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Abstract. Scale defect detection is an essential part of the quality control in the 

production process of medical syringes. Due to difficulty of collecting sufficient 

abnormal samples and defect types, it is impractical to optimize the deep learning 

model in a supervised learning manner for the defect detection of medical syringes. 

In this paper, we proposed an unsupervised defect detection method for medical 

syringes based on denoising convolutional autoencoder (DCAE). DCAE works as a 

deep reconstruction model, with a larger number of defect-free samples, to repair 

defects on anomaly samples reliably. The defects can be detected and located in the 

inspection phase by calculating the residual between the original and reconstructed 

images. The experimental results indicate that the proposed method is robust and 

can detect several scale defects in medical syringes. Our method reaches 95.11% 

average accuracy on one real-world medical syringe dataset, showing its practicality 

for defect detection. 
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1. Introduction 

After injection molding of medical syringes, the scale needs to be printed on its surface. 

The correct scale can help healthcare professionals control the dose of medication. On 

the contrary, incorrect scales could pose risks for the use of medical syringes and even 

cause medical malpractice. To ensure correct scales and prevent defective medical 

syringes from entering the market, we need to detect scale defects in the production phase 

of medical syringes. Figure 1 shows some samples of medial syringes containing 

incorrect scales. Since these abnormal scales are not significantly different from normal 

scales, it is difficult for operators who are prone to visual fatigue to provide reliable 

inspection results. 

In recent years, benefiting from the rapid development of machine vision technology, 

various defect-detection techniques have shown promising results in the industrial field 

[1–3]. However, addressing the defect detection problem of medical syringes involves a 

few challenges in practice. In the first place, image processing techniques such as 

template matching are not competent for medical syringes’ defect detection. In the actual 

production line, affected by various factors, the medical syringe images captured by 
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industrial cameras often present different brightness, contrast, and rotation angles. It is 

challenging to design a universal template to cover all the situations mentioned above

Next, the incidence of medical syringe defects is low, which led to insufficient collection 

of abnormal samples and imbalanced dataset. The factors mentioned above make the 

supervised machine learning framework not suitable for defect detection of medical 

syringes. 

 

Figure 1. The anomalous samples of the medical syringe containing scale defects that looks like normal. 

Instead of focusing on anomalous samples, some unsupervised techniques utilize 

enough normal data to build anomaly detectors, such as gaussian mixture model (GMM), 

generative adversarial network (GAN) [4], and autoencoder (AE) [5]. Autoencoder is a 

dimension reduction algorithm that has the ability for efficient representation learning of 

input data without any labels. Typically, the autoencoder is trained as a deep 

reconstruction model, using a large amount of normal data. This model is able to 

reconstruct the original data from the corrupted input data (anomalous data), and 

resultantly anomalies can be simply identified with a decision threshold. With the 

powerful representation capabilities of deep neural networks [6], convolutional neural 

network-based autoencoder (convolutional autoencoder) and their variants have been 

widely employed in the field of image anomaly detection. For instance, Chow et al. [7] 

applied a convolutional autoencoder (CAE) to anomaly defect detection of concrete 

structure. Kozamernik et al. [8] used the variational convolutional autoencoder (VCAE) 

to detect anomalies on KTL coatings. Mei et al. [9] constructed a denoising convolutional 

autoencoder (DCAE) to complete the automatic defect detection system for textile fabric. 

In these studies, the autoencoder performs well in detecting abnormal samples even if 

only normal training samples are available.  

Inspired by above studies, this paper attempts to address the problem of defect 

detection in medical syringes based on denoising convolutional autoencoder (DCAE), a 

variant of the convolutional autoencoder (CAE), with stronger feature encoding 

capabilities. First of all, in order to shorten the time of model design and verification, 

this article constructed a DCAE model based on SegNet [10]. Subsequently, sufficient 

defect-free samples were collected on the medical syringe production line for DCAE 

training. After DCAE adds specific noise to the training samples, it will learn how to 

reconstruct and repair these noise samples to encode the key features of medical syringes. 

When testing the model, DCAE can effectively repair the defects in abnormal samples. 

Finally, the image processing technique was applied to achieve the detection and 

localization of defects. Experimental results on one real-world dataset with several types 

of defects demonstrate that the proposed method can effectively and robustly detect and 

locate defects of medical syringes. 
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The remainder of this paper is organized as follows: Section 2 elaborates the 

proposed methodology. The results are analyzed and discussed in Section 3. Section 4 

concludes this article with the summary and outlook for future work. 

2. Methodology 

In this section, we present a description of the proposed defect detection framework of 

medical syringes in detail. Figure 2 shows the overall architecture of this framework. In 

the training phase, defect-free samples are fed into DCAE for training and let DCAE 

encode key features of medical syringes for defect reconstruction. In the testing phase, 

DCAE will reconstruct and repair the input sample and then use image processing 

technique to identify scale defects. 

 

Figure 2. Overall architecture of the proposed DCAE model. 

2.1. Network Architecture 

CAEs are widely used as a base framework for image anomaly detection in an 

unsupervised manner. The goal of using CAEs is to train them to reconstruct normal 

samples as perfectly as possible. During testing, they attempt to reconstruct and repair 

the anomalous samples that were not involved in the training. And then, we can detect 

and locate anomalies by comparing the input and its reconstruction pixel-by-pixel. 

The workflow of a typical CAE can be divided into two stages, namely encoding 

and decoding. The detailed process can be formulated as follows: 

( ),h f x�  (1) 

( ) ( ( )),x g h g f x� ��  (2) 

.
p

Loss x x� � �  (3) 
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The function ( )f �  in Equation 1 encodes input image x  into a feature space h  with 

lower dimensionality. Instead, the function ( )g �  in Equation 2 decodes the latent feature 

h  to generate reconstructed image. The goal is to optimize ( )f �  and ( )g �  and minimize 

the loss function in Equation 3, where p  is usually set to 1 (
1
l -norm) or 2 (

2
l -norm). To 

obtain robust feature encoding h , we can add specific noise to the input image x  in the 

CAE’s training phase, which is also called the DCAE [11]. The core idea of the DCAE 

is to learn the essential characteristics in repairing the damaged image to establish a more 

stable encoding in the hidden layer. In this paper, we add Gaussian noise with a mean of 

zero and a variance of 0.01 to input image x  during the training. 

For a reliable and effective defect detection, we propose to utilize the SegNet as our 

backbone network. SegNet is a deep fully convolutional neural network proposed by 

Badrinarayanan et al. [10] to solve the problem of image segmentation. It refers to the 

topology structure of the VGG16 [12] to construct the encoder and the decoder. The 

novelty of SegNet lies in its unique up-sampling operation, which can effectively reduce 

network parameters and improve network performance while retaining image 

characteristics. Due to the final output of SegNet is a probability map of the image pixels 

rather than a reconstructed image, which cannot be directly applied to the unsupervised 

defect detection application. Therefore, we directly remove the softmax layer of the 

SegNet and employ it as the DCAE’s backbone network  

2.2. Loss Function 

To train DCAE, we can directly deploy the Mean Squared Error (MSE) loss function. 

However, the 
2

l  distance in MSE evaluates the difference between the two images under 

the assumption that each pixel is independent of each other, which may cause the model 

to fail to capture the structural information of the image during the reconstruction process. 

As shown in Figure 1, the scale of the medical syringes has obvious structural 

information, that is, the black stripes of different lengths arranged in parallel. We try to 

make the model perceive this structural information of normal samples during the 

training process to repair and extract scale defects in abnormal samples more efficiently. 

Accordingly, we introduce the structural similarity (SSIM) index [13] into DCAE. 

SSIM index evaluates the similarity of two images in terms of brightness, contrast, 

and structure. Compared with the traditional 
2

l -norm, it can perceive the structural 

differences between images. By incorporating the SSIM index into the loss function, the 

defect segmentation performance of the CAE can be significantly improved [14]. In 

practical applications, we usually adopt the SSIM index to evaluate the local similarity 

of images instead of global one. For the given two n n�  local windows x  and y  

(located at the same place) of the different images X  and Y , the calculation formula of 

SSIM index is as follows: 

1 2

2 2 2 2

1 2

(2 )(2 )
( , ) ,

( )( )

x y xy

x y x y

C C
SSIM

C C

� � �

� � � �

� �
�

� � � �
x y  (4) 
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where x�  and y�  represent the mean value of x  and y , respectively; 2

x�  and 2

y�  

represent the variances of x  and y , respectively; xy�  represents the covariance of x  

and y ; 1C  and 2C  are two constants to prevent division by zero. 

For assessment of global structural similarity between two images, we can pass a 

sliding window pixel-by-pixel through the entire image to compute SSIM index of all 

local windows and generate SSIM index map [15]. Assuming 
,

x
i jW  and 

,

y
i jW  are the 

sliding windows at ( , )i j  of image X  and Y , respectively. the global average SSIM 

index (MSSIM index) of the image X  and Y  can be calculated as follows: 

, ,

,

1
( , ) ( , ),x y

i j i j
i j

MSSIM SSIM
MN 	

� 
X Y W W  (5) 

where M  and N  denote the width and height of the image. In this article, we use a local 

window of size 11 11�  to calculate the MSSIM index during the DCAE’s training phase. 

A larger MSSIM value indicates that the two images are more similar. When the MSSIM 

value is 1, the two images are identical. Thus, we define our loss function as: 

1 ( , ).LOSS MSSIM� � X Y  (6) 

2.3. Detecting Defects 

Combined with the above data augmentation technology and loss function, the model 

can be used to detect scale defects of the medical syringe after completing the training. 

Figure 2 briefly shows the primary process of defect detection, and the detailed procedure 

is as follows: 

First, the medical syringe samples to be tested are fed into the defect detection model, 

and then the testing samples are restoratively reconstructed using the features already 

encoded by the model. To verify how well the testing samples are reconstructed, we 

evaluate the SSIM index between the testing and the reconstructed samples, and output 

the SSIM index map as a residual map. Let tesI  and recI  be the testing image and 

reconstructed image, respectively. The residual map resI  can be formulated as follows: 

, ,( , ) ( , ), . . , ,1 ,1 ,tes rec
res i j i jI i j SSIM s t i j i M j N� 	 � � � �W W  (7) 

where 
,

tes
i jW  and 

,

rec
i jW  denote the sliding window centered at location ( , )i j  in the 

image tesI  and resI , respectively; It is worth noting that we use SSIM instead of pixel-

by-pixel difference to output the residual map. This can effectively avoid the error 

segmentation caused by the excessive residual of individual pixels. In this stage, different 

from the training phase, we use a 3 3�  sliding window size when outputting the SSIM 

index map to get a finer residual map. 

The residual map can be considered as the reconstruction error of the model on the 

input image. Therefore, we can impose a threshold segmentation operation on the 

residual map to obtain an anomaly map. This process can be expressed as follows: 
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255, ( , ) ,
( , )

0, ( , ) ,

res
ano

res

I i j T
I i j

I i j T
�

� � ��
(8)

where ( , )anoI i j  denotes the pixel value of the anomaly map at location ( , )i j , T is the 

segmentation threshold. The pixel values of 0 and 255 represent abnormal and normal 

pixels, respectively. After threshold segmentation, we applied the corrosion operation to 

eliminate some subtle mis-segmentations in the abnormal map. By judging whether there 

are abnormal pixels in the abnormal map, anomalous images can be distinguished from 

the test images. For the segmentation threshold T , we determined it on the validation 

set after completing model training. To be specific, we traverse all segmentation 

thresholds (0~255) to evaluate the F1-Measure of the model on the validation set. The 

threshold corresponding to the highest F1-Measure will be selected as the optimal 

threshold T  for model testing. 

3. Experiments 

3.1. Dataset and Augmentation 

The dataset used in this paper was collected from the actual production line of medical 

syringes. This dataset consists of 1,200 defect-free images, all of which are single-

channel grayscale images captured by industrial cameras. Figure 3 illustrates some 

examples of images in the dataset, including medical syringes with different placement 

and rotation angles. The entire dataset was split into (training set, validation set, and test 

set) with the ratio of 6:2:2, and we finally obtained 720 training images, 240 validation 

images, and 240 test images. 

 

Figure 3. Medical syringe samples without any scale defects.

Similar to existing deep neural networks, our DCAE maintains a numerous number 

of parameters and requires an enormous amount of training data to guarantee that the 

network could pursue the accurate feature extraction [16]. Furthermore, the medical 

syringe images captured in the industrial production process often exhibit different 

brightness, contrast, and rotation angles. It is hard to collect sufficient training samples 
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covering all these factors. Therefore, if we simply use the images in our dataset for 

training, the model will be at risk of low performance and poor generalization. To get rid 

of this problem, we expand the dataset using the following approaches: 

� Randomly select a brightness factor from [50%,60%,70%,· · ·,140%,150%] to 

adjust the brightness for each image. 

� Randomly select a contrast factor [50%,60%,70%,· · ·,140%,150%] to adjust 

the contrast for each image. 

� Rotate each image with a degree that is randomly selected from {-5,-4,· · ·,4,5}. 

We use the above three data augmentation methods to expand 720 training images 

and get 2,160 enhanced images (each method expands 720 images). In total, we obtain 

2,880 non-defect training images as training set. 

The abnormal samples on the production line of medical syringes are scarce, which 

is not enough to validate and test the performance of the model. To solve this problem, 

we construct validation and test sets by making artificial scale defects on the validation 

and test images, respectively. 

In the CAE system, a decision threshold is usually required to determine whether 

each pixel of the input image is anomalous or not. In this article, we intend to determine 

this threshold on the validation set. Considering that scale defects during the production 

of medical syringes are often variable and unpredictable, we utilize the “Random Erasing” 

method to produce artificial defects on validation images. In other words, the reason for 

generating defects in this random way is that we want to obtain a decision threshold that 

is suitable for the majority of scale defects, so as to improve the generalization of the 

model. For the test set, we refer to the existing abnormal samples (as shown in Figure 1) 

and carefully craft two types of scale defects on 240 defect-free test images. Finally, we 

obtained one validation set and two test sets with different scale defects. Each test set 

contains 240 defect images and 240 defect-free images. Figure 4 shows these artificial 

scale defects in detail, where Figures 4(a), 4(b), and 4(c) represent random scale defects 

on the validation set, scale error defects and scale missing defects on the test set, 

respectively. 

The original size of all images in our dataset is 1050� 360 pixels, and these images 

will be scaled to 350� 120 pixels for model training and testing. 

 

Figure 4. Examples of artificial defects, where Figures 4(a), 4(b), and 4(c) represent random scale defects, 

scale error defects, and scale missing defects, respectively. 
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3.2. Experimental Setting 

Training Setting: We optimized model parameters using the Adam algorithm [17] and 

set the initial learning rate as 0.001. The model was implemented in Pytorch and trained 

for 300 epochs with a batch size of 16 on an NVIDIA GeForce GTX 2080 Ti GPU.  

Evaluation Criteria: The defect detection model proposed in this paper is used to judge 

whether a medical syringe image contains defects or not, which can be regarded as a 

binary classification problem. In the model evaluation phase, we define medical syringe 

images containing defects as positive samples (abnormal samples) and normal medical 

syringe images as negative samples (normal samples). We introduce four classifier 

metrics to evaluate model performance, including accuracy, precision, recall, and F1-

Measure. These metrics are formulated as follows: 

,
TP TNAccuracy

TP TN FP FN
�

�
� � �

 (9) 

,
TPPrecision

TP FP
�

�
 (10) 

,
TPRecall

TP FN
�

�
 (11) 

2
1 ,

Precision RecallF Measure
Precision Recall
� �

� �
�

 (12) 

where TP  and TN  represent the numbers of correctly classified positive and negative 

samples, respectively; FP  and FN  represent the number of positive and negative 

samples that are miss-classified. 

3.3. Model Performance 

In Figure 5, we show the defect detection results obtained by DCAE for two typical scale 

defects in detail. Overall, DCAE is able to reconstruct and repair defective areas almost 

completely for most anomalous samples. Thanks to the excellent abnormal 

reconstruction capabilities, some tiny scale defects also can be accurately located, e.g, 

the defects in Figure 5(c),(g). Moreover, it can be seen from this figure that DCAE has 

good adaptability to medical syringes with different rotation angles. Even though some 

samples have large angular deviations, DCAE still reconstructs them well and segments 

the defects, e.g, the samples in Figure 5(b),(f). 

Table 1 presents the classification performance of DCAE on our medical syringe 

dataset. In the detection of different kinds of scale defects, the average accuracy, 

precision, recall and F1-Measure of this model reach 95.11%, 96.46%, 93.91%, and 

95.15%, respectively. This indicates that our model has good anomaly detection 

capability, which can effectively prevent defect samples from missing inspection and can 

meet the demand of enterprises. We can also observe that the anomaly detection ability 

of our model for scale error defects is better than that of scale missing defects. The reason 

may lie in that there are more structural information reduction in the scale missing defects 
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than that of the scale error defects. As shown in Figure 5(d), we can see that the scale 

missing defect is quite subtle and is even hard for human to notice it, posing a great 

challenge for defect detection models. The repaired scale is shown in a lighter color in 

the bottom line, which is somewhat different from the original scale of the medical 

syringe, resulting a failure in defect detection. The detection results for the scale error 

defects are shown in Figure 5(a)-(c). We can find out that our model repairs the scale 

error defects nearly perfectly, e.g, the sample in Figure 5(a), demonstrating that our 

model can meet the demand of real-world medical syringe defect detection. 

To verify that our transformation work is necessary and effective, we also 

constructed a convolutional autoencoder (CAE) model for defect detection based on 

SegNet. CAE uses the same network architecture as DCAE, except that it does not add 

specific noise to the input samples during the training process. In addition, we used MSE 

as the loss function to optimize DCAE, namely DCAE+MSE, to further confirm the 

advantages of the SSIM index. Subsequently, we evaluated the performance of two new 

models on scale missing and scale error test sets. The average classification performance 

of different models on our medial syringe dataset is presented in Table 2. Regardless of 

which model is employed, the defect detection performance of SSIM loss function is 

significantly better than that of MSE. This may be credited to the structural 

characteristics of SSIM loss, which can preserve the scale features of medical syringe 

while reconstructing, thereby improving the model’s reconstruction ability and 

prediction performance. Additionally, it can be seen from Table 2 that compared with 

CAE, DCAE’s architecture can also boost the defect detection performance. This is 

because that DCAE can establish more robust feature encoding in the process of 

reconstructing noisy samples. These stable feature encodings are beneficial for repairing 

defects in abnormal samples and further enhance the accurate rate of defect detection. 

 

Figure 5. Defect detection results of scale error and scale missing images. Each group of images (top to 

bottom) contains the defective sample, the reconstructed image, and the segmentation result.
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Table 1. Defect detection results for the proposed DCAE model. 

Defect Type Accuracy Precision Recall F1-Measure 
Scale Missing 93.54% 93.33% 93.72% 93.53% 

Scale Error 96.67% 99.58% 94.09% 96.76% 

All Types 95.11% 96.46% 93.91% 95.15% 

Table 2. Performance comparison of different models on our medical syringe dataset. 

Model Accuracy Precision Recall F1-Measure 
CAE+SSIM 74.38 % 73.75% 79.31% 75.47% 

DCAE+MSE 64.06% 89.38% 59.14% 71.13% 

DCAE+SSIM 95.11% 96.46% 93.91% 95.15% 

4. Conclusion and Future Work 

From the perspective of unsupervised learning, this paper presented a defect detection 

model for medical syringes based on denoising convolutional autoencoder. After 

reconstructing a large number of defect-free images containing noise, our model 

establishes a more stable feature representation for medical syringes. After that, scale 

defects contained in abnormal samples can be repaired while testing, and can be 

subsequently detected via residual maps. This reconstruction-repair approach can 

efficiently detect abnormal samples when only normal samples are available. We 

evaluated the detection performance of our model for different scale defects on two test 

sets of medical syringes, and its average accuracy and F1-Measure reached 95.11% and 

95.15%, respectively, effectively solving the defect detection problem of medical 

syringes. 

Although our model achieves high-accuracy defect detection, its vast and complex 

network suffers from the problem of slow detection. In the future work, we will introduce 

the pruning algorithm [18] into the model to improve the detection efficiency. 
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