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 Abstract 

Software design problems are often characterized as ill-structured because the 
requirements are not clearly defined. These problems offer various solution paths 
and the criteria used to select the solution may not be known initially. The expertise 
and experience of designers play a crucial role in determining the quality of 
software design. Less experienced designers often tend to prematurely narrow 
down their options to a single solution without fully exploring the problem-solution 
space. This tendency has a negative impact on the overall quality of software 
design. Studies have shown that systematically expanding the problem space before 
reducing to problem formulation and exploring the solution space before reducing it 
to a single solution (expand-reduce skills) improves the quality of the design. We 
have designed and developed a technology-enhanced learning environment (TELE) 
named Fathom for scaffolding expand-reduce (ER) skills in software design problems 
in a data structures course. In this paper, we present three cycles of design, 
development, and evaluation of Fathom based on the design-based research (DBR) 
approach. In the first DBR cycle, we identified and evaluated Fathom’s pedagogical 
features in learning ER skills. In the second cycle of DBR, the aim was to improve the 
design of Fathom for the learning and transfer of ER skills. Fathom was revised in 
the third cycle of the DBR to scaffold metacognitive skills. The main contribution of 
this research is pedagogical design for facilitating the learning of expand-reduce 
skills in solving software design problems. 

Keywords: Software design problem, Ill-structured problem, Expand-reduce skills, 
Design-based research (DBR), Learning environment, Cognitive and metacognitive 
scaffolding 

Introduction 

Software design problems are sometimes ill-structured and complex, especially when the 

problem space and solution space are not well defined. The characteristics of an ill-
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structured problems are as follows: requirements may be broadly defined (Pressman, 2010); 

the designer may not be familiar with the area in which the software is to be created 

(Adelson & Soloway, 1985; Tang et al., 2008); and the designer has to turn partial needs 

into specifications (Guindon, 1990; Pressman, 2010). In the solution space, there may be 

various solution paths and alternative design possibilities, and the criteria for choosing the 

best solution may not be explicitly articulated (Jonassen et al., 2006). For example, in the 

software design problem “Design library management system,” the problem definition is 

broad and needs to be decomposed into subproblems. The solution space may consist of 

identifying appropriate data structures to store library books and using appropriate 

algorithms to perform various operations. Based on the needs and limitations applicable to 

the problem area, designers must choose acceptable data structures and algorithms 

(Guindon, 1990; Pressman, 2010; Tang et al., 2010). 

The literature on solving ill-structured problems indicates that having the ability to 

comprehend and visualize the problem space is crucial for transforming an ill-defined 

problem into a well-defined problem. This approach is defined as expansionist thinking, 

which consists of comprehending the system by identifying the components and 

interrelationships between them, followed by the reductionist approach, which consists of 

decomposing the problem into solvable subproblems (Ackoff, 1979; Volkema, 1983). 

Similarly, in the solution space, alternative solutions may be developed using strategies 

such as brainstorming, mind mapping, attribute listing, and analogous thinking (Liu & 

Schonwetter, 2004). After generating solutions, one may reduce to a single solution using 

various evaluation strategies such as pros and cons analysis and decision matrix (Pugh, 

1991). In this paper, we refer to the ability to explore the problem-solution space and 

eventually reduce towards the formulation of subproblems and solution design as expand-

reduce (ER) skills. 

Research has shown that a designer’s expertise and experience have a significant impact 

on the quality of software design (Adelson & Soloway, 1985; Tang et al., 2008). Expert 

designers are adept at visualizing the problem solution space, applying heuristic techniques 

to search the solution space, and quickly selecting an appropriate option. However, novices 

struggle to solve design challenges because they lack experience in solving such problems. 

They tend to reduce early in the solution design without visualizing the problem-solution 

space. This affects design quality because of reasons such as defining the problem too 

narrowly, failure to decompose problems into subproblems, and fixation on a specific 

solution without openly examining other options (Ellspermann et al., 2007; Zannier et al., 

2007). 

According to research, designers should use expand-reduce (ER) skills to increase design 

quality, especially when the designer is inexperienced or the problem area is unclear 

(Adelson & Soloway, 1985; Tang et al., 2008, 2010; Zannier et al., 2007). We propose a 
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technology-enhanced learning (TEL) environment named Fathom, designed and developed 

for undergraduate computer engineering students, with a focus on the learning of expand-

reduce skills in the context of solving software design problems. The instructional design 

of Fathom is grounded in the framework suggested for scaffolding ill-structured problem-

solving processes (Bannert & Mengelkamp, 2013; Jonassen, 2011; Xun & Land, 2004). 

This paper presents the pedagogical design of Fathom and its implementation through 

three design-based research (DBR) cycles (Amiel & Reeves, 2008; Reeves, 2006). In the 

first DBR cycle, we investigated the challenges encountered by novices when tackling 

software design issues. This inquiry involved an exploratory study conducted with 40 

second-year undergraduate engineering students. In this study, the students were given a 

software design problem to be solved using a worksheet. Student responses were evaluated 

and scored using a rubric designed to assess ER skills. The results showed that students 

scored low in ER skills. Based on the findings of Study 1 and insights gathered from the 

literature survey, we designed and developed Fathom-Ver1 (version 1). We tested the 

effectiveness of Fathom-Ver1 by conducting exploratory study 2 with the aim to 

investigate the effectiveness of Fathom-Ver1 in performing activities related to ER skills. 

A group of 49 second-year undergraduate engineering students took part in this research, 

engaging in problem-solving within Fathom-Ver1. Subsequently, they participated in a 

student perception survey and focus group interview. The analysis of our results showed 

that the average scores of the students were better in Study 2 than in Study 1; however, the 

survey and interview data analysis revealed that students had difficulty understanding the 

activities designed in Fathom. In the second DBR cycle, the design elements of Fathom-

Ver1 are upgraded by adding worked examples, feedback, and drawing tools to the learning 

environment. The second DBR cycle focused on the learning and transfer of ER skills. 

Study 3 tested the effectiveness of Fathom-Ver2 in learning ER skills. The study was 

conducted with 52 second-year undergraduate computer engineering students. The 

research method was a one-group pretest-posttest study to measure learning gains before 

and after the intervention. The results showed that there was a significant improvement in 

scores for ER skills from pretest to posttest; however, log-data analysis showed that only 

20% of students revised their responses after self-evaluation, which implies that learners 

did not exhibit metacognitive behaviors. The third cycle of DBR focused on strengthening 

metacognitive scaffolds to aid learners in evaluating their ER skills. Study 4 was conducted 

to evaluate Fathom-Ver3. The study involved 50 second-year undergraduate computer 

engineering students. The research method used was a one-group pretest-intervention-

posttest. The results showed significant improvement in the quality of software design from 

pretest to posttest, which implies that Fathom-Ver3 was effective in learning ER skills in 

solving software design problems. Log-data analysis showed that the students evaluated 
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their responses and were taking appropriate corrective measures to improve their ER skills 

during the intervention, thus exhibiting metacognitive behaviors. 

In the section “Theoretical background: problem-solving literature,” we discuss related 

work in software design problem-solving, ill-structured problem-solving, and the 

formulation of expand-reduce skills. In the sections “Design-based research” to “DBR 

cycle 3,” DBR cycles 1, 2, and 3 are discussed in detail, followed by a discussion, 

limitations, and conclusion. 

Theoretical background: problem-solving literature 

In this section, the importance of design problem-solving in engineering education is 

established, followed by a literature review on software design problem-solving skills. 

Next, the characterization of expand-reduce skills is discussed, followed by issues and 

challenges in existing studies and the research goal. 

Design problem-solving in engineering education 

One of the outcomes of engineering education is the ability to identify, formulate, and solve 

engineering problems and design a product under a given set of constraints, which directly 

or indirectly solves real-life problems and improves quality of life (ABET, 2013). Design 

problems are ill-structured, and the skills needed to solve design problems need to be taught 

explicitly to students during engineering education. However, engineering education 

focuses more on teaching content and solving well-structured problems (Cooperrider, 2008; 

Dym et al., 2005; Jonnasen, 2006). Computer engineering courses for undergraduates often 

involve design problem-solving skills as they require students to apply theoretical 

knowledge to real-world challenges. Computer engineering subjects in which design 

problem-solving skills are particularly crucial are database design (Mitrovic & Suraweera, 

2016), UML design (Moritz & Blank, 2008), software design (Mitrovic & Weerasinghe, 

2009; Nyhoff, 2005), and computer networks (Lian, 2012), etc. Our work focuses on 

software design problem-solving in data structures courses, as choosing appropriate data 

structures and algorithms is an important skill in software design, and the designer has to 

make design decisions based on the criteria relevant to the given problem (Tang et al., 

2010). 

Expand-reduce skills in software design 

Based on the problem-solving literature, various cognitive and metacognitive processes 

and tools that expert designers implicitly use to expand-reduce during problem analysis 

and solution design phases are discussed in detail. 
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Problem analysis 

The problem-solving literature argues that the quality of problem formulation depends on 

the ability to see the entire problem space and then decompose the problem into 

subcategories (Ackoff, 1979; Dennis et al., 1999). This process is categorized as the 

expansionist and reductionist (Volkema 1983) approach, in which the problem space is 

expanded before reducing (decomposing) the problem into subproblems. The expansionist 

approach involves understanding the system by identifying the parts and the 

interrelationships between parts (Ackoff, 1979). Studies have shown that various 

visualization techniques, such as drawing a cognitive map representing various 

actors/concepts as nodes and links as the interaction between them help in understanding 

the problem as a whole and improves the quantity and quality of the generated problem 

statements (Eden & Ackermann, 2001; Norese, 1995). 

Many studies have been conducted with experts in software design problem-solving to 

study the cognitive and metacognitive processes involved (Adelson & Soloway, 1985; 

Guindon, 1990; Tang et al., 2008, 2010). In problem analysis, the designer must transform 

incomplete and ambiguous specifications into high-level system design. A high-level 

design describes the main software functions and subfunctions. Before the formal 

specifications are documented, expert designers analyze the problem by creating and 

simulating mental models at various levels of abstraction. Eventually, the subproblems are 

decomposed from these mental models. Designers create a mental model of the system 

using external representations, such as drawing a state transition diagram or listing entities 

with their respective properties and actions. The drawing chosen is based on the prior 

experience of the designer; for example, if the designer has prior experience in designing 

control systems, then he may prefer a state transition diagram and a software designer may 

prefer entity-action representation or data flow diagrams. If the problem to be solved is: 

“Design a library management system for a college” then different representations that can 

be used by the designers are a state transition diagram (Figure 1) or listing entities and 

corresponding actions (Figure 2). 

 

 

 

Fig. 1 State transition diagram of the library management system 
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These diagrams act as mechanisms for problem understanding and problem 

decomposition into solvable subproblems. For example, the above diagram will trigger the 

inference of new functions, such as issue_book (book-id), return_book (book_id), and 

calculate_fine (book-id, student-id). The drawing of the library problem in terms of the 

various entities/actors involved and the interactions between them helps in simulating 

various scenarios. This leads to the creation of mental models, which in turn trigger the 

decomposition of problems into solvable subproblems. 

Solution design 

Software design problems (Nyhoff, 2005) are often complex and cannot be visualized or 

anticipated at the outset of all details of a complete solution to the entire problem. One 

approach to tackling such complex problems is to decompose the original problem into 

simpler subproblems, each of which can be considered individually. Some subproblems 

may have to be further partitioned into simpler subproblems that can be solved directly. 

For example, in the library management problem, the original problem is partitioned into 

simpler subproblems: issue, return, and search books. The mind map can be used to 

visualize the solution space at various levels of abstraction (Kostousov & Kudryavtsev, 

2017). The first level of abstraction is illustrated in Figure 3. 

Typically, one or more first-level subproblems may still be complex, and must be divided 

into smaller subproblems. For example, for issuing books, one must search for the book in 

the set of records and update the issue date in the corresponding record, as shown in  

Figure 4. This process may continue for several more levels of refinement until each  

 

Entity  Action 

Librarian Issue books, return books, maintain cards, order books, 

calculate fine 

Teacher/student Issue/return books, re-issue book, request new books 

Book Update date of issue or return 

 

Fig. 2 Entity-action list of the library management system 

 

Fig. 3 First-level structure diagram for library management system 
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subproblem is sufficiently simple and straightforward to implement. This solution may 

consist of designing storage structures for data and identifying algorithms to process data. 

For example, for the search problem, book records may be stored in ascending order on 

one of the key fields (accession number) in an array, and the algorithm might be a binary 

search algorithm. However, the decision of which data structure and algorithm to use must 

be made based on the problem requirements and constraints to be satisfied. 

Experienced designers are good at identifying the selection criteria; they may not perform 

an exhaustive search in the solution space and quickly reduce to a few alternatives based 

on the selection criteria, quickly perform a trade-off analysis of the available options, and 

make design decisions (Guindon, 1990). However, inexperienced designers benefit more 

by explicitly generating all possible alternatives, explicitly stating the selection criteria, 

evaluating alternative options against the selection criteria, and making a design decision 

by explicitly justifying the selection. This process helps the designer backtrack alternative 

solutions if the current solution is later found to be unviable (Tang et al., 2008, 2010). 

In software design problem-solving, designers use various forms of external 

representation to expand the solution space for possible alternative design options. To 

generate a variety of design possibilities, sketches play an important role in supporting 

mental simulation, reviewing progress, and considering alternatives. The external 

representations suggested are mind maps, concept maps, tables, lists, etc., for designing 

and evaluating solutions (Guindon, 1990; Mangano et al., 2014). These representations 

were used to identify missing information and to ensure the completeness of the solution. 

Convergent thinking techniques are used to reduce by evaluating alternative ideas using 

various criteria and selecting the appropriate idea. For example, making a decision on 

buying equipment for a company involves evaluating all alternatives based on various 

selection criteria, such as cost and usability. Some of the tools widely used for evaluating 

alternatives are the decision matrix (Pugh, 1981, 1991); and Analytic Hierarchy Process 

(AHP) (Saaty, 2008). The decision matrix (Pugh, 1981, 1991) is used to make design 

decisions by evaluating alternative designs based on multiple criteria and deciding which 

one best meets all criteria. Decisions based on multiple criteria are complex, resulting in  

 

Fig. 4 A refined structure diagram for the library management system 
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inconsistent and irrational decisions. The Pugh Matrix provides a simple approach to 

comparing alternative designs against each criterion. The alternative designs and criteria 

are listed in the table shown in Figure 5, which demonstrates the use of a decision matrix 

to evaluate and select alternatives. Four design alternatives were evaluated against the four 

criteria. The designs are rated on a scale, of example, 1-5 against each criterion, and the 

total rating for each design is calculated. The design with the highest rating was selected 

for the study. The alternative is to weigh the criteria based on their importance over other 

criteria and multiply the rating with the weight of each criterion. The advantage of Pugh’s 

decision matrix is that it is easy to implement. However, this method fails if the selection 

of criteria is incomplete or incorrect because the effectiveness of Pugh’s matrix is related 

to the quality of the selection criteria. If the selection criteria are incorrect or incomplete, 

the selection decision can go wrong. 

Analytic Hierarchy Process (AHP) is another popular technique proposed by Saaty 

(2008), which is used to choose among multiple criteria and choices; for example, selecting 

a car by evaluating alternative choices (Baleno, Honda city, Ford aspire) against multiple 

criteria (cost, style, mileage, reliability). The basic principle of AHP is to perform a 

pairwise comparison of criteria and perform a matrix calculation (eigenvector) to determine 

the relative importance of one criterion over another. The main advantage of AHP is its 

ability to rank choices in order of their effectiveness in meeting conflicting objectives. The 

drawback is the ambiguity in the interpretation of Saaty’s rating scale and the complexity 

of mathematical calculations. 

A summary of the various cognitive processes and tools used to expand-reduce the 

problem-solution space is shown in Figure 6. 

In this paper, we characterize expand-reduce skills from expansionist-reductionist 

thinking (Ackoff, 1991; Ellspermann et al., 2007; Volkema, 1983), divergent-convergent 

thinking literature (Basadur et al., 2000; Howard et al., 2008; Liu & Schonwetter, 2004; 

Pugh, 1991; Saaty, 2008) and software design problem-solving literature (Guindon, 1990; 

Mangano et al., 2014; Tang et al., 2008, 2010). Expand-reduce (ER) skills are defined as 

the ability to expand-reduce the problem-solution space by understanding the problem from 

multiple perspectives before formulating subproblems, and generating solutions before 

selecting a single solution, as shown in Figure 7. 

       Design1     Design2      Design3       Design4 

Criteria1 1  3  4  3  

Criteria2 2  5  4  2  

Criteria3 4  3  1  3  

Criteria4 3  2  1  4  

Total score 10  13  10  12  

Fig. 5 Example of decision matrix 
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Teaching-learning techniques for problem-solving 

The characteristics of software design problems are similar to those of ill-defined problems 

in which the start and end goals are unclear, and there is no algorithm defined to transform 

the start goal into the end goal. In addition, the start state is underspecified and the goal 

state is defined in terms of highly abstract features (Goel & Pirolli, 1992; Mitrovic & 

Weerasinghe, 2009). A literature survey was conducted to identify teaching-learning 

techniques suggested for ill-structured problem-solving. To improve students’ 

performance in solving ill-structured problems, it is necessary to provide externalized 

support or scaffolding to facilitate cognitive and metacognitive processes (Bannert & 

Mengelkamp, 2013; Ge, 2013; Jonassen, 2011; Tang et al., 2018; Xun & Land, 2004). 

Various scaffolding techniques have been discussed in this section. 

 

Fig. 6 Expand-reduce skills and tools used in problem-solution space 

 

Fig. 7 Definition of the expand-reduce skills in problem-solution space 
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Question prompts 

The framework proposed by Xun and Land (2004) suggests the use of question prompts 

for scaffolding ill-structured problem-solving. The question prompts enable to direct 

students’ attention to important aspects of problem-solving at both the cognitive and 

metacognitive levels. Question prompts have been empirically proven to be effective in 

guiding learners step-by-step throughout the entire process of a specific problem-solving 

task (Ge et al., 2005; Xun & Land, 2004). Question prompts can guide students’ attention 

to specific aspects of their learning process, thereby helping them to monitor and evaluate 

problem-solving processes. Question prompts include procedural, elaboration, and 

reflection prompts, each of which serves different cognitive and metacognitive purposes. 

Procedural prompts help learner complete specific tasks, such as writing or problem-

solving, and have been used successfully to help students learn cognitive strategies in 

specific content areas. Some examples of procedural prompts include the Identify entities 

involved in the problem. Identify alternative solutions. Elaboration prompts are designed 

to prompt learners to articulate their thoughts and elicit explanations. Some examples are 

as follows: Why is it important? How does this affect the selection? Reflection prompts 

encourage reflection on a metalevel that students do not generally consider. A few 

examples of reflection prompts can be used to help students justify the viability of the 

proposed solution against alternatives: What are the pros and cons of this solution? Are 

there alternative solutions? 

Structured guidance 

Learning problem-solving skills should be supported by providing a learning environment 

with authentic and complex problems. This allows learners to learn skills by engaging in 

activities in that field (Jonassen, 2011). The learning environment should provide 

structured guidance in the form of learning activities scaffolded with prompts and extra 

support that drives their thinking towards the systematic application of abilities (Bannert 

& Mengelkamp, 2013; Ge, 2013). The main components of the problem-based learning 

environment are worked examples, analogy, case studies, question prompts, etc. (Ge et al., 

2005; Jonassen, 2011; Xun & Land, 2004). 

Worked examples 

Worked examples are effective in problem-solving for novices as they reduce the 

extraneous load and can concentrate on building cognitive schemas, which are used to solve 

similar problems in the future (Jonassen, 2011; McLaren & Isotani, 2011). Worked 

examples should break down complex solutions into smaller meaningful solution elements, 

and present multiple examples in multiple modalities for each type of problem. Providing 

analogous problems for students to compare with the problem to solve allows them to gain 
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more robust conceptual knowledge about problems (Xun & Land, 2004). In tutored 

problem-solving environments, worked and erroneous examples have proven to be 

effective learning activities. Studies have shown that alternating work examples and 

problem-solving have positive results in learning domain knowledge (Chen et al., 2019). 

Cognitive tools 

The research Wang et al. (2013) illustrated the possibilities of using visualization-based 

cognitive tools in learning environments to scaffold the entire problem-solving process. 

Tools such as concept maps, mind maps, and argument maps make thinking and learning 

in a problem context visible throughout the learning process. The framework by Kostousov 

and Kudryavtsev (2017) suggests using mind maps or concept maps in the problem analysis 

phase to expand the problem space. These tools will help in visualizing the main parts of a 

problem situation and actions in the problem-solving process as well as their relationships. 

In the design solution phase, a goal tree or decision tree can be used to expand the solution 

space because it can have multiple target states that are associated with different goals, and 

we do not know the best one. Argument mapping can help in choosing the best solution 

that has been identified by visualizing its benefits and limitations. 

Issues and challenges of the existing studies 

Prior work (Razavian et al., 2016; Tang et al., 2018) proposed a general model for the 

reflective design reasoning process, consisting of identifying the context and requirements, 

formulating and structuring design problems, creating solution options, and making design 

decisions. These techniques are referred to as design-reasoning techniques. In one study 

(Razavian et al., 2016), a list of reflective questions was used to improve design reasoning. 

The study involved groups of students in which the test groups were asked reflective 

questions by the lecturer, whereas for the control groups, the lecturer was only passively 

present to answer technical questions that the students might have had. It was concluded 

that active, externally induced reflection improved the quality of design reasoning. 

However, some participants found the questions difficult to use as there were many of them. 

Another study Tang et al. (2018) proposed a simpler representation, the reminder card 

system, to test its reflective power on designers and its impact on design discourse. This 

study was conducted using a combination of students and professionals. The average 

reasoning techniques used by the teams in the test group were significantly higher than 

those used by the control group. This indicates that during design discourse, student teams 

in the test group are more cognizant of design reasoning. However, no significant 

differences were observed in the design outcomes in terms of the number of formulated 

problem statements, design options, and design decisions. Some participants mentioned 

that it would have been useful to guide how to use the cards during the design session; 
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perhaps, a structured approach or a method to prompt reasoning and reflection and to guide 

design discussions may be useful. 

The studies do not directly examine whether the amount of explicit reasoning performed 

by designers leads to better results, that is, a better overall design. 

Research goal 

Our research goal was to design and develop a technology-enhanced learning environment 

for scaffolding design problem-solving in the context of software design problems in data 

structures courses for undergraduate engineering students. We propose the use of a design-

based research methodology to design and develop a technology-enhanced learning 

environment for design problem-solving and evaluate its effectiveness in learning the skills 

and design outcome in terms of the quality of the overall design. 

Design-based research 

The design-based research (DBR) framework assists researchers in analyzing real-world 

problems, incorporating design principles with technical breakthroughs into solution 

development, testing, refining learning environments, and defining new design principles 

(Amiel & Reeves, 2008; Reeves, 2006). The DBR cycle comprises four phases: Problem 

Analysis, Solution Development, Evaluation, and Reflection. We conducted three DBR 

cycles, as discussed in detail in this section. 

DBR cycle 1 

The first DBR cycle aimed to examine a novice’s ability to solve software design problems 

and identify teaching-learning techniques for ER skills. The work performed in each phase 

of the DBR is discussed in detail in this section. 

Problem analysis 

Study 1: We conducted a preliminary exploratory research study (Study 1) (Reddy et al., 

2016) to assess the level of a novice in solving software design problems and to explore 

students’ difficulty in applying ER skills. Exploratory research has been conducted to gain 

deeper insights into the problem and refine the problem definition (Shields & Rangarajan, 

2013). 

The research question (RQ) formulated for study 1 is:  

RQ1. “What are the difficulties faced by the students while solving a software design 

problem with respect to ER skills?” 

Based on a problem-solving literature survey, we designed a worksheet to solve design 

problems in the data structures course. In the worksheet, question prompts were given to 

enable the learner to systematically expand and reduce the problem-solution space. In the 
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problem analysis phase, prompts were designed to allow the learner to expand the problem 

space by listing all entities and actors involved. Later, the problem is decomposed into 

subproblems by identifying the data to be stored and the operations to be performed to 

solve the problem. Similarly, in the solution design phase, prompts were designed to 

generate multiple solutions by identifying alternative data structures and algorithms and 

selecting one based on the requirements of the problem. 

Participants and research method: Forty second-year undergraduate computer engineering 

students participated in this study. This was a single-group study (Figure 8). 

During the study, all students were given a software design problem to solve using a 

worksheet, as shown in Figure 9. The students individually solved the worksheet problem 

for almost two hours. 

Data collection and analysis: The worksheet responses were evaluated and scored using 

the rubric designed to assess ER skills as shown in Table 1. 

 

 

Fig. 8 Research design: Study 1 

Problem: The local automobile retail shop sells parts for different car models. 

The shop owner wants to create an inventory control program that tracks the 

quantity of all the parts and creates a report of the parts that need to be ordered 

so there is minimal risk of items getting out of stock. Come up with multiple possible 

solutions by using appropriate data structures and operations for solving the above 

problem. Justify which solution is most efficient for the above-stated problem. 

Phase 1. Understand and analyze the problem: 

1.1 List all the entities and actors: 

1.2 List the data and operations performed from the perspective of each entity 

listed: 

1.3 What is the requirement for the above problem? 

1.4 Identify the data (listed in step 2), needed to solve the above requirement: 

1.5 Identify the operations out of the list in step 3, needed to solve the problem: 

Phase 2. Problem-solving: 

2.1 List the desirable Data Structures that can be used to solve the above 

problem: 

2.2 For each Data Structure, give alternative solutions to solve requirements 

given in step 4 using data and operations identified in step 5 and 6 

respectively: 

2.3 Identify the efficient solution based on constraints and requirements in the 

problem. Justify? 

Fig. 9 Worksheet activity of solving the software design problem 
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Table 1 Rubric to evaluate ER skills 

Sub-skills/Score 3 2 1 

Problem Analysis 

Understand the 
problem 

All entities and interactions 
were identified correctly. 

Missed a few 
entities and 
interactions. 

Only a few entities 
and interactions 
identified. 

Formulate the 
problem - sub-goal 

Formulated the complete 
specification in terms of the 
data and operations to be 
performed. 

Missed a few 
specifications in 
terms of the data 
and operations to 
be performed. 

The specifications 
were incomplete. 

Design Solution 

Generate solutions All possible alternative 
solutions were generated. 

Few possible 
alternative 
solutions are 
missed. 

Generated only one 
solution. 

Select and evaluate  
a solution 

The solution is complete and 
correct. In the solution, the 
data structure is valid, and the 
operations are mapped to the 
correct algorithms. The 
selected solution is justified 
with clarity on how data is 
stored and how the algorithms 
are used in terms of constraints 
for the given problem. 

The solution is 
partially correct OR 
the selected 
solution is justified 
with less clarity. 

The solution is 
incomplete OR 
incorrect OR not 
explained clearly 
OR vaguely 
explained. 

 

An expert educator with over ten years of teaching experience validated the rubric. The 

artifacts created during the intervention were independently examined by both instructors. 

Cohen’s kappa (Vieira et al., 2010) was used to determine whether there was any inter-

rater reliability between the two raters’ scores. Agreement between the two raters was good  

(κ = .634, p < .046). 

Results of study 1: Worksheets were evaluated using a rubric (Table 1). The average scores 

and corresponding standard deviation (SD) for each sub-skill are listed in Table 2. 

The results show that the worksheet helped solve the problem systematically; however, 

students scored low in providing proper explanations and justification of the selected 

solution. To answer our research question, the difficulties faced by students in solving 

problems with respect to ER skills are discussed. As shown in the sample solved worksheet 

in Figure 10, the problem was solved superficially, and the students failed to visualize the 

problem space and decompose the problems into solvable subproblems. In the solution 

 

Table 2 Scores of the worksheet 

 Phase 1. Understanding the problem Phase 2. Problem-solving 

 Expand Reduce Expand Reduce 

 Understand system 
(Max score=3) 

Formulate the problem 
(Max score=3) 

Generate solutions 
(Max score=3) 

Select solution 
(Max score=3) 

Average 1.5 1.55 1.71 0.47 

SD 0.64 0.86 0.89 0.60 
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space, the solution was incomplete, and alternative design options were not considered or 

evaluated. This shows that students struggled to expand-reduce in problem-solving areas, 

which affected the quality of solution design and reasoning. It was evident that students 

needed to be scaffolded to apply ER skills, as they lacked the cognitive skills required to 

solve ill-structured software design problems. 

The next step was to design a learning environment for teaching and learning ER skills. 

Willis (2009) stated that instructional designers must make appropriate decisions regarding 

guiding theories of learning (e.g., behaviorism, cognitive science, constructivism), general 

teaching and learning strategies (e.g., direct instruction, student-centered instructions), and 

pedagogies (e.g., anchored instruction, tutorial, problem-based learning). Based on 

recommendations in the literature (Bannert & Mengelkamp, 2013; Ge, 2013) for successful 

instructional methodologies for ill-structured problem-solving skills, the solution was 

designed as discussed in the next section. 

Solution design- Fathom-Ver1 

Fathom-Ver1’s goal is to create a learning environment with pedagogical features that will 

scaffold novice learners to complete ER tasks. The design principle of Fathom-Ver1 is to 

provide structured guidance by designing learning activities to direct learners’ thinking 

towards systematically applying ER skills. 

The design features of Fathom-Ver1 are:  

i. Technology-enhanced learning environment to scaffold design problem-solving 

in data structures course. 

ii. Structured step-by-step guidance using learning activities scaffolded with 

question prompts, examples, and cognitive tools. 

 

 

Fig. 10 Sample worksheet 
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In Fathom-Ver1, the design problem posed was - “Design software for a bank to allow 

customers to check their account balance.” The learners were guided to solve the problem 

by following the following learning activities: 

Understand the Problem: In this activity, learners were prompted to explore the problem 

by identifying entities and users in the system. The learners were prompted to draw the 

model of the system to show the components, their properties, and the interconnection 

between the components on the paper, as shown in Figure 11. The prompts were supported 

by examples and hints to enhance the understanding of the activity to be performed. 

Formulate Problem: In this activity, the learners were prompted to write the sub-goals in 

terms of the operations to be performed by the software to achieve the stated goal, as shown 

in Figure 12. Hint buttons were provided to help learners with explanations and examples. 

 

 

 

Fig. 11 Fathom-Ver1- Understand the Problem activity 

 

Fig. 12 Fathom-Ver1- Formulate Problem activity 
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Generate Solutions: This activity was designed to expand the solution space by generating 

alternative solutions. The learners were prompted to draw a mind map to list alternative 

design options for each subproblem, as shown in Figure 13. 

Evaluate Solutions: This activity prompted them to evaluate alternative solutions based on 

the identified selection criteria. Learners were prompted to select an appropriate solution 

using a decision matrix. A decision matrix was used to allow learners to evaluate alternative 

solutions against the criteria and rank the solutions, as shown in Figure 14. Finally, the 

selected solution is justified. 

 

 

 

Fig. 13 Fathom-Ver1- Generate Solutions activity 

 

Fig. 14 Fathom-Ver1- Evaluate Solutions using decision matrix activity 
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Overall, in Fathom-Ver1, each activity is equipped with question prompts, hints, 

examples, and cognitive tools (drawing mind-maps, decision matrices, etc.) to 

systematically guide learners toward applying ER skills. 

Evaluation: Study 2 

We conducted Research Study 2 to evaluate the effectiveness of Fathom-Ver1. The 

research question (RQ) formulated for Study 2 is as follows:  

RQ2. How effective is Fathom-Ver1 in applying ER skills while solving design problems 

in a data structures course? 

Participants and research method: Study 2 (Reddy et al., 2017) was conducted to answer 

RQ2. The exploratory study (Shields & Rangarajan, 2013) was used for the following 

purposes: 

i. To investigate the effectiveness of prompts with additional scaffolds: 

explanation, example, and hint in performing the activity. 

ii. To understand how students are using the ER cognitive tools while performing 

the activity. 

iii. To assess the performance level of students’ ER skills with Fathom-Ver1. 

Forty-nine undergraduate second-year computer engineering students participated in this 

study. Students interacted with Fathom-Ver1 for almost 2 hours individually, followed by 

a student perception survey and student interviews. This was a single-group exploratory 

study, as shown in Figure 15. 

Data analysis and results: The data collected and analyzed are: student responses in 

Fathom, student perception survey, and interview data. 

i. Scores of student’s responses: The students’ responses in Fathom-Ver1 were evaluated 

using the same rubric given in Table 1, and the average scores and standard deviation (SD) 

of ER skills are shown in Table 3. 

 

 

 

Table 3 ER scores of learners using Fathom-Ver1 

 Phase 1. Understanding the problem Phase 2. Design the solution 

 Expand Reduce Expand Reduce 

 Understand system 
(Max score=3) 

Formulate the problem 
(Max score=3) 

Generate solutions 
(Max score=3) 

Select solution 
(Max score=3) 

Average 2.10 1.52 1.9 1.50 

SD 0.50 1.01 0.55 0.85 

 

Fig. 15 Research design: Study 2 
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ii. Student perception survey: A student perception survey was conducted to reflect on how 

well the activities in the system helped in applying ER skills. The survey used a five-point 

Likert scale: 5(strongly agree), 4(agree), 3(neutral), 2(disagree), and 1(strongly disagree). 

Q1. Identifying entities and interactions helped me to understand the working of the 

existing system from the perspectives of multiple stakeholders. 

Q2. Understanding the whole system helped me to formulate the problem into 

subproblems. 

Q3. The drawing of the mind map helped in generating multiple solutions. 

Q4. The activity of identifying evaluation criteria parameters helped in analyzing 

solutions. 

Q5. The decision matrix helped in evaluating and justifying the selected solution. 

Two open-ended questions were asked to express their likes and dislikes regarding the 

system. The students’ perception rating means and standard deviations (SD) are given in 

Table 4. 

iii. Focus group Interview: The focus group interviews of four students were transcribed 

and evaluated to determine the students’ perceptions of the activity’s usefulness in learning 

ER skills and the problems they encountered while performing the activities. 

During the interview, students perceived that step-by-step guidance, prompts, and 

examples helped to perform the activities. Some of the students’ quotes on how the 

activities helped are given below: 

1. The overall idea of step-by-step guidance was good. 

2. The activities helped us to figure out how many solutions are there, and see what are 

the advantages and disadvantages that helped us to deduct which is the best solution 

for the problem. 

3. Hints and examples helped us a lot when we were not able to understand that the 

problem. 

Improvements are needed in the introductory and first phase–drawing the model, 

identifying and formulating sub-goals, as students found it difficult to understand the 

activity. Some of the students’ quotes suggesting improvement are as follows: 

1. At the start, an introduction should be given to get clear idea of what to do, the 

content was not clear for a new user to understand. Prompts were not enough. 

2. The activity in the design phase was nicely given and we moved faster, while 

struggling with first phase as we did not know what exactly is needed. 

 

Table 4 Student perception survey rating 

Question no. Q1 Q2 Q3 Q4 Q5 

Mean 4.11 4.06 4.09 4.15 4.09 
SD 0.52 0.6 0.65 0.59 0.69 
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Reflection from DBR cycle 1 

RQ2 was answered based on the ER skill scores of the responses of the problem solved in 

Fathom-ver1, student perception survey, and interview data analysis. The analysis of our 

results showed that the average scores of the students were better in Study 2 than in  

Study 1, which shows that the systematic guidance in Fathom-Ver1 in the form of prompts, 

hints, examples, and cognitive tools helped in applying ER skills compared to the 

worksheet. The mean scores of the student perception survey showed that most of the 

students agreed that Fathom’s learning activities and tools helped achieve the desired 

learning outcomes. The students’ responses to the open-ended questions showed that the 

activities helped in developing analysis and designing skills, building multiple solutions, 

and providing knowledge on how to solve problems. However, some students found the 

entire process to be time-consuming. In the interview, students said that they had difficulty 

understanding the activities to be performed, especially in the learning activities in the first 

phase–problem analysis. 

DBR cycle 2 

From the findings and reflections from DBR cycle 1, we identified problems in the design 

of the first version of Fathom, a potential reason for the problem, and redesign steps  

(Table 5). 

In DBR cycle 2, the pedagogical features of the activities were improved to engage 

learners at both cognitive and metacognitive levels. Prior studies have shown that 

metacognitive scaffolds, including prompts, guiding questions, feedback, and self-

reflection, significantly enhance students’ problem-solving performance and awareness 

and regulation of their cognitive processes (An & Cao, 2014; Bannert & Mengelkamp, 

2013; Ge, 2013; Geiwitz, 1994). 

Research shows that the following components are necessary to engage learners in 

thinking at a metacognitive level in a learning environment: 

i. Feedback is a metacognitive activity that helps learners improve their learning (Narciss, 

2013). Feedback is important for improving learning in various instructional contexts, 

 

Table 5 Problems seen in DBR cycle 1, a potential reason for the problem, and redesign step 

Sr. No. Problems seen in DBR 
cycle 1 

The potential reason for 
the problem 

Redesign 

1. Difficulty in understanding 
the activity to be 
performed. 

Lack of help and feedback 
from the learning 
environment. 

The prompts have to be 
enhanced with solved examples 
and feedback generation based 
on student responses. 

2. Difficulty in drawing the 
diagrams to expand 
problem-solution space. 

The drawing tools were 
not part of the learning 
environment. 

The drawing tools will be 
integrated into the learning 
environment. 
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including online learning environments. Feedback on learners’ responses informs the 

learner about their actual state of learning to regulate the further process of learning in the 

direction of learning standards (Narciss, 2013). In tutoring, formative feedback helps 

learners become aware of any gaps that exist between their desired and current state of 

knowledge or competencies. Studies have shown that feedback from online tutors enables 

students to acquire problem-solving skills in domains such as geometry, algebra, and 

computer programming languages (Cassel & Victor, 2015). 

ii. In-action reflection is a metacognitive activity in which a learner reviews her cognitive 

process or experience. This review process allows learners to identify deficiencies in their 

performance and the specific skills they need to improve on (Rivera-Gutierrez et al., 2016). 

Learners can review their performance through a self-assessment on a performance scale. 

The process of self-assessment is not an easy task, because learners tend to overestimate 

or underestimate their performance. The self-assessment process can be improved by 

providing students with scaffolds to assess the scale accurately. In one such study, the 

authors (Rivera-Gutierrez et al., 2016) proposed the use of in-action reflections to develop 

interpersonal skills, such as empathy towards patients and medical practitioners. The 

students interacted with virtual agents that played the role of a patient. A study conducted 

with third-year dental students showed that the students were relatively accurate in their 

self-assessment of how empathetic they were to the virtual patient and were significantly 

more empathetic to the patient after their in-action self-assessment. 

Solution Design- Fathom-Ver2 

The design principles of Fathom-Ver 2 are the same as Fathom-Ver1, with one new 

principle added: to enable learners to apply metacognitive skills during problem-solving. 

The design features of Fathom-Ver2 are: 

i. To integrate drawing tools into the system. 

ii. To provide worked examples for all steps of problem-solving. 

iii. Scaffold learners to reflect on their problem-solving skills using self-evaluation 

activities. 

The learning activities were enhanced by doing the following revisions in Fathom-Ver2: 

1. The learners are scaffolded to apply ER skills in the process of solving a library 

management problem in a college. The problem posed is- “Design a software system for a 

college library that will allow students and teachers to check the availability of the book in 

the library.” 

2. Drawing tools are integrated into Understand the Problem and Generate Solutions 

activities. In the Understand the Problem activity, the learners are prompted to draw a 

diagram to represent all entities and interactions to aid in visualizing the problem as a whole, 
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as shown in Figure 16. In the Generate Solutions activity, the learners are prompted to 

visually represent solution space using mind-map, as shown in Figure 17. 

3. Worked example illustrating the problem-solving process: In every activity, help is 

provided, which learners may use to obtain a detailed explanation of the activity illustrated 

with an example. For example, on the clicking view demo in Figure 16, the video is played 

to illustrate the process of drawing a diagram for the shop-inventory problem, as shown in 

Figure 18. 

 

 

 

 

Fig. 16 Fathom-Ver2- Understand the Problem activity 

 

Fig. 17 Fathom-Ver2- Generate Solutions activity 
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4. Learner’s self-evaluation: After each activity, learners are directed to self-evaluate and 

reflect on their responses. Immediately after the learner saves their response, the system 

prompts them to self-evaluate their responses based on the rubric, as shown in Figure 16. 

Subsequently, feedback is generated, which states the corrective measures to be 

implemented to improve the response. 

Evaluation: Study 3 

We conducted Study 3 (Reddy et al., 2018) to evaluate the design features of Fathom-Ver2. 

The research question (RQ) formulated for Study 3 is: 

RQ3. “How effective is Fathom-Ver2 in learning ER skills at both cognitive and 

metacognitive levels?” 

Participants and research method: Study 3 was conducted with fifty-two second-year 

undergraduate computer engineering students. The research design used was a one-group 

pretest-posttest study (Cohen et al., 2002). This study aimed to investigate the effectiveness 

of Fathom-Ver2 in learning ER skills by comparing performance before and after the 

intervention. The research design is illustrated in Figure 19. 

 

 

 

Fig. 18 Fathom-Ver2- Worked example 

 

Fig. 19 Research design: Study 3 
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In the pretest, the students were given a worksheet to solve a shop inventory problem: 

“Design a software system for the supermarket to display items below threshold,” and the 

students were given one hour to solve the pretest problem individually by following the 

steps given below: 

1. Write the broad goal to be achieved. 

2. Write the sub-goals to be achieved (insert/delete/search). 

3. Design a solution using appropriate data structure and algorithms. 

4. Justify why the selected data structure is appropriate for the given problem. 

Immediately after the pretest, the learners interacted with Fathom-Ver2 for 2 hours. The 

log data were collected from Fathom, in which the following data were recorded for each 

button click: <learner_id, timestamp _button, student_response>. After the training, the 

students were told to solve a new problem in Fathom-Ver2, in which the scaffolds were 

withdrawn. 

Data collected and analyzed: To answer RQ3, we analyzed and compared the pretest-

activity-posttest scores to measure the learning of ER skills. The log data of Fathom were 

analyzed to measure the effectiveness of the self-evaluation activity. 

i. Pretest-activity-posttest scores: The student artifacts generated during the pretest, 

posttest, and intervention were evaluated using a rubric (Table 1). Of the fifty-two students, 

only forty-seven completed the training with Fathom and only seventeen completed the 

posttest. The mean scores with standard deviation (SD) of the pretest, activity, posttest, and 

comparison between the pretest-activity and pretest-posttest using the t-test (Derrick et al., 

2017) are shown in Tables 6 and 7. 

 

Table 6 Pretest and activity scores 

N=47 Phase 1. Understand the Problem Phase 2. Design the solution 

Expand Reduce Expand Reduce 
Understand system 
(Max score=3) 

Formulate the problem 
(Max score=3) 

Generate solutions 
(Max score=3) 

Select solution 
(Max score=3) 

Pretest 
Average (SD) 

0.00 1.38 (0.60) 1.00 (0.85) 0.93 (0.70) 

Activity 
Average (SD) 

2.48 (0.47) 2.09 (0.52) 1.83 (0.51) 1.92 (0.62) 

P value  
(T-test) 

0.00 0.00 0.00 0.00 

 

Table 7 Pretest and posttest scores 

N=17 Phase 1. Understand the Problem Phase 2. Design the solution 

Expand Reduce Expand Reduce 
Understand system 
(Max score=3) 

Formulate the problem 
(Max score=3) 

Generate solutions 
(Max score=3) 

Select solution 
(Max score=3) 

Pretest 
Average (SD) 

0.00 1.5   (0.68) 1.2   (0.98) 0.7 (0.58) 

Posttest 
Average (SD) 

2.41 (0.62) 2.4   (0.65) 2.11 (0.34) 2.3 (0.71) 

P value  
(T-test) 

0.00 0.00 0.00 0.00 
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ii. Log data analysis: The sample log data are presented in Figure 20. 

To simplify the interpretation, we parsed the log data into a sequence of activities. For 

example, all the edits made in the understanding_problem activity, such as drawing the 

diagrams and saving in the first attempt as UP, edits in formulation-problem activity as FP, 

generate_solution activity as GS, and evaluate_solution activity as EV. The resources 

accessed (hints, notes, examples, etc.) were coded as RA. The subsequent save, in which 

the responses are modified after the self-evaluation activity, is coded as REDO. Examples 

of the resultant sequences of a student are as follows. 

“115A1086”: ["UP", "FG", "UP", "FG", "UP", "FG", "FG", "GS", "REDO", "EV", "GS", 

"FG", "RA", "GS", "REDO", "EV", "REDO", "UP", "FG", "GS"]. 

The percentage of students with REDO codes in the resultant sequences was calculated. 

Results and reflection 

RQ3 was answered using the ER scores of student responses in the pretest-activity-posttest 

and log data analysis. The scores showed significant improvement in the quality of problem 

formulation and solution from pretest to activity and from pretest to posttest, which shows 

that students were able to expand and reduce effectively while solving the problem in 

Fathom and transfer those skills to the posttest problem. The drawing tools integrated into 

the learning environment in the Understand the Problem activity provided the affordance 

to save, edit diagrams, and navigate back and forth during problem formulation. This 

activity helped create and simulate a mental model of the system as a whole. In the 

Generate Solutions activity, the integration of the drawing tool for drawing a mind map 

representing all the possible alternative design options for each subproblem helped 

visualize the solution space and further identify the selection criteria for evaluating 

solutions. However, the log data analysis revealed that only 20% of the students revised 

their responses after self-evaluation, indicating that students either overestimated or 

underestimated their responses and lacked the ability to self-evaluate. 

 

 

 

Fig. 20 Raw log data collected in Fathom 
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DBR cycle 3 

From the findings of DBR cycle 2, it was evident that the students were able to perform 

the activities, but were weak in the self-evaluation of ER skills. The aim of DBR cycle 3 

was to redesign metacognitive activities in Fathom. The design features are the same as the 

previous version with one change: to scaffold learners to apply metacognitive skills using 

system-generated feedback and peer review instead of self-evaluation activity. 

Solution design of Fathom-Ver3 

The literature suggests that expert feedback, peer review, and active learning-based 

collaboration (Ge, 2013; Narciss, 2013), are effective in improving learners’ metacognitive 

skills during problem-solving. Peer review is a metacognitive activity that enables learners 

to see alternative perspectives from peers’ responses and helps them notice things that they 

might not have thought about. By compelling learners to examine their thinking after 

reviewing their peers’ responses, learners engage in metacognitive activities and self-

regulation during problem-solving (Ge, 2013). 

In Fathom-Ver3, the self-evaluation activity is replaced by system-generated feedback 

and peer review. The new features added are as follows: 

System-generated feedback: Automated feedback is generated by evaluating the gaps and 

providing an elaborate explanation of the gaps and an action plan to monitor and revise the 

skill. Positive or corrective feedback is generated at the end of each activity after the learner 

saves their response. Figure 21 shows the feedback generated at the end of the step-

understand problem. The feedback was generated by the system by semantically comparing 

the learners’ responses to the experts’ solutions. 

Peer review: This is a new feature that allows collaboration with peers during each activity, 

as shown in Figure 22. To encourage learners to actively evaluate their peers’ responses,  

 

 

Fig. 21 Fathom-Ver3: System-generated feedback 
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effective collaborative learning methods (Soller et al., 1999) were used to allow them to 

actively demand explanations and justifications from their peers. The aim is to allow 

learners to see how their peers have performed the activity, evaluate their responses against 

the given scale of high, medium, and low, and justify the evaluation. This helps the learner 

to see others’ perspectives on doing, thinking, and evaluating the gap. 

Evaluation: Study 4 

This study aimed to investigate the effectiveness of cognitive and metacognitive scaffolds 

of Fathom-Ver3 in learning ER skills. The research question (RQ) formulated for Study 4 

is: 

RQ4. How effective is Fathom-Ver3 in learning ER skills at both the cognitive and 

metacognitive levels? 

Participants and research method: The study involved fifty undergraduate second-year 

computer engineering students. The research design used was a one-group pretest-posttest 

study (Cohen et al., 2002) to investigate the effectiveness of Fathom-Ver3 in learning ER 

skills by comparing ER skills before and after the intervention. The research design of 

Study 4 is shown in Figure 23. 

 

 

Fig. 22 Fathom-Ver3- Peer review 

 

Fig. 23 Research design: Study 4 
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During the pretest, the participants were given a shop-inventory problem to be solved on 

a worksheet for 30 min, followed by an intervention in which students interacted with 

Fathom-Ver3 for two hours. After the intervention, the participants were given a bank 

problem to solve on a worksheet with no scaffolds. 

Data analysis: The data collected were the responses generated during the pretest, 

intervention, and posttest; interview data of four students; and log data in the form of user 

clicks. 

i. Pretest and posttest scores: A rubric (Table 1) was used to evaluate the student 

artifacts created during the pretest and posttest. 

ii. Interview data: To identify meaningful units of analysis, content analysis of 

interview transcriptions was performed in terms of how the students perceived the 

activities to be effective in learning ER skills and the difference in problem-

solving from pretest to posttest. 

iii. Log data analysis: As discussed in Study 3, in a similar way, log data analysis was 

performed with additional code added for peer review as PR. The percentage of 

students with REDO and PR codes in their resultant sequences was calculated. 

Results: The data analyzed were pretest and posttest scores, interview data, and log data. 

i. Pretest and posttest scores: The pretest and posttest scores of the fifty students 

are shown in Table 8. A t-test (Derrick et al., 2017) was used to compare the 

average pretest-intervention-posttest scores. 

ii. Interview data: The purpose of the interview data analysis was to determine 

how students perceived that the Fathom-Ver3 features helped them acquire ER 

skills. The following are students’ perceptions of their overall learning of ER 

skills during Fathom-Ver3 training: 

1. In the Understand the Problem task, drawing the diagram helps to envision 

all of the entities present and how they are linked to one another, as well as 

establish essential requirements that the software must meet. The following is 

a quote from one of the students: “it helped to visualize the problem, and it 

helped me to see that all the other entities are linked so that it simplified the 

problem.” 

 

Table 8 Pretest and posttest scores 

N=50 Phase 1. Understand the Problem Phase 2. Design the solution 

Expand Reduce Expand Reduce 
Understand system 
(Max score=3) 

Formulate the problem 
(Max score=3) 

Generate solutions 
(Max score=3) 

Select solution 
(Max score=3) 

Pretest 
Average (SD) 

0.00 1.34 (0.59) 1      (0.19) 1.35 (0.58) 

Posttest 
Average (SD) 

1.63 (0.79) 1.69 (0.68) 2.09 (1.22) 1.99 (0.44) 

P value  
(T-test) 

0.00 0.01 0.00 0.00 
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2. The Understand the Problem activity assisted in dividing the problem into 

subproblems. The corresponding quote: “In the pretest, I could not think of 

alternative solutions because did not know how to break the problem and think 

of each subproblem as a separate unit which has different solution options.” 

3. Examples were useful in determining which way to think. 

4. The feedback helped me understand the gap and was simple to comprehend. 

iii. Log data analysis: Log data analysis showed that 80% of the students evaluated 

their responses with the help of feedback and taking control action plans to 

improve. However, very few students engaged in higher-level activities, such as 

peer evaluation and chat facilities, to seek clarification or justification from 

peers. 

Reflection 

RQ4 is answered using ER scores of student responses in the pretest-posttest, interview, 

and log data analysis. The pretest-posttest scores showed significant improvement in the 

problem formulation and solution from pretest to posttest, which shows that students 

learned ER skills using Fathom-Ver3. Thus, the pedagogical features of Fathom-Ver3 were 

effective in teaching and learning ER skills in software design problem-solving. The 

improvement was seen at both cognitive and metacognitive levels, as students were able to 

reflect on their responses after reading the system-generated feedback, and learners were 

improving their skills. 

Discussion 

We iterated through three DBR cycles to design and develop an intervention, Fathom, with 

the learning objective of teaching-learning ER skills in the context of solving software 

design problems. The aim of the first DBR cycle was to conduct exploratory studies to 

understand the level of scaffolding needed for novices to learn ER skills. Studies 1 and 2 

showed that only question prompts with an explanation of new terms and hints were not 

effective in triggering learners to apply the necessary cognitive skills to expand-reduce the 

problem-solution space.  The reason for this might be that the students did not have prior 

experience in solving complex problems. The aim of DBR cycle 2 was to redesign Fathom 

with improved scaffolding to direct learners’ thinking towards applying ER skills and 

reflecting on them. Fathom-Ver2 was equipped with prompts, solved examples, hints, ER 

cognitive tools (drawing tools, decision matrix, etc.), and self-reflection activities. Study 3 

evaluated the effectiveness of Fathom-Ver2 and showed that scaffolding was effective in 

applying ER skills; however, self-reflection was ineffective. The students were either 

overestimating or underestimating their skills; thus, very few students were involved in 
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improving their responses. The third DBR cycle aimed to revise metacognitive activities 

for the effective monitoring and control of ER skills. In Fathom-Ver3, the self-reflection 

activity was replaced with system-generated feedback and peer review. Study 4 showed 

that students not only applied ER skills effectively but also actively improved their 

responses after reading the feedback. 

We discuss the following local learning theories based on our research studies assessing 

the learning of ER skills: 

Various cognitive tools (entity-interaction, mind-maps, decision matrix) aid novices 

in applying ER skills 

The drawing of the entity-interaction diagram provided the affordance to systematically 

expand and visualize the entire problem/solution space. This helped to structure the 

problem into subproblems and consider the evaluation criteria to select the optimal solution. 

Our findings support previous studies that have also shown that various visualization 

techniques, such as drawing various entities and interactions among them, help in 

understanding the problem as a whole and improving the quantity and quality of the 

problem statements generated (Eden & Ackermann, 2001; Norese, 1995). This helps 

novices create and simulate mental models at various levels of abstraction. Eventually, 

from these mental models, the subproblems are decomposed (Adelson & Soloway, 1985; 

Guindon, 1990; Tang et al., 2008, 2010). The drawing of the problem and solution space 

helps simplify the understanding of the complex problem and identify the requirements to 

be addressed in the solution. 

Drawing a mind map is effective in expanding the solution space. It enables the learner 

to represent subproblems (data items and operations) of the solution design and branch out 

each subproblem into various alternative design options (data structures and algorithms). 

Next, multiple solutions were generated by selecting valid combinations of design options 

for each subproblem. 

The process of explicitly identifying selection criteria and using a decision matrix to 

evaluate alternative solutions against the selection criteria, ranking them, and selecting a 

solution helped to justify how the selected alternative is better than other alternatives. This 

allows the learner to reflect on and assess the effectiveness of the solution in achieving the 

stated requirements. Our findings support the claims made in previous research that stated 

that cognitive tools such as entity-interaction diagrams, mind maps, and decision tables 

helped to expand and reduce the problem and solution space (Ackoff, 1979; Adelson & 

Soloway, 1985; Guindon, 1990; Mangano et al., 2014; Tang et al., 2008, 2010). 

Feedback is necessary for novices to regulate the learning of ER skills 

Feedback assists students in identifying performance gaps, which is essential for 

monitoring and improving their performance. Feedback is the most effective when 

delivered immediately after the exercise, addressing both positive and negative elements 
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to motivate students by praising their efforts and directing their focus to areas where they 

can improve. Similar to prior studies (Bannert & Mengelkamp, 2013; Ge, 2013; Narciss, 

2013), our findings also support the idea that feedback should be expanded with 

information to guide learners to see clues, hints, examples, peers’ responses, and domain-

related comments to improve. 

Peer evaluation, self-evaluation, and active collaboration are advanced features to 

enhance the acquisition of ER skills 

This feature was created to help learners apply metacognitive thinking skills by 

comparing their performance to that of their peers, evaluating the gap, using the chat feature 

to seek or provide an explanation, challenging peers’ responses, or appreciating the work 

of others. However, during the training period, the majority of the students did not actively 

use this capability, implying that during training, learners focused their efforts on 

comprehension and learning abilities at a cognitive level, and external input was necessary 

to scaffold their metacognitive skills. Novices struggle to self-regulate metacognitive 

activities by utilizing self-evaluation or peer-evaluation features. Self-evaluation activity 

is not effective in regulating metacognitive behaviors, as students tend to either 

overestimate or underestimate their performance and are unable to take appropriate action 

plans to improve their skills. This does not support the findings of previous studies (Ge, 

2013; Rivera-Gutierrez et al., 2016), which showed that self-evaluation activities and peer 

review helped students improve their problem-solving skills in the learning environment. 

Fathom was effective in the teaching-learning of ER skills 

Studies have shown that after training novices in Fathom, they were able to learn ER 

skills. The quality of the problem formulation and solution design improved from pretest 

to posttest, which implies that the scaffolding provided in Fathom was effective in the 

teaching-learning of ER skills. The pretest responses show that novices tend to converge 

early on a single solution without spending much time on problem exploration and 

alternative solution generation. This leads to incomplete problem formulation, which 

affects the design quality. The scaffolding provided in Fathom directed the learners to think 

explicitly about exploring the problem space and solution space before reducing the 

problem formulation and solution design. The cognitive tools provided in the system aided 

in effectively visualizing the problem and solution space. Metacognitive support allowed 

learners to reflect on their skills and improve them accordingly. Thus, we support previous 

findings (Bannert & Mengelkamp, 2013; Jonassen, 2011; Xun & Land, 2004) which state 

that for novices, explicit training is needed on using various cognitive and metacognitive 

tools using various scaffolding mechanisms such as prompts, drawing tools, solved 

examples, hints, and expert feedback. 
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Limitations 

The limitations of this study are discussed in this section from the learners, instructors, and 

domain and research perspectives. 

1. Learner characteristics: Our research findings are confined to computer 

engineering students who have completed a data structures and algorithm course, 

and are fluent in English and computer use. 

2. Topic and domain: This research is carried out as part of a data structures course 

for computer engineering students that focuses on software design problem-

solving. This has not been tested for design challenges in other related courses 

or in engineering fields. 

3. Near vs. far transfer: Experiments were conducted to determine whether ER 

abilities could be transferred over the same course. Because the trials were not 

longitudinal, we did not test for far transfers. 

Conclusion 

In this paper, we discussed three DBR cycles following the design and development of the 

intervention Fathom used for the teaching-learning of ER skills in the context of solving 

software design problems. The overall contributions are the characterization and 

importance of ER skills in solving ill-structured software design problems, identification 

of ER cognitive tools to expand-reduce problem-solution space, and cognitive and 

metacognitive scaffolds. In future work, we aim to test and validate another type of design 

problem and conduct longitudinal studies over one year on the same set of students to test 

the transfer of ER skills. 
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