
Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6

© The Author(s). 2024 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were
made. The images or other third party material in this article are included in the article's Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Fathom: a technology-enhanced learning
environment for teaching-learning of expand-
reduce skills in software design
Deepti Reddy Patil 1 * , Sridhar Iyer 2 , Sasikumar M. 3

*Correspondence:
deepti.reddy@nmims.edu
Department of Computer
Engineering,
Mukesh Patel School of
Technology Management &
Engineering,
SVKM’s Narsee Monjee Institute
of Management Studies (NMIMS)
Deemed-to-University,
Mumbai-400056, India
Full list of author information is
available at the end of the article

 Abstract

Software design problems are often characterized as ill-structured because the
requirements are not clearly defined. These problems offer various solution paths
and the criteria used to select the solution may not be known initially. The expertise
and experience of designers play a crucial role in determining the quality of
software design. Less experienced designers often tend to prematurely narrow
down their options to a single solution without fully exploring the problem-solution
space. This tendency has a negative impact on the overall quality of software
design. Studies have shown that systematically expanding the problem space before
reducing to problem formulation and exploring the solution space before reducing it
to a single solution (expand-reduce skills) improves the quality of the design. We
have designed and developed a technology-enhanced learning environment (TELE)
named Fathom for scaffolding expand-reduce (ER) skills in software design problems
in a data structures course. In this paper, we present three cycles of design,
development, and evaluation of Fathom based on the design-based research (DBR)
approach. In the first DBR cycle, we identified and evaluated Fathom’s pedagogical
features in learning ER skills. In the second cycle of DBR, the aim was to improve the
design of Fathom for the learning and transfer of ER skills. Fathom was revised in
the third cycle of the DBR to scaffold metacognitive skills. The main contribution of
this research is pedagogical design for facilitating the learning of expand-reduce
skills in solving software design problems.

Keywords: Software design problem, Ill-structured problem, Expand-reduce skills,
Design-based research (DBR), Learning environment, Cognitive and metacognitive
scaffolding

Introduction

Software design problems are sometimes ill-structured and complex, especially when the

problem space and solution space are not well defined. The characteristics of an ill-

http://creativecommons.org/licenses/by/4.0/

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 2 of 35

structured problems are as follows: requirements may be broadly defined (Pressman, 2010);

the designer may not be familiar with the area in which the software is to be created

(Adelson & Soloway, 1985; Tang et al., 2008); and the designer has to turn partial needs

into specifications (Guindon, 1990; Pressman, 2010). In the solution space, there may be

various solution paths and alternative design possibilities, and the criteria for choosing the

best solution may not be explicitly articulated (Jonassen et al., 2006). For example, in the

software design problem “Design library management system,” the problem definition is

broad and needs to be decomposed into subproblems. The solution space may consist of

identifying appropriate data structures to store library books and using appropriate

algorithms to perform various operations. Based on the needs and limitations applicable to

the problem area, designers must choose acceptable data structures and algorithms

(Guindon, 1990; Pressman, 2010; Tang et al., 2010).

The literature on solving ill-structured problems indicates that having the ability to

comprehend and visualize the problem space is crucial for transforming an ill-defined

problem into a well-defined problem. This approach is defined as expansionist thinking,

which consists of comprehending the system by identifying the components and

interrelationships between them, followed by the reductionist approach, which consists of

decomposing the problem into solvable subproblems (Ackoff, 1979; Volkema, 1983).

Similarly, in the solution space, alternative solutions may be developed using strategies

such as brainstorming, mind mapping, attribute listing, and analogous thinking (Liu &

Schonwetter, 2004). After generating solutions, one may reduce to a single solution using

various evaluation strategies such as pros and cons analysis and decision matrix (Pugh,

1991). In this paper, we refer to the ability to explore the problem-solution space and

eventually reduce towards the formulation of subproblems and solution design as expand-

reduce (ER) skills.

Research has shown that a designer’s expertise and experience have a significant impact

on the quality of software design (Adelson & Soloway, 1985; Tang et al., 2008). Expert

designers are adept at visualizing the problem solution space, applying heuristic techniques

to search the solution space, and quickly selecting an appropriate option. However, novices

struggle to solve design challenges because they lack experience in solving such problems.

They tend to reduce early in the solution design without visualizing the problem-solution

space. This affects design quality because of reasons such as defining the problem too

narrowly, failure to decompose problems into subproblems, and fixation on a specific

solution without openly examining other options (Ellspermann et al., 2007; Zannier et al.,

2007).

According to research, designers should use expand-reduce (ER) skills to increase design

quality, especially when the designer is inexperienced or the problem area is unclear

(Adelson & Soloway, 1985; Tang et al., 2008, 2010; Zannier et al., 2007). We propose a

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 3 of 35

technology-enhanced learning (TEL) environment named Fathom, designed and developed

for undergraduate computer engineering students, with a focus on the learning of expand-

reduce skills in the context of solving software design problems. The instructional design

of Fathom is grounded in the framework suggested for scaffolding ill-structured problem-

solving processes (Bannert & Mengelkamp, 2013; Jonassen, 2011; Xun & Land, 2004).

This paper presents the pedagogical design of Fathom and its implementation through

three design-based research (DBR) cycles (Amiel & Reeves, 2008; Reeves, 2006). In the

first DBR cycle, we investigated the challenges encountered by novices when tackling

software design issues. This inquiry involved an exploratory study conducted with 40

second-year undergraduate engineering students. In this study, the students were given a

software design problem to be solved using a worksheet. Student responses were evaluated

and scored using a rubric designed to assess ER skills. The results showed that students

scored low in ER skills. Based on the findings of Study 1 and insights gathered from the

literature survey, we designed and developed Fathom-Ver1 (version 1). We tested the

effectiveness of Fathom-Ver1 by conducting exploratory study 2 with the aim to

investigate the effectiveness of Fathom-Ver1 in performing activities related to ER skills.

A group of 49 second-year undergraduate engineering students took part in this research,

engaging in problem-solving within Fathom-Ver1. Subsequently, they participated in a

student perception survey and focus group interview. The analysis of our results showed

that the average scores of the students were better in Study 2 than in Study 1; however, the

survey and interview data analysis revealed that students had difficulty understanding the

activities designed in Fathom. In the second DBR cycle, the design elements of Fathom-

Ver1 are upgraded by adding worked examples, feedback, and drawing tools to the learning

environment. The second DBR cycle focused on the learning and transfer of ER skills.

Study 3 tested the effectiveness of Fathom-Ver2 in learning ER skills. The study was

conducted with 52 second-year undergraduate computer engineering students. The

research method was a one-group pretest-posttest study to measure learning gains before

and after the intervention. The results showed that there was a significant improvement in

scores for ER skills from pretest to posttest; however, log-data analysis showed that only

20% of students revised their responses after self-evaluation, which implies that learners

did not exhibit metacognitive behaviors. The third cycle of DBR focused on strengthening

metacognitive scaffolds to aid learners in evaluating their ER skills. Study 4 was conducted

to evaluate Fathom-Ver3. The study involved 50 second-year undergraduate computer

engineering students. The research method used was a one-group pretest-intervention-

posttest. The results showed significant improvement in the quality of software design from

pretest to posttest, which implies that Fathom-Ver3 was effective in learning ER skills in

solving software design problems. Log-data analysis showed that the students evaluated

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 4 of 35

their responses and were taking appropriate corrective measures to improve their ER skills

during the intervention, thus exhibiting metacognitive behaviors.

In the section “Theoretical background: problem-solving literature,” we discuss related

work in software design problem-solving, ill-structured problem-solving, and the

formulation of expand-reduce skills. In the sections “Design-based research” to “DBR

cycle 3,” DBR cycles 1, 2, and 3 are discussed in detail, followed by a discussion,

limitations, and conclusion.

Theoretical background: problem-solving literature

In this section, the importance of design problem-solving in engineering education is

established, followed by a literature review on software design problem-solving skills.

Next, the characterization of expand-reduce skills is discussed, followed by issues and

challenges in existing studies and the research goal.

Design problem-solving in engineering education

One of the outcomes of engineering education is the ability to identify, formulate, and solve

engineering problems and design a product under a given set of constraints, which directly

or indirectly solves real-life problems and improves quality of life (ABET, 2013). Design

problems are ill-structured, and the skills needed to solve design problems need to be taught

explicitly to students during engineering education. However, engineering education

focuses more on teaching content and solving well-structured problems (Cooperrider, 2008;

Dym et al., 2005; Jonnasen, 2006). Computer engineering courses for undergraduates often

involve design problem-solving skills as they require students to apply theoretical

knowledge to real-world challenges. Computer engineering subjects in which design

problem-solving skills are particularly crucial are database design (Mitrovic & Suraweera,

2016), UML design (Moritz & Blank, 2008), software design (Mitrovic & Weerasinghe,

2009; Nyhoff, 2005), and computer networks (Lian, 2012), etc. Our work focuses on

software design problem-solving in data structures courses, as choosing appropriate data

structures and algorithms is an important skill in software design, and the designer has to

make design decisions based on the criteria relevant to the given problem (Tang et al.,

2010).

Expand-reduce skills in software design

Based on the problem-solving literature, various cognitive and metacognitive processes

and tools that expert designers implicitly use to expand-reduce during problem analysis

and solution design phases are discussed in detail.

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 5 of 35

Problem analysis

The problem-solving literature argues that the quality of problem formulation depends on

the ability to see the entire problem space and then decompose the problem into

subcategories (Ackoff, 1979; Dennis et al., 1999). This process is categorized as the

expansionist and reductionist (Volkema 1983) approach, in which the problem space is

expanded before reducing (decomposing) the problem into subproblems. The expansionist

approach involves understanding the system by identifying the parts and the

interrelationships between parts (Ackoff, 1979). Studies have shown that various

visualization techniques, such as drawing a cognitive map representing various

actors/concepts as nodes and links as the interaction between them help in understanding

the problem as a whole and improves the quantity and quality of the generated problem

statements (Eden & Ackermann, 2001; Norese, 1995).

Many studies have been conducted with experts in software design problem-solving to

study the cognitive and metacognitive processes involved (Adelson & Soloway, 1985;

Guindon, 1990; Tang et al., 2008, 2010). In problem analysis, the designer must transform

incomplete and ambiguous specifications into high-level system design. A high-level

design describes the main software functions and subfunctions. Before the formal

specifications are documented, expert designers analyze the problem by creating and

simulating mental models at various levels of abstraction. Eventually, the subproblems are

decomposed from these mental models. Designers create a mental model of the system

using external representations, such as drawing a state transition diagram or listing entities

with their respective properties and actions. The drawing chosen is based on the prior

experience of the designer; for example, if the designer has prior experience in designing

control systems, then he may prefer a state transition diagram and a software designer may

prefer entity-action representation or data flow diagrams. If the problem to be solved is:

“Design a library management system for a college” then different representations that can

be used by the designers are a state transition diagram (Figure 1) or listing entities and

corresponding actions (Figure 2).

Fig. 1 State transition diagram of the library management system

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 6 of 35

These diagrams act as mechanisms for problem understanding and problem

decomposition into solvable subproblems. For example, the above diagram will trigger the

inference of new functions, such as issue_book (book-id), return_book (book_id), and

calculate_fine (book-id, student-id). The drawing of the library problem in terms of the

various entities/actors involved and the interactions between them helps in simulating

various scenarios. This leads to the creation of mental models, which in turn trigger the

decomposition of problems into solvable subproblems.

Solution design

Software design problems (Nyhoff, 2005) are often complex and cannot be visualized or

anticipated at the outset of all details of a complete solution to the entire problem. One

approach to tackling such complex problems is to decompose the original problem into

simpler subproblems, each of which can be considered individually. Some subproblems

may have to be further partitioned into simpler subproblems that can be solved directly.

For example, in the library management problem, the original problem is partitioned into

simpler subproblems: issue, return, and search books. The mind map can be used to

visualize the solution space at various levels of abstraction (Kostousov & Kudryavtsev,

2017). The first level of abstraction is illustrated in Figure 3.

Typically, one or more first-level subproblems may still be complex, and must be divided

into smaller subproblems. For example, for issuing books, one must search for the book in

the set of records and update the issue date in the corresponding record, as shown in

Figure 4. This process may continue for several more levels of refinement until each

Entity Action

Librarian Issue books, return books, maintain cards, order books,

calculate fine

Teacher/student Issue/return books, re-issue book, request new books

Book Update date of issue or return

Fig. 2 Entity-action list of the library management system

Fig. 3 First-level structure diagram for library management system

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 7 of 35

subproblem is sufficiently simple and straightforward to implement. This solution may

consist of designing storage structures for data and identifying algorithms to process data.

For example, for the search problem, book records may be stored in ascending order on

one of the key fields (accession number) in an array, and the algorithm might be a binary

search algorithm. However, the decision of which data structure and algorithm to use must

be made based on the problem requirements and constraints to be satisfied.

Experienced designers are good at identifying the selection criteria; they may not perform

an exhaustive search in the solution space and quickly reduce to a few alternatives based

on the selection criteria, quickly perform a trade-off analysis of the available options, and

make design decisions (Guindon, 1990). However, inexperienced designers benefit more

by explicitly generating all possible alternatives, explicitly stating the selection criteria,

evaluating alternative options against the selection criteria, and making a design decision

by explicitly justifying the selection. This process helps the designer backtrack alternative

solutions if the current solution is later found to be unviable (Tang et al., 2008, 2010).

In software design problem-solving, designers use various forms of external

representation to expand the solution space for possible alternative design options. To

generate a variety of design possibilities, sketches play an important role in supporting

mental simulation, reviewing progress, and considering alternatives. The external

representations suggested are mind maps, concept maps, tables, lists, etc., for designing

and evaluating solutions (Guindon, 1990; Mangano et al., 2014). These representations

were used to identify missing information and to ensure the completeness of the solution.

Convergent thinking techniques are used to reduce by evaluating alternative ideas using

various criteria and selecting the appropriate idea. For example, making a decision on

buying equipment for a company involves evaluating all alternatives based on various

selection criteria, such as cost and usability. Some of the tools widely used for evaluating

alternatives are the decision matrix (Pugh, 1981, 1991); and Analytic Hierarchy Process

(AHP) (Saaty, 2008). The decision matrix (Pugh, 1981, 1991) is used to make design

decisions by evaluating alternative designs based on multiple criteria and deciding which

one best meets all criteria. Decisions based on multiple criteria are complex, resulting in

Fig. 4 A refined structure diagram for the library management system

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 8 of 35

inconsistent and irrational decisions. The Pugh Matrix provides a simple approach to

comparing alternative designs against each criterion. The alternative designs and criteria

are listed in the table shown in Figure 5, which demonstrates the use of a decision matrix

to evaluate and select alternatives. Four design alternatives were evaluated against the four

criteria. The designs are rated on a scale, of example, 1-5 against each criterion, and the

total rating for each design is calculated. The design with the highest rating was selected

for the study. The alternative is to weigh the criteria based on their importance over other

criteria and multiply the rating with the weight of each criterion. The advantage of Pugh’s

decision matrix is that it is easy to implement. However, this method fails if the selection

of criteria is incomplete or incorrect because the effectiveness of Pugh’s matrix is related

to the quality of the selection criteria. If the selection criteria are incorrect or incomplete,

the selection decision can go wrong.

Analytic Hierarchy Process (AHP) is another popular technique proposed by Saaty

(2008), which is used to choose among multiple criteria and choices; for example, selecting

a car by evaluating alternative choices (Baleno, Honda city, Ford aspire) against multiple

criteria (cost, style, mileage, reliability). The basic principle of AHP is to perform a

pairwise comparison of criteria and perform a matrix calculation (eigenvector) to determine

the relative importance of one criterion over another. The main advantage of AHP is its

ability to rank choices in order of their effectiveness in meeting conflicting objectives. The

drawback is the ambiguity in the interpretation of Saaty’s rating scale and the complexity

of mathematical calculations.

A summary of the various cognitive processes and tools used to expand-reduce the

problem-solution space is shown in Figure 6.

In this paper, we characterize expand-reduce skills from expansionist-reductionist

thinking (Ackoff, 1991; Ellspermann et al., 2007; Volkema, 1983), divergent-convergent

thinking literature (Basadur et al., 2000; Howard et al., 2008; Liu & Schonwetter, 2004;

Pugh, 1991; Saaty, 2008) and software design problem-solving literature (Guindon, 1990;

Mangano et al., 2014; Tang et al., 2008, 2010). Expand-reduce (ER) skills are defined as

the ability to expand-reduce the problem-solution space by understanding the problem from

multiple perspectives before formulating subproblems, and generating solutions before

selecting a single solution, as shown in Figure 7.

 Design1 Design2 Design3 Design4

Criteria1 1 3 4 3

Criteria2 2 5 4 2

Criteria3 4 3 1 3

Criteria4 3 2 1 4

Total score 10 13 10 12

Fig. 5 Example of decision matrix

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 9 of 35

Teaching-learning techniques for problem-solving

The characteristics of software design problems are similar to those of ill-defined problems

in which the start and end goals are unclear, and there is no algorithm defined to transform

the start goal into the end goal. In addition, the start state is underspecified and the goal

state is defined in terms of highly abstract features (Goel & Pirolli, 1992; Mitrovic &

Weerasinghe, 2009). A literature survey was conducted to identify teaching-learning

techniques suggested for ill-structured problem-solving. To improve students’

performance in solving ill-structured problems, it is necessary to provide externalized

support or scaffolding to facilitate cognitive and metacognitive processes (Bannert &

Mengelkamp, 2013; Ge, 2013; Jonassen, 2011; Tang et al., 2018; Xun & Land, 2004).

Various scaffolding techniques have been discussed in this section.

Fig. 6 Expand-reduce skills and tools used in problem-solution space

Fig. 7 Definition of the expand-reduce skills in problem-solution space

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 10 of 35

Question prompts

The framework proposed by Xun and Land (2004) suggests the use of question prompts

for scaffolding ill-structured problem-solving. The question prompts enable to direct

students’ attention to important aspects of problem-solving at both the cognitive and

metacognitive levels. Question prompts have been empirically proven to be effective in

guiding learners step-by-step throughout the entire process of a specific problem-solving

task (Ge et al., 2005; Xun & Land, 2004). Question prompts can guide students’ attention

to specific aspects of their learning process, thereby helping them to monitor and evaluate

problem-solving processes. Question prompts include procedural, elaboration, and

reflection prompts, each of which serves different cognitive and metacognitive purposes.

Procedural prompts help learner complete specific tasks, such as writing or problem-

solving, and have been used successfully to help students learn cognitive strategies in

specific content areas. Some examples of procedural prompts include the Identify entities

involved in the problem. Identify alternative solutions. Elaboration prompts are designed

to prompt learners to articulate their thoughts and elicit explanations. Some examples are

as follows: Why is it important? How does this affect the selection? Reflection prompts

encourage reflection on a metalevel that students do not generally consider. A few

examples of reflection prompts can be used to help students justify the viability of the

proposed solution against alternatives: What are the pros and cons of this solution? Are

there alternative solutions?

Structured guidance

Learning problem-solving skills should be supported by providing a learning environment

with authentic and complex problems. This allows learners to learn skills by engaging in

activities in that field (Jonassen, 2011). The learning environment should provide

structured guidance in the form of learning activities scaffolded with prompts and extra

support that drives their thinking towards the systematic application of abilities (Bannert

& Mengelkamp, 2013; Ge, 2013). The main components of the problem-based learning

environment are worked examples, analogy, case studies, question prompts, etc. (Ge et al.,

2005; Jonassen, 2011; Xun & Land, 2004).

Worked examples

Worked examples are effective in problem-solving for novices as they reduce the

extraneous load and can concentrate on building cognitive schemas, which are used to solve

similar problems in the future (Jonassen, 2011; McLaren & Isotani, 2011). Worked

examples should break down complex solutions into smaller meaningful solution elements,

and present multiple examples in multiple modalities for each type of problem. Providing

analogous problems for students to compare with the problem to solve allows them to gain

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 11 of 35

more robust conceptual knowledge about problems (Xun & Land, 2004). In tutored

problem-solving environments, worked and erroneous examples have proven to be

effective learning activities. Studies have shown that alternating work examples and

problem-solving have positive results in learning domain knowledge (Chen et al., 2019).

Cognitive tools

The research Wang et al. (2013) illustrated the possibilities of using visualization-based

cognitive tools in learning environments to scaffold the entire problem-solving process.

Tools such as concept maps, mind maps, and argument maps make thinking and learning

in a problem context visible throughout the learning process. The framework by Kostousov

and Kudryavtsev (2017) suggests using mind maps or concept maps in the problem analysis

phase to expand the problem space. These tools will help in visualizing the main parts of a

problem situation and actions in the problem-solving process as well as their relationships.

In the design solution phase, a goal tree or decision tree can be used to expand the solution

space because it can have multiple target states that are associated with different goals, and

we do not know the best one. Argument mapping can help in choosing the best solution

that has been identified by visualizing its benefits and limitations.

Issues and challenges of the existing studies

Prior work (Razavian et al., 2016; Tang et al., 2018) proposed a general model for the

reflective design reasoning process, consisting of identifying the context and requirements,

formulating and structuring design problems, creating solution options, and making design

decisions. These techniques are referred to as design-reasoning techniques. In one study

(Razavian et al., 2016), a list of reflective questions was used to improve design reasoning.

The study involved groups of students in which the test groups were asked reflective

questions by the lecturer, whereas for the control groups, the lecturer was only passively

present to answer technical questions that the students might have had. It was concluded

that active, externally induced reflection improved the quality of design reasoning.

However, some participants found the questions difficult to use as there were many of them.

Another study Tang et al. (2018) proposed a simpler representation, the reminder card

system, to test its reflective power on designers and its impact on design discourse. This

study was conducted using a combination of students and professionals. The average

reasoning techniques used by the teams in the test group were significantly higher than

those used by the control group. This indicates that during design discourse, student teams

in the test group are more cognizant of design reasoning. However, no significant

differences were observed in the design outcomes in terms of the number of formulated

problem statements, design options, and design decisions. Some participants mentioned

that it would have been useful to guide how to use the cards during the design session;

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 12 of 35

perhaps, a structured approach or a method to prompt reasoning and reflection and to guide

design discussions may be useful.

The studies do not directly examine whether the amount of explicit reasoning performed

by designers leads to better results, that is, a better overall design.

Research goal

Our research goal was to design and develop a technology-enhanced learning environment

for scaffolding design problem-solving in the context of software design problems in data

structures courses for undergraduate engineering students. We propose the use of a design-

based research methodology to design and develop a technology-enhanced learning

environment for design problem-solving and evaluate its effectiveness in learning the skills

and design outcome in terms of the quality of the overall design.

Design-based research

The design-based research (DBR) framework assists researchers in analyzing real-world

problems, incorporating design principles with technical breakthroughs into solution

development, testing, refining learning environments, and defining new design principles

(Amiel & Reeves, 2008; Reeves, 2006). The DBR cycle comprises four phases: Problem

Analysis, Solution Development, Evaluation, and Reflection. We conducted three DBR

cycles, as discussed in detail in this section.

DBR cycle 1

The first DBR cycle aimed to examine a novice’s ability to solve software design problems

and identify teaching-learning techniques for ER skills. The work performed in each phase

of the DBR is discussed in detail in this section.

Problem analysis

Study 1: We conducted a preliminary exploratory research study (Study 1) (Reddy et al.,

2016) to assess the level of a novice in solving software design problems and to explore

students’ difficulty in applying ER skills. Exploratory research has been conducted to gain

deeper insights into the problem and refine the problem definition (Shields & Rangarajan,

2013).

The research question (RQ) formulated for study 1 is:

RQ1. “What are the difficulties faced by the students while solving a software design

problem with respect to ER skills?”

Based on a problem-solving literature survey, we designed a worksheet to solve design

problems in the data structures course. In the worksheet, question prompts were given to

enable the learner to systematically expand and reduce the problem-solution space. In the

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 13 of 35

problem analysis phase, prompts were designed to allow the learner to expand the problem

space by listing all entities and actors involved. Later, the problem is decomposed into

subproblems by identifying the data to be stored and the operations to be performed to

solve the problem. Similarly, in the solution design phase, prompts were designed to

generate multiple solutions by identifying alternative data structures and algorithms and

selecting one based on the requirements of the problem.

Participants and research method: Forty second-year undergraduate computer engineering

students participated in this study. This was a single-group study (Figure 8).

During the study, all students were given a software design problem to solve using a

worksheet, as shown in Figure 9. The students individually solved the worksheet problem

for almost two hours.

Data collection and analysis: The worksheet responses were evaluated and scored using

the rubric designed to assess ER skills as shown in Table 1.

Fig. 8 Research design: Study 1

Problem: The local automobile retail shop sells parts for different car models.

The shop owner wants to create an inventory control program that tracks the

quantity of all the parts and creates a report of the parts that need to be ordered

so there is minimal risk of items getting out of stock. Come up with multiple possible

solutions by using appropriate data structures and operations for solving the above

problem. Justify which solution is most efficient for the above-stated problem.

Phase 1. Understand and analyze the problem:

1.1 List all the entities and actors:

1.2 List the data and operations performed from the perspective of each entity

listed:

1.3 What is the requirement for the above problem?

1.4 Identify the data (listed in step 2), needed to solve the above requirement:

1.5 Identify the operations out of the list in step 3, needed to solve the problem:

Phase 2. Problem-solving:

2.1 List the desirable Data Structures that can be used to solve the above

problem:

2.2 For each Data Structure, give alternative solutions to solve requirements

given in step 4 using data and operations identified in step 5 and 6

respectively:

2.3 Identify the efficient solution based on constraints and requirements in the

problem. Justify?

Fig. 9 Worksheet activity of solving the software design problem

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 14 of 35

Table 1 Rubric to evaluate ER skills

Sub-skills/Score 3 2 1

Problem Analysis

Understand the
problem

All entities and interactions
were identified correctly.

Missed a few
entities and
interactions.

Only a few entities
and interactions
identified.

Formulate the
problem - sub-goal

Formulated the complete
specification in terms of the
data and operations to be
performed.

Missed a few
specifications in
terms of the data
and operations to
be performed.

The specifications
were incomplete.

Design Solution

Generate solutions All possible alternative
solutions were generated.

Few possible
alternative
solutions are
missed.

Generated only one
solution.

Select and evaluate
a solution

The solution is complete and
correct. In the solution, the
data structure is valid, and the
operations are mapped to the
correct algorithms. The
selected solution is justified
with clarity on how data is
stored and how the algorithms
are used in terms of constraints
for the given problem.

The solution is
partially correct OR
the selected
solution is justified
with less clarity.

The solution is
incomplete OR
incorrect OR not
explained clearly
OR vaguely
explained.

An expert educator with over ten years of teaching experience validated the rubric. The

artifacts created during the intervention were independently examined by both instructors.

Cohen’s kappa (Vieira et al., 2010) was used to determine whether there was any inter-

rater reliability between the two raters’ scores. Agreement between the two raters was good

(κ = .634, p < .046).

Results of study 1: Worksheets were evaluated using a rubric (Table 1). The average scores

and corresponding standard deviation (SD) for each sub-skill are listed in Table 2.

The results show that the worksheet helped solve the problem systematically; however,

students scored low in providing proper explanations and justification of the selected

solution. To answer our research question, the difficulties faced by students in solving

problems with respect to ER skills are discussed. As shown in the sample solved worksheet

in Figure 10, the problem was solved superficially, and the students failed to visualize the

problem space and decompose the problems into solvable subproblems. In the solution

Table 2 Scores of the worksheet

 Phase 1. Understanding the problem Phase 2. Problem-solving

 Expand Reduce Expand Reduce

 Understand system
(Max score=3)

Formulate the problem
(Max score=3)

Generate solutions
(Max score=3)

Select solution
(Max score=3)

Average 1.5 1.55 1.71 0.47

SD 0.64 0.86 0.89 0.60

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 15 of 35

space, the solution was incomplete, and alternative design options were not considered or

evaluated. This shows that students struggled to expand-reduce in problem-solving areas,

which affected the quality of solution design and reasoning. It was evident that students

needed to be scaffolded to apply ER skills, as they lacked the cognitive skills required to

solve ill-structured software design problems.

The next step was to design a learning environment for teaching and learning ER skills.

Willis (2009) stated that instructional designers must make appropriate decisions regarding

guiding theories of learning (e.g., behaviorism, cognitive science, constructivism), general

teaching and learning strategies (e.g., direct instruction, student-centered instructions), and

pedagogies (e.g., anchored instruction, tutorial, problem-based learning). Based on

recommendations in the literature (Bannert & Mengelkamp, 2013; Ge, 2013) for successful

instructional methodologies for ill-structured problem-solving skills, the solution was

designed as discussed in the next section.

Solution design- Fathom-Ver1

Fathom-Ver1’s goal is to create a learning environment with pedagogical features that will

scaffold novice learners to complete ER tasks. The design principle of Fathom-Ver1 is to

provide structured guidance by designing learning activities to direct learners’ thinking

towards systematically applying ER skills.

The design features of Fathom-Ver1 are:

i. Technology-enhanced learning environment to scaffold design problem-solving

in data structures course.

ii. Structured step-by-step guidance using learning activities scaffolded with

question prompts, examples, and cognitive tools.

Fig. 10 Sample worksheet

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 16 of 35

In Fathom-Ver1, the design problem posed was - “Design software for a bank to allow

customers to check their account balance.” The learners were guided to solve the problem

by following the following learning activities:

Understand the Problem: In this activity, learners were prompted to explore the problem

by identifying entities and users in the system. The learners were prompted to draw the

model of the system to show the components, their properties, and the interconnection

between the components on the paper, as shown in Figure 11. The prompts were supported

by examples and hints to enhance the understanding of the activity to be performed.

Formulate Problem: In this activity, the learners were prompted to write the sub-goals in

terms of the operations to be performed by the software to achieve the stated goal, as shown

in Figure 12. Hint buttons were provided to help learners with explanations and examples.

Fig. 11 Fathom-Ver1- Understand the Problem activity

Fig. 12 Fathom-Ver1- Formulate Problem activity

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 17 of 35

Generate Solutions: This activity was designed to expand the solution space by generating

alternative solutions. The learners were prompted to draw a mind map to list alternative

design options for each subproblem, as shown in Figure 13.

Evaluate Solutions: This activity prompted them to evaluate alternative solutions based on

the identified selection criteria. Learners were prompted to select an appropriate solution

using a decision matrix. A decision matrix was used to allow learners to evaluate alternative

solutions against the criteria and rank the solutions, as shown in Figure 14. Finally, the

selected solution is justified.

Fig. 13 Fathom-Ver1- Generate Solutions activity

Fig. 14 Fathom-Ver1- Evaluate Solutions using decision matrix activity

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 18 of 35

Overall, in Fathom-Ver1, each activity is equipped with question prompts, hints,

examples, and cognitive tools (drawing mind-maps, decision matrices, etc.) to

systematically guide learners toward applying ER skills.

Evaluation: Study 2

We conducted Research Study 2 to evaluate the effectiveness of Fathom-Ver1. The

research question (RQ) formulated for Study 2 is as follows:

RQ2. How effective is Fathom-Ver1 in applying ER skills while solving design problems

in a data structures course?

Participants and research method: Study 2 (Reddy et al., 2017) was conducted to answer

RQ2. The exploratory study (Shields & Rangarajan, 2013) was used for the following

purposes:

i. To investigate the effectiveness of prompts with additional scaffolds:

explanation, example, and hint in performing the activity.

ii. To understand how students are using the ER cognitive tools while performing

the activity.

iii. To assess the performance level of students’ ER skills with Fathom-Ver1.

Forty-nine undergraduate second-year computer engineering students participated in this

study. Students interacted with Fathom-Ver1 for almost 2 hours individually, followed by

a student perception survey and student interviews. This was a single-group exploratory

study, as shown in Figure 15.

Data analysis and results: The data collected and analyzed are: student responses in

Fathom, student perception survey, and interview data.

i. Scores of student’s responses: The students’ responses in Fathom-Ver1 were evaluated

using the same rubric given in Table 1, and the average scores and standard deviation (SD)

of ER skills are shown in Table 3.

Table 3 ER scores of learners using Fathom-Ver1

 Phase 1. Understanding the problem Phase 2. Design the solution

 Expand Reduce Expand Reduce

 Understand system
(Max score=3)

Formulate the problem
(Max score=3)

Generate solutions
(Max score=3)

Select solution
(Max score=3)

Average 2.10 1.52 1.9 1.50

SD 0.50 1.01 0.55 0.85

Fig. 15 Research design: Study 2

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 19 of 35

ii. Student perception survey: A student perception survey was conducted to reflect on how

well the activities in the system helped in applying ER skills. The survey used a five-point

Likert scale: 5(strongly agree), 4(agree), 3(neutral), 2(disagree), and 1(strongly disagree).

Q1. Identifying entities and interactions helped me to understand the working of the

existing system from the perspectives of multiple stakeholders.

Q2. Understanding the whole system helped me to formulate the problem into

subproblems.

Q3. The drawing of the mind map helped in generating multiple solutions.

Q4. The activity of identifying evaluation criteria parameters helped in analyzing

solutions.

Q5. The decision matrix helped in evaluating and justifying the selected solution.

Two open-ended questions were asked to express their likes and dislikes regarding the

system. The students’ perception rating means and standard deviations (SD) are given in

Table 4.

iii. Focus group Interview: The focus group interviews of four students were transcribed

and evaluated to determine the students’ perceptions of the activity’s usefulness in learning

ER skills and the problems they encountered while performing the activities.

During the interview, students perceived that step-by-step guidance, prompts, and

examples helped to perform the activities. Some of the students’ quotes on how the

activities helped are given below:

1. The overall idea of step-by-step guidance was good.

2. The activities helped us to figure out how many solutions are there, and see what are

the advantages and disadvantages that helped us to deduct which is the best solution

for the problem.

3. Hints and examples helped us a lot when we were not able to understand that the

problem.

Improvements are needed in the introductory and first phase–drawing the model,

identifying and formulating sub-goals, as students found it difficult to understand the

activity. Some of the students’ quotes suggesting improvement are as follows:

1. At the start, an introduction should be given to get clear idea of what to do, the

content was not clear for a new user to understand. Prompts were not enough.

2. The activity in the design phase was nicely given and we moved faster, while

struggling with first phase as we did not know what exactly is needed.

Table 4 Student perception survey rating

Question no. Q1 Q2 Q3 Q4 Q5

Mean 4.11 4.06 4.09 4.15 4.09
SD 0.52 0.6 0.65 0.59 0.69

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 20 of 35

Reflection from DBR cycle 1

RQ2 was answered based on the ER skill scores of the responses of the problem solved in

Fathom-ver1, student perception survey, and interview data analysis. The analysis of our

results showed that the average scores of the students were better in Study 2 than in

Study 1, which shows that the systematic guidance in Fathom-Ver1 in the form of prompts,

hints, examples, and cognitive tools helped in applying ER skills compared to the

worksheet. The mean scores of the student perception survey showed that most of the

students agreed that Fathom’s learning activities and tools helped achieve the desired

learning outcomes. The students’ responses to the open-ended questions showed that the

activities helped in developing analysis and designing skills, building multiple solutions,

and providing knowledge on how to solve problems. However, some students found the

entire process to be time-consuming. In the interview, students said that they had difficulty

understanding the activities to be performed, especially in the learning activities in the first

phase–problem analysis.

DBR cycle 2

From the findings and reflections from DBR cycle 1, we identified problems in the design

of the first version of Fathom, a potential reason for the problem, and redesign steps

(Table 5).

In DBR cycle 2, the pedagogical features of the activities were improved to engage

learners at both cognitive and metacognitive levels. Prior studies have shown that

metacognitive scaffolds, including prompts, guiding questions, feedback, and self-

reflection, significantly enhance students’ problem-solving performance and awareness

and regulation of their cognitive processes (An & Cao, 2014; Bannert & Mengelkamp,

2013; Ge, 2013; Geiwitz, 1994).

Research shows that the following components are necessary to engage learners in

thinking at a metacognitive level in a learning environment:

i. Feedback is a metacognitive activity that helps learners improve their learning (Narciss,

2013). Feedback is important for improving learning in various instructional contexts,

Table 5 Problems seen in DBR cycle 1, a potential reason for the problem, and redesign step

Sr. No. Problems seen in DBR
cycle 1

The potential reason for
the problem

Redesign

1. Difficulty in understanding
the activity to be
performed.

Lack of help and feedback
from the learning
environment.

The prompts have to be
enhanced with solved examples
and feedback generation based
on student responses.

2. Difficulty in drawing the
diagrams to expand
problem-solution space.

The drawing tools were
not part of the learning
environment.

The drawing tools will be
integrated into the learning
environment.

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 21 of 35

including online learning environments. Feedback on learners’ responses informs the

learner about their actual state of learning to regulate the further process of learning in the

direction of learning standards (Narciss, 2013). In tutoring, formative feedback helps

learners become aware of any gaps that exist between their desired and current state of

knowledge or competencies. Studies have shown that feedback from online tutors enables

students to acquire problem-solving skills in domains such as geometry, algebra, and

computer programming languages (Cassel & Victor, 2015).

ii. In-action reflection is a metacognitive activity in which a learner reviews her cognitive

process or experience. This review process allows learners to identify deficiencies in their

performance and the specific skills they need to improve on (Rivera-Gutierrez et al., 2016).

Learners can review their performance through a self-assessment on a performance scale.

The process of self-assessment is not an easy task, because learners tend to overestimate

or underestimate their performance. The self-assessment process can be improved by

providing students with scaffolds to assess the scale accurately. In one such study, the

authors (Rivera-Gutierrez et al., 2016) proposed the use of in-action reflections to develop

interpersonal skills, such as empathy towards patients and medical practitioners. The

students interacted with virtual agents that played the role of a patient. A study conducted

with third-year dental students showed that the students were relatively accurate in their

self-assessment of how empathetic they were to the virtual patient and were significantly

more empathetic to the patient after their in-action self-assessment.

Solution Design- Fathom-Ver2

The design principles of Fathom-Ver 2 are the same as Fathom-Ver1, with one new

principle added: to enable learners to apply metacognitive skills during problem-solving.

The design features of Fathom-Ver2 are:

i. To integrate drawing tools into the system.

ii. To provide worked examples for all steps of problem-solving.

iii. Scaffold learners to reflect on their problem-solving skills using self-evaluation

activities.

The learning activities were enhanced by doing the following revisions in Fathom-Ver2:

1. The learners are scaffolded to apply ER skills in the process of solving a library

management problem in a college. The problem posed is- “Design a software system for a

college library that will allow students and teachers to check the availability of the book in

the library.”

2. Drawing tools are integrated into Understand the Problem and Generate Solutions

activities. In the Understand the Problem activity, the learners are prompted to draw a

diagram to represent all entities and interactions to aid in visualizing the problem as a whole,

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 22 of 35

as shown in Figure 16. In the Generate Solutions activity, the learners are prompted to

visually represent solution space using mind-map, as shown in Figure 17.

3. Worked example illustrating the problem-solving process: In every activity, help is

provided, which learners may use to obtain a detailed explanation of the activity illustrated

with an example. For example, on the clicking view demo in Figure 16, the video is played

to illustrate the process of drawing a diagram for the shop-inventory problem, as shown in

Figure 18.

Fig. 16 Fathom-Ver2- Understand the Problem activity

Fig. 17 Fathom-Ver2- Generate Solutions activity

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 23 of 35

4. Learner’s self-evaluation: After each activity, learners are directed to self-evaluate and

reflect on their responses. Immediately after the learner saves their response, the system

prompts them to self-evaluate their responses based on the rubric, as shown in Figure 16.

Subsequently, feedback is generated, which states the corrective measures to be

implemented to improve the response.

Evaluation: Study 3

We conducted Study 3 (Reddy et al., 2018) to evaluate the design features of Fathom-Ver2.

The research question (RQ) formulated for Study 3 is:

RQ3. “How effective is Fathom-Ver2 in learning ER skills at both cognitive and

metacognitive levels?”

Participants and research method: Study 3 was conducted with fifty-two second-year

undergraduate computer engineering students. The research design used was a one-group

pretest-posttest study (Cohen et al., 2002). This study aimed to investigate the effectiveness

of Fathom-Ver2 in learning ER skills by comparing performance before and after the

intervention. The research design is illustrated in Figure 19.

Fig. 18 Fathom-Ver2- Worked example

Fig. 19 Research design: Study 3

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 24 of 35

In the pretest, the students were given a worksheet to solve a shop inventory problem:

“Design a software system for the supermarket to display items below threshold,” and the

students were given one hour to solve the pretest problem individually by following the

steps given below:

1. Write the broad goal to be achieved.

2. Write the sub-goals to be achieved (insert/delete/search).

3. Design a solution using appropriate data structure and algorithms.

4. Justify why the selected data structure is appropriate for the given problem.

Immediately after the pretest, the learners interacted with Fathom-Ver2 for 2 hours. The

log data were collected from Fathom, in which the following data were recorded for each

button click: <learner_id, timestamp _button, student_response>. After the training, the

students were told to solve a new problem in Fathom-Ver2, in which the scaffolds were

withdrawn.

Data collected and analyzed: To answer RQ3, we analyzed and compared the pretest-

activity-posttest scores to measure the learning of ER skills. The log data of Fathom were

analyzed to measure the effectiveness of the self-evaluation activity.

i. Pretest-activity-posttest scores: The student artifacts generated during the pretest,

posttest, and intervention were evaluated using a rubric (Table 1). Of the fifty-two students,

only forty-seven completed the training with Fathom and only seventeen completed the

posttest. The mean scores with standard deviation (SD) of the pretest, activity, posttest, and

comparison between the pretest-activity and pretest-posttest using the t-test (Derrick et al.,

2017) are shown in Tables 6 and 7.

Table 6 Pretest and activity scores

N=47 Phase 1. Understand the Problem Phase 2. Design the solution

Expand Reduce Expand Reduce
Understand system
(Max score=3)

Formulate the problem
(Max score=3)

Generate solutions
(Max score=3)

Select solution
(Max score=3)

Pretest
Average (SD)

0.00 1.38 (0.60) 1.00 (0.85) 0.93 (0.70)

Activity
Average (SD)

2.48 (0.47) 2.09 (0.52) 1.83 (0.51) 1.92 (0.62)

P value
(T-test)

0.00 0.00 0.00 0.00

Table 7 Pretest and posttest scores

N=17 Phase 1. Understand the Problem Phase 2. Design the solution

Expand Reduce Expand Reduce
Understand system
(Max score=3)

Formulate the problem
(Max score=3)

Generate solutions
(Max score=3)

Select solution
(Max score=3)

Pretest
Average (SD)

0.00 1.5 (0.68) 1.2 (0.98) 0.7 (0.58)

Posttest
Average (SD)

2.41 (0.62) 2.4 (0.65) 2.11 (0.34) 2.3 (0.71)

P value
(T-test)

0.00 0.00 0.00 0.00

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 25 of 35

ii. Log data analysis: The sample log data are presented in Figure 20.

To simplify the interpretation, we parsed the log data into a sequence of activities. For

example, all the edits made in the understanding_problem activity, such as drawing the

diagrams and saving in the first attempt as UP, edits in formulation-problem activity as FP,

generate_solution activity as GS, and evaluate_solution activity as EV. The resources

accessed (hints, notes, examples, etc.) were coded as RA. The subsequent save, in which

the responses are modified after the self-evaluation activity, is coded as REDO. Examples

of the resultant sequences of a student are as follows.

“115A1086”: ["UP", "FG", "UP", "FG", "UP", "FG", "FG", "GS", "REDO", "EV", "GS",

"FG", "RA", "GS", "REDO", "EV", "REDO", "UP", "FG", "GS"].

The percentage of students with REDO codes in the resultant sequences was calculated.

Results and reflection

RQ3 was answered using the ER scores of student responses in the pretest-activity-posttest

and log data analysis. The scores showed significant improvement in the quality of problem

formulation and solution from pretest to activity and from pretest to posttest, which shows

that students were able to expand and reduce effectively while solving the problem in

Fathom and transfer those skills to the posttest problem. The drawing tools integrated into

the learning environment in the Understand the Problem activity provided the affordance

to save, edit diagrams, and navigate back and forth during problem formulation. This

activity helped create and simulate a mental model of the system as a whole. In the

Generate Solutions activity, the integration of the drawing tool for drawing a mind map

representing all the possible alternative design options for each subproblem helped

visualize the solution space and further identify the selection criteria for evaluating

solutions. However, the log data analysis revealed that only 20% of the students revised

their responses after self-evaluation, indicating that students either overestimated or

underestimated their responses and lacked the ability to self-evaluate.

Fig. 20 Raw log data collected in Fathom

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 26 of 35

DBR cycle 3

From the findings of DBR cycle 2, it was evident that the students were able to perform

the activities, but were weak in the self-evaluation of ER skills. The aim of DBR cycle 3

was to redesign metacognitive activities in Fathom. The design features are the same as the

previous version with one change: to scaffold learners to apply metacognitive skills using

system-generated feedback and peer review instead of self-evaluation activity.

Solution design of Fathom-Ver3

The literature suggests that expert feedback, peer review, and active learning-based

collaboration (Ge, 2013; Narciss, 2013), are effective in improving learners’ metacognitive

skills during problem-solving. Peer review is a metacognitive activity that enables learners

to see alternative perspectives from peers’ responses and helps them notice things that they

might not have thought about. By compelling learners to examine their thinking after

reviewing their peers’ responses, learners engage in metacognitive activities and self-

regulation during problem-solving (Ge, 2013).

In Fathom-Ver3, the self-evaluation activity is replaced by system-generated feedback

and peer review. The new features added are as follows:

System-generated feedback: Automated feedback is generated by evaluating the gaps and

providing an elaborate explanation of the gaps and an action plan to monitor and revise the

skill. Positive or corrective feedback is generated at the end of each activity after the learner

saves their response. Figure 21 shows the feedback generated at the end of the step-

understand problem. The feedback was generated by the system by semantically comparing

the learners’ responses to the experts’ solutions.

Peer review: This is a new feature that allows collaboration with peers during each activity,

as shown in Figure 22. To encourage learners to actively evaluate their peers’ responses,

Fig. 21 Fathom-Ver3: System-generated feedback

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 27 of 35

effective collaborative learning methods (Soller et al., 1999) were used to allow them to

actively demand explanations and justifications from their peers. The aim is to allow

learners to see how their peers have performed the activity, evaluate their responses against

the given scale of high, medium, and low, and justify the evaluation. This helps the learner

to see others’ perspectives on doing, thinking, and evaluating the gap.

Evaluation: Study 4

This study aimed to investigate the effectiveness of cognitive and metacognitive scaffolds

of Fathom-Ver3 in learning ER skills. The research question (RQ) formulated for Study 4

is:

RQ4. How effective is Fathom-Ver3 in learning ER skills at both the cognitive and

metacognitive levels?

Participants and research method: The study involved fifty undergraduate second-year

computer engineering students. The research design used was a one-group pretest-posttest

study (Cohen et al., 2002) to investigate the effectiveness of Fathom-Ver3 in learning ER

skills by comparing ER skills before and after the intervention. The research design of

Study 4 is shown in Figure 23.

Fig. 22 Fathom-Ver3- Peer review

Fig. 23 Research design: Study 4

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 28 of 35

During the pretest, the participants were given a shop-inventory problem to be solved on

a worksheet for 30 min, followed by an intervention in which students interacted with

Fathom-Ver3 for two hours. After the intervention, the participants were given a bank

problem to solve on a worksheet with no scaffolds.

Data analysis: The data collected were the responses generated during the pretest,

intervention, and posttest; interview data of four students; and log data in the form of user

clicks.

i. Pretest and posttest scores: A rubric (Table 1) was used to evaluate the student

artifacts created during the pretest and posttest.

ii. Interview data: To identify meaningful units of analysis, content analysis of

interview transcriptions was performed in terms of how the students perceived the

activities to be effective in learning ER skills and the difference in problem-

solving from pretest to posttest.

iii. Log data analysis: As discussed in Study 3, in a similar way, log data analysis was

performed with additional code added for peer review as PR. The percentage of

students with REDO and PR codes in their resultant sequences was calculated.

Results: The data analyzed were pretest and posttest scores, interview data, and log data.

i. Pretest and posttest scores: The pretest and posttest scores of the fifty students

are shown in Table 8. A t-test (Derrick et al., 2017) was used to compare the

average pretest-intervention-posttest scores.

ii. Interview data: The purpose of the interview data analysis was to determine

how students perceived that the Fathom-Ver3 features helped them acquire ER

skills. The following are students’ perceptions of their overall learning of ER

skills during Fathom-Ver3 training:

1. In the Understand the Problem task, drawing the diagram helps to envision

all of the entities present and how they are linked to one another, as well as

establish essential requirements that the software must meet. The following is

a quote from one of the students: “it helped to visualize the problem, and it

helped me to see that all the other entities are linked so that it simplified the

problem.”

Table 8 Pretest and posttest scores

N=50 Phase 1. Understand the Problem Phase 2. Design the solution

Expand Reduce Expand Reduce
Understand system
(Max score=3)

Formulate the problem
(Max score=3)

Generate solutions
(Max score=3)

Select solution
(Max score=3)

Pretest
Average (SD)

0.00 1.34 (0.59) 1 (0.19) 1.35 (0.58)

Posttest
Average (SD)

1.63 (0.79) 1.69 (0.68) 2.09 (1.22) 1.99 (0.44)

P value
(T-test)

0.00 0.01 0.00 0.00

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 29 of 35

2. The Understand the Problem activity assisted in dividing the problem into

subproblems. The corresponding quote: “In the pretest, I could not think of

alternative solutions because did not know how to break the problem and think

of each subproblem as a separate unit which has different solution options.”

3. Examples were useful in determining which way to think.

4. The feedback helped me understand the gap and was simple to comprehend.

iii. Log data analysis: Log data analysis showed that 80% of the students evaluated

their responses with the help of feedback and taking control action plans to

improve. However, very few students engaged in higher-level activities, such as

peer evaluation and chat facilities, to seek clarification or justification from

peers.

Reflection

RQ4 is answered using ER scores of student responses in the pretest-posttest, interview,

and log data analysis. The pretest-posttest scores showed significant improvement in the

problem formulation and solution from pretest to posttest, which shows that students

learned ER skills using Fathom-Ver3. Thus, the pedagogical features of Fathom-Ver3 were

effective in teaching and learning ER skills in software design problem-solving. The

improvement was seen at both cognitive and metacognitive levels, as students were able to

reflect on their responses after reading the system-generated feedback, and learners were

improving their skills.

Discussion

We iterated through three DBR cycles to design and develop an intervention, Fathom, with

the learning objective of teaching-learning ER skills in the context of solving software

design problems. The aim of the first DBR cycle was to conduct exploratory studies to

understand the level of scaffolding needed for novices to learn ER skills. Studies 1 and 2

showed that only question prompts with an explanation of new terms and hints were not

effective in triggering learners to apply the necessary cognitive skills to expand-reduce the

problem-solution space. The reason for this might be that the students did not have prior

experience in solving complex problems. The aim of DBR cycle 2 was to redesign Fathom

with improved scaffolding to direct learners’ thinking towards applying ER skills and

reflecting on them. Fathom-Ver2 was equipped with prompts, solved examples, hints, ER

cognitive tools (drawing tools, decision matrix, etc.), and self-reflection activities. Study 3

evaluated the effectiveness of Fathom-Ver2 and showed that scaffolding was effective in

applying ER skills; however, self-reflection was ineffective. The students were either

overestimating or underestimating their skills; thus, very few students were involved in

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 30 of 35

improving their responses. The third DBR cycle aimed to revise metacognitive activities

for the effective monitoring and control of ER skills. In Fathom-Ver3, the self-reflection

activity was replaced with system-generated feedback and peer review. Study 4 showed

that students not only applied ER skills effectively but also actively improved their

responses after reading the feedback.

We discuss the following local learning theories based on our research studies assessing

the learning of ER skills:

Various cognitive tools (entity-interaction, mind-maps, decision matrix) aid novices

in applying ER skills

The drawing of the entity-interaction diagram provided the affordance to systematically

expand and visualize the entire problem/solution space. This helped to structure the

problem into subproblems and consider the evaluation criteria to select the optimal solution.

Our findings support previous studies that have also shown that various visualization

techniques, such as drawing various entities and interactions among them, help in

understanding the problem as a whole and improving the quantity and quality of the

problem statements generated (Eden & Ackermann, 2001; Norese, 1995). This helps

novices create and simulate mental models at various levels of abstraction. Eventually,

from these mental models, the subproblems are decomposed (Adelson & Soloway, 1985;

Guindon, 1990; Tang et al., 2008, 2010). The drawing of the problem and solution space

helps simplify the understanding of the complex problem and identify the requirements to

be addressed in the solution.

Drawing a mind map is effective in expanding the solution space. It enables the learner

to represent subproblems (data items and operations) of the solution design and branch out

each subproblem into various alternative design options (data structures and algorithms).

Next, multiple solutions were generated by selecting valid combinations of design options

for each subproblem.

The process of explicitly identifying selection criteria and using a decision matrix to

evaluate alternative solutions against the selection criteria, ranking them, and selecting a

solution helped to justify how the selected alternative is better than other alternatives. This

allows the learner to reflect on and assess the effectiveness of the solution in achieving the

stated requirements. Our findings support the claims made in previous research that stated

that cognitive tools such as entity-interaction diagrams, mind maps, and decision tables

helped to expand and reduce the problem and solution space (Ackoff, 1979; Adelson &

Soloway, 1985; Guindon, 1990; Mangano et al., 2014; Tang et al., 2008, 2010).

Feedback is necessary for novices to regulate the learning of ER skills

Feedback assists students in identifying performance gaps, which is essential for

monitoring and improving their performance. Feedback is the most effective when

delivered immediately after the exercise, addressing both positive and negative elements

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 31 of 35

to motivate students by praising their efforts and directing their focus to areas where they

can improve. Similar to prior studies (Bannert & Mengelkamp, 2013; Ge, 2013; Narciss,

2013), our findings also support the idea that feedback should be expanded with

information to guide learners to see clues, hints, examples, peers’ responses, and domain-

related comments to improve.

Peer evaluation, self-evaluation, and active collaboration are advanced features to

enhance the acquisition of ER skills

This feature was created to help learners apply metacognitive thinking skills by

comparing their performance to that of their peers, evaluating the gap, using the chat feature

to seek or provide an explanation, challenging peers’ responses, or appreciating the work

of others. However, during the training period, the majority of the students did not actively

use this capability, implying that during training, learners focused their efforts on

comprehension and learning abilities at a cognitive level, and external input was necessary

to scaffold their metacognitive skills. Novices struggle to self-regulate metacognitive

activities by utilizing self-evaluation or peer-evaluation features. Self-evaluation activity

is not effective in regulating metacognitive behaviors, as students tend to either

overestimate or underestimate their performance and are unable to take appropriate action

plans to improve their skills. This does not support the findings of previous studies (Ge,

2013; Rivera-Gutierrez et al., 2016), which showed that self-evaluation activities and peer

review helped students improve their problem-solving skills in the learning environment.

Fathom was effective in the teaching-learning of ER skills

Studies have shown that after training novices in Fathom, they were able to learn ER

skills. The quality of the problem formulation and solution design improved from pretest

to posttest, which implies that the scaffolding provided in Fathom was effective in the

teaching-learning of ER skills. The pretest responses show that novices tend to converge

early on a single solution without spending much time on problem exploration and

alternative solution generation. This leads to incomplete problem formulation, which

affects the design quality. The scaffolding provided in Fathom directed the learners to think

explicitly about exploring the problem space and solution space before reducing the

problem formulation and solution design. The cognitive tools provided in the system aided

in effectively visualizing the problem and solution space. Metacognitive support allowed

learners to reflect on their skills and improve them accordingly. Thus, we support previous

findings (Bannert & Mengelkamp, 2013; Jonassen, 2011; Xun & Land, 2004) which state

that for novices, explicit training is needed on using various cognitive and metacognitive

tools using various scaffolding mechanisms such as prompts, drawing tools, solved

examples, hints, and expert feedback.

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 32 of 35

Limitations

The limitations of this study are discussed in this section from the learners, instructors, and

domain and research perspectives.

1. Learner characteristics: Our research findings are confined to computer

engineering students who have completed a data structures and algorithm course,

and are fluent in English and computer use.

2. Topic and domain: This research is carried out as part of a data structures course

for computer engineering students that focuses on software design problem-

solving. This has not been tested for design challenges in other related courses

or in engineering fields.

3. Near vs. far transfer: Experiments were conducted to determine whether ER

abilities could be transferred over the same course. Because the trials were not

longitudinal, we did not test for far transfers.

Conclusion

In this paper, we discussed three DBR cycles following the design and development of the

intervention Fathom used for the teaching-learning of ER skills in the context of solving

software design problems. The overall contributions are the characterization and

importance of ER skills in solving ill-structured software design problems, identification

of ER cognitive tools to expand-reduce problem-solution space, and cognitive and

metacognitive scaffolds. In future work, we aim to test and validate another type of design

problem and conduct longitudinal studies over one year on the same set of students to test

the transfer of ER skills.

Abbreviations

TELE: Technology-enhanced learning environment; ER skills: Expand-reduce skills; DBR: Design-based research; AHP:

Analytic Hierarchy Process; RQ: Research question; SD: Standard deviation.

Acknowledgements

The authors would like to acknowledge Prajish Prasad and Kavya Alse for providing suggestions in the design and

development of the system, and Shitanshu and Anurag for helping in the design of the research studies.

Authors’ contributions

DRP has designed and developed the learning environment, conducted research studies, collected and analyzed data,

and writing the manuscript. SI and SM supervised the whole process of design and development of learning

environments, literature survey, design of the research studies, and majorly in the review of the manuscript. All the

authors read and approved the final manuscript.

Authors’ information

Deepti Reddy Patil, Ph.D is an Associate Professor in the Department of Computer Engineering, Mukesh Patel School

of Technology Management & Engineering, NMIMS University, Mumbai, 400056. Sridhar Iyer, Ph.D is a Professor in

Inter-disciplinary Program in Educational Technology, Indian Institute of Technology Bombay, Powai, Mumbai 400076.

Sasikumar M., Ph.D, is an Executive Director, at CDAC Mumbai, India.

Funding

Not applicable.

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 33 of 35

Availability of data and materials

Not applicable.

Declarations

Competing interests

The author declares that he has no competing interests.

Author details
1 NMIMS University, India

2 Indian Institute of Technology Bombay, India

3 CDAC Mumbai, India

Received: 17 June 2023 Accepted: 2 April 2024

Published online: 1 January 2025 (Online First: 7 May 2024)

References

ABET Engineering Accreditation Commission. (2013). Criteria for accrediting engineering programs: Effective for

reviews during the 2014-2015 accreditation cycle. ABET.

Ackoff, R. L. (1979). The future of operational research is past. Journal of the Operational Research Society, 30(2), 93–

104. https://doi.org/10.1057/jors.1979.22

Adelson, B., & Soloway, E. (1985). The role of domain experience in software design. IEEE Transactions on Software

Engineering, 11, 1351–1360. https://doi.org/10.1109/TSE.1985.231883

Amiel, T., & Reeves, T. C. (2008). Design-based research and educational technology: Rethinking technology and the

research agenda. Journal of Educational Technology & Society, 11(4), 29–40.

An, Y. J., & Cao, L. (2014). Examining the effects of metacognitive scaffolding on students’ design problem solving and

metacognitive skills in an online environment. Journal of Online Learning and Teaching, 10(4), 552–568.

Bannert, M., & Mengelkamp, C. (2013). Scaffolding hypermedia learning through metacognitive prompts. In R.

Azevedo & V. Aleven (Eds.), International handbook of metacognition and learning technologies (pp. 171–186).

Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5546-3_12

Basadur, M., Pringle, P., Speranzini, G., & Bacot, M. (2000). Collaborative problem solving through creativity in

problem definition: Expanding the pie. Creativity and Innovation Management, 9(1), 54–76.

https://doi.org/10.1111/1467-8691.00157

Cassel, S., & Victor, B. (2015). A structured approach to training open-ended problem-solving. In Proceedings of 2015

IEEE Frontiers in Education Conference (pp. 1–4). IEEE. https://doi.org/10.1109/FIE.2015.7344088

Chen, X., Mitrovic, A., & Mathews, M. (2019). Learning from worked examples, erroneous examples, and problem

solving: Toward adaptive selection of learning activities. IEEE Transactions on Learning Technologies, 13(1), 135–

149. https://doi.org/10.1109/TLT.2019.2896080

Cohen, L., Manion, L., & Morrison, K. (2002). Research methods in education. Routledge.

Cooperrider, B. (2008). The importance of divergent thinking in engineering design. In Proceedings of the 2008

American Society for Engineering Education Pacific Southwest Annual Conference (pp. 27–28). American Society

for Engineering Education.

Dennis, A. R., Aronson, J. E., Heninger, W. G., & Walker, E. D. (1999). Structuring time and task in electronic

brainstorming. MIS Quarterly, 95–108.

Derrick, B., Broad, A., Toher, D., & White, P. (2017). The impact of an extreme observation in a paired samples design.

Advances in Methodology and Statistics, 14(2), 1–17.

Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and

learning. Journal of Engineering Education, 94(1), 103–120. https://doi.org/10.1002/j.2168-9830.2005.tb00832.x

Eden, C., & Ackermann, F. (2001). SODA–the principles. In J. Rosenhead & J. Mingers (Eds.), Rational analysis for a

problematic world revisited (pp. 21–41). John Wiley & Sons Inc.

Ellspermann, S. J., Evans, G. W., & Basadur, M. (2007). The impact of training on the formulation of ill-structured

problems. Omega, 35(2), 221–236. https://doi.org/10.1016/j.omega.2005.05.005

Ge, X. (2013). Designing learning technologies to support self-regulation during ill-structured problem-solving

processes. In R. Azevedo & V. Aleven (Eds.), International handbook of metacognition and learning technologies

(pp. 213–228). Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5546-3_15

Ge, X., Chen, C. H., & Davis, K. A. (2005). Scaffolding novice instructional designers’ problem-solving processes using

question prompts in a web-based learning environment. Journal of Educational Computing Research, 33(2), 219–

248. https://doi.org/10.2190/5F6J-HHVF-2U2B-8T3G

Geiwitz, J. (1994). Training metacognitive skills for problem solving. Advanced Scientific Concepts.

Goel, V., & Pirolli, P. (1992). The structure of design problem spaces. Cognitive Science, 16(3), 395–429.

https://doi.org/10.1016/0364-0213(92)90038-V

https://doi.org/10.1057/jors.1979.22
https://doi.org/10.1109/TSE.1985.231883
https://doi.org/10.1007/978-1-4419-5546-3_12
https://doi.org/10.1111/1467-8691.00157
https://doi.org/10.1109/FIE.2015.7344088
https://doi.org/10.1109/TLT.2019.2896080
https://doi.org/10.1002/j.2168-9830.2005.tb00832.x
https://doi.org/10.1016/j.omega.2005.05.005
https://doi.org/10.1007/978-1-4419-5546-3_15
https://doi.org/10.2190/5F6J-HHVF-2U2B-8T3G
https://doi.org/10.1016/0364-0213(92)90038-V

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 34 of 35

Guindon, R. (1990). Knowledge exploited by experts during software system design. International Journal of Man-

Machine Studies, 33(3), 279–304. https://doi.org/10.1016/S0020-7373(05)80120-8

Howard, T. J., Culley, S. J., & Dekoninck, E. (2008). Describing the creative design process by the integration of

engineering design and cognitive psychology literature. Design Studies, 29(2), 160–180.

https://doi.org/10.1016/j.destud.2008.01.001

Jonassen, D. (2011). Supporting problem-solving in PBL. Interdisciplinary Journal of Problem-Based Learning, 5(2), 8.

Jonassen, D., Strobel, J., & Lee, C. B. (2006). Everyday problem-solving in engineering: Lessons for engineering

educators. Journal of Engineering Education, 95(2), 139–151. https://doi.org/10.1002/j.2168-

9830.2006.tb00885.x

Kostousov, S., & Kudryavtsev, D. (2017). Towards a framework of using knowledge tools for teaching by solving

problems in technology-enhanced learning environment. International Association for Development of the

Information Society.

Lian, H. (2012). Network design problems, formulations and solutions. University of Texas at Dallas.

Liu, Z., & Schonwetter, D. J. (2004). Teaching creativity in engineering. International Journal of Engineering Education,

20(5), 801–808.

Mangano, N., LaToza, T. D., Petre, M., & van der Hoek, A. (2014). How software designers interact with sketches at

the whiteboard. IEEE Transactions on Software Engineering, 41(2), 135–156.

https://doi.org/10.1109/TSE.2014.2362924

McLaren, B. M., & Isotani, S. (2011). When is it best to learn with all worked examples?. In G. Biswas, S. Bull, J. Kay &

A. Mitrovic (Eds.), Artificial Intelligence in Education. AIED 2011. Lecture Notes in Computer Science, vol 6738 (pp.

222–229). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21869-9_30

Mitrovic, A., & Suraweera, P. (2016). Teaching database design with constraint-based tutors. International Journal of

Artificial Intelligence in Education, 26, 448–456. https://doi.org/10.1007/s40593-015-0084-6

Mitrovic, A., & Weerasinghe, A. (2009). Revisiting ill-definedness and the consequences for ITSs. In V. Dimitrova, R.

Mizoguchi, B. du Boulay & A. Graesser (Eds.), Proceedings of the 2009 conference on Artificial Intelligence in

Education: Building Learning Systems that Care: From Knowledge Representation to Affective Modelling (pp. 375–

382). IOS Press.

Moritz, S., & Blank, G. (2008). Generating and evaluating object-oriented designs for instructors and novice students.

In V. Aleven, K. Ashley, C. Lynch & N. Pinkwart (Eds.), Intelligent Tutoring Systems for Ill-Defined Domains:

Assessment and Feedback in Ill-Defined Domains (pp. 35–45). IEEE.

Narciss, S. (2013). Designing and evaluating tutoring feedback strategies for digital learning. Digital Education Review,

23, 7–26.

Norese, M. F. (1995). MACRAME: A problem formulation and model structuring assistant in multiactorial contexts.

European Journal of Operational Research, 84(1), 25–34. https://doi.org/10.1016/0377-2217(94)00315-4

Nyhoff, L. R. (2005). ADTs, data structures, and problem solving with C++. Pearson/Prentice Hall.

Pressman, R. S. (2010). A practitioner’s approach. Software Engineering, 2, 41–42.

Pugh, S. (1981). Concept selection: A method that works. In Proceedings of the International Conference on

Engineering Design (pp. 497–506). The Design Society.

Pugh, S. (1991). Total design: Integrated methods for successful product engineering. Addison-Wesley.

Razavian, M., Tang, A., Capilla, R., & Lago, P. (2016). In two minds: How reflections influence software design thinking.

Journal of Software: Evolution and Process, 28(6), 394–426. https://doi.org/10.1002/smr.1776

Reddy, P. D., Iyer, S., & Sasikumar, M. (2016). Teaching and learning of divergent and convergent thinking through

open-problem solving in a data structures course. In Proceedings of 2016 International Conference on Learning

and Teaching in Computing and Engineering (pp. 178–185). IEEE.

Reddy, P. D., Iyer, S., & Sasikumar, M. (2017). FATHOM: TEL environment to develop divergent and convergent

thinking skills in software design. In Proceedings of 2017 IEEE 17th International Conference on Advanced Learning

Technologies (pp. 414–418). IEEE.

Reddy, D., Iyer, S., & Sasikumar, M. (2018). Technology enhanced learning (TEL) environment to develop expansionist-

reductionist (ER) thinking skills through software design problem solving. In Proceedings of 2018 IEEE Tenth

International Conference on Technology for Education (pp. 166–173). IEEE.

Reeves, T. (2006). Design research from a technology perspective. In Educational design research (pp. 64–78).

Routledge.

Rivera-Gutierrez, D., Kleinsmith, A., Childs, G., Pileggi, R., & Lok, B. (2016). Self-assessment through interactive in-

action reflections to improve interpersonal skills training. In Proceedings of 2016 IEEE 16th International

Conference on Advanced Learning Technologies (pp. 143–147). IEEE.

Saaty, T. L. (2008). Decision-making with the Analytic Hierarchy Process. International Journal of Services Sciences,

1(1), 83–98. https://doi.org/10.1504/IJSSCI.2008.017590

Shields, P. M., & Rangarajan, N. (2013). A playbook for research methods: Integrating conceptual frameworks and

project management. New Forums Press.

Soller, A., Lesgold, A., Linton, F., & Goodman, B. (1999). What makes peer interaction effective? Modeling effective

communication in an intelligent CSCL. In Proceedings of the 1999 AAAI Fall Symposium: Psychological Models Of

Communication In Collaborative Systems (pp. 116–123). Cape Cod.

https://doi.org/10.1016/S0020-7373(05)80120-8
https://doi.org/10.1016/j.destud.2008.01.001
https://doi.org/10.1002/j.2168-9830.2006.tb00885.x
https://doi.org/10.1002/j.2168-9830.2006.tb00885.x
https://doi.org/10.1109/TSE.2014.2362924
https://doi.org/10.1007/978-3-642-21869-9_30
https://doi.org/10.1007/s40593-015-0084-6
https://doi.org/10.1016/0377-2217(94)00315-4
https://doi.org/10.1002/smr.1776
https://doi.org/10.1504/IJSSCI.2008.017590

Reddy et al. Research and Practice in Technology Enhanced Learning (2025) 20:6 Page 35 of 35

Tang, A., Aleti, A., Burge, J., & van Vliet, H. (2010). What makes software design effective?. Design Studies, 31(6), 614–

640. https://doi.org/10.1016/j.destud.2010.09.004

Tang, A., Bex, F., Schriek, C., & van der Werf, J. M. E. (2018). Improving software design reasoning–A reminder card

approach. Journal of Systems and Software, 144, 22–40. https://doi.org/10.1016/j.jss.2018.05.019

Tang, A., Tran, M. H., Han, J., & van Vliet, H. (2008). Design reasoning improves software design quality. In S. Becker,

F. Plasil & R. Reussner (Eds.), Quality of Software Architectures. Models and Architectures. QoSA 2008. Lecture

Notes in Computer Science, vol 5281 (pp. 28–42). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-

87879-7_2

Vieira, S. M., Kaymak, U., & Sousa, J. M. (2010). Cohen’s kappa coefficient as a performance measure for feature

selection. In Proceedings of International Conference on Fuzzy Systems (pp. 1–8). IEEE.

Volkema, R. J. (1983). Problem formulation in planning and design. Management Science, 29(6), 639–652.

Wang, M., Wu, B., Chen, N. S., & Spector, J. M. (2013). Connecting problem-solving and knowledge-construction

processes in a visualization-based learning environment. Computers & Education, 68, 293–306.

https://doi.org/10.1016/j.compedu.2013.05.004

Willis, J. W. (Ed.). (2009). Constructivist instructional design (C-ID): Foundations, models, and examples. IAP.

Xun, G. E., & Land, S. M. (2004). A conceptual framework for scaffolding III-structured problem-solving processes

using question prompts and peer interactions. Educational Technology Research and Development, 52(2), 5–22.

Zannier, C., Chiasson, M., & Maurer, F. (2007). A model of design decision-making based on empirical results of

interviews with software designers. Information and Software Technology, 49(6), 637–653.

https://doi.org/10.1016/j.infsof.2007.02.010

Publisher’s Note
The Asia-Pacific Society for Computers in Education (APSCE) remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Research and Practice in Technology Enhanced Learning (RPTEL)
is an open-access journal and free of publication fee.

https://doi.org/10.1016/j.destud.2010.09.004
https://doi.org/10.1016/j.jss.2018.05.019
https://doi.org/10.1007/978-3-540-87879-7_2
https://doi.org/10.1007/978-3-540-87879-7_2
https://doi.org/10.1016/j.compedu.2013.05.004
https://doi.org/10.1016/j.infsof.2007.02.010

