluid cavity is evaluated. Several coupled simulations (Third type, see Section 3) 

were carried out varying the speed of sound for 0.035 < 𝑐 𝑐0 <⁄  1 for the base case dimensional 

configurations. The fluid used for those simulations is water, with a density of 1000 kg/m3 and c0 of 1430 

m/s, whereas the disk material is stainless steel with a density of 7850 kg/m3 (𝜌𝑓 𝜌𝐷⁄ = 0.127). 𝑐0 is the 

highest value that the speed of sound can have for a certain fluid (Yebra et al., 2017) at atmospheric 

pressure, 25ºC and without the influence of any boundary condition. 

The influence of the acoustical frequencies on the structural natural frequencies is shown in Figure 10. 

The acoustic natural frequencies of global mode-shapes of the fluid cavity, are plotted as solid lines. The 

y-axis represents natural frequency dimensionless using the disk diameter (D) and 𝑐0. In that way, the 

acoustical mode-shapes can be represented by just one line independently on the diameter.  

The structural natural frequencies of the disk obtained for c = ∞ are plotted in dotted lines and they 

indicate the natural frequency of the disk without the influence of any acoustic natural frequencies of the 

cavity. These are the natural frequencies that can be obtained considering only the added mass effect, which 

has been deeply discussed in previous studies ((Amabili and Kwak, 1996; Kubota and Suzuki, 1984; Presas 

et al., 2016; Valentín et al., 2014) and that has been presented in this paper in a summarized way in Section 

4.2 and Appendix A.  

Finally the structural natural frequencies for different values of  c are represented in dashed lines. These 

remain in the same value than with c = ∞ when they are far away from the acoustic natural frequencies 

lines. However, they start to decrease when they are near those lines. As it is explained on Section 2, by 

reducing the speed of sound, the fluid mass (𝑀𝑓) becomes more significant on the fluid added mass term 

and therefore the natural frequencies of the disk starts to decrease. If the speed of sound is small enough, 

there is a point where the structural natural frequencies of the disk and the acoustic natural frequencies of 

the cavity have the same value. At this point, the fluid mass dominates over the disk mass, as explained in 

Section 2.  

It is important to notice that the structural mode-shapes with no nodal circles are only affected by the 

acoustic mode-shape with the same number of nodal diameters also without nodal circles.  

  



 

 

  

  

 
(i,0) 𝑓𝑓,𝑐=∞ (i,0) 𝑓𝑓  

Figure 10. Coupled simulation. Acoustic and structural mode-shape. (1,0)(a). (2,0)(b). (3,0)(c). (4,0)(d) 

With these results, it is demonstrated that depending on the mode-shape studied, always exist a speed of 

sound on which the structural natural frequency could be highly affected by the acoustic frequency of the 

cavity. To know for any kind of disk when (for which ratio c/c0) its structural natural frequencies will be 

affected by the acoustic natural frequencies of the fluid cavity, the intersection point between the acoustic 

natural frequency line and the natural frequency line obtained with c = ∞  has to be analysed. This point 

can be obtained with more precision by using Figure A5 (see Appendix A) for any kind of disk.  

Depending on the ratio c/c0 obtained and the mode-shape, one can determine if the affectation of the 

structural natural frequency could be important on a real situation or even if it is already affected. An 

example case where the structural natural frequencies should not be affected by the acoustical cavity is 

shown in Figure 11. The 𝑓𝑓 𝑐=∞ of each global mode-shape of the base case are plotted as dotted lines. The 

cut point between the 𝑓𝑓,𝑐=∞ (i,0) line and the acoustic natural frequency (i,0) line has been highlighted. As 

one can see, the affectation on the structural natural frequency for each mode-shape occurs for 0.1<c/c0<0.3 

depending on the mode-shape. Actually, this is a non-very realistic situation because the speed of sound for 

this case should be very low in order that the acoustic natural frequencies affect the structural natural 

frequencies of the disk.  
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Figure 11. Base case. No affectation for a real ratio c/c0. 

However, for a certain geometrical configuration of the disk (hD/D= 0.12 and G/D= 0.012 and Hup/D 

=0.08), this affectation is found at a more realistic speed of sound value. Figure 12a shows the affectation 

on the structural natural frequencies (dashed line) for 0.7<c/c0<0.8 depending on the mode-shape. Both 

(1,0) and (2,0) modes are affected in this situation. However, (3,0) and (4,0) lines found for c = ∞ do not 

cross the acoustic natural frequencies lines before c/c0<1 (dotted line of (4,0) is over the upper limit of the 

range and therefore does not cross before c/c0<1) . This means that those structural mode-shapes are already 

affected by the acoustical mode-shapes for the maximum value of speed of sound of the studied fluid (Yebra 

et al., 2017). This situation is representative of certain large hydraulic turbines. 

A different geometrical configuration (hD/D= 0.13 and G/D= 0.012 and Hup/D =0.08) has been also 

considered. Results are shown in Figure 12b. In this situation, the 𝑓𝑓 𝑐=∞ for each (i,0) mode-shape is higher 

than the acoustic natural frequency (with the same number of nodal diameters) at c/c0=1. Then, the 

structural natural frequency of each mode-shape of the disk is affected by the acoustic natural frequencies 

for all c/c0. That means that in this case the value of the speed of sound has to be known and taken into 

account in order to accurately calculate the natural frequencies of the disk. 

  

 

(i,0) 𝑓𝑓,𝑐=∞ (2,0) 𝑓𝑓 

  
Figure 12. Intersection points for two geometrical configurations. (a) Real ratio c/c0 . (b) Affectation for all ratio c/c0. 

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1
1,1
1,2
1,3
1,4
1,5
1,6
1,7

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

f·
D

/c
0

c/c0

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

f·
D

/c
0

c/c0

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

f·
D

/c
0

c/c0

(a) (b) 

(i,0) 𝑓𝑓,𝑐=∞ 

(4,0) 

(3,0) 

(2,0) 

(1,0) 



4.4.1 Influence of the density of the fluid. 

The simulations of the previous sections were conducted taking into account the ratio 𝜌𝑓 𝜌𝐷⁄ = 0.127. 

This ratio represents a common engineering application, where the steel and water are the typical materials. 

In this section, the influence of different ratios 𝜌𝑓 𝜌𝐷⁄  on the dynamic behaviour of the submerged disk is 

evaluated. Because of that, numerical simulations were carried out for 1.27·10-4  ≤ 𝜌𝑓 𝜌𝐷 ≤⁄   1, varying 𝜌𝑓 

and maintaining 𝜌𝐷 constant. The geometrical parameters of the base case were used. Results obtained are 

shown in Figure 13 for the (2,0) structural mode shape. In this figure, 𝑓𝑓,𝑐=∞ for every case is plotted in 

dotted line, 𝑓𝑓 is plotted in solid line and the (2,0) acoustic mode shape is the single dashed line (it is the 

same for all configurations since the acoustic natural frequency does not depend on the fluid density (Eq. 

(15)) . The cut point between the 𝑓𝑓,𝑐=∞ line and the acoustic natural frequency line has been highlighted in 

this graph. The difference in percentage between this point and the actual value of the structural natural 

frequency (𝑓𝑓) has been named as 𝜑. It can be observed that the higher is the ratio 𝜌𝑓 𝜌𝐷⁄ , the higher is 𝜑. 

This means that for higher ratios 𝜌𝑓 𝜌𝐷⁄ , the influence of the acoustic natural frequency on the structural 

natural frequency is higher.  

 

 
(2,0) Fluid cavity 𝜌𝑓 𝜌𝐷⁄ = 0.0001 𝜌𝑓 𝜌𝐷⁄ = 0.0127 𝜌𝑓 𝜌𝐷⁄ = 0.063 𝜌𝑓 𝜌𝐷⁄ = 0.127 

 

Figure 13. Results of the influence of the density ratio on the structural mode-shape. (2,0) 

To evaluate the influence of the ratio 𝜌𝑓 𝜌𝑠⁄  for the (1,0), (2,0), (3,0) and (4,0) mode-shapes, the same 

procedure was repeated. Results are shown in Figure 14. In this figure, 𝜑 is plotted for different ratios 

𝜌𝑓 𝜌𝐷⁄  and mode-shapes.  It is observed that the biggest changes in 𝜑 are in the zone of the smallest 𝜌𝑓 𝜌𝐷⁄  

ratios (from 0 to 0.2). For ratios 𝜌𝑓 𝜌𝐷⁄  higher than 0.2, 𝜑 is still decreasing but slowly. As commented 

before, these results were obtained changing 𝜌𝑓 and maintaining 𝜌𝐷 constant. However, to ensure the use 

of this graphic for all kind of materials, the inverse procedure (changing 𝜌𝐷 and maintaining 𝜌𝑓) was done 

and results obtained showed exactly the same values than plotted in Figure 14 for the same ratios (𝜌𝑓 𝜌𝐷⁄ ). 

With this information and the cut point obtained from Figure A5, one can obtain the influence of the 

acoustic natural frequency on the structural natural frequency for all kind of disks with different geometrical 

and material characteristics submerged and confined in different kind of fluids. 
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Figure 14. Density reduction ratio for a generic confined disk-like structure. 

5 Conclusions 

In this paper, the natural frequencies of submerged and confined disks have been studied when they are 

close to the acoustical natural frequencies of the surrounding fluid cavity. For this purpose, first, the natural 

frequencies of submerged disks have been studied considering that the acoustic natural frequencies of the 

surrounding fluid cavity are much higher than the disk natural frequencies. For this case, the most important 

geometrical and material parameters that can affect them have been analysed. Then, the parameters that 

affect the acoustical natural frequencies of the fluid cavity have been identified. Finally, the case with 

acoustic natural frequencies close to the disk natural frequencies have been studied and discussed in detail. 

Acoustical natural frequencies of a fluid cavity are mainly dependent on the cavity dimensions and the 

speed of sound. The influence of different geometrical parameters (height of the cavity, axial gap and radial 

gap to the disk, and diameter of the cavity) have been determined in this paper. Results showed that for 

global mode-shapes (k=0), the only geometrical parameter that mainly affect the natural frequency of the 

cavity is the diameter, mode-shapes with cross section (k>0) all the aforementioned parameters change the 

natural frequency value. Speed of sound linearly increase the value of all acoustical natural frequencies. 

When the acoustical natural frequencies are much higher than the disk natural frequencies, only the added 

mass effect of the fluid affects the disk natural frequencies. This added mass depends on the geometrical 

characteristics of the disk and gaps to the proximity walls, as well as the material properties. With respect 

to other studies about added mass in submerged and confined disks, in this paper the results have been 

presented in a dimensionless way in order to be able to obtain the natural frequencies of the submerged disk 

for different diameter, thickness, axial gap, radial gap of the disk and different structure-fluid densities. 

Moreover, numerical results obtained have been compared with experimental results obtained in previous 

studies and they accurately agree. 

The case with acoustic natural frequencies close to the disk natural frequencies has been analysed in detail 

for a wide range of geometrical and material conditions. Speed of sound have been varied in order to 

approach the acoustical natural frequency values to the disk natural frequencies. It has been demonstrated 

that for certain geometrical characteristics of disk and cavity, the structural natural frequencies can be 

affected considerably.  For a common engineering application where stainless steel and water are the typical 

materials, structural natural frequencies could be reduced about 25% by the acoustic natural frequencies. It 

has been also demonstrated that the disk natural frequencies are only affected by the acoustical natural 
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frequencies associated to an acoustical mode-shape with the same number of nodal diameters than the 

structural mode-shape. If the number of nodal diameters of both acoustical and structural mode-shapes does 

not coincide, the natural frequencies are not affected. 

All the necessary information to apply the results obtained in this investigation to a wide range of confined 

disks is given. As a first approach, one can determine if the natural frequencies of a certain disk will be 

affected by the acoustical natural frequencies of the surrounding fluid cavity using the results presented in 

this paper, without needing any numerical simulations. 
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Appendix A 

A1 Fluid added mass. δ and λ factors. 

 

A.1.1. (1,0) Mode-shape. 

 

 
Figure A1. Added mass factor. (1,0) mode-shape 

  



A.1.2. (2,0) Mode-shape 

 
Figure A2. Added mass factor. (2,0) mode-shape. 

  



A.1.3. (3,0) Mode-shape 

 
Figure A3. Added mass factor. (3,0) mode-shape. 

  



A.1.4. (4,0) Mode-shape 

 
Figure A4. Added mass factor. (4,0) mode-shape. 

  



A2 Fluid added mass. ψ factor. 

 

A.2.1. (1,0) mode-shape 

𝜓 = 𝐴 · (𝜌𝑓 𝜌𝐷)⁄ 2
+ 𝐵 · (𝜌𝑓 𝜌𝐷)⁄ + 𝐶 

Table A1. Value of equation parameters. (1,0) mode-shape. 

ℎ𝐷 𝐷⁄ = 0.04 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 14.90 -9.55 2.08 12.74 -8.35 1.95 10.75 -7.24 1.82 9.62 -6.59 1.75 9.29 -6.40 1.72 
0.024 13.08 -8.54 1.96 11.04 -7.40 1.84 8.83 -6.14 1.69 7.25 -5.23 1.59 6.72 -4.92 1.56 
0.04 11.50 -7.66 1.87 9.76 -6.68 1.76 7.69 -5.49 1.62 5.97 -4.48 1.51 5.27 -4.06 1.46 
0.08 9.25 -6.38 1.72 8.00 -5.67 1.64 6.39 -4.72 1.53 4.81 -3.78 1.43 3.93 -3.23 1.37 
0.12 8.06 -5.70 1.64 7.07 -5.12 1.58 5.73 -4.33 1.49 4.36 -3.50 1.40 3.44 -2.92 1.33 
0.16 7.35 -5.29 1.60 6.49 -4.78 1.54 5.32 -4.08 1.46 4.10 -3.33 1.38 3.22 -2.78 1.32 

0.2 6.89 -5.02 1.57 6.11 -4.56 1.52 5.04 -3.92 1.44 3.93 -3.23 1.37 3.09 -2.70 1.31 

ℎ𝐷 𝐷⁄ = 0.02 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 16.51 -10.44 2.18 14.86 -9.53 2.08 13.58 -8.82 2.00 12.93 -8.46 1.96 12.75 -8.36 1.95 

0.024 15.16 -9.70 2.10 13.29 -8.66 1.98 11.57 -7.70 1.87 10.43 -7.06 1.80 10.06 -6.85 1.77 

0.04 13.99 -9.05 2.03 12.20 -8.05 1.91 10.38 -7.03 1.80 8.95 -6.21 1.70 8.37 -5.88 1.66 

0.08 12.17 -8.04 1.91 10.68 -7.20 1.81 9.06 -6.27 1.71 7.55 -5.40 1.61 6.67 -4.89 1.55 

0.12 11.12 -7.44 1.84 9.82 -6.71 1.76 8.40 -5.90 1.67 7.00 -5.83 1.57 6.03 -4.51 1.51 

0.16 10.51 -7.07 1.80 9.28 -6.40 1.72 7.98 -5.65 1.64 6.70 -4.90 1.55 5.73 -4.32 1.49 

0.2 10.00 -6.81 1.77 8.90 -6.18 1.70 7.68 -5.48 1.62 6.50 -4.79 1.54 5.56 -4.23 1.48 

ℎ𝐷 𝐷⁄ = 0.01 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 17.90 -11.20 2.27 16.94 -10.68 2.21 16.28 -10.32 2.17 15.95 -10.31 2.15 15.82 -10.06 2.14 

0.024 16.86 -10.63 2.20 15.57 -9.92 2.12 14.50 -9.33 2.06 13.76 -8.92 2.01 13.49 -8.77 2.00 

0.04 16.03 -10.18 2.15 14.57 -9.42 2.07 13.40 -8.72 1.99 12.32 -8.12 1.92 11.85 -7.85 1.89 

0.08 14.70 -9.44 2.07 13.41 -8.73 1.99 12.15 -8.02 1.91 10.87 -7.30 1.83 10.05 -6.85 1.77 

0.12 13.89 -9.00 2.02 12.70 -8.33 1.94 11.53 -7.68 1.87 10.30 -6.98 1.79 9.33 -6.43 1.73 

0.16 13.35 -8.70 1.98 12.23 -8.07 1.91 11.14 -7.46 1.84 9.96 -6.80 1.77 8.98 -6.23 1.70 

0.2 12.97 -8.48 1.96 11.89 -7.88 1.90 10.86 -7.30 1.83 9.77 -6.68 1.75 8.79 -6.12 1.70 

ℎ𝐷 𝐷⁄ = 0.08 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 12.80 -8.39 1.95 10.60 -7.15 1.81 8.18 -5.77 1.65 6.57 -4.83 1.55 6.04 -4.51 1.51 

0.024 10.42 -7.05 1.80 8.70 -6.07 1.69 6.49 -4.78 1.54 4.69 -3.70 1.42 3.99 -2.27 1.37 

0.04 8.52 -5.97 1.67 7.26 -5.23 1.59 5.44 -4.16 1.47 3.73 -3.11 1.35 2.94 2.60 1.30 

0.08 6.16 -4.59 1.52 5.40 -4.13 1.47 4.20 -3.40 1.38 2.86 -2.54 1.29 2.04 2.00 1.23 

0.12 5.06 -3.93 1.44 4.51 -3.59 1.40 3.59 -3.01 1.34 2.50 -2.31 1.26 1.73 -1.77 1.20 

0.16 4.45 -3.55 1.40 3.99 -3.27 1.37 3.23 -2.78 1.31 2.30 -2.17 1.25 1.59 -1.67 1.19 

0.2 4.07 -3.32 1.38 3.67 -3.07 1.35 3.00 -2.63 1.30 2.17 -2.08 1.24 1.52 -1.61 1.19 

 

  



A.2.2. (2,0) mode-shape 

𝜓 = 𝐴 · (𝜌𝑓 𝜌𝐷)⁄ 2
+ 𝐵 · (𝜌𝑓 𝜌𝐷)⁄ + 𝐶 

Table A2. Value of equation parameters. (2,0) mode-shape. 

 

  

ℎ𝐷 𝐷⁄ = 0.04 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 11.51 -7.66 1.87 9.79 -6.69 1.76 8.14 -5.75 1.65 7.19 -5.19 1.59 6.94 -5.04 1.57 

0.024 9.03 -6.25 1.71 7.71 -5.49 1.62 6.19 -4.60 1.52 5.08 -3.94 1.45 4.73 -3.73 1.42 

0.04 7.26 -5.23 1.59 6.29 -4.66 1.53 5.06 -3.93 1.44 4.00 -3.27 1.37 3.59 -3.02 1.34 

0.08 5.30 -4.07 1.46 4.70 -3.71 1.42 3.88 -3.20 1.36 3.06 -2.68 1.30 2.63 -2.39 1.27 

0.12 4.51 -3.59 1.40 4.04 -3.30 1.37 3.39 -2.89 1.33 2.73 -2.46 1.28 2.32 -2.19 1.25 

0.16 4.12 -3.35 1.38 3.71 -3.09 1.35 3.14 -2.73 1.31 2.55 -2.34 1.27 2.19 -2.10 1.24 

0.2 3.91 -3.21 1.36 3.52 -2.97 1.34 3.00 -2.63 1.30 2.46 -2.28 1.26 1.26 -1.59 1.18 

ℎ𝐷 𝐷⁄ = 0.02 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 14.02 -9.06 2.03 12.43 -8.18 1.93 11.19 -7.48 1.85 10.57 -7.13 1.81 10.41 -7.07 1.80 

0.024 11.94 -7.90 1.89 10.42 -7.05 1.80 9.00 -6.24 1.71 8.07 -5.70 1.65 7.80 -5.55 1.63 

0.04 10.32 -7.00 1.79 9.04 -6.26 1.71 7.72 -5.50 1.62 6.70 -4.90 1.55 6.31 -4.67 1.53 

0.08 8.30 -5.84 1.66 7.37 -5.30 1.60 6.36 -4.70 1.53 5.43 -4.15 1.47 4.95 -3.86 1.44 

0.12 7.40 -5.32 1.60 6.62 -4.86 1.55 5.77 -4.35 1.49 4.98 -3.88 1.44 4.49 -3.58 1.41 

0.16 6.93 -5.04 1.57 6.23 -4.63 1.52 5.46 -4.17 1.47 4.74 -3.73 1.42 4.30 -3.46 1.39 

0.2 6.66 -4.88 1.55 6.00 -4.49 1.51 5.27 -4.05 1.46 4.62 -3.66 1.41 2.57 -2.54 1.29 

ℎ𝐷 𝐷⁄ = 0.01 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 16.12 -10.23 2.16 15.06 -9.64 2.09 14.33 -9.24 2.04 13.97 -9.04 2.02 13.85 -8.97 2.02 

0.024 14.48 -9.32 2.06 13.23 -8.63 1.98 12.21 -8.06 1.91 11.53 -7.67 1.87 11.30 -7.54 1.85 

0.04 13.17 -8.59 1.97 11.99 -7.93 1.98 10.91 -7.32 1.83 10.02 -6.82 1.77 9.68 -6.63 1.75 

0.08 11.41 -7.60 1.86 10.42 -7.05 1.80 4.49 -6.52 1.74 8.59 -6.00 1.68 8.08 -5.71 1.65 

0.12 10.55 -7.12 1.81 9.67 -6.62 1.75 8.86 -6.16 1.70 8.06 -5.70 1.64 7.51 -5.38 1.61 

0.16 10.08 -6.86 1.78 9.27 -6.39 1.72 8.52 -5.96 1.67 7.78 -5.54 1.62 7.27 -5.24 1.59 

0.2 9.81 -6.70 1.76 9.02 -6.25 1.71 8.31 -5.84 1.66 7.64 -5.46 1.62 7.16 -5.17 1.59 

ℎ𝐷 𝐷⁄ = 0.08 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 8.47 -5.94 1.67 7.09 -5.14 1.58 5.46 -4.17 1.47 4.34 -3.48 1.39 3.98 -3.26 1.37 

0.024 5.90 -4.43 1.50 5.06 -3.93 1.44 3.88 -3.20 1.36 2.84 -2.53 1.29 2.45 -2.27 1.26 

0.04 4.31 -3.47 1.39 3.79 -3.14 1.36 2.97 -2.62 1.30 2.12 -2.05 1.23 1.74 -1.78 1.20 

0.08 2.79 -2.50 1.28 2.52 -2.32 1.26 2.06 -2.00 1.23 1.51 -1.61 1.19 1.18 -1.36 1.16 

0.12 2.25 -2.13 1.24 2.05 -2.00 1.23 1.71 -1.76 1.20 1.29 -1.45 1.17 1.01 -1.22 1.14 

0.16 1.99 -1.96 1.22 1.82 -1.84 1.21 1.54 -1.63 1.19 1.18 -1.36 1.16 0.94 -1.16 1.14 

0.2 1.86 -1.86 1.21 1.70 -1.75 1.20 1.44 -1.56 1.18 1.13 -1.32 1.15 0.90 -1.13 1.13 



A.2.3. (3,0) mode-shape 

𝜓 = 𝐴 · (𝜌𝑓 𝜌𝐷)⁄ 2
+ 𝐵 · (𝜌𝑓 𝜌𝐷)⁄ + 𝐶 

Table A3. Value of equation parameters. (3,0) mode-shape. 

 

  

ℎ𝐷 𝐷⁄ = 0.04 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 8.86 -6.16 1.70 7.52 -5.38 1.61 6.17 -4.59 1.52 5.39 -4.13 1.47 5.20 -4.01 1.45 

0.024 6.39 -4.72 1.53 5.50 -4.19 1.47 4.42 -3.54 1.40 3.62 -3.03 1.34 3.39 -2.89 1.33 

0.04 4.88 -3.82 1.43 4.28 -3.45 1.39 3.48 -2.95 1.33 2.78 -2.49 1.28 2.52 -2.32 1.26 

0.08 3.46 -2.93 1.33 3.09 -2.70 1.31 2.59 -2.37 1.27 2.10 -2.03 1.23 1.85 -1.86 1.21 

0.12 2.98 -2.62 1.30 2.68 -2.43 1.28 2.28 -2.15 1.25 1.89 -1.88 1.21 1.66 -1.72 1.20 

0.16 2.77 -2.49 1.28 2.51 -2.31 1.26 2.14 -2.06 1.23 1.78 -1.80 1.21 1.59 -1.67 1.19 

0.2 2.68 -2.42 1.28 2.42 -2.25 1.26 2.07 -2.01 1.23 1.74 -1.77 1.20 1.56 -1.65 1.19 

ℎ𝐷 𝐷⁄ = 0.02 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 11.79 -7.82 1.85 10.35 -7.01 1.79 9.18 -6.34 1.72 8.61 -6.02 1.68 8.48 -5.94 1.67 

0.024 9.44 -6.49 1.73 8.22 -5.79 1.66 7.05 -5.11 1.58 6.30 -4.67 1.53 6.10 -4.55 1.51 

0.04 7.82 -5.56 1.67 6.87 -5.01 1.57 5.87 -4.42 1.50 5.10 -3.95 1.45 4.85 -3.80 1.43 

0.08 6.10 -4.55 1.51 5.44 -4.16 1.47 4.72 -3.72 1.42 4.10 -3.34 1.38 3.81 -3.15 1.36 

0.12 5.46 -4.47 1.47 4.90 -3.83 1.43 4.30 -3.46 1.39 3.78 -3.13 1.36 3.49 -2.96 1.34 

0.16 5.18 -4.00 1.45 4.67 -3.68 1.42 4.11 -3.34 1.38 3.63 -3.04 1.34 3.38 -2.88 1.32 

0.2 5.04 -3.92 1.44 4.54 -3.61 1.41 1.01 -3.28 1.37 3.56 -3.00 1.34 3.33 -2.85 1.32 

ℎ𝐷 𝐷⁄ = 0.01 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 14.39 -9.27 2.05 13.28 -8.66 1.98 10.52 -8.23 1.93 12.16 -8.03 1.91 12.05 -7.97 1.90 

0.024 12.38 -8.15 1.62 11.22 -7.50 1.85 10.28 -6.97 1.79 9.66 -6.62 1.75 9.47 -6.51 1.74 

0.04 10.90 -7.32 1.83 9.89 -6.75 1.76 8.97 -6.22 1.70 8.24 -5.81 1.66 7.98 -5.65 1.64 

0.08 9.18 -6.34 1.72 8.38 -5.89 1.67 7.65 -5.46 1.62 6.99 -5.08 1.57 6.65 -4.88 1.55 

0.12 8.50 -5.95 1.67 7.78 -5.54 1.63 7.15 -5.17 1.58 6.85 -4.84 1.55 6.23 -4.63 1.52 

0.16 8.18 -5.77 1.65 7.51 -5.38 1.61 6.92 -5.03 1.57 6.38 -4.72 1.53 6.08 -4.54 1.51 

0.2 8.02 -5.68 1.64 7.36 -5.29 1.60 6.79 -4.96 1.56 6.30 -4.67 1.53 6.01 -4.50 1.51 

ℎ𝐷 𝐷⁄ = 0.08 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 5.67 -4.29 1.49 4.78 -3.75 1.42 3.67 -3.07 1.35 2.88 -2.56 1.29 2.65 -2.41 1.27 

0.024 3.55 -3.00 1.34 3.08 -2.69 1.31 2.40 -2.25 1.25 1.77 -1.80 1.21 1.54 -1.64 1.19 

0.04 2.44 -2.27 1.26 2.17 -2.08 1.24 1.74 -1.78 1.20 1.28 -1.43 1.17 1.07 -1.28 1.15 

0.08 1.54 -1.63 1.19 1.40 -1.53 1.18 1.17 -1.35 1.16 0.89 -1.13 1.13 0.73 -1.00 1.12 

0.12 1.27 -1.43 1.16 1.16 -1.34 1.16 0.98 -1.20 1.14 0.77 -1.03 1.12 0.64 -0.91 1.11 

0.16 1.16 -1.34 1.16 1.06 -1.27 1.15 0.90 -1.14 1.13 0.72 -0.98 1.11 0.61 -0.88 1.10 

0.2 1.11 -1.30 1.15 1.01 -1.23 1.14 0.87 -1.11 1.13 0.69 -0.96 1.11 0.59 -0.86 1.10 



A.2.4. (4,0) mode-shape 

𝜓 = 𝐴 · (𝜌𝑓 𝜌𝐷)⁄ 2
+ 𝐵 · (𝜌𝑓 𝜌𝐷)⁄ + 𝐶 

Table A4. Value of equations parameters. (4,0) mode-shape. 

 

  

ℎ𝐷 𝐷⁄ = 0.04 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 6.84 -5.00 1.56 5.80 -4.38 1.49 4.73 -3.72 1.42 4.09 -3.34 1.38 3.95 -3.25 1.37 

0.024 4.64 -3.67 1.42 4.01 -3.28 1.37 3.23 -2.79 1.32 2.76 -2.47 1.28 2.66 -2.40 1.27 

0.04 3.43 -2.92 1.33 3.025 -2.65 1.30 2.48 -2.29 1.26 2.00 -1.96 1.22 1.83 -1.85 1.21 

0.08 2.43 -2.26 1.26 2.18 -2.09 1.24 1.84 -1.85 1.21 1.52 -1.62 1.19 1.37 -1.51 1.17 

0.12 2.14 -2.06 1.24 1.93 -1.91 1.22 1.65 -1.71 1.20 1.38 -1.51 1.17 1.25 -1.42 1.16 

0.16 2.03 -1.98 1.23 1.84 -1.85 1.21 1.57 -1.66 1.19 1.32 -1.47 1.17 1.21 -1.39 1.16 

0.2 1.99 -1.95 1.22 1.80 -1.82 1.21 1.54 -1.63 1.19 1.30 -1.46 1.17 1.20 -1.38 1.16 

ℎ𝐷 𝐷⁄ = 0.02 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 9.90 -6.75 1.76 8.62 -6.02 1.68 7.56 -5.41 1.61 7.06 -5.12 1.58 6.95 -5.05 1.57 

0.024 7.54 -5.40 1.61 6.56 -4.82 1.55 5.60 -4.26 1.48 4.99 -3.89 1.44 4.84 -3.80 1.43 

0.04 6.07 -4.54 1.51 5.35 -4.10 1.46 4.58 -3.63 1.41 4.00 -3.27 1.37 3.82 -3.16 1.36 

0.08 4.71 -3.71 1.42 4.21 -3.40 1.39 3.67 -3.06 1.35 3.22 -2.78 1.32 3.03 -2.66 1.30 

0.12 4.28 -3.45 1.39 3.84 -3.17 1.36 3.37 -2.88 1.33 3.00 -2.64 1.30 2.82 -2.52 1.29 

0.16 4.11 -3.34 1.38 3.70 -3.08 1.35 3.26 -2.80 1.32 2.91 -2.58 1.29 2.75 -2.48 1.28 

0.2 4.04 -3.30 1.37 3.63 -3.04 1.35 3.20 -2.77 1.31 2.87 -2.56 1.29 2.73 -2.46 1.28 

ℎ𝐷 𝐷⁄ = 0.01 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 12.79 -8.38 1.95 11.69 -7.76 1.88 10.93 -7.34 1.83 10.58 -7.14 1.81 10.57 -7.08 1.80 

0.024 10.59 -7.15 1.81 9.55 -6.56 1.74 8.70 -6.07 1.68 8.16 -5.76 1.65 8.00 -5.67 1.64 

0.04 9.12 -6.31 1.71 8.25 -5.81 1.66 7.48 -5.36 1.61 6.89 -5.02 1.57 6.68 -4.89 1.55 

0.08 7.61 -5.44 1.62 6.94 -5.05 1.57 6.34 -4.70 1.53 5.84 -4.40 1.50 5.60 -4.25 1.48 

0.12 7.10 -5.14 1.58 6.49 -4.78 1.54 5.97 -4.47 1.51 5.54 -4.22 1.48 5.29 -4.07 1.46 

0.16 6.90 -5.02 1.57 6.32 -4.68 1.53 5.82 -4.38 1.50 5.41 -4.14 1.47 5.20 -4.01 1.45 

0.2 6.81 -4.97 1.56 6.23 -4.63 1.52 5.75 -4.34 1.49 5.37 -4.11 1.47 5.17 -4.00 1.45 

ℎ𝐷 𝐷⁄ = 0.08 
𝐺 𝐷⁄  0.0014 0.004 0.012 0.04 0.20 

𝐻𝑢𝑝/𝐷 A B C A B C A B C A B C A B C 
0.012 3.84 -3.18 1.36 3.25 -2.80 1.32 2.50 -2.31 1.26 1.96 -1.94 1.22 1.80 -1.83 1.21 

0.024 2.23 -2.12 1.24 1.82 -1.86 1.22 1.53 -1.63 1.19 1.14 -1.33 1.15 1.01 -1.23 1.14 

0.04 1.43 -1.55 1.18 1.30 -1.45 1.17 1.02 -1.24 1.14 0.94 -1.13 1.13 0.82 -1.01 1.11 

0.08 0.80 -1.07 1.12 0.75 -1.02 1.12 0.60 -0.90 1.10 0.57 -0.85 1.10 0.49 -0.77 1.09 

0.12 0.63 -0.94 1.10 0.60 -0.90 1.10 0.49 -0.80 1.09 0.51 -0.78 1.09 0.44 -0.71 1.08 

0.16 0.61 -0.90 1.10 0.55 -0.86 1.10 0.45 -0.77 1.09 0.48 -0.76 1.09 0.42 -0.70 1.08 

0.2 0.60 -0.89 1.10 0.53 -0.84 1.09 0.43 -0.75 1.08 0.47 -0.75 1.09 0.41 -0.69 1.08 



A3 Dimensionless acoustic natural frequency. 

 

The slope (m) of the lines which represents the acoustic mode-shapes in Figure A5 can be calculated as 

follows: 

𝑚 =
𝑓𝐷 𝑐0⁄

𝑐 𝑐0⁄
= 𝑓𝐷 𝑐⁄  (16) 

Combining Eq. (16) with Eq. (17), it is observed that this slope is just a function of the parameter 

tabulated in Table 4 divided by π for global modes (k=0) (Eq. (17)). 

𝑓𝐷 𝑐⁄ = 𝜆𝑖 𝜋⁄ = 𝑚 (17) 

This fact allows to plot that line without performing any simulation, only using Eq. (15) and Table 4. 

The ratio c/c0  for which the structural natural frequency will be affected by the acoustic natural frequencies 

of the fluid cavity can be obtained by using Figure A5 for any kind of disk. 

  



 
Figure A5. Dimensionless acoustic natural frequency for different c/c0 values. 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1

f·
D

/c
0

c/c0

(1,0) Mode-shape of the fluid cavity (2.0) Mode-shape of the fluid cavity

(3,0) Mode-shape of the fluid cavity (4,0) Mode-shape of the fluid cavity


	ABSTRACT
	Keywords
	1 Introduction
	2 Numerical model
	2.1 Dynamic behaviour of structure vibrating in vacuum.
	2.2 Dynamic behaviour of an acoustic cavity
	2.3 Dynamic behaviour of fluid-structure coupling.
	2.4 Speed of sound influence

	3 FEM model
	4 Results and discussions
	4.1 Structural natural frequencies and mode shapes of the disk.
	4.2 Added mass effect of the fluid
	4.3 Acoustical natural frequencies of the fluid cavity
	4.3.1 Influence of the total height and axial gap.
	4.3.2 Influence of the radial gap
	4.3.3 Influence of the cavity diameter

	4.4 Coupled simulation
	4.4.1 Influence of the density of the fluid.


	5 Conclusions
	Acknowledgments
	References
	Appendix A
	A1 Fluid added mass. δ and λ factors.
	A.1.1. (1,0) Mode-shape.
	A.1.2. (2,0) Mode-shape
	A.1.3. (3,0) Mode-shape
	A.1.4. (4,0) Mode-shape

	A2 Fluid added mass. ψ factor.
	A.2.1. (1,0) mode-shape
	A.2.2. (2,0) mode-shape
	A.2.3. (3,0) mode-shape
	A.2.4. (4,0) mode-shape

	A3 Dimensionless acoustic natural frequency.

