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Abstract. Using guideline-based clinical decision support systems (CDSSs) has 
improved clinical practice, especially during multidisciplinary tumour boards 

(MTBs) in cancer patient management. However, MTBs have been reported to be 

overcrowded, with limited time to discuss all cases. Complex breast cancer cases 
that need further MTB discussions should have priority in the organization of 

MTBs. In order to optimize MTB workflow, we attempted to predict complex 

cases defined as non-compliant cases despite the use of the decision support 
system OncoDoc. After previously obtaining insufficient performance with 

machine learning algorithms, we tested Multi Layer Perceptron for classification, 

compared various samplers to compensate data imbalance combined with cross-
validation, and optimized all models with hyperparameter tuning and feature 

selection with no improvement and lacklustre results (F1-score: 31.4%). 
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1. Introduction 

Patient-specific treatment plans as recommended by clinical practice guidelines (CPGs) 

have improved patient outcomes and clinicians are highly encouraged to implement 

them [1]. In many countries, the management of cancer patients is discussed in 

multidisciplinary tumour boards (MTBs) to allow for the best collective decision-

making. In addition, clinical decision support systems (CDSSs) have shown to improve 

the compliance of MTB decisions with CPG recommendations. However, MTBs have 

been reported to be overloaded with limited time to discuss properly each clinical case. 

OncoDoc is a CDSS developed to provide patient-specific recommendations and 

promote the implementation of breast cancer CPGs [2]. The system has been routinely 

used in MTBs at the Tenon hospital (Paris, France) in a three-year period. MTB 

decision compliance rate with CPGs for invasive breast cancers reached 91.7%. In the 

remaining 8.3%, patients presented specific medical circumstances not formally 
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covered by the CPGs in OncoDoc knowledge base, which explain that clinicians might 

in some cases disagree with OncoDoc treatment plans and choose not to follow them.  

We wish to pre-emptively identify patients whose profiles are too complex to be 

properly handled by CPGs and optimize patient triage ahead of MTBs. In this way, 

non-complex cases might be treated more rapidly, and additional time and focus could 

be allocated to cases identified as complex. As OncoDoc is directly built from CPGs, 

we hypothesize that non-compliance with OncoDoc recommendations is a marker of 

case complexity and that predicting cases leading to non-compliant MTB decisions 

might help identify complex cases.  

In a previous study, we used different machine learning algorithms (RandomForest, 

DecisionTree, XGBoost) to classify OncoDoc’s complex cases based on available 

routine data and tested numerous sampling methods to compensate data imbalance, 

with unsatisfying results (F1-score did not exceed 40%)  [3]. As deep learning is 

known to offer possible improvement on imbalanced samples when machine learning 

lacks sufficient performance, we implemented a Multi Layer Perceptron (MLP) on 

OncoDoc data in order to improve complex cases classification and identification. 

2. Material and Methods 

2.1. Dataset 

Data was collected from the existing OncoDoc database and included MTB decisions 

for adult women treated for breast cancer from February 2007 to September 2009 at the 

Tenon hospital (AP-HP, Paris, France). Data consisted of 1,887 MTB decision 

instances (1,054 patients) with 127 collected variables. A sizable number of variables 

was incomplete due to OncoDoc’s architecture as a decision tree: data not relevant to 

the case is not asked, and therefore not entered.  

We applied supervised deep learning with labelled training datasets and all values 

predicted from the test datasets verified against the actual class. According to our 

hypothesis, cases where clinicians did not comply with OncoDoc recommendations 

(8.3%) were labelled as “complex” whereas others cases were labelled as “non-

complex”. Whenever possible, missing values were imputed so as to remain logically 

sound, e.g., when a tumour was non-invasive, all tumour-invasive-related variables 

were filled as “not applicable”. Continuous variables were converted to categorical 

variables (e.g. patient age) and all variables with labels were encoded as integers. All 

missing or “not applicable” values were considered as integers, e.g., excision margins 

outlying invasive tumour originally coded as invaded (1) or not (0) were encoded as 

missing (0), not applicable to non-invasive tumour (1), non-invaded (2) and invaded (3). 

Additional variables were built to reflect known factors of clinical complexity, e.g., 

triple negative breast cancer patients (hormonal receptors = negative AND Her2 

receptors = negative). The final dataset consisted of 1,887 decisions and 70 variables. 

2.2. Multi Layer Perceptron  

MLP is a subtype of artificial neural network (ANN) which uses back-propagation, and 

presents at least three neuron layers for data classification: an input layer, a hidden 

layer, and an output layer. In MLP, data is handled one way and passes all layers once, 

as opposed to the way data is handled in recurrent neural networks. Back-propagation 
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allows estimating what constitutes erroneous values in the hidden layer (which has no 

reference in the initial data to compare itself to) from the final classification labels [4]. 

2.3. Splitting and sampling dataset 

The following standard procedures were applied for this study: 

� With stratification on case complexity: stratification keeps the class ratio 

between the original dataset and the training and testing datasets. 

� With or without k-fold cross-validation: in k-fold cross-validation, the training 

set is split into k smaller sets (here, k=5). Each of the k “folds” are used in 

turn as testing set against the rest and cross-validation then averages 

performance measures to give a more accurate estimate of model performance. 

Since data was severely imbalanced, as there were few complex cases, we 

systematically tested and compared the following samplers on each training datasets 

generated for cross-validation, in order to offset data imbalance [5]:  

� Random Under Sampling (RUS) 

� Random Over Sampling (ROS) 

� Adaptive Synthetic (ADASYN) 

� Synthetic Minority Oversampling Technique (SMOTE) 

� SMOTE and Edited Nearest Neighbours (SMOTEEN) 

2.4. Hyperparameter tuning and feature selection 

We searched the best values for the model’s hyperparameters using Random Search 

and Grid Search. Random Search tested random combinations of hyperparameters in a 

given range and Grid Search was applied to narrow down the best values of 

hyperparameters. We optimized model variables with feature selection: all variables 

were first included in the analyses, then progressively excluded from the model from 

lowest to highest feature importance, e.g. from least to most useful variable as 

identified by the trained model. The optimized number of variables to include was then 

retained. 

2.5. Evaluation indices 

MLP was evaluated using precision, recall, and F1-score. Accuracy was available but 

considered to be unreliable as the testing dataset was unbalanced (if 90% of data 

belongs to class A, a model might simply choose to systematically class data as class A 

to obtain a 90% accuracy). We compared the mean cross-validation indices for each 

sampling methods and model. The overall process is illustrated in Figure 1. 

 
Figure 1. Analytic plan. 
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3. Results 

Before feature selection, MLP presented its best F1 score without any sampler 

(recall=25.9%, precision=40.4%, F1-score=31.4%). Applying samplers improved recall 

at the cost of precision, especially for RUS (recall=65.5%, precision=16.9%, F1-

score=26.7%) and SMOTEEN (recall=52.3%, precision=20.2%, F1-score=28.6%), 

with decreased F1-score. 

Feature selection did not improve MLP when no sampler was applied but showed slight 

improvement for ROS (before feature selection: recall=39.1%, precision=19.3%, F1-

score=25.6% versus after feature selection: recall=47.6%, precision=23.5%, F1-

score=30.9%) and ADASYN (before feature selection: recall=33.3%, precision=21.3%, 

F1-score=25.8% versus after feature selection: recall=37.3%, precision=25.0%, F1-

score=29.2%). Almost no improvement was observed for SMOTE, and performance 

stayed the same for SMOTEEN. (cf. Table 1). 

 

Table 1. MLP model scores by sampling technique before and after feature selection (%) 

Model Score No 
sampling 

RUS ROS ADASYN SMOTE SMOTEEN 

Before feature 

selection 

Recall 25.9 65.5 39.1 33.3 33.3 52.3 

Precision 40.4 16.9 19.3 21.3 26.2 20.2 

F1 31.4 26.7 25.6 25.8 28.6 29.0 

After feature 

selection 

Recall 25.9 63.2 47.6 37.3 33.9 50.0 

Precision 40.4 17.0 23.5 25.0 27.5 20.4 

F1 31.4 26.9 30.9 29.2 29.5 28.7 

4. Discussion  

Multiple sampling methods were used to compensate data imbalance with MLP. 

Improvement was observed for recall in all samplers but showed deteriorated values for 

precision, with unsatisfactory F1-score results. In other words, our models could not 

easily identify complex cases and could only improve recall performance by 

indiscriminately selecting cases in the hope to identify complex cases, decreasing 

precision performance. Calculated from recall and precision, F1-score could not 

increase when one score improved at the expense of the other, and showed the overall 

performance plateau. Hyperparameters tuning improved all models through Random 

Search and Grid Search but remains insufficient. Throughout hyperparameters tuning, 

all models had the tendency to sacrifice precision for recall. Feature selection granted 

slight improvement by excluding variables presenting no added value to the model. 

Few variables were consistently more “important” than others e.g., ‘Profile frequency’ 

or ‘Age_35_75’ are easily explained as known factors of clinical complexity. 

As a pre-constructed model in Python, MLP generated results similar or worse 

than those obtained with machine learning algorithms [3]. However, hyperparameter 

tuning with MLP was a non-compressible time-consuming task that did not allow for 

extensive testing and a larger range of parameters could possibly yield better results. 

On the other hand, we attempted to construct deep learning models “from scratch” 

without using a pre-existing Python library such as MLP, but all of them choose to 

classify all data as “non-complex” with no attempt to identify “complex” cases. Such 

behaviour could not be explained as a way to exploit the data imbalance (when 90% of 
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data was ‘non-complex’) since similar results were obtained after compensating with 

data sampling. As it is possible that further testing could lead to a functional model 

“from scratch”, further research and understanding of deep learning models and neural 

networks might improve our current results.  

Errors in data were encountered during pre-processing, faulty recording of 

patients’ characteristics might have occurred. Likewise, data structure and variables 

were significantly modified during pre-processing (various variables were outright 

excluded from analysis, or heavily modified to simplify or avoid missing data) which 

may have removed important information for data classification. Additional data might 

also benefit model training and it is plausible that OncoDoc available data simply does 

not include the information needed to accurately predict complex cases.  

Lastly, we assumed non-conformity with OncoDoc as the sole explicit marker of 

complexity and acknowledge the possible limits associated: complex cases which 

eventually remained conform to OncoDoc after a lengthy discussion are not identified 

in our study, likewise, some treatments might be dismissed without posing difficulty to 

MTB clinicians (such as patient’s preference). Further reviews of MTB decisions and 

analyses of causes for non-compliance might give us a more accurate indication of 

complexity for further studies. 

5. Conclusion 

We collected data from OncoDoc routine data to identify complex patient cases, with 

deep learning methods, assuming complex cases could not be systematically managed 

by a CPG-based CDSS. The dataset was prepared for analysis and underwent various 

sampling techniques to overcome its class imbalance. Several improvement plans were 

implemented but results did not improve our previous performance with machine 

learning models, hinting at a possible need for different models, additional data and/or 

additional data structuring for further improvement. 
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