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GROUND STATE SOLUTIONS FOR A FRACTIONAL SCHRÖDINGER

EQUATION WITH CRITICAL GROWTH

VINCENZO AMBROSIO AND GIOVANY M. FIGUEIREDO

Abstract. In this paper we investigate the existence of nontrivial ground state solutions for the
following fractional scalar field equation

(−∆)su+ V (x)u = f(u) in R
N
,

where s ∈ (0, 1), N > 2s, (−∆)s is the fractional Laplacian, V : RN
→ R is a bounded potential

satisfying suitable assumptions, and f ∈ C1,β(R,R) has critical growth. We first analyze the case V

constant, and then we develop a Jeanjean-Tanaka argument [30] to deal with the non autonomous
case. As far as we know, all results presented here are new.

1. Introduction

This paper is devoted to the existence of nontrivial solutions for the following fractional scalar field
equation

(−∆)su+ V (x)u = f(u) in R
N (1.1)

with s ∈ (0, 1), N > 2s, V : RN → R is a continuous function, and f : R → R is a smooth function
verifying some suitable growth conditions. The fractional Laplacian (−∆)s is a pseudo-differential
operator defined via Fourier transform by

F(−∆)su(ξ) = |ξ|2sFu(ξ) (ξ ∈ R
N ),

when u : RN → R belongs to the Schwarz space S(RN ) of rapidly decaying functions. Also, (−∆)su
can be equivalently represented, up to normalization factors, as

(−∆)su(x) = −

∫

RN

u(x+ y) + u(x− y)− 2u(x)

|y|N+2s
dy (x ∈ R

N );

see for instance [20] for more details.
The main motivation of the study of (1.1) comes from looking for standing waves ψ(x, t) = u(x)e−ıct

for the fractional Schrödinger equation

ı
∂ψ

∂t
= (−∆)sψ + V (x)ψ − f(ψ) (t, x) ∈ R× R

N .

Such equation has been introduced by Laskin [31, 32], as a result of expanding the Feynman path
integral, from the Brownian like to the Lévy like quantum mechanical paths.

When s = 1 in (1.1), we derive the classical nonlinear Schrödinger equation which has been
extensively studied in the last twenty years by many authors. Since we cannot review the huge
bibliography here, we just mention the works [3, 4, 11, 19, 27, 37, 44, 45] and references therein,
where several results on the existence and the multiplicity of solutions are obtained under different
assumptions on the potential V and the nonlinearity f .

In these last years, problems involving fractional operators are receiving a lot of attention. Indeed
fractional spaces and nonlocal equations play a fundamental role in the investigation of many several
sciences such as crystal dislocation, obstacle problem, optimization, finance, phase transition, soft
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thin films, multiple scattering, quasi-geostrophic flows, water waves, anomalous diffusion, conformal
geometry and minimal surfaces and so on. The interested reader may consult [20] and [35], where
a more extensive bibliography and an introduction to the subject are given.
In what follows, we recall some known results established in recent years, concerning with the
fractional Laplacian equations with critical growth.

Servadei and Valdinoci [40] (see also [25, 36]) established a Brezis-Nirenberg type result for the
following problem

{

(−∆)su− λu = |u|2
∗

s−2u in Ω
u = 0 in R

N \ Ω,

where Ω ⊂ R
N is a smooth bounded domain and λ > 0 is a parameter. Barrios at al. [9] studied

the effect of lower order perturbations in the existence of positive solutions to the following critical
elliptic problem involving the spectral Laplacian

{

(−∆Ω)
su− λuq = u2

∗

s−1 in Ω
u = 0 on ∂Ω,

where q ∈ (0, 2∗s − 1) and λ > 0; see also [10, 14, 42] for related results. Fiscella and Valdinoci
[26] dealt with the existence and the asymptotic behavior of non-negative solutions for a class of
stationary Kirchhoff problems driven by the fractional Laplacian

{

−M
(

∫∫

R2N
|u(x)−u(y)|2

|x−y|N+2s dxdy
)

(−∆)su = λf(x, u) + |u|2
∗

s−2u in Ω

u = 0 in R
N \ Ω,

where M is a Kirchhoff function and f satisfies the Ambrosetti-Rabinowitz condition.
By using variational methods, Shang and Zhang [41] studied the existence and the multiplicity of
nonnegative solutions for

ε2s(−∆)su+ V (x)u = |u|2
∗

s−2u+ λf(u) in R
N

where ε, λ > 0, f has a subcritical growth, and V is a positive continuous function such that

0 < inf
x∈RN

V (x) < lim inf
|x|→∞

V (x) <∞.

Teng and He [43] combined the s-harmonic extension method of Caffarelli and Silvestre [15], the
concentration-compactness principle of Lions and methods of Brezis and Nirenberg to prove the
existence of ground state solutions for

(−∆)su+ u = P (x)|u|p−2u+Q(x)|u|2
∗

s−2u in R
N ,

where p ∈ (2, 2∗s) and P (x) and Q(x) are continuous functions verifying appropriate hypotheses.
Zhang et al. [46] investigated existence of nontrivial radially symmetric solutions for

(−∆)su+ V (x)u = k(x)f(u) + λ|u|2
∗

s−2u in R
N

where V (x) and k(x) are radially symmetric functions satisfying some extra assumptions, and the
nonlinearity f is subcritical. He and Zou [28] obtained, via penalization technique and Ljusternik-
Schnirelmann theory, the existence and concentration results for the problem

{

ε2s(−∆)su+ V (x)u = f(u) + u2
∗

s−1 in R
N

u > 0 in R
N ,

under local condition imposed on V , and f is a subcritical nonlinearity.
Further results concerning the fractional Schrödinger equations involving critical and subcritical
nonlinearities can be found in [1, 5, 6, 7, 8, 18, 21, 22, 23, 24, 34, 38].

Inspired by the above works, in the present paper we aim to investigate the existence of least
energy solutions for the equation (1.1), when f has a critical growth and V is a bounded potential
satisfying some suitable assumptions.
More precisely, we assume that f : R → R verifies the following hypotheses:
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(f1) f ∈ C1,β(R,R) for some β > max{0, 1 − 2s};

(f2) lim
t→0+

f(t)

t
= 0;

(f3) lim
t→+∞

f(t)

t2
∗

s−1
= K > 0, where 2∗s =

2N

N − 2s
;

(f4) There exist D > 0 and max

{

2,
4s

N − 2s

}

< q < 2∗s such that

f(t) ≥ Kt2
∗

s−1 +Dtq−1 for all t ≥ 0;

(f5) There exists C > 0 such that |f ′(t)| ≤ C(1 + |t|2
∗

s−2) for all t ≥ 0.
We observe that the assumptions (f3) and (f4) on the nonlinearity f enable us to consider the
critical growth case. In the case s = 1, the assumption (f4) was introduced in [47] to study a
Berestycki-Lions type problem with critical growth. We point out that (f4) plays an important role
to ensure the existence of solutions for the problem (1.1). In fact, if we take f(t) = (t+)2

∗

s−1, then
f satisfies (f1)-(f3), and by using the Pohozaev identity [6, 16] for the fractional Laplacian, we can
see that there are no nontrivial solutions to (1.1).
Concerning the potential V : RN → R, we suppose that
(V 1) V ∈ C1(RN ,R);
(V 2) there exists V0 > 0 such that infx∈RN V (x) ≥ V0;
(V 3) V (x) ≤ V∞ := lim|x|→∞ V (x) for all x ∈ R

N ;

(V 4) |max{x · ∇V (x), 0}|
L

N
2s (RN )

< 2sS∗, where S∗ is the best constant of the embedding Hs(RN )

into L2∗(RN ) (see [17]).
Now we state our first main result concerning the existence of ground state solutions to (1.1) in the
case of constant potentials (which clearly verify the assumptions (V 1)-(V 4)).

Theorem 1.1. Let s ∈ (0, 1) and N > 2s. Assume that f verifies (f1)-(f4) and V (x) ≡ V > 0 is
constant. Then (1.1) possesses a nontrivial ground state solution u ∈ Hs(RN ).

Now, we give a sketch of the proof of Theorem 1.1. We recall that for a weak solution of problem
(1.1), we mean a function u ∈ Hs(RN ) such that

∫∫

R2N

(u(x)− u(y))

|x− y|N+2s
(ϕ(x) − ϕ(y)) dxdy +

∫

RN

V (x)uϕdx =

∫

RN

f(u)ϕdx

for any ϕ ∈ Hs(RN ).
Here Hs(RN ) is the fractional Sobolev space defined by

Hs(RN ) =

{

u ∈ L2(RN ) :
u(x)− u(y)

|x− y|
N+2s

2

∈ L2(R2N )

}

.

In order to obtain the existence of a nontrivial solution to (1.1), we look for critical points of the
Euler-Lagrange functional associated to (1.1), that is

I(u) =
1

2

∫

RN

(

|(−∆)
s
2u|2 + V (x)u2

)

dx−

∫

RN

F (u) dx

for any u ∈ Hs(RN ), where F (t) =
∫ t

0 f(τ) dτ . By using the assumptions on f , it is clear that I
has a mountain pass geometry, but it is hard to verify the boundedness of Palais-Smale sequences
of I (such Palais-Smale sequences there exist in view of the Ekeland’s principle). To overcome this
difficulty, we use the idea in [29]. For λ ∈ [12 , 1], let us introduce the following family of functionals

Iλ(u) =
1

2

∫

RN

(

|(−∆)
s
2u|2 + V (x)u2

)

dx− λ

∫

RN

F (u) dx.
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As first step, we prove that for any λ ∈ [12 , 1], Iλ has a mountain pass geometry and that Iλ admits
a bounded Palais-Smale sequence (un) at the mountain-pass level cλ. More precisely, we use the
following abstract result due to Jeanjean [29]:

Theorem 1.2. [29] Let (X, ‖ · ‖) be a Banach space and J ⊂ R+ be an interval. Let (Iλ)λ∈J be a
family of C1 functionals on X of the form

Iλ(u) = A(u)− λB(u), for λ ∈ J,

where B(u) ≥ 0 for all u ∈ X, and either A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞.
We assume that there exist v1, v2 ∈ X such that

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(v1),Iλ(v2)}, ∀λ ∈ J

where
Γ = {γ ∈ C([0, 1],X) : γ(0) = v1, γ(1) = v2}.

Then, for almost every λ ∈ J , there is a sequence (un) ⊂ X such that
(i) (un) is bounded;
(ii) Iλ(un) → cλ;
(iii) I ′

λ(un) → 0 on X−1.
Moreover, the map λ 7→ cλ is continuous from the left hand-side.

Since we are dealing with the critical case, we are able to prove that for any λ ∈ [12 , 1]

0 < cλ <
s

N

S
N
2s
∗

λ
N−2s

2s

.

Secondly, in the spirit of [30] (see also [33, 48]), we establish a global compactness result in the
critical case, which gives a description of the bounded Palais-Smale sequences of Iλ. Then, by
using the facts that every solution of (1.1) satisfies the Pohozaev Identity and the compactness
Lemma, we prove the existence of a bounded Palais-Smale sequence of I which converges to a
positive solution to (1.1).

Now, we state our second main result of this paper, which deals with the existence of ground
state of (1.1) in the case in which V is not a constant.

Theorem 1.3. Let s ∈ (0, 1) and N > 2s. Assume that f verifies (f1)-(f5) and V satisfies
(V 1)-(V 4), and V (x) 6≡ V∞. Then (1.1) admits a nontrivial ground state solution u ∈ Hs(RN ).

To deal with the non-autonomous case, we resemble some ideas developed in [30]. We consider the
previous family of functionals Iλ, and, since Iλ satisfies the assumptions of Theorem 1.2, we can

deduce the existence of a Palais-Smale sequence (ujn) at the mountain-pass level cλj
, where λj → 1.

Therefore, ujn ⇀ uj in Hs(RN ) where uj is a critical point of Iλj
. This time, the boundedness

of the sequence (uj) follows by the assumption (V 4). Moreover, we prove that (uj) is a bounded
Palais-Smale sequence of I. To show that the bounded sequence (uj) converges to a nontrivial weak
solution of (1.1), we show that c1 is strictly less than the least energy level m∞ of the functional
I∞ associated to the ”problem at infinity”

(−∆)su+ V∞u = f(u) in R
N .

Together with an accurate description of the sequence as a sum of translated critical points, this
allows us to infer that uj ⇀ u in Hs(RN ), for some nontrivial critical point u of I.

Let us recall that when f is an odd function satisfying (f1)-(f4), and V is constant, the existence
of a radial positive ground state to (1.1) has been proved in [6] (see also [2]) via a minimization
argument and by working in the space of radial functions Hs

rad(R
N ), which is compactly embedded

into Lp(RN ) for all p ∈ (2, 2∗s). Here, we present a different proof of this result (see Theorem 1.1)
which is based on the global compactness lemma, which will be also useful to prove Theorem 1.3. In
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fact, we think that the global compactness lemma is not only interesting for the aim of this paper,
but it can be also used to deal with other problems similar to (1.1). We also point out that by
using the methods developed here, we are able to study (1.1) dealing with radial and non-radial
potentials in a unified approach.

The plan of the paper is the following: In section 2 we collect some technical results which will be
useful along the paper. In section 3 we use the monotonicity trick to prove Theorem 1.1. In section
4 we give the proof of Theorem 1.3.

2. Preliminaries and functional setting

In this section we give a few results that we are later going to use for the proofs of the main results.
For any s ∈ (0, 1) we define Ds,2(RN ) as the completion of C∞

0 (RN ) with respect to

[u]2Hs(RN ) =

∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy = |(−∆)

s
2u|2L2(RN ),

that is

Ds,2(RN ) =
{

u ∈ L2∗s (RN ) : [u]Hs(RN ) <∞
}

.

Now, let us introduce the fractional Sobolev space

Hs(RN ) =

{

u ∈ L2(RN ) :
|u(x)− u(y)|

|x− y|
N+2s

2

∈ L2(R2N )

}

endowed with the natural norm

‖u‖Hs(RN ) =
√

[u]2
Hs(RN )

+ |u|2
L2(RN )

.

For the convenience of the reader we recall from [20] the following:

Theorem 2.1. Let s ∈ (0, 1) and N > 2s. Then there exists a sharp constant S∗ = S(N, s) > 0,
whose exact value can be found in [17], such that for any u ∈ Hs(RN )

|u|2
L2∗s (RN )

≤ S−1
∗ [u]2Hs(RN ). (2.1)

Moreover Hs(RN ) is continuously embedded in Lq(RN ) for any q ∈ [2, 2∗s ] and compactly in Lq
loc(R

N )
for any q ∈ [2, 2∗s).

Remark 2.1. The exact value of the best constant S∗ appearing in (2.1), has been calculated ex-
plicitly in [17]. Moreover, the authors proved that the equality in (2.1) holds if and only if

u(x) = c(µ2 + (x− x0)
2)−

N−2s
2

where c ∈ R, µ > 0 and x0 ∈ R
N are fixed constants.

Now, we give some technical lemmas. The first one is a compactness Lions-type lemma whose proof
can be found in [38].

Lemma 2.1. [38] Let N > 2s and r ∈ [2, 2∗s). If (un) is a bounded sequence in Hs(RN ) and if

lim
n→∞

sup
y∈RN

∫

BR(y)
|un|

rdx = 0

where R > 0, then un → 0 in Lt(RN ) for all t ∈ (2, 2∗s).

Next, we prove the following useful result:

Lemma 2.2. If un ⇀ u in Ds,2(RN ) and u ∈ L∞
loc(R

N ), then

|un|
2∗s−2un − |un − u|2

∗

s−2(un − u) → |u|2
∗

s−2u in (Ds,2(RN ))′.
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Proof. Let Ψ(u) = |u|2
∗

s−2u and take w ∈ C∞
c (RN ). By the mean value theorem, we can see that

|Ψ(un)−Ψ(un − u)| ≤ (2∗s − 1)[|un|+ |u|]2
∗

s−2|u| a.e. in R
N .

Then, the Hölder inequality and the Sobolev embedding yield

∣

∣

∣

∣

∣

∫

|x|>R

[Ψ(un)−Ψ(un − u)]w dx

∣

∣

∣

∣

∣

≤ C1[|un|
2∗s−2

L2∗s (RN )
+ |u|

2∗s−2

L2∗s (RN )
]|w|L2∗s (RN )

(

∫

|x|>R

|u|2
∗

s dx

)
1
2∗s

and

∣

∣

∣

∣

∣

∫

|x|>R

Ψ(u)w dx

∣

∣

∣

∣

∣

≤ |w|L2∗s (RN )

(

∫

|x|>R

|u|2
∗

s dx

)

2∗s−1

2∗s

≤ C[w]Hs(RN )

(

∫

|x|>R

|u|2
∗

s dx

)

2∗s−1

2∗s

.

As a consequence, for any ε > 0 there exists R > 0 such that
∣

∣

∣

∣

∣

∫

|x|>R

[Ψ(un)−Ψ(un − u)−Ψ(u)]w dx

∣

∣

∣

∣

∣

≤ ε[w]Hs(RN ). (2.2)

Let us define M = supBR
|u|, so that on BR we get

|Ψ(un)−Ψ(un − u)| ≤ (2∗s − 1)[|un|+M ]2
∗

s−2M. (2.3)

Now, fix β > 1 such that

β ∈
(

max

{

2N

N + 2s
,
N − 2s

4s

}

,
N

2s

)

and we set α := (2∗s − 2)β = 4s
N−2sβ. Then, (2.3) becomes

|Ψ(un)−Ψ(un − u)| ≤ (2∗s − 1)[|un|+M ]
α
βM. (2.4)

We note that

α > 1 since β >
N − 2s

4s
,

and

α < 2∗s since β <
N

2s
.

Thus, it follows from the compact embedding Hs
loc(R

N ) ⊂ Lα
loc(R

N ) and the properties of Nemytskii
operators [45] that

Ψ(un)−Ψ(un − u) → Ψ(u) in Lβ(BR).

Hence, by using the Hölder inequality and the Sobolev embedding we can see that

∣

∣

∣

∣

∫

BR

[Ψ(un)−Ψ(un − u)−Ψ(u)]w dx

∣

∣

∣

∣

≤

(
∫

BR

|w|
β

β−1 dx

)
β−1
β
(
∫

BR

|Ψ(un)−Ψ(un − u)−Ψ(u)|β dx

)
1
β

≤ C[w]Hs(RN )

(
∫

BR

|Ψ(un)−Ψ(un − u)−Ψ(u)|β dx

)
1
β

→ 0.

(2.5)

where in the last inequality we have used the fact that β
β−1 < 2∗s because of β > 2N

N+2s .

Putting together (2.2) and (2.5) we obtain the assert. �

Finally we recall the following well-known results:
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Lemma 2.3. [11] Let P and Q : R → R be a continuous functions satisfying

lim
t→+∞

P (t)

Q(t)
= 0,

{vn}n, v and w be measurable functions from R
N to R, with w bounded, such that

sup
n∈N

∫

RN

|Q(vn(x))w| dx < +∞,

P (vn(x)) → v(x) a.e. in R
N .

Then |(P (vn)− v)w|L1(B) → 0, for any bounded Borel set B.
Moreover, if we have also

lim
t→0

P (t)

Q(t)
= 0,

and
lim

|x|→∞
sup
n∈N

|vn(x)| = 0,

then |(P (vn)− v)w|L1(RN ) → 0.

Lemma 2.4. [12] Let Ω be an open set in R
N and let (un) ⊂ Lp(RN ), with 1 ≤ p <∞. If

(i) (un) is bounded in Lp(RN ),
(ii) un → u almost everywhere in Ω,
then

lim
n→∞

(|un|
p
Lp(Ω) − |un − u|p

Lp(Ω)) = |u|p
Lp(Ω).

Remark 2.2. In order to simplify the notation in what follows, with | · |q we will always denote the
norm of u ∈ Lq(RN ).

3. Ground state solution when the potential V is constant

In this section we provide the proof of Theorem 1.1. Since we look for positive solution of (1.1), we
can suppose that f(t) = 0 for t ≤ 0. For simplicity, we also take K = 1 in (f3).
Let H = {u ∈ Hs(RN ) :

∫

RN V (x)u2dx <∞} endowed with the norm

‖u‖2 =

∫

RN

(

|(−∆)
s
2u|2 + V (x)u2

)

dx.

By using the assumptions (V 2) and (V 3), it is easy to prove that ‖ · ‖ is equivalent to the standard
norm in Hs(RN ). In order to study weak solutions to (1.1), we look for critical points of the
following functional

I(u) =
1

2
‖u‖2 −

∫

RN

F (u)dx.

For λ ∈ [12 , 1], we consider the family of functionals

Iλ(u) =
1

2
‖u‖2 − λ

∫

RN

F (u)dx

defined for all u ∈ H.
By Theorem 2.1 and assumptions on f , it is clear that Iλ is well defined, Iλ ∈ C1(H,R) and

that its differential is given by

〈I ′
λ(u), ϕ〉 =

∫∫

R2N

(u(x)− u(y))

|x− y|N+2s
(ϕ(x) − ϕ(y)) dxdy +

∫

RN

V (x)uϕdx − λ

∫

RN

f(u)ϕdx

for any u, ϕ ∈ H.
Now, we prove that Iλ satisfies the assumptions of Theorem 1.2.
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Lemma 3.1. Assume (V 1)-(V 2) and (f1)-(f4). Then, for almost every λ ∈ [12 , 1], there is a
sequence (un) ⊂ H such that
(i) (un) is bounded;
(ii) Iλ(un) → cλ = infγ∈Γ maxt∈[0,1] Iλ(γ(t)) where Γ = {γ ∈ C([0, 1],H) : γ(0) = 0, γ(1) = v2}

for some v2 ∈ H \ {0} such that Iλ(v2) < 0 for all λ ∈ [12 , 1];

(iii) I ′
λ(un) → 0 on H−1.

Moreover, if V (x) ∈ L∞(RN ), then

cλ <
s

N

S
N
2s
∗

λ
N−2s

2s

. (3.1)

Proof. We aim to apply Theorem 1.2 with X = H, J = [12 , 1], A(u) = 1
2‖u‖

2, and B(u) =
∫

RN F (u) dx. Clearly, A(u) → ∞ as ‖u‖ → ∞, and by the assumption (f4), it follows that B(u) ≥ 0
for any u ∈ H. Now, by using (f1)-(f3), we know that for any ε > 0 there exists Cε > 0 such that

|F (t)| ≤ εt2 + Cε|t|
2∗2 for all t ∈ R.

Then, by using Theorem 2.1, (V 2) and λ ∈ [12 , 1], we get

Iλ(u) ≥
1

2
‖u‖2 − λ[ε|u|22 + Cε|u|

2∗2
2∗2
]

≥
1

2
‖u‖2 −

ε

V0
‖u‖2 − CεS

−
2∗s
2

∗ ‖u‖2
∗

2

so there exist α > 0 and r > 0 independent of λ, such that

Iλ(u) ≥ α > 0 for any ‖u‖ = r.

By using (f4) and λ ∈ [12 , 1], we can note that

Iλ(u) ≤
1

2
‖u‖2 −

N − 2s

4N
|u+|

2∗s
2∗s

−
D

2q
|u+|qq (3.2)

so, taking ϕ ∈ H such that ϕ ≥ 0 and ϕ 6= 0, we can see that Iλ(tu) → −∞ as t → ∞. Hence,
there exists t0 > 0 such that ‖t0ϕ‖ > r and Iλ(t0ϕ) < 0 for all λ ∈ [12 , 1]. Since Iλ(0) = 0, we set
v1 = 0 and v2 = t0ϕ. Therefore, Iλ satisfies the assumptions of Theorem 1.2, and we can find a
bounded Palais-Smale sequence for Iλ at the level cλ.
Finally, we prove the estimate in (3.1). Let η ∈ C∞

0 (RN ) be a cut-off function such that 0 ≤ η ≤ 1,
η = 1 on Br and η = 0 on R

N \B2r, where Br denotes the ball in R
N of center at origin and radius

r. For ε > 0, let us define uε(x) = η(x)Uε(x), where

Uε(x) =
κε

N−2s
2

(ε2 + |x|2)
N−2s

2

is a solution to

(−∆)su = S∗|u|
2∗s−2u in R

N

and κ is a suitable positive constant depending only on N and s.
Now we set

vε =
uε

|uε|2∗s
.

As proved in [22, 40], vε satisfies the following useful estimates:

[vε]
2
Hs(RN ) ≤ S∗ +O(εN−2s), (3.3)

|vε|
2
2 =







O(ε2s) if N > 4s
O(ε2s| log(ε)|) if N = 4s
O(εN−2s) if N < 4s,

(3.4)
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and

|vε|
q
q =

{

O(ε
2N−(N−2s)q

2 ) if q > N
N−2s

O(ε
(N−2s)q

2 ) if q < N
N−2s .

(3.5)

From the definition of cλ, we know that

cλ ≤ sup
t≥0

Iλ(tvε). (3.6)

Now, we consider the following function for t ≥ 0

k(t) =
t2

2
‖vε‖

2 −
t2

∗

s

2∗s
λ.

We observe that k(t) attains its maximum at t0 = (λ−1‖vε‖
2)

1
2∗s−2 and

k(t0) =
s

N

1

λ
N−2s

2s

‖vε‖
N
s =

s

N

1

λ
N−2s

2s

(

[vε]
2
Hs(RN ) +

∫

RN

V (x)v2ε dx

)
N
2s

. (3.7)

Let us note that there exists τ ∈ (0, 1) such that for ε < 1

sup
t∈[0,τ ]

Iλ(tvε) ≤ sup
t∈[0,τ ]

t2

2
‖vε‖

2 <
s

N

S
N
2s
∗

λ
N−2s

2s

. (3.8)

On the other hand, in view of (f4), λ ∈ [12 , 1], (3.3) and (3.7), we get

sup
t≥τ

Iλ(tvε) ≤ sup
t≥0

k(t)− λ
D

q
τ q|vε|

q
q

≤
s

N

1

λ
N−2s

2s

(

[vε]
2
Hs(RN ) +

∫

RN

V (x)v2ε dx

)
N
2s

−
D

2q
τ q|vε|

q
q

≤
s

N

1

λ
N−2s

2s

(

S∗ +O(εN−2s) +

∫

RN

V (x)v2ε dx

)
N
2s

− C0|vε|
q
q.

By using the elementary inequality (a + b)p ≤ ap + p(a + b)p−1b for all a, b > 0 and p ≥ 1, and
V (x) ∈ L∞(RN ), we have

sup
t≥τ

Iλ(tvε) ≤
s

N

S
N
2s
∗

λ
N−2s

2s

+O(εN−2s) + C1

∫

RN

V (x)|vε|
2 dx− C0|vε|

q
q

≤
s

N

S
N
2s
∗

λ
N−2s

2s

+O(εN−2s) + C2|vε|
2
2 −C0|vε|

q
q.

Now, we distinguish the following cases:
If N > 4s, then q ∈ (2, 2∗s) and in particular q > N

N−2s . Hence, by using (3.4) and (3.5), we can see
that

sup
t≥τ

Iλ(tvε) ≤
s

N

S
N
2s
∗

λ
N−2s

2s

+O(εN−2s) +O(ε2s)−O(ε
2N−(N−2s)q

2 ).

Taking into account 2N−(N−2s)q
2 < 2s < N − 2s, there exists ε0 > 0 such that for any ε ∈ (0, ε0)

sup
t≥τ

Iλ(tvε) <
s

N

S
N
2s
∗

λ
N−2s

2s

. (3.9)
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When N = 4s, then q ∈ (2, 4) and in particular q > N
N−2s = 2, so from (3.4) and (3.5) we deduce

that

sup
t≥τ

Iλ(tvε) ≤
s

N

S
N
2s
∗

λ
N−2s

2s

+O(ε2s) +O(ε2s| log(ε)|) −O(ε4s−sq).

Since limε→0
ε4s−sq

ε2s(1+| log(ε)|)
= ∞, for any ε sufficiently small we have

sup
t≥τ

Iλ(tvε) <
s

N

S
N
2s
∗

λ
N−2s

2s

. (3.10)

Finally, if 2s < N < 4s, then q ∈ ( 4s
N−2s , 2

∗
s) and in particular q > N

N−2s . Hence, observing that
2N−(N−2s)q

2 < N − 2s, we get

sup
t≥τ

Iλ(tvε) ≤
s

N

S
N
2s
∗

λ
N−2s

2s

+O(εN−2s) +O(εN−2s)−O(ε
2N−(N−2s)q

2 ) <
s

N

S
N
2s
∗

λ
N−2s

2s

(3.11)

for any ε > 0 small enough. Putting together (3.6), (3.8) and (3.9)-(3.11), we can conclude that
(3.1) holds.

�

Remark 3.1. Let us note that for λ ∈ [12 , 1], if (un) ⊂ H is such that

‖un‖ ≤ C, Iλ(un) → cλ, I ′
λ(un) → 0,

then un ≥ 0 in H. In fact, by using 〈I ′
λ(un), u

−
n 〉 = on(1), where u

− = min{u, 0}, and the fact that
f(t) = 0 if t ≤ 0, we can infer that

∫

RN

(−∆)
s
2un(−∆)

s
2u−n + V (x)(u−n )

2 dx = on(1).

On the other hand, we know that
∫

RN

(−∆)
s
2un(−∆)

s
2u−n dx =

∫∫

R2N

(un(x)− un(y))(u
−
n (x)− u−n (y))

|x− y|N+2s
dxdy

≥

∫∫

R2N

|u−n (x)− u−n (y)|
2

|x− y|N+2s
dxdy = [u−n ]

2
Hs(RN ).

Then, ‖u−n ‖ = on(1), and this allows us to deduce that ‖u+n ‖ ≤ C, Iλ(u
+
n ) → cλ and I ′

λ(u
+
n ) → 0 as

n→ ∞.

Arguing as in [6, 16, 39] we can prove the following fractional Pohozaev identity:

Lemma 3.2. For λ ∈ [12 , 1], if uλ is a critical point of Iλ, then uλ satisfies the following Pohozaev
identity

N − 2s

2
[uλ]

2
Hs(RN ) +

1

2

∫

RN

∇V (x) · xu2λdx = N

∫

RN

[

λF (u)−
1

2
V (x)u2λ

]

dx. (3.12)

Remark 3.2. It is easy to check that if (V 1)-(V 2) and (f1)-(f3) hold, then there exists β > 0
independent of λ ∈ [12 , 1] such that any nontrivial critical point uλ of Iλ verifies ‖uλ‖ ≥ β > 0.
In fact, by using (f1)-(f3), we can see that for any ε > 0 there exists Cε > 0 such that

|F (t)| ≤ εt2 +Cε|t|
2∗s for all t ∈ R.

Taking into account 〈I ′
λ(uλ), uλ〉 = 0, λ ≤ 1, F ≥ 0, the Sobolev embedding, (V 1)-(V 2), we have

‖uλ‖
2 = λ

∫

RN

F (uλ) dx ≤ εC1‖uλ‖
2 + CεC2‖uλ‖

2∗s
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where C1, C2 > 0 depending only on V0 and the best constant S∗. Choosing ε > 0 sufficiently small
and by using uλ 6= 0, we deduce that there exists β > 0 such that ‖uλ‖ ≥ β > 0.

Now, we establish the following compactness lemma which will be useful to prove Theorem 1.1.

Lemma 3.3. Assume that V (x) ≡ V and f satisfies (f1)-(f4). For λ ∈ [12 , 1], let (un) ⊂ H be a

bounded sequence in H such that un ≥ 0, Iλ(un) → cλ, I
′
λ(un) → 0. Moreover, cλ <

s
N

S
N
2s
∗

λ
N−2s

2s

.

Then there exists a subsequence of (un), which we denote again by (un), and an integer k ∈ N∪{0}

and wj
λ ∈ H for 1 ≤ j ≤ k such that

(i) un → uλ in H and I ′
λ(uλ) = 0;

(ii) wj
λ 6= 0 and I ′

λ(w
j
λ) = 0 for 1 ≤ j ≤ k;

(iii) cλ = Iλ(uλ) +
∑k

j=1 Iλ(w
j
λ)

where we agree that in the case k = 0, the above holds without wj
λ.

Proof. We divide the proof in several steps.

Step 1 Extracting a subsequence if necessary, we can assume that un ⇀ uλ in H with uλ critical
point of Iλ.

Since (un) is bounded in H and H is a reflexive Banach space, up to a subsequence, we can suppose
that un ⇀ uλ in H, and, in view of Theorem 2.1, un → uλ in Lr

loc(R
N ) for all r ∈ [1, 2∗s). Then, for

any ϕ ∈ C∞
0 (RN ) we have

〈I ′λ(un), ϕ〉 − 〈I ′λ(uλ), ϕ〉 =〈un − uλ, ϕ〉 − λ

∫

RN

[g(un)− g(u)]ϕdx

− λ

∫

RN

(|un|
2∗s−2un − |uλ|

2∗s−2uλ)ϕdx, (3.13)

where g(t) = f(t)− (t+)
N+2s
N−2s . Since un ⇀ uλ in H, we get

〈un − uλ, ϕ〉 → 0. (3.14)

Moreover, {|un|
2∗s−2un − |uλ|

2∗s−2uλ} is bounded in L
2∗s

2∗s−1 (RN ) and

|un|
2∗s−2un → |uλ|

2∗s−2uλ a.e. in R
N ,

so we obtain that
∫

RN

(|un|
2∗s−2un − |uλ|

2∗s−2uλ)ϕdx→ 0. (3.15)

By using Lemma 2.3, (f2) and (f3) we can infer that
∫

RN

[g(un)− g(u)]ϕdx → 0. (3.16)

Putting together (3.13), (3.14), (3.15), (3.16) and I ′
λ(un) → 0, we can see that 〈I ′

λ(uλ), ϕ〉 = 0 for
any ϕ ∈ C∞

0 (RN ). By using the density of C∞
0 (RN ) in Hs(RN ), we deduce that I ′

λ(uλ) = 0, that
is (i) is satisfied. Now, we set v1n = un − uλ.

Step 2 If limn→∞ supz∈RN

∫

B1(z)
|v1n|

2dx = 0, then un → uλ in H and Lemma 3.3 holds with k = 0.

From Lemma 2.1, we get

v1n → 0 in Lt(RN ), ∀t ∈ (2, 2∗s). (3.17)
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Now, we observe that

〈I ′
λ(un), v

1
n〉 = 〈un, v

1
n〉 − λ

∫

RN

f(un)v
1
n dx

= ‖v1n‖
2 + 〈uλ, v

1
n〉 − λ

∫

RN

f(un)v
1
n dx,

that is

‖v1n‖
2 = 〈I ′

λ(un), v
1
n〉 − 〈uλ, v

1
n〉+ λ

∫

RN

f(un)v
1
n dx.

By using 〈I ′
λ(uλ), v

1
n〉 = 0, 〈I ′

λ(un), v
1
n〉 = o(1) and the definition of g, we have

‖v1n‖
2 = 〈I ′

λ(un), v
1
n〉+ λ

∫

RN

(f(un)− f(uλ))v
1
ndx

= λ

∫

RN

(g(un)− g(uλ))v
1
ndx+ λ

∫

RN

(|un|
2∗s−2un − |uλ|

2∗s−2uλ)v
1
ndx+ o(1).

Now, by (f1)-(f3), we know that for any ε > 0 there exists Cε > 0 such that

|g(t)| ≤ ε(|t| + |t|2
∗

s−1) + Cε|t|
q−1 for all t ∈ R. (3.18)

Therefore, taking into account (3.17) and (3.18), we obtain

‖v1n‖
2 = λ

∫

RN

(|un|
2∗s−2un − |uλ|

2∗s−2uλ)v
1
n dx+ o(1).

Since uλ is a weak solution to (1.1) and f satisfies (f1)-(f3), we can argue as in [6, 16] to infer that
uλ ∈ L∞(RN ). Then, by using Lemma 2.2, we can see that

∣

∣

∣

∣

∫

RN

[|un|
2∗s−2un − |uλ|

2∗s−2uλ − |un − uλ|
2∗s−2(un − uλ)]ϕdx

∣

∣

∣

∣

= o(1)‖ϕ‖, ∀ϕ ∈ H. (3.19)

Taking ϕ = v1n = un − uλ in (3.19), we deduce

‖v1n‖
2 = λ

∫

RN

|v1n|
2∗s dx+ o(1). (3.20)

Let us note that Lemma 2.4 yields

‖v1n‖
2 = ‖un‖

2 − ‖uλ‖
2 + o(1) (3.21)

and
∫

RN

|v1n|
2∗s dx =

∫

RN

|un|
2∗s dx−

∫

RN

|uλ|
2∗s dx+ o(1). (3.22)

At this point, we aim to prove that
∫

RN

G(v1n) dx =

∫

RN

G(un) dx−

∫

RN

G(uλ) dx+ o(1). (3.23)

By (3.18) and the mean value theorem, it holds

|G(un)−G(v1n)| ≤ C[(|v1n|+ |uλ|) + (|v1n|+ |uλ|)
2∗s−1]|uλ|.
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Fixed R > 0, by using the Hölder’s inequality we obtain
∫

{|x|≥R}
|G(un)−G(v1n)| dx

≤ C

(

∫

{|x|≥R}
|v1n|

2 dx

)
1
2
(

∫

{|x|≥R}
|uλ|

2 dx

)
1
2

+ C

∫

{|x|≥R}
|uλ|

2 dx

+ C

(

∫

{|x|≥R}
|v1n|

2∗s dx

)

2∗s−1

2∗s

(

∫

{|x|≥R}
|uλ|

2∗s dx

)
1
2∗s

+ C

∫

{|x|≥R}
|uλ|

2∗s dx.

(3.24)

On the other hand, by (f1)-(f3), we get
∫

{|x|≥R}
|G(uλ)| dx ≤ C

∫

{|x|≥R}
|uλ|

2 dx+ C

∫

{|x|≥R}
|uλ|

2∗ dx. (3.25)

Combining (3.24) with (3.25), we deduce that for any ε > 0 there exists R > 0 such that
∫

{|x|≥R}
|G(un)−G(v1n)−G(uλ)| dx ≤ ε. (3.26)

We recall that limt→∞
G(t)

|t|2
∗

s
= 0 by (f3), and |un|2∗s ≤ C for all n ∈ N, being (un) bounded in H.

Then, by using Lemma 2.3, we can see that

lim
n→∞

∫

{|x|≤R}
|G(un)−G(uλ)| dx = 0, (3.27)

and, in similar way,

lim
n→∞

∫

{|x|≤R}
|G(v1n)| dx = 0. (3.28)

Hence, (3.26), (3.27) and (3.28) show that (3.23) is verified. Putting together (3.21)-(3.23), we have

cλ − Iλ(uλ) = Iλ(un)− Iλ(uλ) + o(1)

=
[1

2
‖un‖

2 − λ

∫

RN

G(un) dx−
λ

2∗s
|un|

2∗s
2∗s

]

−
[1

2
‖uλ‖

2 − λ

∫

RN

G(uλ) dx−
λ

2∗s
|uλ|

2∗s
2∗s

]

+ o(1)

=
1

2
‖v1n‖

2 − λ

∫

RN

G(v1n) dx−
λ

2∗s
|v1n|

2∗s
2∗s

+ o(1) (3.29)

By using (3.17), (3.18) and (3.29) we can infer that

cλ − Iλ(uλ) =
1

2
‖v1n‖

2 −
λ

2∗s

∫

RN

|v1n|
2∗s dx+ o(1). (3.30)

Since I ′
λ(uλ) = 0, from Lemma 3.2 it follows that Iλ(uλ) = s

N
[uλ]

2
Hs(RN )

≥ 0. Then, in view of

(3.30), we get

cλ − Iλ(uλ) <
s

N

S
N
2s
∗

λ
N−2s

2s

.

Now, we may assume that ‖v1n‖
2 → L ≥ 0. By (3.20), it follows that λ|v1n|

2∗s
2∗s

→ L.

Let us suppose that L > 0. Then, by using the Sobolev embedding we know that

|v1n|
2
2∗s
S∗ ≤ ‖v1n‖

2,
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so we can deduce that L ≥ S
N
2s
∗

λ
N−2s

2s

.

This fact and (3.30) yield

cλ − Iλ(uλ) =
s

N
L ≥

s

N

S
N
2s
∗

λ
N−2s

2s

which gives a contradiction. Hence, ‖v1n‖ → 0 as n→ ∞.

Step 3 If there exists (zn) ⊂ R
N such that

∫

B1(zn)
|v1n|

2 dx→ d > 0, then, up to a subsequence, the

following conditions hold
(1) |zn| → ∞;
(2) un(·+ zn)⇀ wλ 6= 0 in H;
(3) I ′

λ(wλ) = 0.

We may assume that there exists (zn) ⊂ R
N such that

∫

B1(zn)
|v1n|

2 dx ≥
d

2
> 0.

Set ṽ1n(x) = v1n(x+ zn). Then ṽ
1
n is bounded in H and we may suppose that ṽ1n ⇀ ṽ1 in H.

Since
∫

B1(0)
|ṽ1n|

2 dx ≥
d

2

we get
∫

B1(0)
|ṽ1|2 dx ≥

d

2

that is ṽ1 6= 0. From the fact that v1n ⇀ 0 in H, we deduce that (zn) is unbounded, so we may
assume that |zn| → ∞. Now, we set ũn(x) = un(x + zn) ⇀ wλ 6= 0. As in Step 1, we can see that
〈I ′

λ(ũn), ϕ〉 − 〈I ′
λ(wλ), ϕ〉 → 0, for all ϕ ∈ C∞

0 (RN ). On the other hand, being |zn| → ∞, we have
for all ϕ ∈ C∞

0 (RN )

〈I ′
λ(ũn), ϕ〉 = 〈I ′

λ(un), ϕ(· − zn)〉 → 0,

so we can conclude that 〈I ′
λ(wλ), ϕ〉 = 0, for all ϕ ∈ C∞

0 (RN ).

Step 4 If there exists m ≥ 1, (ykn) ⊂ R
N , wk

λ ∈ H for 1 ≤ k ≤ m such that

(i) |ykn| → ∞, |ykn − yhn| → ∞ if k 6= h,
(ii) un(·+ ykn)⇀ wk

λ 6= 0 in H, for any 1 ≤ k ≤ m,

(iii) wk
λ ≥ 0 and I ′

λ(w
k
λ) = 0 for any 1 ≤ k ≤ m,

then one of the following conclusions must hold:
(1) If supz∈RN

∫

B1(z)
|un − u0 −

∑m
k=1w

k
λ(· − ykn)|

2 dx→ 0, then
∥

∥

∥

∥

∥

un − u0 −

m
∑

k=1

wk
λ(· − ykn)

∥

∥

∥

∥

∥

→ 0.

(2) If there exists (zn) ⊂ R
N such that

∫

B1(zn)

∣

∣

∣

∣

∣

un − u0 −
m
∑

k=1

wk
λ(· − ykn)

∣

∣

∣

∣

∣

2

dx→ d > 0,

then up to a subsequence, the following conditions hold
(i) |zn| → ∞, |zn − ykn| → ∞ for any 1 ≤ k ≤ m,
(ii) un(·+ zn)⇀ wm+1

λ 6= 0 in H,
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(iii) wm+1
λ ≥ 0 and I ′

λ(w
m+1
λ ) = 0.

Assume that (1) holds. Set ξn = un − u0 −
∑m

k=1w
k
λ(· − ykn). Then, by using Lemma 2.1 we can see

that

ξn → 0 in Lt(RN ) for all t ∈ (2, 2∗s). (3.31)

By using the definition of ξn and the fact that 〈I ′
λ(uλ), ξn〉 = 0 = 〈I ′

λ(w
k
λ), ξn〉, we can infer

‖ξn‖
2 = 〈I ′

λ(un), ξn〉+ λ

∫

RN

(f(un)− f(uλ))ξn dx− λ

m
∑

k=1

∫

RN

f(wk
λ)ξn(·+ ykn) dx.

In view of (3.18) and (3.31), we deduce that

‖ξn‖
2 = λ

∫

RN

(|un|
2∗s−2un − |uλ|

2∗s−2uλ)ξn dx− λ

m
∑

k=1

∫

RN

|wk
λ|

2∗s−2wk
λξn(·+ ykn) dx+ o(1).

Recalling (3.19), we can observe that

‖ξn‖
2 = λ

∫

RN

|un − uλ|
2∗s−2(un − uλ)ξn dx− λ

∫

RN

|w1
λ|

2∗s−2w1
λξn(·+ y1n) dx

− λ
m
∑

k=2

∫

RN

|wk
λ|

2∗s−2wk
λξn(·+ ykn) dx+ o(1)

= λ

∫

RN

|un(·+ y1n)− uλ(·+ y1n)|
2∗s−2(un(·+ y1n)− uλ(·+ y1n))ξn(·+ y1n) dx

− λ

∫

RN

|w1
λ|

2∗s−2w1
λξn(·+ y1n) dx− λ

m
∑

k=2

∫

RN

|wk
λ|

2∗s−2wk
λξn(·+ ykn) dx+ o(1).

Since |y1n| → ∞, and un(·+ y1n)⇀ w1
λ in H, we deduce that un(·+ y1n)− uλ(·+ y1n)⇀ w1

λ in H.
As a consequence we have

‖ξn‖
2 = λ

∫

RN

|un(·+ y1n)− uλ(·+ y1n)− w1
λ|

2∗s−2(un(·+ y1n)− uλ(·+ y1n)− w1
λ)ξn(·+ y1n) dx

− λ

m
∑

k=2

∫

RN

|wk
λ|

2∗s−2wk
λξn(·+ ykn) dx+ o(1).

Iterating this procedure, we obtain that

‖ξn‖
2 = λ

∫

RN

|ξn|
2∗s dx+ o(1). (3.32)

Now, since un(·+ y1n)− uλ(·+ y1n)⇀ w1
λ in H, we can argue as in Step 2 to see that

cλ − Iλ(uλ) =
1

2
‖un − uλ‖

2 − λ

∫

RN

G(un − uλ) dx−
λ

2∗s

∫

RN

|un − uλ|
2∗s dx+ o(1)

=
1

2
‖un(·+ y1n)− uλ(·+ y1n)− w1

λ‖
2 − λ

∫

RN

G(un(·+ y1n)− uλ(·+ y1n)− w1
λ) dx

−
λ

2∗s

∫

RN

|un(·+ y1n)− uλ(·+ y1n)− w1
λ|

2∗s dx+ Iλ(w
1
λ) + o(1).

Continuing this process, we obtain that

cλ − Iλ(uλ)−
m
∑

k=1

Iλ(w
k
λ) =

1

2
‖ξn‖

2 − λ

∫

RN

G(ξn) dx−
λ

2∗s

∫

RN

|ξn|
2∗s dx+ o(1), (3.33)
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which together with (3.31), yields

cλ − Iλ(uλ)−
m
∑

k=1

Iλ(w
k
λ) =

1

2
‖ξn‖

2 −
λ

2∗s

∫

RN

|ξn|
2∗s dx+ o(1). (3.34)

Then, taking into account (3.32) and (3.34), we can argue as in Step 2 to infer that
∥

∥

∥

∥

∥

un − u0 −

m
∑

k=1

wk
λ(· − ykn)

∥

∥

∥

∥

∥

= ‖ξn‖ → 0 as n→ ∞.

Now, we assume that (2) holds. The proof of this is standard (see [30]), so we skip the details here.

Step 5 Conclusion.

By using the Step 1, we can see that Lemma 3.3 (i) holds. If the assumption of Step 2 is verified,
then Lemma 3.3 holds with k = 0. Otherwise, the assumption of Step 3 holds. We set (y1n) = (zn)
and w1

λ = wλ. Now, if (1) of Step 4 holds with m = 1, from (3.34), we obtain the conclusion of
Lemma 3.3. If not, (2) of Step 4 must hold, and by setting (y2n) = (zn), w

2
λ = w2

λ, we iterate Step 4.
Then, to conclude the proof, we have to show that (1) of Step 4 must occur after a finite number
of iterations. Let us note that, for all m ≥ 1 we have

lim
n→∞

(

‖un‖
2 − ‖uλ‖

2 −

m
∑

k=1

‖wk
λ‖

2

)

= lim
n→∞

∥

∥

∥

∥

∥

un − uλ −

m
∑

k=1

wk
λ(· − ykn)

∥

∥

∥

∥

∥

2

≥ 0.

In fact, by using (i), (ii) of Step 4 and un ⇀ uλ in H, we can see that
∥

∥

∥

∥

∥

un − uλ −

m
∑

k=1

wk
λ(· − ykn)

∥

∥

∥

∥

∥

2

= ‖un‖
2 + ‖uλ‖

2 +

m
∑

k=1

‖wk
λ‖

2 − 2〈un, uλ〉 − 2

m
∑

k=1

〈un, w
k
λ(· − ykn)〉

+ 2

m
∑

k=1

〈uλ, w
k
λ(· − ykn)〉+ 2

∑

h,k

〈wh
λ(· − yhn), w

k
λ(· − ykn)〉

= ‖un‖
2 − ‖uλ‖

2 −
m
∑

k=1

‖wk
λ‖

2 + o(1) (3.35)

On the other hand, by Remark 3.2 we know that ‖wk
λ‖ ≥ β for some β > 0 independent of λ. Thus,

by using (3.35) and the fact that (un) is bounded in H, we deduce that (1) in Step 4 must occur
after a finite number of iterations. This together with (3.34), allow us to infer that Lemma 3.3
holds.

�

Before giving the proof of the main result of this section, we prove the following lemma.

Lemma 3.4. Under the same assumptions of Theorem 1.1, for almost every λ ∈ [12 , 1], Iλ has a
positive critical point.

Proof. By Lemma 3.1, for almost every λ ∈ [12 , 1], there exists a bounded sequence (un) ⊂ H such
that

Iλ(un) → cλ, I ′
λ(un) → 0. (3.36)

By using Remark 3.1, we may assume that un ≥ 0 in H. In addition, cλ ∈

(

0, s
N

S
N
2s
∗

λ
N−2s

2s

)

. Then, up

to a subsequence, we may suppose that un ⇀ uλ in H. If uλ 6= 0, then we have finished. Otherwise,
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we may suppose that un ⇀ 0 in H. Now, we aim to show that there exists δ > 0 such that

lim
n→∞

sup
y∈RN

∫

B1(y)
|un|

2 dx ≥ δ > 0. (3.37)

If (3.37) does not occur, by Lemma 2.1, it follows that

un → 0 in Lt(RN ), ∀t ∈ (2, 2∗s). (3.38)

By using (3.18) and (3.38), we obtain that
∫

RN G(un) dx = o(1) and
∫

RN g(un)un dx = o(1). This
and (3.36) yield

1

2
‖un‖

2 −
λ

2∗s

∫

RN

u2
∗

s
n dx = cλ + o(1) (3.39)

and

‖un‖
2 − λ

∫

RN

u2
∗

s
n dx = o(1). (3.40)

Since cλ > 0, we may assume that ‖un‖
2 → L for some L > 0. By using the Sobolev embedding,

we can infer that L ≥ S
N
2s
∗

λ
N−2s

2s

.

This together with (3.39) and (3.40), imply cλ ≥ s
N

S
N
2s
∗

λ
N−2s

2s

, which is a contradiction. Then, (3.37)

holds, and we can find (yn) ⊂ R
N such that |yn| → ∞ and

∫

B1(yn)
|un|

2 dx ≥ δ
2 > 0.

Set vn = un(·+ yn). By using (3.36) we derive that Iλ(vn) → cλ and I ′
λ(vn) → 0. In view of (3.37),

we can deduce that vn ⇀ vλ 6= 0 in H and I ′
λ(vλ) = 0. It is easy to check that vλ ≥ 0 in R

N ,
and due to the fact that vλ 6= 0, we get vλ > 0 in R

N . In fact, if there exists x0 ∈ R
N such that

vλ(x0) = 0, then we can see that

(−∆)svλ(x0) = (−∆)svλ(x0) + V vλ(x0) = λf(vλ(x0)) = 0.

By using the representation formula for the fractional Laplacian [20], we have
∫

RN

vλ(x0 + y) + vλ(x0 − y)

|x0 − y|N+2s
dy = 0

which gives vλ = 0, that is a contradiction. �

Now, we are ready to prove the existence of positive ground state to (1.1) when V is constant.

Proof of Theorem 1.1. By using Lemma 3.4, for almost every λ ∈ [12 , 1], there exists (un) ⊂ H such

that un ≥ 0 in H, Iλ(un) → cλ ∈
(

0, s
N

S
N
2s
∗

λ
N−2s

2s

)

, I ′
λ(un) → 0 and un ⇀ uλ > 0 in H.

In view of Lemma 3.3, we can see that

cλ = Iλ(uλ) +

k
∑

j=1

Iλ(w
j
λ),

I ′
λ(uλ) = 0 and I ′

λ(w
j
λ) = 0 for 1 ≤ j ≤ k. By Lemma 3.2, we deduce that Iλ(uλ) > 0 and

Iλ(w
j
λ) ≥ 0 for 1 ≤ j ≤ k, so we have cλ ≥ Iλ(uλ) > 0. Thus, there exists (λn) ⊂ [12 , 1] such that

λn → 1, uλn
∈ H, uλn

> 0, I ′
λn
(uλn

) = 0, cλn
≥ Iλn

(uλn
) > 0 and cλn

∈

(

0, s
N

S
N
2s
∗

λ
N−2s

2s
n

)

. By using

the fact that I ′
λn
(uλn

) = 0 and Lemma 3.2, we infer that

cλn
≥ Iλn

(uλn
) =

s

N
[uλn

]2Hs(RN ) > 0.
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Moreover, in view of the Sobolev embedding, we have |uλn
|2∗s ≤ C for all n ∈ N. Putting together

(f1)-(f3) and Lemma 3.2, we can see that for any ε > 0 there exists Cε > 0 such that

N − 2s

2N
[uλn

]2 +
1

2

∫

RN

V u2λn
dx = λn

∫

RN

F (uλn
) dx ≤ ε|uλn

|22 + Cε|uλn
|
2∗s
2∗s
.

which implies that

V

2

∫

RN

u2λn
dx ≤ ε|uλn

|22 + CεC.

Therefore, choosing ε ∈ (0, V2 ), we can deduce that (uλn
) is bounded in H. Now, we can assume

that there exists limn→∞ Iλn
(uλn

). Since the map λ 7→ cλ is continuous from the left (see Theorem
1.2), we have

0 ≤ lim
n→∞

Iλn
(uλn

) ≤ c1 <
s

N
S

N
2s
∗ .

Then, by using the fact that

I(uλn
) = Iλn

(uλn
) + (λn − 1)

∫

RN

F (uλn
) dx

and ‖uλn
‖ ≤ C, we can infer that

0 ≤ lim
n→∞

I(uλn
) ≤ c1 <

s

N
S

N
2s
∗ (3.41)

and
lim
n→∞

I ′(uλn
) = 0. (3.42)

In view of Remark 3.2, there exists β > 0 independent of λn such that ‖uλn
‖ ≥ β. Moreover, we

know that (uλn
) is bounded in H, so we can use similar arguments to the proof of Lemma 3.4 to

obtain the existence of a positive solution u0 to (1.1).
By using Lemma 3.3, we can also see that

I(u0) ≤ lim
n→∞

I(uλn
) ≤ c1 <

s

N
S

N
2s
∗ .

Let us define
m = inf{I(u) : u ∈ H,u 6= 0,I ′(u) = 0}.

Since I ′(u0) = 0, we get m ≤ I(u0) <
s
N
S

N
2s
∗ , and by using Lemma 3.2, we get 0 ≤ m < s

N
S

N
2s
∗ .

From the definition of m, we can find (un) ⊂ H such that I(un) → m and I ′(un) = 0. Taking into
account Remark 3.2, we deduce that ‖un‖ ≥ β > 0 for some β independent of n. Moreover, it is
easy to see that (un) is bounded in H.
In virtue of Remark 3.1, we may assume that un ≥ 0 in H. Then, taking in mind that ‖un‖ ≥ β > 0,
we can proceed as in the proof of Lemma 3.4, to show that there exists (vn) ⊂ H such that vn ≥ 0
in H, vn ⇀ v0 > 0 in H, I(vn) → m and I ′(vn) = 0. By using Lemma 3.3, we can infer that
I(v0) ≤ m and I ′(v0) = 0. Since I ′(v0) = 0, we also have I(v0) ≥ m. Then, we have proved that
v0 > 0 is such that I(v0) = m and I ′(v0) = 0.

�

4. Ground state solution when V is not constant

In this last section we provide the proof of the existence of ground state to (1.1) under the assump-
tions that V is a non constant potential. For this reason, we will assume that V (x) 6≡ V∞.
For λ ∈ [12 , 1], we introduce the following family of functionals defined for u ∈ H

I∞
λ (u) =

1

2

[
∫

RN

(

|(−∆)
s
2u|2 + V∞u

2
)

dx

]

− λ

∫

RN

F (u) dx. (4.1)

Following [6], we can prove the following result:
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Lemma 4.1. For λ ∈ [12 , 1], if wλ ∈ H is a nontrivial critical point of I∞
λ , then there ex-

ists γλ ∈ C([0, 1],H) such that γλ(0) = 0, I∞
1
2

(γλ(1)) < 0, wλ ∈ γλ([0, 1]), 0 /∈ γλ((0, 1]) and

maxt∈[0,1] I
∞
λ (γλ(t)) = I∞

λ (wλ).

Proof. Let

γλ(t)(x) =

{

wλ(
x
t
) for t > 0

0 for t = 0.

Then we can see

‖γλ(t)‖
2 = tN−2s[wλ]

2
Hs(RN ) + tNV∞|wλ|

2
2

I∞
λ (γλ(t)) =

tN−2s

2
[wλ]

2
Hs(RN ) +

tN

2
V∞|wλ|

2
2 − tNλ

∫

RN

F (wλ) dx. (4.2)

Hence γλ ∈ C([0,∞),H).
By using Lemma 3.2, we know that

λ

∫

RN

F (wλ) dx =
N − 2s

2N
[wλ]

2
Hs(RN ) +

1

2
V∞|wλ|

2
2, (4.3)

which together with (4.2) and (4.3), yields

I∞
λ (γλ(t)) =

(

tN−2s

2
− tN

N − 2s

2N

)

[wλ]
2
Hs(RN ).

Then, after a suitable change of scale, we can obtain the desired path.
�

Remark 4.1. From Theorem 1.1, we know that if (f1)-(f4) hold, then for λ ∈ [12 , 1], I∞
λ has a

ground state.

Lemma 4.2. Under the same assumptions of Theorem 1.3, we have that for almost every λ ∈ [12 , 1],
Iλ has a positive critical point.

Proof. From Lemma 3.1 and Remark 3.1, we may assume that for almost every λ ∈ [12 , 1], there

exists (un) ⊂ H such that un ≥ 0 in H, un ⇀ uλ in H, Iλ(un) → cλ ∈ (0, s
N

S
N
2s
∗

λ
N−2s

2s

) and I ′
λ(un) → 0.

Now, our claim is to prove that uλ 6= 0. We argue by contradiction, and we suppose that uλ = 0. As
in the proof of Lemma 3.4, we can find (yn) ⊂ R

N such that |yn| → ∞ and vn = un(·+yn)⇀ vλ 6= 0
in H. Furthermore, by using the fact that un ⇀ 0 in H, we can see that I∞

λ (un) → cλ and
(I∞

λ )′(un) → 0 hold. Thus, I∞
λ (vn) → cλ and (I∞

λ )′(vn) → 0.
Since vn ⇀ vλ 6= 0 in H, it holds (I∞

λ )′(vλ) = 0. In view of Lemma 3.3 we get cλ ≥ I∞
λ (vλ). From

Remark 4.1 it follows that I∞
λ has a ground state wλ. Thus, cλ ≥ I∞

λ (wλ). By Lemma 4.1, we can
find a path γλ ∈ C([0, 1],H) such that γλ(0) = 0, I∞

1
2

(γλ(1)) < 0, wλ ∈ γλ([0, 1]), 0 /∈ γλ((0, 1]) and

maxt∈[0,1] I
∞
λ (γλ(t)) = I∞

λ (wλ).
Therefore we obtain

cλ ≥ I∞
λ (wλ) = max

t∈[0,1]
I∞
λ (γλ(t)). (4.4)

Taking into account (V 3), V 6≡ V∞ and 0 /∈ γλ((0, 1]), we can see that Iλ(γλ(t)) < I∞
λ (γλ(t)) for

all t ∈ (0, 1]. Now, we take v1 = 0 and v2 = γλ(1) in Theorem 1.2. Then, by using the definition of
cλ and (4.4) we get

cλ ≤ max
t∈[0,1]

Iλ(γλ(t)) < max
t∈[0,1]

I∞
λ (γλ(t)) ≤ cλ, (4.5)

which gives a contradiction. As a consequence uλ 6= 0, and by applying the maximum principle [13]
we can deduce that uλ > 0.

�
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At this point we establish the following lemma which will be fundamental to prove Theorem 1.3.

Lemma 4.3. Assume that (V 1)-(V 3) and (f1)-(f5) are satisfied. For λ ∈ [12 , 1], let (un) ⊂ H be a

bounded sequence in H such that un ≥ 0 in H, Iλ(un) → cλ ∈
(

0, s
N

S
N
2s
∗

λ
N−2s

2s

)

and I ′
λ(un) → 0.

Then there exists a subsequence of (un), which we denote again by (un), such that
(i) un ⇀ u in H and I ′

λ(uλ) = 0,
(ii) Iλ(uλ) ≤ cλ.

Proof. Since (un) is bounded in H, up to a subsequence, we may suppose that un ⇀ uλ in H. Then,
proceeding as in the proof of Step 1 in Lemma 3.3, and by using (V 3), we can see that I ′

λ(uλ) = 0,
that is (i) is satisfied.
Set w1

n = un − uλ. Similarly to the proof of Lemma 3.3, we can deduce that

cλ − Iλ(uλ) =
1

2
‖w1

n‖
2 − λ

∫

RN

G(w1
n) dx−

λ

2∗s
|w1

n|
2∗s
2∗s

+ o(1). (4.6)

At this point, we aim to prove that for any ϕ ∈ H
∣

∣

∣

∣

∫

RN

(g(un)− g(uλ)− g(w1
n))ϕdx

∣

∣

∣

∣

= o(1)‖ϕ‖. (4.7)

By using (f5) and the mean value theorem, we can see that

|g(un)− g(w1
n)| ≤ C[1 + (|w1

n|+ |uλ|+ |v1n|)
2∗s−2]|uλ|.

Fix R > 0 and by applying the Hölder’s inequality we obtain
∫

{|x|≥R}
|g(un)− g(w1

n)||ϕ| dx

≤ C

(

∫

{|x|≥R}
|uλ|

2 dx

)
1
2

‖ϕ‖ + C

(

∫

{|x|≥R}
|uλ|

2∗s dx

)
N+2s
2N

‖ϕ‖

+ C

(

∫

{|x|≥R}
|w1

n|
2∗s dx

)
2s
N
(

∫

{|x|≥R}
|uλ|

2∗s dx

)
1
2∗s

‖ϕ‖

(4.8)

and
∫

{|x|≥R}
|g(uλ)ϕ| dx ≤ C

∫

|x|≥R

|uλ||ϕ| dx+ C

∫

|x|≥R

|uλ|
2∗s−1|ϕ| dx

≤ C

(

∫

{|x|≥R}
|uλ|

2 dx

)
1
2

‖ϕ‖+ C

(

∫

{|x|≥R}
|uλ|

2∗ dx

)

2∗s−1

2∗s

‖ϕ‖. (4.9)

Putting together (4.8) and (4.9), we deduce that for any ε > 0 there exists R > 0 such that
∣

∣

∣

∣

∣

∫

{|x|≥R}
(g(un)− g(uλ)− g(w1

n))ϕdx

∣

∣

∣

∣

∣

≤ ε‖ϕ‖. (4.10)

Let us note that

∫

|x|≤R

|g(un)− g(uλ)||ϕ| dx ≤

(

∫

|x|≤R

|g(un)− g(uλ)|
2∗s

2∗s−1 dx

)

2∗s−1

2∗s

(

∫

|x|≤R

|ϕ|2
∗

s dx

)
1
2∗s

.
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Recalling that limt→∞
g(t)

2∗s
2∗s−1

|t|2
∗

s
= 0 and (un) is bounded in L2∗s (RN ), we can apply Lemma 2.3 to

infer that

lim
n→∞

∫

|x|≤R

|g(un)|
2∗s

2∗s−1 dx =

∫

|x|≤R

|g(uλ)|
2∗s

2∗s−1 dx.

By using the Dominated Convergence Theorem, we have
∫

{|x|≤R}
|g(un)− g(uλ)||ϕ| dx = o(1)‖ϕ‖ (4.11)

and
∫

{|x|≤R}
|g(w1

n)||ϕ| dx = o(1)‖ϕ‖. (4.12)

Hence, (4.10)-(4.12) show that (4.7) is verified. Now, for λ ∈ [12 , 1], let us introduce the following
functionals on H

Hλ(u) =
1

2
‖u‖2 − λ

∫

RN

G(u) dx −
λ

2∗s

∫

RN

|u|2
∗

s dx,

H∞
λ (u) =

1

2

∫

RN

(

|(−∆)
s
2u|2 + V∞u

2
)

dx− λ

∫

RN

G(u) dx −
λ

2∗s

∫

RN

|u|2
∗

s dx,

J∞
λ (u) =

1

2

∫

RN

(

|(−∆)
s
2u|2 + V∞u

2
)

dx−
λ

2∗s

∫

RN

|u|2
∗

s dx.

Then, (4.6) becomes

cλ − Iλ(uλ) = Hλ(w
1
n) + o(1). (4.13)

By using (3.19) and (4.7) we have, for any ϕ ∈ H,

|〈I ′
λ(un)− I ′

λ(uλ), ϕ〉 − 〈H ′
λ(w

1
n), ϕ〉| = o(1)‖ϕ‖, (4.14)

which gives
H ′

λ(w
1
n) = o(1). (4.15)

Taking into account (4.13), (4.15), (V 3) and the fact that w1
n ⇀ 0 in H, we get

cλ − Iλ(uλ) = H∞
λ (w1

n) + o(1) (4.16)

and
(H∞

λ )′(w1
n) = o(1). (4.17)

Now we distinguish two cases.
(1) limn→∞ supy∈RN

∫

B1(y)
|w1

n|
2 dx = 0.

By using Lemma 2.1 we have

w1
n → 0 in Lt(RN ), ∀t ∈ (2, 2∗s). (4.18)

Putting together (3.18) and (4.16)-(4.18), we can deduce that

cλ − Iλ(uλ) = J∞
λ (w1

n) + o(1) and J ′
λ(w

1
n) = o(1)

which gives

cλ − Iλ(uλ) =
λs

N
|w1

n|
2∗s
2∗s

+ o(1)

and then cλ ≥ Iλ(uλ).
(2) limn→∞ supy∈RN

∫

B1(y)
|w1

n|
2 dx ≥ δ1 for some δ1 > 0.

Thus, there exists y1n ∈ R
N , |y1n| → ∞ such that

∫

B1(y1n)
|w1

n|
2 dx ≥ δ1

2 . As a consequence, we can

see that w1
n(·+ y1n)⇀ w1

λ 6= 0 in H,

cλ − Iλ(uλ) = H∞
λ (w1

n(·+ y1n)) + o(1) (4.19)
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and
(H∞

λ )′(w1
n(·+ y1n)) = o(1). (4.20)

By (4.20) we have (H∞
λ )′(w1

n) = 0. Now, if cλ − Iλ(uλ) <
s
N

S
N
2s
∗

λ
N−2s

2s

, then we can proceed as in the

proof of Lemma 3.3 to obtain the thesis.
Otherwise, we set w2

n = w1
n(· + y1n) − w1

λ, and repeating the same arguments of (4.13) and (4.15),
we can see

cλ − Iλ(uλ)−H∞
λ (w1

λ) + o(1) = H∞
λ (w2

n) (4.21)

and
(H∞

λ )′(w2
n) = o(1). (4.22)

Then, as before, the following cases can occur

lim
n→∞

sup
y∈RN

∫

B1(y)
|w2

n|
2 dx = 0 (4.23)

or

lim
n→∞

sup
y∈RN

∫

B1(y)
|w2

n|
2 dx ≥ δ2 > 0. (4.24)

Let us suppose that (4.23) is true. Then, by the case (1) we deduce that cλ−Iλ(uλ)−H
∞
λ (w1

λ) ≥ 0,
and by Lemma 3.2 we get H∞

λ (w1
λ) ≥ 0. This two facts give cλ − Iλ(uλ) ≥ 0.

Now, we can suppose that (4.24) holds. Repeating this procedure, we can find wi
n ∈ H, yin ∈ R

N ,
|yin| → ∞, i ∈ N such that wi

n(·+ yin)⇀ wi
λ 6= 0 in H, (H∞

λ )′(wi
λ) = 0,

cλ − Iλ(uλ)−

j
∑

i=1

H∞
λ (wi

λ) + o(1) = H∞
λ (wj+1

n ) (4.25)

and
(H∞

λ )′(wj+1
n ) = o(1), (4.26)

where
wj+1
n = wj

n(·+ yjn)−wj
λ, j ∈ N.

Since (H∞
λ )′(wi

λ) = 0, we can use Lemma 3.2 to get

H∞
λ (wi

λ) =
s

N
[wi

λ]
2
Hs(RN ). (4.27)

Now we show that there exists α > 0 independent of i such that

[wi
λ]Hs(RN ) ≥ α. (4.28)

In fact, by using (H∞
λ )′(wi

λ) = 0, λ ∈ [12 , 1], and (f1)-(f3), we can see that for any ε > 0 there
exists Cε > 0 such that

∫

RN

(

|(−∆)
s
2wi

λ|
2 + V∞|wi

λ|
2
)

dx ≤ ε

∫

RN

|wi
λ|

2 dx+ Cε

∫

RN

|wi
λ|

2∗s dx

≤
ε

V∞

∫

RN

V∞|wi
λ|

2 dx+ Cε

∫

RN

|wi
λ|

2∗s dx.

Choosing ε ∈ (0, V∞), we can infer that

[wi
λ]

2
Hs(RN ) ≤ C|wi

λ|
2∗s
2∗s
,

which together with the Sobolev inequality, gives (4.28).
Then, putting together (4.27) and (4.28), at some j = k, we obtain that

cλ − Iλ(uλ)−

j
∑

i=1

H∞
λ (wi

λ) <
s

N

S
N
2s
∗

λ
N−2s

2s

.
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The conclusion follows by Lemma 3.3.
�

We end this section giving the proof of Theorem 1.3.

Proof of Theorem 1.3. Taking into account Lemma 4.2, for almost every λ ∈ [12 , 1] there exists

(un) ⊂ H such that Iλ(un) → cλ ∈

(

0, s
N

S
N
2s
∗

λ
N−2s

2s

)

, I ′
λ(un) → 0, un ⇀ uλ 6= 0 in H.

By using Lemma 4.3, we deduce that Iλ(uλ) ≤ cλ and I ′
λ(uλ) = 0. Hence, we can find a sequence

λn ∈ [12 , 1] such that λn → 1, cλn
∈ (0, s

N
S

N
2s
∗

λ
N−2s

2s

), uλn
∈ H such that I ′

λn
(uλn

) = 0, Iλn
(uλn

) ≤ cλn
.

At this point, we show that there exists a positive constant C such that

‖uλn
‖ ≤ C for all n ∈ N. (4.29)

By using (V 4), we know that there exists θ ∈ (0, 2s) such that

|max{x · ∇V, 0}|N
2s

≤ θS∗. (4.30)

Taking into account Iλn
(uλn

) ≤ c 1
2
, I ′

λn
(uλn

) = 0, Lemma 3.2, Hölder inequality, Theorem 2.1 and

(4.30), we can infer that

s[uλn
]2Hs(RN ) =

N

2
[uλn

]2Hs(RN ) +
N

2

∫

RN

V (x)u2λn
dx+

1

2

∫

RN

x · ∇V (x)u2λn
dx− λnN

∫

RN

F (uλn
) dx

= N Iλn
(uλn

) +
1

2

∫

RN

x · ∇V (x)u2λn
dx ≤ Nc 1

2
+
θ

2
[uλn

]2, (4.31)

which implies that [uλn
]Hs(RN ) ≤ C for any n ∈ N. Putting together I ′

λn
(uλn

) = 0, λn ∈ [12 , 1],

(f1)-(f3) and the Sobolev inequality, we have for any ε > 0

V0|uλn
|22 ≤

∫

RN

(

|(−∆)
s
2uλn

|2 + V (x)u2λn

)

dx

≤

∫

RN

f(uλn
)uλn

dx

≤ ε|uλn
|22 + Cε|uλn

|
2∗s
2∗s

≤ ε|uλn
|22 + C ′

ε[uλn
]
2∗s
Hs(RN )

. (4.32)

Choosing ε ∈ (0, V0) and by using [uλn
]Hs(RN ) ≤ C, we can see that (4.32) yields |uλn

|2 ≤ C for all

n ∈ N. In view of (V 2) and (V 3), we deduce that 0 ≤
∫

RN V (x)u2λn
dx ≤ V∞|uλn

|22 ≤ V∞C
2, which

completes the proof of (4.29).
Now, we can note that

I(uλn
) = Iλn

(uλn
) + (λn − 1)

∫

RN

F (uλn
) dx,

so we can infer that

lim
n→∞

I(uλn
) ≤ c1 <

s

N
S

N
2s
∗

and
lim
n→∞

I ′(uλn
) = 0.

In view of Remark 3.2, we know that there exists β > 0 independent of λn such that ‖uλn
‖ ≥ β.

Since ‖uλn
‖ ≤ C for any n ∈ N, we can proceed as in the proof of Lemma 4.2 to show that

uλn
⇀ u0 6= 0 in H. Then, by using Lemma 4.3, we can see that

I(u0) ≤ lim
n→∞

I(uλn
) ≤ c1 <

s

N
S

N
2s
∗ and I ′(u0) = 0.
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Let us define
m = inf{I(u) : u ∈ H,u 6= 0,I ′(u) = 0}.

Being I ′(u0) = 0, it is clear that m ≤ I(u0) <
s
N
S

N
2s
∗ . Now, by using the definition of m, we can

find (vn) ⊂ H such that vn 6= 0, I(vn) → m and I ′(vn) = 0. Arguing as in (4.31) and (4.32),
we can show that (vn) is bounded in H, and that there exists β > 0 independent of n such that
‖vn‖ ≥ β. This means that m > −∞. Proceeding similarly to the proof of Lemma 4.2, we can see
that vn ⇀ v0 6= 0 in H. Then, by using Lemma 4.3, we can deduce that I ′(v0) = 0 and I(v0) ≤ m.
Since I ′(v0) = 0, we also have that I(v0) ≥ m. Therefore, we have proved that v0 6= 0 is such that
I(v0) = m and I ′(v0) = 0, that is v0 is a ground state of (1.1). �
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[35] G. Molica Bisci, V. Rădulescu and R. Servadei, Variational methods for nonlocal fractional problems, with a

foreword by Jean Mawhin. Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press,
Cambridge, 2016. xvi+383 pp.

[36] G. Molica Bisci and R. Servadei, Lower semicontinuity of functionals of fractional type and applications to

nonlocal equations with critical Sobolev exponent, Adv. Differential Equations 20 (2015), no. 7-8, 635–660.
[37] P. Rabinowitz, On a class of nonlinear Schrödinger equations Z. Angew. Math. Phys. 43 (1992), no. 2, 270291.
[38] S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in R

N , J. Math. Phys. 54 (2013),
031501.

[39] S. Secchi, On fractional Schrödinger equations in R
N without the Ambrosetti-Rabinowitz condition, Topol. Meth-

ods Nonlinear Anal. 47 (2016), no. 1, 19–41.
[40] R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc.

367 (2015), no. 1, 67–102.
[41] X. Shang and J. Zhang, Ground states for fractional Schrödinger equations with critical growth, Nonlinearity

27 (2014), no. 2, 187–207.
[42] J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differ-

ential Equations 42 (2011), no. 1-2, 21–41.
[43] K. Teng and X. He, Ground state solutions for fractional Schrdinger equations with critical Sobolev exponent

Commun. Pure Appl. Anal. 15 (2016), no. 3, 991–1008.
[44] X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 53

(1993), 229–244.
[45] M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24.
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