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Abstract. Emotions are essential for the intellectual ability of human beings defined 

by perception, concentration, and actions. Electroencephalogram (EEG) responses 

have been studied in different lobes of the brain for emotion recognition. An attempt 
has been made in this work to identify emotional states using time-domain features, 

and probabilistic random forest based decision fusion. The EEG signals are collected 

for this from an online public database. The prefrontal and frontal electrodes, namely 
Fp1, Fp2, F3, F4, and Fz are considered. Eleven features are extracted from each 

electrode, and subjected to a probabilistic random forest. The probabilities are 

employed to Dempster-Shafer’s (D-S) based evidence theory for electrode selection 
using decision fusion. Results demonstrate that the method suggested is capable of 

classifying emotional states. The decision fusion based electrode selection appears 

to be most accurate (arousal F-measure = 77.9%) in classifying the emotional states. 
The combination of Fp2, F3, and F4 electrodes yields higher accuracy for 

characterizing arousal (65.1%) and valence (57.9%) dimension. Thus, the proposed 

method can be used to select the critical electrodes for the classification of emotions.  
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1. Introduction 

Emotion is a dynamic pattern of response, involving elements of experience, actions, and 

physiology, through which an organism tries to cope with a matter or occurrence that is 

personally relevant. Recognition of emotions is the mechanism by which human 

emotions are identified [1].  

In two main classes, discrete and dimensional, emotion is categorically studied. In 

the discrete model, the emotions are sub-divided into six categories: happy, sadness, fear, 

joy, anger and disgust. In the dimensional model, the mood states are placed in multi-

dimensional space. Most common is the circumplex model of affect which utilizes a two-
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dimensional plane – Valence (High and Low – HV, LV) and Arousal (High and Low – 

HA, LA) [2]. 

Several studies have been reported for emotion recognition using 

Electroencephalogram (EEG) signals. Previous studies conducted using 

neurophysiological and functional neuroimaging methods have reported the association 

of the frontal lobe for emotion recognition [3]. It has also been established that the 

prefrontal cortex has a role in emotion modulation [4]. Time-domain features proved to 

be straightforward and useful in classification tasks. Earlier literature have reported the 

use of time domain-based features like mean, median, zero crossing, minima, and 

maxima for recognizing emotions using EEG signals [5]. Probabilistic approach, a 

mathematical method has been designed to increase the performance of classification. 

The Dempster-Shafer (D-S) theory is a tool for data fusion which can be used to combine 

various information from sources like sensors, which helps in handling imprecision, 

uncertainty, and incompletion [6].  

In this work an attempt has been made to classify arousal and valence emotional 

states from EEG signal of five frontal electrodes, namely Fp1, Fp2, F3, F4, and Fz. Time-

domain features and information fusion based upon the D-S theory at the decision level 

is employed to achieve reliable and accurate evaluation of critical channels. 

Classification of the emotions are carried out using probabilistic random forest classifier. 

2. Methods 

2.1.  Database Description 

The EEG signals from a publicly available DEAP database are used in this study [9]. It 

consists of 1280 multiple physiological signals, such as EEG, EMG, PPG, and EDA, 

from 32 normal subjects while watching 40 different audio-video recordings of 60s. For 

this study, all the available data of the preprocessed EEG signals, (sampling rate of 128 

Hz) are considered. The signals had been annotated independently using the participant’s 

experience with the stimulus in the arousal–valence dimension [7]. 

2.2. Feature Extraction 

Eleven time-domain features are extracted from the preprocessed EEG signals obtained 

from prefrontal and frontal regions. The selected electrodes are namely – Fp1, Fp2, F3, 

F4, and Fz. The mathematical expression for time-domain features is given below. 

 

RMS: It is estimated as the square root of the mean of a squared signal [8]. It is estimated 

as Eq. (1). 

� �2

1

1 N

t

RMS x t
N �

� �  

 
(1) 

 

Where N is the total number of samples and � �x t  represents the signal. 

Hjorth developed features, namely Activity, Mobility, and Complexity, to analyze 

signals [9]. 

Activity: It represents the power of the signal. 
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Mobility: It represents ratio of standard deviation of the power spectrum. 
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Complexity: It estimates the bandwidth of a signal.  
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Zero Crossings: The number of baseline crossing is computed in a fixed interval [10].  

Minima and Maxima: It represents the maximum and minimum value of an EEG signal 

in a given time interval [10]. 

Mean of absolute values of first difference [11]: 
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Mean of absolute values of the first difference of normalized EEG [11]: 
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( )X n  represents the signal normalized to zero mean and unit variance. 
Mean of absolute values of the second difference [11]: 
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Mean of absolute values of the second difference of normalized EEG [11]: 
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2.3. Decision fusion and Electrode Selection 

Probabilistic Random Forest (PRF) is used for the estimation of the probabilistic output 

of the classification. It is a modified version of the Random Forest (RF) algorithm [12]. 

To combine multiple classification outcomes obtained from different PRF models, a data 

fusion method is used. The D-S evidence theory as one of the data fusion method, with 

the benefits of addressing uncertainties by quantifying the degree of belief is used [13].  

Decision fusion-based probability is obtained by classification probability from 

individual electrodes with PRF using leave one out cross-validation. Combined 

probability is then cross-referenced with the probabilities from the individual electrodes 

for the selection of the electrodes for classification. The classification performance of 

three electrodes with similar probability to fusion probability is compared with the 

performance of all five electrodes [13]. 
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3. Results 

Figure 2 shows the representative EEG signal from the Fp1 electrode for the HA, LA, 

HV, LV. It is seen that the amplitude inLA is higher as compared to the HA. Similarly, 

the amplitude in LV is higher as compared to the HV.  

Table 1. Classification performance by random forest classifier from individual electrode 
Scale Electrode Precision Recall F-1 Score Accuracy 
 
 
Arousal 
 

 

Fp1 0.643 0.973 0.774 0.641 
Fp2 0.645 0.946 0.767 0.637 

F3 0.643 0.979 0.776 0.644 
F4 0.632 0.989 0.771 0.630 
Fz 0.638 0.963 0.768 0.632 

 
 
Valence 
 

 

Fp1 0.428 0.240 0.308 0.501 

Fp2 0.479 0.208 0.290 0.530 
F3 0.495 0.262 0.343 0.536 

F4 0.552 0.421 0.478 0.575 
Fz 0.513 0.383 0.404 0.546 

 
Table 1 shows the classification performance of individual electrodes using PRF. The 

top three F-1 scores for arousal are obtained from F3, Fp1 and F4 electrodes with F-

1score 0.776, 0.774, and 0.771 respectively. Similarly for valence, the top three F-1 

scores are F4, Fz and F3 electrodes with F-score as 0.478, 0.404, and 0.343.  
The classification performance of all the combined five channels and fusion based 

selected channels are represented in Table 2. It is seen that the selected channels yields 

higher performance (F-1 Score = 0.779 for arousal and 0.470 for valence dimension). 

 
Table 2. Classification performance for arousal and valence dimension for all and selected electrodes 

Electrodes Dimesion Precision Recall F-1 Score Accuracy 
All Arousal 0.648 0.978 0.779 0.650 

Valence 0.538 0.376 0.442 0.562 

Selected Arousal 0.649 0.975 0.779 0.651 
 Valence 0.561 0.404 0.470 0.579 

 

  
      (a)       (b) 

 

 

 

 
(c)       (d) 

Figure 1. Representative EEG signal for low LA (a), HA (b), LV (c), and HV (d) of a 

subject for a representative electrode Fp1 
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4. Discussion 

The variation is amplitude in different EEG emotion signal might be due to the intensity 

of the emotions. The F3 yields the highest accuracy in arousal, while F4 yields the highest 

accuracy in the valence dimension (see Table 2). The highest precision is obtained by 

Fp2 and F4 electrodes for both arousal and valence dimensions. The F4 electrode is found 

to be sensitive for both arousal and valence dimension. The Fp1 electrode yields 

maximum F-1 score for arousal while for valence it is shown by F4. The selected 

electrodes from the decision fusion based method yields better performance for 

classification of arousal and valence emotional states. It is observed that the frontal 

region electrodes (F3 and F4) are active in both arousal and valence dimensions.   

5. Conclusion 

In this study, EEG signals in the frontal region are analyzed using time-domain features. 

It is observed that the different electrodes have different responses to the same stimuli, 

and features are different for different arousal and valence class. Further, the information 

fusion using DS evidence-based theory is used for the electrode selection. Theoretically 

it was established that the frontal electrodes are useful for emotion classification. The 

results help to find out the best electrodes from the frontal electrodes for classification 

of arousal and valence emotional states. This method can further be used for selecting 

electrodes from all the channels and with multiple features to achieve further better 

performance. 
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