
Graphs on Affine and Linear Spaces and Deuber Sets

David S. Gunderson
Department of Mathematics

University of Manitoba
Winnipeg, Manitoba R3T 2N2, Canada

gunderso@cc.umanitoba.ca

Hanno Lefmann
Fakultät für Informatik

TU Chemnitz
09107 Chemnitz, Germany

lefmann@informatik.tu-chemnitz.de

Submitted: Sep 20, 2012; Accepted: May 26, 2013; Published: Jun 7, 2013

Mathematics Subject Classifications: 05D10

Abstract

If G is a large Kk-free graph, by Ramsey’s theorem, a large set of vertices is
independent. For graphs whose vertices are positive integers, much recent work has
been done to identify what arithmetic structure is possible in an independent set.
This paper addresses similar problems: for graphs whose vertices are affine or linear
spaces over a finite field, and when the vertices of the graph are elements of an
arbitrary Abelian group.

1 Introduction and Notation

For a set X and a positive integer i, the collection of all i-element subsets of X is denoted
[X]i = {Y ⊆ X : |X| = i}. For integers a < b, let [a, b] = {z ∈ Z : a 6 z 6 b}. Let
[n] = [1, n] = {1, 2, . . . , n} and let [n]i be an abbreviation for [[n]]i. Let G = (V,E) denote
a (simple) graph with vertex-set V = V (G) and edge-set E = E(G), where E ⊆ [V ]2.
The complete graph on k vertices is denoted by Kk, and a graph G is called Kk-free if G
contains no copy of Kk as a subgraph. A subset I ⊆ V (G) is called independent in G if
and only if I does not contain any edges from E, i.e., [I]2 ∩ E = ∅.

One form of Ramsey’s theorem [15] says that for any integers k, ` ∈ Z+, there exists
an n so that any Kk-free graph on n vertices contains an independent set with at least `
vertices. In 1995, Erdős asked if G is triangle-free graph on Z+, does there exist a Schur
triple {x, y, x+y}, that is independent? This was answered affirmatively by  Luczak, Rödl,
and Schoen [12] by a much more general theorem for Kk-free graphs on Z+. Similarly,
it was found by Gunderson, Leader, Prömel, and Rödl [9] that there are arbitrarily long
finite arithmetic progressions that are independent in Kk-free graphs on Z+. Motivated
by a question from Deuber, both results were generalized in [10] by the aforementioned
authors to provide a characterization of those arithmetic structures that can be found
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in an independent set. These and more such generalizations are considered in detail in
Section 5.

Here, similar questions about the richness of structure in independent sets are inves-
tigated for Kk-free graphs whose vertices are either points in a finite vector space (see
Theorem 1) or linear lines in a finite vector space (see Theorem 5). In each case, entire
subspaces (resp., affine or linear) are found in independent sets. We also show that there
are no higher dimensional analogues of Theorems 1 and 5. As an application, in Section
5 we consider Kk-free graphs G whose vertices are elements of an Abelian group G, and
we show the existence of solutions x = (x1, . . . , x`)

T ∈ (G \ {0})` to any given partition
regular system Mx = 0 of equations over G \ {0}, where {x1, . . . , x`} is an independent
set in the graph G. It turns out that for the countably infinite direct sum G = Z<ω

p the
considerations are easier than in the case G = Z.

2 Affine and Linear Spaces

In this section we introduce some useful notation.
When q is a power of a prime, let Fq denote the Galois field with q elements, and let Fn

q

denote the n-dimensional linear vector space over Fq. An m-dimensional linear subspace
W ⊆ Fn

q is a set of vectors for which there exists m (basis) vectors v1, . . . ,vm ∈ Fn
q that

are linearly independent (over Fq) and for which W = span{v1, . . . ,vm}. For any vector
a ∈ Fn

q , the set U = a+W = {a+w : w ∈ W} is called an affine subspace, and the vector
a is called the translation vector or initial vector of U . The dimension of U = a + W is
the dimension of W .

A vector v ∈ Fn
q is written with respect to the standard basis vectors e1 = (1, 0, . . . , 0),

e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1), so the notation v = (v1, . . . , vn) means that
v =

∑n
i=1 viei. Each vi ∈ Fq is called the i-th coordinate of v, also denoted v(i) = vi.

For any (linear or affine) subspace W of Fn
q , there is a certain kind of basis for W that

is convenient to work with here. By elementary linear algebra, for any m-dimensional
(linear) subspace W of Fn

q , there is a unique ordered basis (w1, . . . ,wm) satisfying:
(i) the first non-zero coordinate of each wi is equal to 1,
(ii) for each i, if the first non-zero coordinate of wi occurs at position ci, then c1 <

c2 < · · · < cm, and
(iii) for each i and each j 6= i, wj(ci) = 0.

Such an ordered basis satisfying (i)–(iii) is said to be the Schur normal form (SNF) basis
for W . If (w1, . . . ,wm) is the SNF basis for a linear subspace W , write

W = 〈w1, . . . ,wm〉.

For an affine space U = a + W , the translation vector a is not unique, however, if W is
in SNF as above, there is a unique initial vector a0 so that for i = 1, . . . ,m, the ci-th
coordinate is zero, that is, a0(ci) = 0. In this case,

U = 〈a0; w1, . . . ,wm〉
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is the (unique) SNF for U .
To illustrate the notation, consider the space V = F3

5. The set A = {(x, y, z) :
y = 3} of points is an affine plane with translation vector a0 = (0, 3, 0), and so A =
〈(0, 3, 0); (1, 0, 0), (0, 0, 1)〉.

The 1-dimensional affine subspace B = {(x, y, z) : x + 3z = 1, y = 3} of A has SNF
B = 〈(0, 3, 2); (1, 0, 3)〉. If the above affine line B is written as 〈a0; a1〉 in SNF, the t’th
point a0 + t · a1 on the line is uniquely determined.

3 Affine Points

In this section we consider graphs with vertices being points in a vector space over some
finite field. Here is the first main result in this paper.

Theorem 1. Fix a prime power q and let k,m with k > 3 be positive integers. Then,
there exists a positive integer n1 = n1(q, k,m) such that for every integer n > n1, every
Kk-free graph G on the vertex-set Fn

q contains an m-dimensional affine subspace whose
set of points forms an independent set in the graph G.

To prove Theorem 1, we use a higher-dimensional partition result. Such a strategy
turned out to be fruitful in Canonizing Ramsey Theory. Here we use the following result
of Graham, Leeb, and Rothschild [7].

Theorem 2. Let q be a prime power, and let `,m, r be nonnegative integers with ` 6
m. Then, there exists a positive integer n2 = n2(q, `,m, r) such that for every integer
n > n2 and every r-coloring of the `-dimensional affine subspaces of Fn

q there exists an
m-dimensional affine subspace S ⊆ Fn

q such that all `-dimensional affine subspaces in S
are colored the same.

Proof. (of Theorem 1) Assume, without loss of generality, that k 6 m, for then the case
for smaller m follows directly.

From Theorem 2, we set n2 = n2(q, 1,m, 2
q(q−1)/2). We claim that n1 = n1(q, k,m) 6

n2 for each k 6 m. Let n > n2, and let G = (V,E) be a Kk-free graph on the vertex-set
V = Fn

q . It remains to find an m-dimensional affine subspace whose vertices form an
independent set in G.

Color the 1-dimensional affine subspaces L of Fn
q (affine lines) according to the pattern

of the edges in L, i.e., color the line 〈a0; a1〉 in SNF by the set of all unordered pairs {g, h},
g, h ∈ Fq, for which {a0 + g ·a1, a0 +h ·a1} ∈ E. Hence, at most 2q(q−1)/2 colors are used.

By Theorem 2 there exists an m-dimensional affine subspace S of Fn
q such that all

its 1-dimensional affine subspaces are colored the same, hence they all have the same
pattern with respect to the occurring edges. Let the m-dimensional affine subspace S =
〈a0; a1, . . . , am〉 be in SNF, where a0 is the initial vector.

We show that the points in S form an independent set in G. For a contradiction first
assume that in the 1-dimensional affine subspace given by 〈a0; a1〉 in SNF, for some i 6= j,

{a0 + i · a1, a0 + j · a1} ∈ E. (1)
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We claim that the following k points in S yield a complete graph Kk in the graph G:

a0 + i · a1,

a0 + j · a1 + i · a2,

a0 + j · a1 + j · a2 + i · a3,
...

a0 + j · a1 + · · ·+ j · ak−1 + i · ak.

To see this, for 1 6 r < s 6 k consider the 1-dimensional affine subspaces given by
〈xr,s; yr,s〉 of S in SNF with initial vector xr,s, where

xr,s = a0 + j ·
r−1∑
g=1

ag − i · j · (j − i)−1 ·
s−1∑

h=r+1

ah − i2 · (j − i)−1 · as, (2)

yr,s = ar + j · (j − i)−1 ·
s−1∑

h=r+1

ah + i · (j − i)−1 · as. (3)

Note that
∑s−1

h=r+1 ah = 0 for s = r + 1. As 〈a0; a1, . . . , am〉 is in SNF, so are the affine
lines 〈xr,s; yr,s〉. Namely, the first nonzero entry of yr,s arises from the first nonzero entry
of the vector ar, hence is equal to 1, and the corresponding coordinate of the vector xr,s

is equal to 0.
All affine lines in S are colored the same. With (2), and (3) we infer

xr,s + i · yr,s = a0 + j ·
r−1∑
g=1

ag + i · ar,

xr,s + j · yr,s = a0 + j ·
s−1∑
g=1

ag + i · as,

and by (1) for 1 6 r < s 6 k we obtain

{a0 + j ·
r−1∑
g=1

ag + i · ar, a0 + j ·
s−1∑
g=1

ag + i · as} ∈ E.

Hence the points a0 + j ·
∑r−1

g=1 ag + i ·ar, r = 1, . . . , k, yield a complete subgraph Kk in G,
which is a contradiction. As all 1-dimensional affine subspaces in S are colored the same,
no affine line in S contains an edge of G. Since two distinct points determine uniquely an
affine line, it follows that the set of points in S is an independent set in G.

3.1 A Different Proof

Using methods from ergodic theory, the following density version of Theorem 2 for affine
points was given by Fürstenberg and Katznelson [6]. For another proof by purely com-
binatorial methods, following the original approach of Szemerédi [17], which he used for
proving the density result for arithmetic progressions, compare Eggenwirth [5].
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Theorem 3. For every prime power q, ε > 0 and ` ∈ Z+, there exists a least positive
integer n3 = n3(q, ε, `) such that for every integer n > n3 every subset X ⊆ Fn

q with
|X| > ε · qn contains an `-dimensional affine subspace.

Theorem 3 can be used to give another proof of Theorem 1, a proof similar to one
given in [10], where the corresponding problem for arithmetic progressions in Z+ was
investigated.

Proof. (second proof of Theorem 1) Let S(k,m, q) denote the following statement: There
exists n0(k,m, q) such that for every integer n > n0(k,m, q), every Kk-free graph with
vertex-set being the set of all qn affine points in an n-dimensional affine vector space over
Fq contains an m-dimensional affine subspace whose affine points yield an independent
set in G.

Fix m and q; the proof of S(k,m, q) is by induction on k. Certainly S(2,m, q) holds,
hence assume that for some k > 3, statement S(k − 1,m, q) holds. Let n0(k,m, q) =
n3(q, 2/q

2m, n0(k − 1,m, q)) and let n > n0(k,m, q). Let G = (V,E) be a Kk-free graph
with vertex-set being the set of all points in an n-dimensional affine vector space over Fq.

The number of m-dimensional linear subspaces in Fn
q is equal to(

n

m

)
q

=
(qn − 1) · (qn−1 − 1) · · · (qn−m+1 − 1)

(qm − 1) · (qm−1 − 1) · · · (q − 1)
,

and the number of m-dimensional affine subspaces in Fn
q is qn−m ·

(
n
m

)
q
. Moreover, each

affine line can be extended in
(
n−1
m−1

)
q

ways to an m-dimensional affine subspace in Fn
q .

Thus, if every m-dimensional affine subspace in Fn
q contains an edge, then G contains at

least
qn−m ·

(
n
m

)
q(

n−1
m−1

)
q

= qn−m · q
n − 1

qm − 1
> q2n−2m

edges. Hence there exists a vertex v in G such that the set N(v) of its neighbors has
cardinality at least 2 · qn−2m. The subgraph of G induced on the vertex-set N(v) is by
assumption Kk−1-free. By Theorem 3 with ε = 2/q2m and by choice of n0(k,m, q) the
set N(v) contains an n0(k − 1,m, q)-dimensional affine subspace S. By the induction
assumption this affine space S contains an m-dimensional affine subspace and the set of
all its affine points is an independent set in G, completing the induction step.

Remark: It would be nice to have a proof of Theorem 1 that does not use these deep
Theorems 2 or 3.

3.2 Higher Dimensional Version

In Theorem 1 vertices are points (0-dimensional subspaces) and one might expect by using
methods as in [18], for example, that an analogue to Theorem 1 might also hold, where
vertices are higher dimensional affine subspaces. However, the following observation yields
a counterexample, and shows that Theorem 1 is optimal in this sense.
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Proposition 4. Fix a prime power q and let `, n be positive integers with n > ` + 2.
There exists a triangle-free graph G = (V,E) with vertex-set V being the set of all `-
dimensional affine subspaces of Fn

q , such that each (` + 1)-dimensional affine subspace
contains two `-dimensional affine subspaces R and S of Fn

q , which are joined by an edge,
i.e., {R, S} ∈ E.

Proof. Fix a total ordering <∗ of the `-dimensional affine subspaces of Fn
q with the

following property: for two `-dimensional affine spaces R = 〈a0; a1, . . . , a`〉 and S =
〈b0; b1, . . . ,b`〉 in SNF, if the position of the first occurrence of 1 in a1 is less than the
position of the first occurrence of 1 in b1, then R <∗ S.

Next we define the edge-set E of the graph G = (V,E). For two `-dimensional affine
subspaces R = 〈a0; a1, . . . , a`〉 and S = 〈b0; b1, . . . ,b`〉 in SNF of Fn

q with R <∗ S, let
{R, S} ∈ E if and only if b0 = a0 + a1 and bi = ai+1, i = 1, . . . , `− 1.

We claim that G is triangle-free. Namely, assume that the vertices R, S, U with R <∗

S <∗ U form a triangle, i.e., R = 〈a0; a1, . . . , a`〉, and S = 〈a0 + a1; a2, . . . , a`, a`+1〉, and
U = 〈a0 + a1 + a2; a3, . . . , a`, a`+1, a`+2〉 in SNF, as {R, S}, {S, U} ∈ E. The assumption
that {R,U} ∈ E implies a0 + a1 = a0 + a1 + a2, i.e., a2 is the all-zeros vector, which is a
contradiction.

Now let W = 〈c0; c1, . . . , c`+1〉 in SNF be an (`+1)-dimensional affine subspace of Fn
q .

Then, by construction, for the two `-dimensional affine subspaces R = 〈c0; c1, . . . , c`〉 and
S = 〈c0 + c1; c2, . . . , c`+1〉 in SNF we have R <∗ S, and R and S are joined by an edge in
G.

4 Linear Lines

In this section we consider the corresponding problem to Theorem 1 for graphs with the
vertex-set consisting of all linear lines of a linear vector space over Fq. We prove the
following analog of Theorem 1 for linear spaces.

Theorem 5. Let q be a prime power, and let k,m be positive integers with k > 3 and
m > 2. Then, there exists a positive integer n4 = n4(q, k,m) such that for every n > n4,
every Kk-free graph G with vertex-set being the set of all 1-dimensional linear subspaces
of Fn

q contains an m-dimensional linear subspace S such that the set of all 1-dimensional
linear subspaces in S is an independent set in the graph G.

In our arguments we use the following version of Theorem 2 for linear spaces due to
Graham, Leeb and Rothschild [7].

Theorem 6. Let q be a prime power and let `,m, r be positive integers with ` 6 m and
r > 1. Then, there exists a positive integer n5 = n5(q, `,m, r) such that for every integer
n > n5 and for every r-coloring of the `-dimensional linear subspaces of Fn

q , there exists
an m-dimensional linear subspace of Fn

q such that all its `-dimensional linear subspaces
are colored the same.

As in the affine case, an m-dimensional linear space S = 〈a1, . . . , am〉 is given in SNF.
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Proof. (of Theorem 5) Since we may replace m by max{m, k + 1}, we may assume that
m > k + 1. Fix n4 = n4(q, k,m) = n5(q, 2,m, 2

q+1) according to Theorem 6. Let n > n4

and let G = (V,E) be a Kk-free graph with vertex-set V , where V is the set of all
1-dimensional linear subspaces of Fn

q .
Color each 2-dimensional linear subspace P of Fn

q according to the pattern of the edges
occurring in P , i.e., color the 2-dimensional linear subspace given by 〈a1, a2〉 in SNF by
the set of all unordered pairs {(i1, i2), (j1, j2)} such that the two 1-dimensional linear
subspaces given by 〈i1 ·a1 + i2 ·a2〉 and 〈j1 ·a1 +j2 ·a2〉 are in SNF and form an edge in the
graph G. Note that all 1-dimensional linear subspaces of a 2-dimensional linear subspace
P = 〈a1, a2〉 in SNF are given by 〈a1 + i · a2〉 for some i ∈ Fq and by 〈a2〉, so there are
exactly q + 1 such spaces. Therefore the color of P contains only the unordered pairs of
the form {(1, i), (0, 1)}, and {(1, i), (1, j)} for some i, j ∈ Fq, i 6= j. For this coloring at
most 2q+1 colors are used.

By Theorem 6, there exists an m-dimensional linear subspace S such that all 2-
dimensional linear subspaces of S are colored the same, hence they all have the same
pattern with respect to the occurring edges. Let the linear subspace S be given by
〈a1, . . . , am〉 in SNF.

We claim that the set of all linear lines in S is independent in G. Suppose, for
a contradiction, that the color of some 2-dimensional linear subspace in S is not the
empty set, hence contains some unordered pair p = {(p1, p2), (p3, p4)}. Then for the
2-dimensional linear space given by 〈a1, a2〉 in SNF,

{p1 · a1 + p2 · a2, p3 · a1 + p4 · a2} ∈ E. (4)

All 2-dimensional linear subspaces of S are colored the same. According to the type of
this pair p we distinguish two cases.

Case (i): p = {(1, i), (0, 1)}.
We claim that the 1-dimensional linear subspaces 〈aj +i ·

∑m
`=j+1 a`〉 of S, j = 1, . . . , k,

form a complete subgraph Kk in G. To see this, consider all 2-dimensional linear subspaces
in S given by 〈xr,s,yr,s〉, 1 6 r < s 6 k, where

xr,s = ar + i ·
s−1∑

`=r+1

a` + (i− i2) ·
m∑

`=s+1

a` (5)

yr,s = as + i ·
m∑

`=s+1

a`, (6)

where
∑s−1

`=r+1 a` = 0 for s = r + 1.
With 〈a1, . . . , am〉 in SNF, the 2-dimensional subspaces 〈xr,s,yr,s〉, 1 6 r < s 6 k, are

also in SNF. Namely, the first nonzero entry of xr,s arises from the vector ar and is equal
to 1, and the first nonzero entry of yr,s arises from the vector as and is equal to 1 and the

the electronic journal of combinatorics 20(2) (2013), #P47 7



corresponding coordinate of the vector xr,s is equal to 0. By (4) with (5) and (6),

xr,s + i · yr,s = ar + i ·
m∑

`=r+1

a`,

0 · xr,s + 1 · yr,s = as + i ·
m∑

`=s+1

a`,

hence, for 1 6 r < s 6 k{
ar + i ·

m∑
`=r+1

a`, as + i ·
m∑

`=s+1

a`

}
∈ E,

and we have found a complete subgraph Kk in G, which is a contradiction. Thus every
2-dimensional linear subspace of S is colored by the empty set. As any two 1-dimensional
linear subspaces of S are contained in a 2-dimensional linear space, the set of all 1-
dimensional linear subspaces of S is an independent set in G.

Case (ii): p = {(1, i), (1, j)}, where i 6= j.
We claim that the 1-dimensional linear subspaces 〈a1 + j ·

∑r
g=2 ag + i · ar+1〉 of S,

r = 1, . . . , k − 1, and 〈a1 + j ·
∑m

g=2 ag〉 form a complete subgraph Kk in G. To see this,
consider first the 2-dimensional linear subspaces of S given by 〈xr,s,yr,s〉, 1 6 r < s 6
k − 1, with

xr,s = a1 + j ·
r∑

g=2

ag − i · j · (j − i)−1 ·
s∑

h=r+2

ah − i2 · (j − i)−1 · as+1, (7)

yr,s = ar+1 + j · (j − i)−1 ·
s∑

h=r+2

ah + i · (j − i)−1 · as+1, (8)

where
∑s−1

`=r+1 a` = 0 for s = r + 1.
As before, with 〈a1, . . . , am〉 in SNF each 2-dimensional linear subspace given by

〈xr,s,yr,s〉 is in SNF, too, 1 6 r < s 6 k − 1.
By (4) with (7) and (8),

xr,s + i · yr,s = a1 + j ·
r∑

g=2

ag + i · ar+1,

xr,s + j · yr,s = a1 + j ·
s∑

g=2

ag + i · as+1,

hence for 1 6 i < j 6 k − 1 we infer{
a1 + j ·

r∑
g=2

ag + i · ar+1, a1 + j ·
s∑

g=2

ag + i · as+1

}
∈ E, (9)
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giving so far a copy of Kk−1 in G. This we will extend to a copy of Kk in G.
Next consider the 2-dimensional linear subspaces of S given by 〈xr,yr〉, r = 1, . . . , k−1,

with

xr = a1 + j ·
r∑

g=2

ag − i · j · (j − i)−1 ·
m∑

h=r+2

ah, (10)

yr = ar+1 + j · (j − i)−1 ·
m∑

h=r+2

ah. (11)

Again, with 〈a1, . . . , am〉 in SNF each linear subspace given by 〈xr,yr〉 is in SNF, too,
r = 1, . . . , k − 1.

By (4) with (10) and (11),

xr + i · yr = a1 + j ·
r∑

g=2

ag + i · ar+1,

xr + j · yr = a1 + j ·
m∑
g=2

ag,

hence for r = 1, . . . , k − 1 we infer{
a1 + j ·

r∑
g=2

ag + i · ar+1, a1 + j ·
m∑
g=2

ag

}
∈ E.

With (9) we obtain a copy of Kk in G, which is a contradiction. Thus each 2-dimensional
linear subspace of S does not contain any edge of G. As two 1-dimensional linear spaces
are contained in a 2-dimensional linear space, the set of all 1-dimensional linear subspaces
in S is an independent set in G.

With arguments similar to those used in the proof of Proposition 4, the next result
follows.

Proposition 7. Fix a prime power q and let `, n be positive integers with ` > 2 and
n > ` + 2. There exists a triangle-free graph G = (V,E) with vertex-set V being the
set of all `-dimensional linear subspaces of Fn

q , such that each (` + 1)-dimensional linear
subspace contains two `-dimensional linear subspaces R and S of Fn

q , which are joined by
an edge, i.e., {R, S} ∈ E.

Proof. Fix an arbitrary total ordering <∗ of the `-dimensional linear subspaces of Fn
q

with the property that for two `-dimensional linear subspaces R = 〈a1, . . . , a`〉 and S =
〈b1, . . . ,b`〉 in SNF of Fn

q : if the position of the first occurrence of 1 in a1 is smaller than
the position of the first occurrence of 1 in b1, then R <∗ S.

Let the edge-set E of the graphG = (V,E) be defined as follows. For two `-dimensional
linear subspaces R = 〈a1, . . . , a`〉 and S = 〈b1, . . . ,b`〉 in SNF of Fn

q with R <∗ S, let
{R, S} ∈ E if and only if bi = ai+1, i = 1, . . . , `− 1.
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It is easy to see that the graphG is triangle-free. Namely, for contradiction assume that
the vertices R, S, U with R <∗ S <∗ U form a triangle. Then we have R = 〈a1, . . . , a`〉,
and S = 〈a2, . . . , a`, a`+1〉, and U = 〈a3, . . . , a`, a`+1, a`+2〉 in SNF, as {R, S}, {S, U} ∈ E.
By assumption, {R,U} ∈ E, which implies that the vectors a2 and a3 are identical, hence
with ` > 2 this contradicts the fact that the `-dimensional linear space S is in SNF.

Now let W = 〈c1, . . . , c`+1〉 be an (` + 1)-dimensional linear subspace of Fn
q in SNF.

Then, by construction, for the two `-dimensional linear subspaces R = 〈c1, . . . , c`〉 and
S = 〈c2, . . . , c`+1〉 in SNF we have R <∗ S, and R and S are joined by an edge in G.

5 Partition Regular Systems of Equations

In this section we give an application of Theorem 5 to solutions of systems of linear
equations.

For an integer-valued k × `-matrix M , the system Mx = 0 is called partition regular
if and only if for every coloring of Z+ with finitely many colors, there exists a solution
x = (x1, . . . , x`)

T ∈ (Z+)` to Mx = 0 such that {x1, . . . , x`} is monochromatic. Define M
to be partition regular if and only if the system Mx = 0 is partition regular. For example,
the matrix [1, 1,−1] is partition regular, which is just Schur’s theorem [16], i.e., under
any finite coloring of Z+, there exists x, y, z all with the same color satisfying x+ y = z.
(See, e.g., [8] for more examples of partition regular matrices.)

The above definition of “partition regular” has been extended. A k × ` matrix M
with integer entries is partition regular over a set X if and only if for any finite coloring
of X, there exists a solution x = (x1, . . . , x`)

T ∈ X` to Mx = 0 so that {x1, . . . , x`} is
monochromatic. So a partition regular matrix defined above is partition regular over Z+.
Rado [13] observed that partition regularity over Z+ is equivalent to partition regularity
over Z \ {0} or to partition regularity over Q \ {0}.

The similar definition can be made over a group: Let G be an (additive) Abelian
group. An integer-valued k × `-matrix M is partition regular over G \ {0} if and only if
for every coloring of G\{0} with a finite number of colors there exists a monochromatic
solution x = (x1, . . . , x`)

T ∈ (G \ {0})` to the system Mx = 0.
In 1933, a characterization of the set of all partition regular systems was given by

Rado [13] in terms of a property of the columns of the matrix. An integer-valued matrix
M has the columns property over Z if and only if there exists a partition I0, I1, . . . , Im of
the set of column indices of M such that (i) the sum of all columns with indices from
I0 is the all zero-vector, and (ii) for each j = 1, . . . ,m, the sum of all column vectors
with indices from Ij is a (rational) linear combination of the columns with indices from
I0 ∪ · · · ∪ Ij−1 (equivalently, there is cj ∈ Z so that cj times the sum of the columns with
indices from Ij is a linear combination with coefficients in Z of the columns with indices
from I0 ∪ · · · ∪ Ij−1 ). Rado [13] proved that if M is a matrix with integer entries, then
Mx = 0 is partition regular over Z \ {0} if and only if M has the columns property
over Z. Rado [14, Thm VII] generalized his theorem for partition regularity and columns
condition over any subring of complex numbers. Bergelson, Deuber, and Hindman [1]
showed that for any finite field Fq and any k × ` matrix M over Fq, M has the columns
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property over Fq if and only if for every r ∈ Z+, there exists n0 so that for every n > n0,
if Fn

q \ {0} is r-colored, then there exists a solution x = (x1, . . . , x`)
T to Mx = 0 so that

{x1, . . . , x`} is monochromatic.
Another characterization of partition regular systems over Z\{0} was given by Deuber

[2] in terms of so-called (m, p, c)-sets; in the following definition, the notation [−p, p] =
{z ∈ Z : −p 6 z 6 p} is used.

Definition 8. Let m, p, c be nonnegative integers. A set S ⊂ Z+ is called an (m, p, c)-set
if and only if there exist m+ 1 positive integers a0, . . . , am such that

S = {ca0 + λ1a1 + λ2a2 + · · ·+ λmam : λ1, λ2, . . . , λm ∈ [−p, p]}
∪{ca1 + λ2a2 + · · ·+ λmam : λ2, . . . , λm ∈ [−p, p]}

...

∪{cam−1 + λmam : λm ∈ [−p, p]}
∪{cam}.

Today, (m, p, c)-sets are sometimes called Deuber sets.
The next result of Deuber [2] shows that solutions of partition regular systems can be

found in (m, p, c)-sets.

Theorem 9. Let M be an integer-valued k× `-matrix so that Mx = 0 is partition regular
over Z \ {0}. Then there exists a triple (m, p, c) of positive integers such that every
(m, p, c)-set in Z+ contains a solution x = (x1, . . . , x`)

T ∈ (Z+)` to the system Mx = 0.

The following result is by Gunderson, Leader, Prömel and Rödl [10]:

Theorem 10. Let k,m, p, c be positive integers. Then there exists a triple (n, q, d) of
positive integers such that for every (n, q, d)-set V and every Kk-free graph G = (V,E),
there exists an (m, p, c)-set in V which is an independent set in G.

As a consequence of Theorem 10, if G is a Kk-free graph on the set of positive in-
tegers, any finite system Mx = 0 of partition regular equations can be satisfied in an
independent set, and hence Theorem 10 generalizes most Ramsey-type theorems for finite
arithmetic structures. Deuber, Gunderson, Hindman, and Strauss [4] gave an example
of a K3-free graph on Z+ that does not contain an independent Hindman set (an infi-
nite sequence of positive integers, together with all finite sums from the sequence), so in
general Theorem 10 cannot be extended to include infinite families of partition regular
equations. However, there are infinite systems of partition regular equations, where a
similar statement like in Theorem 10 can be shown [11].

If a system Mx = 0 is not partition regular over Z+, then for some positive integer r
there is an r-coloring ∆ of Z+ that prevents monochromatic solutions. Let S1, . . . , Sr be
the color classes. Then, consider the complete r-partite graph G with vertex-set Z+ and
classes S1, . . . , Sr. By choice of the coloring ∆, each solution to Mx = 0 must intersect
at least two classes, hence G is Kr+1-free, but any solution x contains an edge of G.

A q-analog of (m, p, c)-sets, which are calledm-sets in [3], is now defined in the straight-
forward way:
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Definition 11. A subset S of points in a vector space V over Fq is called an [m, q, 1]-set
if and only if there exist (m + 1) vectors a0, . . . , am ∈ V , which are linearly independent
over Fq, such that

S = {a0 + λ1a1 + λ2a2 + · · ·+ λmam : λ1, λ2, . . . , λm ∈ Fq}
∪{a1 + λ2a2 + · · ·+ λmam : λ2, . . . , λm ∈ Fq}

...

∪{am−1 + λmam : λm ∈ Fq}
∪{am}.

Using Theorem 5 we obtain the following:

Theorem 12. Let Fq be a finite field with q elements. For each k,m ∈ Z+ there exists n ∈
Z+ such that every Kk-free graph G with vertex-set being the set of all points of an [n, q, 1]-
set in a linear vector space over Fq contains an [m, q, 1]-set, which is an independent set
in G.

Proof. Let N = n4(q, k,m + 1) and let U = 〈y0, . . . ,yN−1〉 be an N -dimensional linear
vector space over Fq in SNF. Let G = (V,E) be a Kk-free graph with vertex-set being the

set of all (qN − 1)/(q− 1) points in U of the form
∑N−1

i=0 µiyi, µi ∈ Fq, i = 0, 1, . . . , N − 1,
where the first nonzero entry in the sequence (µ0, µ1, . . . , µN−1) is equal to 1. Hence V is
an [N − 1, q, 1]-set.

Construct a new graph G′ = (V ′, E ′) with vertex-set being the set of all 1-dimensional
linear subspaces of U ; hence |V ′| = (qN − 1)/(q − 1), where edges are defined as follows:
for 1-dimensional subspaces 〈x〉 and 〈y〉 of U in SNF, let {〈x〉, 〈y〉} ∈ E ′ if and only if
{x,y} ∈ E.

We claim that G′ is Kk-free. Otherwise, there exist pairwise distinct 1-dimensional
linear subspaces 〈x1〉, . . . , 〈xk〉 in SNF such that {〈xi〉, 〈xj〉} ∈ E ′, 1 6 i < j 6 k. But
then {xi,xj} ∈ E, 1 6 i < j 6 k, which contradicts G being Kk-free.

By Theorem 5, in G′ there exists an (m+ 1)-dimensional linear subspace 〈a0, . . . , am〉
in SNF, such that the set of all its 1-dimensional linear subspaces is an independent set
in G′. Then the [m, q, 1]-set

S =
m⋃
j=0

{aj +
m∑

i=j+1

λiai : λj+1, . . . , λm ∈ Fq}

is an independent set in G.

For a prime p, an integer-valued matrix M has the p-columns property, if M has the
columns property over Z where all calculations are done modulo p.

Let G be an (additive) Abelian group viewed as a module over Z. The order of an
element g ∈ G is the least positive integer n such that n · g = g + · · ·+ g = 0. If no such
integer n exists, then the order of the element g is ∞.

Deuber [3] characterized all partition regular matrices with respect to Abelian groups:
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Theorem 13. Let G be an (additive) Abelian group and let M be an integer-valued matrix.
Then M is partition regular if and only if at least one of the following conditions hold:

• (i) There exists x ∈ G \ {0} such that M(x, x, . . . , x)T = 0.

• (ii) M has the columns property over Z and G contains elements of arbitrary large
finite or infinite order.

• (iii) For some prime p the matrix M has the p-columns property and G contains the
countably infinite direct sum Z<ω

p of Zp (so only finitely many entries are non-zero),
where Zp is the cyclic group of order p.

Similarly as in Theorem 9, [m, p, 1]-sets are universal for the solutions of integer-
valued matrices with the p-columns property, as the following result of Deuber shows, see
Lemma 15 in [3]:

Theorem 14. Let p be prime. Let M be an integer-valued k × `-matrix, which has the
p-columns property. Then there exists a positive integer m such that every [m, p, 1]-set
S ⊂ Z<ω

p contains a solution x = (x1, . . . , x`)
T ∈ S` to the system Mx = 0 (mod p).

We now have all tools together to prove the following consequence.

Theorem 15. Let G be an (additive) Abelian group and let M be an integer-valued k× `-
matrix, which is partition regular over G \ {0}. Let G = (V,E) be a Kk-free graph with
vertex-set G \{0}. Then there exists a solution x = (x1, . . . , x`)

T ∈ (G \{0})` to Mx = 0,
such that {x1, . . . , x`} is an independent set in the graph G.

Proof. Since the matrix M is partition regular over G \ {0}, at least one of the conditions
(i), (ii), or (iii) from Theorem 13 hold.

If (i) holds, there is nothing to show.

Assume that (ii) holds, i.e., the matrix M has the columns property over Z. Moreover,
the Abelian group G contains elements of arbitrary large finite or infinite order. By
Theorem 9 there exist positive integers m, p, c such that every (m, p, c)-set in Z+ contains
a solution x = (x1, . . . , x`)

T to the system Mx = 0.
By Theorem 10 fix positive integers n, q, d such that for every (n, q, d)-set V ⊂ Z+

and every Kk-free graph G = (V,E) there exists an (m, p, c)-set S ⊆ V , which is an
independent set in G. Fix any (n, q, d)-set T in Z+. Let M = max T . Let g be an
element in G with ord(g) > M . Consider the subset T ·g = {t ·g | t ∈ T} which is of size
|T |, since ord(g) > M , of the vertex-set G. By Theorem 10 there exists an (m, p, c)-set
S ⊆ T , such that the set S · g is an independent set in the graph G. Then there exist
x1, . . . , x` ∈ S, such that x = (x1 · g, . . . , x` · g)T is a solution to the system Mx = 0, and
{x1, . . . , x`} is an independent set in G.

If (iii) holds, then for some prime p the matrix M has the p-columns property. More-
over, the Abelian group G contains Z<ω

p . By Theorem 14 there exists a positive integer
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m such that every [m, p, 1]-set S ⊂ Z<ω
p contains a solution x = (x1, . . . , x`)

T ∈ S` to the
system Mx = 0.

By Theorem 12 there exists n ∈ Z+ such that every Kk-free graph G with vertex-
set being the set of all points of an [n, p, 1]-set in a vector space over Fp contains an
[m, p, 1]-set which is an independent set in G. Pick any [n, p, 1]-set T ⊂ Z<ω

p and pick
such an [m, p, 1]-set contained in T . This [m, p, 1]-set contains a solution to the system
Mx = 0.
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