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Abstract. A tissueP systemwith cell division is a computingmodel which hastwo basicfeatures:
intercellularcommunicationand the ability of cell division. The ability of cell division allows us to
obtainan exponentiabmountof cellsin lineartime andto designcellular solutionsto computation-ally
hard problemsin polynomial time. In this work we presentan efficient solution to the tripartite
matchingproblem by a familyof such devices. This solution leads to an interestipgn problem
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whethertissue P systemswith cell division and communicationrules of length 2 can solve NP-complete
problems.An answerto this openproblemwill provide a borderlinebetweenefficiency and non-efficiencyin
terms of the lengths of communicationes.

Keywords: MembraneComputing,TissueP SystemCell Division, Tripartite MatchingProblem.

1. Introduction

Membrane computings an emergent branch of natural computing, which is inspired by the structure
and the functioning of living cells [10], as well as the organization of cells in tissues, organs, and other
higher order structures. It provides distributed parallel and non-deterministic computing models called
P systems Since being introduced by Gh. Paun in 1998, membrane computing has received impor-
tant attention from the scientific community. As computer scientists, biologists, formal linguists and
complexity theoreticians plug into this area, it has definitely become a rich and exciting realm of cross-
disciplinary research. Please refer to [11, 13] for an introduction of membrane computing, and refer to
[14] for further bibliography.

In last years, many different classes of P systems have been investigated. The most studied variants
are thecell-like P systemavhere membranes are hierarchically arranged in a tree-like structure. Most of
them arecomputationally universai.e., able to compute whatever a Turing machine can do, as well as
computationally efficient.e., able to trade space for time and solve in this way presumably intractable
problems in a feasible time (e.g., [1, 2, 8]).

Another interesting class of P systems tissue P systemghere instead of considering a hierarchi-
cal arrangement, membranes are placed in the nodes of a graph. Tissue P systems are an abstraction of
communicating and cooperating cells in tissues [7], where the membrane structure did not change along
the computation. However, alive tissues are not static network of cells, since new cells are generated by
membrane fission in a natural way. With this biological inspiratissue P systems with cell division
were introduced [12].

One of the main features of tissue P systems with cell division is related to their computational effi-
ciency. Specifically, tissue P systems with cell division can shiRecomplete problems in polynomial
time (even linear time), e.g., the subset sum problem [4], the partition problem [5], and the 3-coloring
problem [3]. The 3-coloring problem NP-complete, andripartite matching problen{TMP) also be-
longs to the class dfiP-complete problems, so tripartite matching problem can be reduced to 3-coloring
problem in polynomial time. But it still remains open how one can compute the reductiorN#® prob-
lem to anothelNP-complete problem by P systems. In this work, we give a direct solution to tripartite
matching problem in polynomial time by tissue P systems with cell division.

TheTMP can be described as following [SGiven three set®, G and H, each containing: elements,
and a sefl’ of triplesC B x G x H. Decide whether there exists a subgébf 7" such that7’| = n and
no two of triples belong td@” have a component in commolm this work, for each size, a P system
with cell division is constructed for solving all instancesTaP with sizen, where the computation time
is polynomial with respect to.

For an instance ofMP with setsB, G, H andT C B x G x H, |B| = |G| = |H|, we can associate
a hypergraply with the vertex seV’(G) = BU G U H, the hyperedge séf(G) = T (that is, a triple in
T is a hyperedge ig). In this way,TMP can be restated to decide whether there exists a sub-hypergraph



G’ such that’' (G) = V(G’) and no two hyperedges @ (G’) have a common vertex. In the hypergraph
version of TMP, it is easy to see that the family of tissue P systems with cell division is independent of
the number of hyperedges. However, the family of P systems with cell division constructed in [3] for
the 3-coloring problem depends on the number of vertices and the number of edges. For instances of the
3-coloring problem with the same number of vertices, but with different number of edges, a family of
different P systems have to be constructed. The technique of constructing P systems given in this work
is an improvement of the construction in [3] in the sense that the family of P systems only depends on
the number of vertices.

The solution tarMP given in this work shows that the lengths of communication rules have essential
role for the efficiency of tissue P systems with cell division. Specifically, it leads to an interesting open
problem whether tissue P systems with cell division and communication rules of length 2 can solve NP-
complete problems. An answer to this open problem will provide a borderline between efficiency and
non-efficiency in terms of the lengths of communication rules.

The paper is organized as follows: some preliminaries are recalled in section 2, including the def-
inition of recognizer tissue P systems with cell division; a polynomial-time solution to the tripartite
matching problem is presented in section 3, with a short overview of the computation, and the informal
verification of the solution; some discussion is presented in section 4.

2. Preliminaries

An alphabetX is a non-empty set, whose elements are cadigdbols A string is an ordered sequence
of symbols. The number of symbols in a strinds thelengthof the string, and it is denoted by|. For

a setT’, the notationT'| denotes the cardinality &f. As usual, the empty string (with length 0) will be
denoted by\. The set of strings of length built with symbols from the alphabél is denoted by-"
andX* = U,>oX". A languageover is a subset front*.

A multisetm over a setd is a pair(A, f) where f is a map fromA to the set of natural numbeks
If m = (4, f) is a multiset then itsupportis defined asupp(m) = {z € A| f(x) > 0} and itssizeis
defined as ., f(z). A multiset is empty (resp. finite) if its support is the empty set (resp. finite).

If m = (A, f) is a finite multiset overd, and supp(m) = {a1,...,ax}, then it will be denoted
asm = {{a{(al), . ,ai(“’“)}}. That is, superscripts indicate the multiplicity of each element, and if
f(z) = 0foranyz € A, then this element is omitted. #h; = (A, f) andmg = (A, g) are multisets
over A, then the union ofn; andms is defined asn;ms = (A, h), whereh = f + g.

A recognizer tissue P system with cell division of deggee 1 is a tuple of the form

II=T,%Quw,..., wgR,lin, iout), Where:

g > 1 (the initial degree of the system; the system contaicslls, labeled withl, 2, ---  ¢; all
thesey cells are placed in the environment; the environment is labeled with 0);

e I'is the working alphabet, which contains two distinguished objgetsandno, at least one copy
of them occurring in some initial multisets;, ... ,w,, but not occurring irf2;

3 is an input alphabet strictly containedIin

Q2 C I"is the set of objects occurring in the environment, each one in arbitrarily many copies;



e wi,...,wy are strings over', describing the multisets of objects located in the cells of the system
at the beginning of the computation;

e R is afinite set of rules of the following forms:

(a) Communication rules(i,u/v,j), fori,j € {0,1,2,...,q},i # j, u,v € T'* (|u| + |v]| is
called the length of the communication rileu /v, 5)).

(b) Division rules [a]; — [b]i[c]:, wherei € {1,2,...,q},a € I'andb,c € T U {A}.
e i, €{1,...,q} isthe input cell;

e i € {0,1,...,¢} indicates the output region, wheig,; = 0 denotes that the output region is
the environment;

e All computations halt (that is, they always reach a configuration where no further rule can be
applied);

e During a computation ofl, either the objecies or the objecto (but not both) must be released
into the environment, and only in the last step of the computation.

When a division rulda]; — [b];[c]; is applied, all the objects in the original cells are repkcaand
copies of them are placed in each of the new cells, with the exception of the abjekich is replaced
by b € T'U {A} in the first new cell and by € " U {\} in the second one.

When arule(i, u/v, 7) is applied, the objects of the multiset represented laye sent from region
to region;j and simultaneously the objects of the multisetre sent from regiop to regioni.For a cell
in the systendl, it is possible to have more than one applicable communication rules in a step. These
applicable communication rules are used in non-deterministic maximally parallel manner (the system
non-deterministically chooses and applies a multiset of communication rules that is maximal, no further
rule can be added).

In general, the rules of a system as above are used in the non-deterministic maximally parallel man-
ner. In each step, all cells which can evolve must evolve in a maximally parallel way. This way of
applying rules has only one restriction: when a cell is divided, the division rule is the only one which is
applied for that cell in that step; the objects inside that cell do not evolve by means of communication
rules. Their labels precisely identify the rules which can be applied to them.

A configuration ofTI at an instant is described by the multisets of objects oVeassociated with
all the cells present in the system at that moment, and the multisetlovef) associated with the
environment at the instant All computations start from the initial configuration and proceed as defined
above. A computatiorf is called an accepting computation (respectively, rejecting computation) if
the objectyes (respectively,no) appears in the environment associated to the corresponding halting
configuration ofC, and only in the last step of the computation.

Definition 2.1. Let X = (Ix, fx) be a decision problem, wherg; is a language over a finite alphabet
(whose elements are called instances) @fds a total boolean function ovdry (that is, a predicate).
The decision problenX is solvable in polynomial time by a familld = {II(n) | n € N} of recognizer
tissue P systems with cell division if the following holds:



e The family IT is polynomially uniformby Turing machines, that is, there exists a deterministic
Turing machine working in polynomial time which constructs the sysiEm) from n € N.

e There exists a paifcod, s) of polynomial-time computable functions ovEg¢ such that:

— for each instance € Ix, s(u) is a natural number anebd(u) is an input multiset of the
systemlI(s(u));
— the familyIT is polynomially boundedvith regard to( X, cod, s), that is, there exists a poly-

nomial functionp, such that for eachu € Ix every computation ofl(s(u)) with input
cod(u) halts and, moreover, it performs at mp$k(u)) steps;

— the familyIT is soundwith regard to( X, cod, s), that is, for each. € Ix, if there exists an
accepting computation dfi (s(u)) with input cod(u), thenfx (u) = 1,

— the familyIT is completewith regard to( X, cod, s), that is, for eachu € Ix, if Ox(u) = 1,
then every computation é1(s(u)) with input cod(u) is an accepting one.

We denote byPMCrpc (respectivelyPMCrpc(x)) the set of all decision problems which can be
solved by means of recognizer tissue P systems with cell division in polynomial time (respectively, by
using communication rules whose length is at mkjst

3. A Uniform Solution to TMP

3.1. A Uniform Family of Tissue P Systems with Cell Division for SolvingrMP

Let us consider an instance OffP with three setsB = {b1,---,b,}, G = {q1,--- ,9n}, H =
{h1,--- ,hy}, and a sefl’ of triplesC B x G x H = {(b;,g;,hx) | 1 < i,5,k < n}. We address

the solution ofTMP via a brute force algorithm in the framework of recognizer tissue P systems with cell
division. Our strategy consists of the following phases:

e Generation StageCell division is applied to generate an exponential number of cells such that
each possible subset of the g&tx G x H is encoded by exactly one cell.

e Checking StageThe system checks whether or not there exists a sUBs#tT” such that 7’| = n
and no two triples belonging t@” have a component in common.

¢ Output StageThe system sends to the environment the right answer according to the results of the
previous stage.

We shall construct a familJI = {II(n) | n € N} such that each systeff(n) will solve all instances
of TMP with the sizen of each of the finite set®, G and H, provided that the appropriate input — the
ternary relatioll’ C B x G x H —is given.

For eachn € N, the system

H(n) = (F(n)’ E(n)’ Q(n)a wy, w2, R(n)’ iin’ iout)

is constructed with the following components:



F(n) - E(n) U {aimjvk’ Ri7j7k7 Ri7j7k7 Ri7j7k7 R;,],k‘ ’ 1 S ’L.’j7 k S n}

Ub; [1<i<n®+4n+1}U{g|1<i<nd+4n+3}
U{f7g7yes7 no}'

B(n) ={Aijr |1 <15,k <n}.

wy = {{b1,c1,9, yes, no}}.
w2 = {{ai,j,k | 1<4,5,k < n}} U {{f}}

R(n) is the set of rules:

(1) Division rule:
T1igk = Qg2 = [Rijrl2[M2, forl <i, 5,k <n.

(2) Communication rules:
roi = (1,bi/b%+1,0), for1 <i<n?
r3i = (1,02‘/61‘4_1,0), forl1 <i< n3 +4n + 2;
Ty = (17bn3+1/f7 2)1 B
Tk = (2, bn3+iRi,j’ik/bn3+i+1Ri,j,k’9)’ forl <i,j,k <m;
T6,i,5,k = (2, bn3+n+jR@j,k/bn3+n+j+1Ri,j,kv 0), for 1 < i,j, k<mn;
75,k = (2’ bn3+2n+kRi,j,k/bn3+2n+k+1R;7j,ka 0)1 for 1 < i’ja k <mn;
T84,5,k = (2, bn3+3n+iR;,j7kAi,j,k/bn3+3n+i+17 0), forl < 1,7,k <mn;
r9 = (2,bp3 1 4n11/9 yes, 1);
r10 = (2,yes/A,0);
11 (1’ Cn3+4n+39 no/)" 2);
r12 = (2,n0/),0).

e Q(n) =T(n) — {yes,no}.
e i;, = 2isthe input cell.

® i,,; = 0is the output region (i.e., the environment).

3.2.  An Overview of a Computation

First of all we define a polynomial encoding for the tripartitatching problem idl. Letu = (B, G, H,
T') an instance of th&MP. Let the size mapping b&u) = n and the encoding of instance b&l(u) =
{Aijr | (bi,gj,h) € T}, for a given instance of tripartite matching problem= (B,G,H,T),
B={b,-- ,bn},G={g1,--- sgn}» H={h1,--- ,hp} andT C B x G x H. Next we informally
describe how the systehii(s(u)) with input cod(u) works.

Let us start with the generation stage. In cells with label 2, the division rules are applied. Cells with
label 2 is repeatedly divided, each time expanding one objegt, 1 < i,5,k < ninto R; ; ; and A,
corresponding to the existence or absencéply;, i) in certain subset. In this way, afte? step52”3
cells with label 2 are generated, which represent all sulsdeisx G x H. The objectf is duplicated,
hence a copy of it will appear in each cell. In parallel with the above operation of dividing cells with



label 2, the counter;, ¢; from cell with label 1 grow their subscripts. Also, in eachpstdhe number of
copies of objecy; is doubled, hence after® steps we geE”3 copies ofb,,s ., in cell 1. Objectsh; are
used to check whether there existpexfect matching” C T such that|/7’| = n, and every element of
B, G and H occurs exactly once in any triple @f. The objeci; will be used to produce the objegb,
if this will not be the case, in the end of the computation.

The checking stagstarts when the generation stage is finished aftesteps. Note that cells with
label 2 cannot divide any more because the objects were exhausted. At this moment, the content

of the cell with label 1 |s{{bn3+1, 341, 9, yes,no}}. Instepn® + 1, a copy of the counteb, s ; is

brought into each cell with label 2, in exchange foby applying ruler,. Since we have"’ copies of
b3y and2"’ cells with label 2, each one containing exactly one copy,and due to the maximality
of the parallelism of using the rules, each cell with label 2 gets precisely one copy,qf

In the presence of the objets  ;, the rulers; ;. is used to check if there exist objects R; ; .
whose first subscriptsrun from 1 ton in each cell with label 2. If and only if it is positive, the subscript
of b; grows ton® + n + 1, and then objectsR; ; , are replaced by objectsR; ; x. Then the ruleg ; ; x
is used to check if the second subscripts the n objectsR; ; 5, run from 1 ton in each cell with label 2.
If and only if it is positive, the subscript @ grows ton? + 2n + 1, and then objectsRmvk are replaced
by objectsRi,jJi. When the object, s 5,1 iS present, rulez ; ; . is used to check if the third subscripts
k of n objectsR” & run from 1 ton in each cell with label 2. If and only if it is positive, the subscript
of b; grows ton3 + 3n + 1, and then objectsR” 1 are replaced by objec®; . , ik . After that,n objects
R, ;  ineach cell with label 2 constitute a possible subfSetf triplesC B x G x H such tha/T"| = n,
and every element oB, G and H occurs exactly once in any triple @f. At last, rulerg; ;; is used to
check if the given inpufl” include any above generated subiét If it is positive, the subscript df; in
the corresponding cell with label 2 growssid + 4n + 1.

When the checking stage is done, the subscript of objantcell with label 1 grows to3 + 4n + 2.
The output stage starts from step+ 4n + 2.

— Affirmative answer If there exists at least one sub&etof setT such that|/T’| = n and every
element of B, G and H occurs exactly once in a triple @f, there is an object,s , 4, in the
corresponding cell with label 2 as described above. One of cells with label 2 containing object
bnsans1 O€LS the objectges andg in exchange 0b,,s_ 4,1 at stepn® + 4n + 2. In the nest step,
the objectyes in cell 2 leaves the system by the ruig, signaling the fact that there exists at least
one subsefl” of T such that|7”| = n, and no two triples belonging &’ have a component in
common. At that step, the cell with label 1 contains the objget 4, , 3 but no the objecy. That
cell cannot evolve and the system halts at stég- 4n + 3

— Negative answerln this case, the subscript of the countgreaches:® + 4n + 3 and the objecy
is still in the cell with label 1. The objeceto can be moved to the environment by the rulgsand
r12, Signaling that there does not exist any sulisedf 7" such that|/7’| = n, and every element of
B, G and H occurs exactly once in a triple @'. The computation finishes at step + 4n + 4.

3.3. Informal Verification

In this subsection, we show that the family built above solestripartite matching problem in poly-
nomial time, according to Definition 2.1. First of all, this definition requires that the defined family is



consistentin the sense that all systems of the family must be recognizer tissue P systems with cell divi-
sion. By construction (type of rules and working alphabet) it is clear that it is a family of tissue P systems
with cell division.

It is easy to check that the rules of a syst8ifn) of the familyIT = {II(n) | n € N} are defined
from the valuen. Furthermore, the necessary resources to build an element of the Hnahg of a
polynomial order, as shown below:

e Size of the alphabeBn® + 8n + 8 € O(n?).
e Initial number of cells2 € ©(1).

Initial number of objectsn® 4 6 € O(n3).

Number of rules7n® + 4n + 7 € O(n?).

Maximal length of a ruled € ©(1).

Therefore, a deterministic Turing machine can builgh) in a polynomial time with respect to; that
is, the familyIT is polynomially uniform by Turing machines.

From the overview of a computation in section 3.2, we can find that all computations halt in a poly-
nomial time with respect te, and that either an objegts or an objecto is sent out exactly in the last
step of the computation; that is, the famlllyis polynomially bounded, sound and complete.

3.4. Main Results

From the discussion in the previous sections (noting thatéwemum length of communication rules is
4) and according to the definition of solvability given in Section 2, we have the following result:

Theorem 3.1. TMP € PMCrpc(y)-

Corollary 3.1. NP U co-NP C PMCypc(4), Whereco-NP is the class of complements dfP
problems.

Proof:

It suffices to make the following observations: the Tripartite Matching ProbleNRscomplete, TMP

€ PMCrpc(4) and this complexity class is closed under polynomial-tintiotion and under comple-
ment [9]. O

We can check that the length of rules of the system given in Section 3 is not more than 3 except for
the I’UleST57i7]‘7k, T6,i,5,kr 77,5,k T8,i,5,k- Let us replaceﬂ57i7j7k by the rules(2, bn3+z’Ri,j,k/b* 0)

! i n3+4,5,k”
and (2, b;st’k/bnsHHRim, 0); replacers; ;i by the rules(2, bn3+n+jRm?k/b;unﬂ’j?k, 0) and

(2, sz+n+j,j,k/bn3+n+j+1Ri,j,ka 0); replacery ; ; . by the rules(2, bn3+2n+kRivjvk/b23+2n+k,j,k’ 0) and
(2,03 9k j e/ O3 201k 41 B j 1, 0); TEplacers ; ;i by the rules(2, R ;  A; jx/A7 ;. 0) and the rules
(2, bn3 43044,k A7 j i/ On3 4301041, 0). Of course, the subscripts of related objects such as cournsl

¢; should be updated. In this way, a new system is obtained, viletength of all rules is not more than
3. Itis not difficult to check that the new system can also solveTHrein polynomial time. Therefore,

Theorem 3.1 and Corollary 3.1 can be improved as follows.



Theorem 3.2. TMP € PMCrpc(s)-

Corollary 3.2. NP U co-NP C PMCrp¢3), Whereco-NP is the class of complements dfP
problems.

4. Conclusions and Future Work

In this work, we have proposed a solution to the tripartiteatiaig problem by a family of recognizer
tissue P systems with cell division. The construction of tissue P systems with cell division is simple and
elegant in terms of the number of the groups of rules. The results show that tissue-like P systems are
suitable as a framework to address the efficient solution to intractable problems.

In the solution given in this work, the length of communication rules is at most 3. Let us consider
a tissue P system with cell division and communication rules of length 1. In this case, each rule of the
system can be activated by a single object. Hence, there exists, in some sigpEndenchetween the
object triggering the rule and the object or objects produced by its application. This dependency allows
to adopt the ideas developed in [6] for cell-like P systems with active membranes to tissue P systems
with cell division. In this way, it is not difficult to prove that tissue P systems with cell division and
communication rules of length 1 can only solve problems solvable in polynomial time by deterministic
Turing machines. It remains open whether tissue P systems with cell division and communication rules
of length at most 2 can solve NP-complete problems. This open problem is worth further investigation.
An answer to this open problem will provide a borderline between efficiency and non-efficiency in terms
of the lengths of the communication rules.
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