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Abstract

This is a continuation of our paper “A Theory of Pfaffian Orientations I:
Perfect Matchings and Permanents”. We present a new combinatorial way
to compute the generating functions of T -joins and k-cuts of graphs. As a
consequence, we show that the computational problem to find the maximum
weight of an edge-cut is polynomially solvable for the instances (G,w) where
G is a graph embedded on an arbitrary fixed orientable surface and the weight
function w has only a bounded number of different values. We also survey
the related results concerning a duality of the Tutte polynomial, and present
an application for the weight enumerator of a binary code. In a continuation
of this paper which is in preparation we present an application to the Ising
problem of three-dimensional crystal structures.
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1 Introduction

This is a continuation of our paper “A Theory of Pfaffian Orientations I: Perfect
Matchings and Permanents”. We present a new combinatorial way to compute the
generating functions of T -joins and k-cuts of graphs.

A graph is a pair G = (V,E) where V is a set and E is a set of unordered pairs of
elements of V . The elements of V are called vertices and those of E are called edges.
If e = xy is an edge then x, y are called endvertices of e.

In this paper V will always be finite, G = (V,E) will always be a graph and xe
will be a variable associated with each edge e of G. We let x = (xe : e ∈ E) denote
the vector whose components are indexed by the edges of G and, for M ⊂ E, we let
x(M) denote the product of the variables of the edges of M .

A graph (V ′, E′) is called a subgraph of graph G = (V,E) if V ′ ⊂ V and E′ ⊂ E.
A perfect matching of a graph is a set of pairwise disjoint edges, whose union equals
the set of the vertices.

Let P = v1, e1, v2, e2, ..., vi, ei, vi+1, ..., en, vn+1 be a sequence such that each vj is
a vertex of a graph G, each ej = vjvj+1 is an edge of G, and vi 6= vj for i < j except
if i = 1 and j = n + 1. If also v1 6= vn+1 then P is called a path of G. If v1 = vn+1

then P is called a cycle of G. In both cases the length of P equals n.
The graph G = (V,E) is connected if any pair of vertices is joined by a path, and

it is called 2-connected if the graph Gv = (V − {v}, {e ∈ E; v /∈ e}) is connected for
each vertex v of G. Each maximal 2-connected subgraph of G is called a 2-connected
component of G.

Definition 1.1 The generating function of the perfect matchings of G is the polyno-
mial P(G, x) which equals the sum of x(P ) over all perfect matchings P of G.

A subgraph G′ = (V,E′) of a graph G = (V,E) is called eulerian if the degree of
each vertex of G′ is even.

Definition 1.2 The generating function of the eulerian subgraphs of G is the poly-
nomial E(G, x) which equals the sum of x(U) over all eulerian subgraphs U of G.

Let G = (V,E) be a graph and T ⊂ V . A T -join is a subgraph G′ = (V,E′) such
that the degree of a vertex v of G′ is odd if and only if v ∈ T . Eulerian subgraphs
are T -joins when T = ∅.

Definition 1.3 Let G = (V,E) be a graph and T ⊂ V . The generating function of
the T -joins of G is the polynomial TT (G, x) which equals the sum of x(W ) over all
T -joins (V,W ) of G.

Next we consider k-cuts.

Definition 1.4 Let k ≥ 1 and let G = (V,E) be a graph. A pair ({V1, ..., Vk}, E′) is
called k-cut if {V1, ..., Vk} is a partition of V into k non-empty disjoint subsets and
E′ is the set of all edges with the endvertices in different parts Vi, i = 1, ..., k.
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Definition 1.5 The generating function of the k-cuts is the polynomial Ck(G, x)
which equals the sum of x(C) over all k-cuts ({V1, ..., Vk}, C) of G.

An embedding of a graph on a surface is defined in a natural way: the vertices are
embedded as points, and each edge is embedded as a continuous non-self-intersecting
curve connecting the embeddings of its endvertices. The interiors of the embeddings
of the edges are pairwise disjoint and the interiors of the curves embedding edges do
not contain points embedding vertices.

The genus g of a graph G is that of the orientable surface S ⊂ IR3 of minimal
genus on which G may be embedded.

The following theorem is the main result of [2].

Theorem 1.6 Let G be a graph of genus g. Then P(G, x) may be expressed as a
linear combination of 4g square roots of determinants.

2 T -joins.

There are several ways of relating the problem of counting eulerian subgraphs and the
problem of counting perfect matchings. Each method involves replacing each vertex
of a given graph by a cluster of vertices in a new “counting” graph. One of these
methods turns out to be more appropriate for our purposes since it preserves the genus
of the original graph. It was originally proposed by Fisher (see [1]) for counting the
number of eulerian subgraphs of a graph. Here we extend his construction in order
to solve the more general problem of counting the number of T -joins of a graph.

The construction may be performed in polynomial time and hence, together with
Theorem 1.6, yields an algorithm to compute TT (G, x).

Other constructions leading to the same result are useful in the study of crystal
structures. We will discuss them in greater detail in a forthcoming paper.

Definition 2.1 Let G = (V,E) be a graph and let v ∈ V . Let e1, ..., ek be an ordering
of the edges of G incident with v. The even splitting of v is a graph G′ = (V ′, E′) such
that V ′ = V −{v}∪{v1, ..., v6k}, and E′ = E−{e1, ..., ek}∪{e′1, ..., e

′
k}∪{vtvt+1; 0 <

t < 6k} ∪ {v3j+1v3j+3; j = 0, ..., 2k− 1} where e′i is obtained from ei by replacing v by
v6(i−1)+2, i = 1, . . . , k. We say that e′i is the image of ei in G′.

The odd splitting of v is obtained from the even splitting of v by deleting vertices
v6k, v6k−1, v6k−2.

Definition 2.2 Let G = (V,E) be a graph and T ⊂ V . We denote by Gs = (Vs, Es)
the graph obtained from G by odd splitting of all vertices of T and even splitting of
all vertices of V −T . If the edge f ′ of Gs is the image of the edge f of G then we let
xsf ′ = xf . We let xse = 1 for the remaining edges e of Gs.

Theorem 2.3 Let G be embeddable on an orientable surface S and let each even and
odd splitting of a vertex be performed in the clockwise order of the embeddings of its
incident edges. Then Gs is also embeddable on S. Moreover P(Gs, x

s) = TT (G, x).
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Proof. The first statement follows from the definition of even and odd splitting.
Next, observe that the T -joins W of G are in one-to-one correspondence with the
perfect matchings PW of Gs. Note that PW contains the set of the images of the
edges of W . This together with the choice of xs implies that x(W ) = xs(PW ), for
each T -join W , and the theorem follows. 2

3 k-cuts.

In this section we consider the generating function of the multicuts of a graph and we
derive an important relation between it and the generating function of the eulerian
subgraphs of the same graph. It is well known that for a planar graph G, the cuts of
G are in one-to-one correspondence with the eulerian subgraphs of its geometric dual
G∗. This correspondence does not hold anymore for graphs embeddable on surfaces
of genus greater than zero; in these cases we need a more general duality result, due
to van der Waerden (see [8], [10], [4]).

We use the following notation:

sinh(z, x) =
zx − z−x

2
, cosh(z, x) =

zx + z−x

2
, th(z, x) =

sinh(z, x)

cosh(z, x)
.

Note that sinh(x) = sinh(e, x) and cosh(x) = cosh(e, x).
Given a graph G = (V,E), we denote by σ ∈ {1, . . . , k}V a |V |-dimensional vector

whose components σi, i = 1, . . . , |V |, take values in the set {1, . . . , k}. Clearly, any
such vector identifies a partition of V into i ≤ k disjoint sets and, consequently, an
i-cut of G.

Let us denote by δ the vector indexed by the edges of G whose component δij =
δ(σiσj), ij ∈ E, equals 1 if σi = σj and −1 otherwise.

Moreover, for any A ⊂ E we let

Uk((V,A)) =
∑

σ∈{1,...,k}V

∏
ij∈A

δ(σiσj).

Theorem 3.1 Let G = (V,E) be a graph, z a variable and k > 1. Then

z
∑

f∈E
xf [k +

k∑
i=2

i!

(
k

i

)
Ci(G, (z

−2xf : f ∈ E))] =

(
∏
f∈E

cosh(z, xf ))
∑
A⊆E

Uk((V,A))
∏
f∈A

th(z, xf ).

Proof. Using the identity

zxδ(σiσj) = cosh(z, x) + δ(σiσj)sinh(z, x)

the result follows after some algebraic manipulations. In fact,
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z
∑

f∈E
xf [k +

k∑
i=2

i!

(
k

i

)
Ci(G, (z

−2xf : f ∈ E))] =
∑

σ∈{1,...,k}V

(
∏
ij∈E

zδ(σiσj)xij) =

∑
σ∈{1,...,k}V

(
∏
ij∈E

(cosh(z, xij) + δ(σiσj)sinh(z, xij))) =

(
∏
f∈E

cosh(z, xf ))
∑

σ∈{1,...,k}V

(
∏
ij∈E

(1 + δ(σiσj)th(z, xij))) =

(
∏
f∈E

cosh(z, xf ))
∑

σ∈{1,...,k}V

∑
A⊆E

(
∏
ij∈A

δ(σiσj)th(z, xij)) =

(
∏
f∈E

cosh(z, xf ))
∑
A⊆E

Uk((V,A))
∏
f∈A

th(z, xf )

where
∏
ij∈A δ(σiσj)th(z, xij) = 1 if A = ∅. Hence, the theorem follows. 2

Specializing the above result to the case of edge-cuts, i.e. k = 2, we obtain the
following result:

Theorem 3.2 Let G be a graph, z a variable and let C′2(G, x) = C2(G, x) + 1. Then

2z
∑

f∈E
xfC′2(G, (z−2xf : f ∈ E)) = (

∏
f∈E

cosh(z, xf ))2|V |E(G, (th(z, xf) : f ∈ E)).

Proof. We have, from Theorem 3.1, that

2z
∑

f∈E
xfC′2(G, (z−2xf : f ∈ E)) = (

∏
f∈E

cosh(z, xf ))
∑
A⊆E

U2((V,A))
∏
f∈A

th(z, xf ).

Now observe that ifA ⊂ E is a cycle and σ ∈ {1, 2}V arbitrary then
∏
ij∈A δ(σiσj) =

1. Hence U2((V,A)) = 2|V | when (V,A) is an eulerian subgraph. Moreover, if (V,A)
is not an eulerian subgraph, then observe that U2((V,A)) = 0.

2

Theorem 3.3 Let k be a positive integer. Let G be the class of graphs G = (V,E)
such that the edges are partitioned into at most k classes and the variables xe are
equal in each class.

Then there is a polynomial algorithm which, given G ∈ G and E(G, x) as input,
produces C2(G, x).

Proof. By Theorem 3.2, we have that∏
f∈E

cosh(z, xf )2|V |E(G, (th(z, xf ) : f ∈ E)) =
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∏
f∈E

zxf + z−xf

2
2|V |E(G, (

zxf − z−xf

zxf + z−xf
: f ∈ E)) =

∏
f∈E

z2xf + 1

2zxf
2|V |E(G, (

z2xf − 1

z2xf + 1
: f ∈ E)) =

2
∏
f∈E

zxfC′2(G, (z−2xf : f ∈ E)).

Hence,

C′2(G, (z−2xf , f ∈ E)) = 2|V |−|E|−1
∏
f∈E

z−2xfE∗(z2xf : f ∈ E)),

where

E∗(z2xf : f ∈ E)) =
∏
f∈E

(z2xf + 1)E(G, (
z2xf − 1

z2xf + 1
: f ∈ E)).

Observe that
∏
f∈E z

−2xfE∗(z2xf : f ∈ E)) is a polynomial Q(z−2xf : f ∈ E) in
the functions z−2xf and hence, its nonzero monomials correspond uniquely to nonzero
terms of C′2(G, z−2xf : f ∈ E).

It follows that, given G ∈ G and E(G, x), the polynomial E∗(G, x) and, conse-
quently, C2(G, x) may be expressed in polynomial time.

2

It immediately follows from Theorem 3.3, Theorem 2.3 and Theorem 1.6 that
it is possible to find efficiently the maximum weight of an edge-cut for the graphs
G = (V,E) embeddable on an arbitrary fixed orientable surface, which have only a
bounded number of different edge-weights.

Using similar arguments we can obtain a polynomial time algorithm when the
weights are integers bounded in absolute value by a polynomial of the size of the
graph. The details of these algorithms will appear elsewhere.

4 A Duality of Enumeration.

We will show now how the duality result proved in the previous section leads to
interesting expressions for well-known polynomials studied in combinatorics.

We start by considering the Tutte polynomial; it has been defined by Tutte ([6])
and it may be expressed as a minor modification of the Whitney rank generating
function ([11]).

Definition 4.1 Let G = (V,E) be a connected graph. For A ⊂ E let r(A) = |V | −
c(A), where c(A) denotes the number of connected components of (V,A). Then let

T (G, x, y) =
∑
A⊂E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A).

T (G, x, y) is called the Tutte polynomial of graph G.
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More generally, the Tutte polynomial of a matroid (see [9] for basic notions of
matroid theory) is defined as follows.

Definition 4.2 Let M be a matroid on set E. For A ⊂ E let r(A) denote the rank
of A in M . Then let

T (M,x, y) =
∑
A⊂E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A).

T (M,x, y) is called the Tutte polynomial of matroid M .

For example if G is a graph and NG the graphic matroid of G then T (G, x, y) =
T (NG, x, y).

If M is a matroid and M∗ its dual then r∗(E) − r∗(A) = |A| − r(A) and we
immediately get that T (M,x, y) = T (M∗, y, x). This relation is called duality of the
Tutte polynomial.

4.1 Weight enumerator of a linear code.

Let V = Fn be a vector space over a field F. Each subspace C of V of dimension k
is called a linear code of length n and dimension k. The elements of a linear code are
called codewords. The weight of a codeword is the number of its nonzero entries. The
weight distribution of C is the sequence A0, A1, . . . , An where Ai equals the number
of codewords of C of weight i, 0 ≤ i ≤ n.

The dual code of C is denoted by C∗ and consists of all those n-tuples (d1, . . . , dn)
of Fn satisfying

c1d1 + . . .+ cndn = 0

for all codewords (c1, . . . , cn) ∈ C. Hence, C∗ is a code of length n and dimension
n− k.

The weight enumerator of C is the polynomial

AC(t) =
n∑
i=0

Ait
i.

The following theorem was proved by MacWilliams ([5]) and it states a funda-
mental relation between the weight enumerators of C and of its dual C∗.

Theorem 4.3 Let C be a linear code of length n and dimension k over GF [q] and
1 + (q − 1)t 6= 0. Then

AC∗(t) =
[1 + (q − 1)t]n

qk
AC(

(1− t)

1 + (q − 1)t
).
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If the linear code of length n is given as the row space of a k × n matrix A over
a field F, i.e. C = {ATx; x ∈ Fk}, then we will denote it as C(F, A). Moreover,
if a matroid M is represented by the columns of A, then we let M = M(F, C) and
C = C(F,M). In this case we have C∗ = {x ∈ Fn;Ax = 0}.

The following theorem was proved by Greene ([3]).

Theorem 4.4 Let C be a linear code of length n and dimension k over GF [q] and
0 6= t 6= 1. Then

AC(t) = (1− t)ktn−kT (M(GF [q], C),
1 + (q − 1)t

(1− t)
,
1

t
).

Note that Theorem 4.3 also follows immediately from Theorem 4.4 and the duality
of the Tutte polynomial. As an immediate corollary we get

Corollary 4.5 Let M be a matroid represented over GF [q]. If (x − 1)(y − 1) = q
and 0 6= y 6= 1 then

T (M,x, y) = yn(y − 1)−kAC(GF [q],M)(y
−1).

Consider now the following example. Let G = (V,E) be a graph and let NG be
the graphic matroid of G. Let OG be an oriented incidence matrix of G, i.e. an
|V | × |E| matrix obtained from the incidence matrix of G by replacing exactly one
‘1’ of each column by ‘− 1’. The columns of OG represent NG over an arbitrary field
F.

The set of the characteristic vectors of 2-cuts of a graph G (including the empty
cut) equals C(GF [2],NG) and the set of the characteristic vectors of eulerian sub-
graphs of G equals C(GF [2],NG)∗. Using this terminology, it may be checked easily
that Theorem 4.3 generalizes Theorem 3.2.

Theorem 4.6 Let G = (V,E) be a connected graph. Then

AC(GF [q],NG)(t) = 1 +
q∑
i=2

(q − 1)...(q − i+ 1)Ci(G, (t, ..., t)).

Proof. Let C = C(GF [q],NG). We have C = {OT
Gx; x ∈ GF [q]V } and AC(t) is

the weight enumerator of C. Let us define an equivalence on GF [q]V by x ≡ y
if OT

Gx = OT
Gy. Observe that each equivalence class consists of q elements since

OT
Gx = OT

Gy if and only if x − y is a constant vector, i.e. (x − y)i = (x − y)j for
each i, j ∈ {1, ..., |V |}. Let C+ be the system (in contrast with a set, some elements
of a system may appear several times) defined by C+ = (OT

Gx; x ∈ GF [q]V ). Let

AC+(t) =
∑|E|
i=0A

+
i t

i, where A+
i equals the number of vectors of C+ with i non-

zero components. Since each equivalence class of ≡ consists of q elements we have
AC+(t) = qAC(t).
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If x = (x1, ..., x|V |) ∈ GF [q]V then let lx be the number of different values of xi,
i = 1, ..., |V | and let V x

1 , ..., V
x
lx be the partition of V into lx non-empty classes such

that the components of x are equal in each class.
Let cut(x) be the subset of E formed by those edges having endvertices in different

sets V x
i , i = 1, ..., lx and let Cut(x) = ({V1, ..., Vlx}, cut(x)).

Each Cut(x) is an lx-cut of G and the weight of the codeword OT
Gx equals |cut(x)|.

Let C++ be the system defined by C++ = (cut(x); x ∈ GF [q]V ). Let AC++(t) =∑
W∈C++ t|W |. We have AC+(t) = AC++(t).

For i = 1, ..., q let Xi = {x ∈ GF [q]V ; lx = i}. Define an equivalence on Xi by
x ≡∗ y if Cut(x) = Cut(y). Observe that each equivalence class of ≡∗ consists of
q(q − 1)...(q − i+ 1) elements. Hence

qAC(t) = AC+(t) = AC++(t) = q +
q∑
i=2

q(q − 1)...(q − i+ 1)Ci(G, (t, ..., t)).

This proves the Theorem.
2

By Corollary 4.5 and Theorem 4.6 we have

Corollary 4.7 Let G = (V,E) be a connected graph and let NG be the graphic ma-
troid of G. If (x− 1)(y − 1) = 2 and 0 6= y 6= 1 then

T (G, x, y) = T (NG, x, y) = y|E|(y − 1)1−|V |[1 + C2(G, (y−1, ..., y−1)].

It follows that the Tutte polynomial of a graph of genus g may be expressed along
the hyperbola (x − 1)(y − 1) = 2 as a linear combination of 4g Pfaffians, and hence
it may be determined efficiently for the graphs embeddable on an arbitrary fixed
orientable surface.

It is natural to ask whether there is an analogy of this statement for binary
matroids.

4.2 Flow polynomial of graphs.

We have C(GF [q],NG)∗ = {z ∈ GF [q]E;OGz = 0}. The elements of C(GF [q],NG)∗

are flows onG with values inGF [q]. An element of C(GF [q],NG)∗ is called a nowhere-
zero flow if its weight equals |E|. Let F ′(G, q) be the subset of C(GF [q],NG)∗ con-
sisting of nowhere-zero flows. F (G, q) = |F ′(G, q)| is called the flow polynomial of
G.

Theorems 4.3, 4.6 express a duality between flows and cuts of a graph. It is a
duality of the Tutte polynomial.

Nowhere-zero flows are studied extensively. The following theorem was proved by
Tutte ([7]).
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Theorem 4.8 Let G = (V,E) be a graph and let q be a power of a prime. Then

F (G, q) = (−1)|V |−|E|−c(G)T (G, 0, 1− q).

We give an interesting expression for F (G, q) which is new as far as we know.

Theorem 4.9 Let G = (V,E) be a graph. Then

F (G, q) = q−|V |2−|E|
∑
A⊂E

Uq((V,A))q|A|(q − 2)|E|−|A|.

Proof. Let C = C(GF [q],NG) and let D = C(GF [q],NG)∗. By Theorem 4.3 we
have

AD(t) = q1−|V |[1 + (q − 1)t]|E|AC((1− t)(1 + (q − 1)t)−1).

From Theorem 4.6 and Theorem 3.1 we get for z > 0

qAC(z−1) = q +
q∑
i=2

q(q − 1)...(q − i+ 1)Ci(G, (z
−1, ..., z−1)) =

2−|E|z−|E|
∑
A⊂E

Uq((V,A))(z − 1)|A|(z + 1)|E|−|A|.

If we let z = (1 + (q − 1)t)(1− t)−1 we get for all t > 0, t 6= 1

AD(t) = q−|V |2−|E|
∑
A⊂E

Uq((V,A))(qt)|A|(2 + (q − 2)t)|E|−|A|.

It follows that the leading coefficient of AD(t), which equals F (G, q), is equal to

q−|V |2−|E|
∑
A⊂E

Uq((V,A))q|A|(q − 2)|E|−|A|.

2
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