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The  one-dimensional  legal  cellular  automata  (CAs)  used  in  Wolfram’s
original  classification  from  a  viewpoint  of  symmetropy  (an  object  re-
lated to symmetry and entropy) are quantified.  For this  quantification,
the discrete  Walsh analysis  that  expresses  the two-dimensional  discrete
pattern  in  terms  of  the  four  types  of  symmetry  is  used.  The  following
was found.  (1)  The relationship between symmetry and entropy of  the
CA patterns corresponds to the three qualitative classes of  CAs:  II,  III,
and  IV.  (2)  The  change  in  symmetropy  shows  that  class  IV  (complex)
exists  between class  II  (periodic)  and class  III  (chaotic).  As  an applica-
tion  of  these  findings,  the  scale  dependence  of  the  symmetropy  of  the
CA  patterns  is  considered,  and  it  is  shown  that  class  IV  is  useful  for
drawing  complicated  patterns  when  the  system  must  keep  the  number
of cells low. 

1. Introduction

Theoretical  interest  has  been  expressed  in  the  symmetry  and  entropy
of cellular automata (CAs) [1–4]. For example, the topological or met-
ric entropy is useful for the well-known classification of the CAs into
four  classes:  I  (fixed  point),  II  (periodic),  III  (chaotic),  and  IV
(complex) [5]. However, the symmetry in abstract algebra is attractive
in  the  study  of  the  CA’s  rule  [6–8].  This  paper  concentrates  on  the
geometric  symmetry  in  the  discrete  pattern  caused  by  the  CA’s  rule,
and  suggests  a  holistic  approach  to  the  four  classes  of  the  CA  from
the viewpoint of symmetropy (an object related to symmetry and en-
tropy).  For  this,  we  use  the  discrete  Walsh  analysis  (Figure  1(a);  see
also  p.  573  in  [1]),  which  has  been  used  to  express  two-dimensional
discrete patterns as the superposition of the four types of basic symme-
try [9, 10] (Figure 1(b); the details are given in Section 3).  
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Figure 1. (a)  Examples  of  the  two-dimensional  discrete  Walsh  function  for
NäN ! 22 ä22 ! 4ä4.  Black represents  +1 and white  signifies  -1.  See  also
p.  573 in  [1].  (b)  Four  types  of  symmetry  in  the  sense  of  the  discrete  Walsh
function. See Section 3 for details. 

The Walsh approach is useful for analyzing the phase transition of
discrete  patterns,  such  as  microfracturing  and  cell–cell  adhesion
[11–13].  Phase  transitions  are  also  observed  in  CA  patterns  [1,  14].
For  example,  the  Langton parameter  shows that  the  phase  transition
from  periodic  (class  II)  to  chaotic  (class  III)  through  the  complex
(class  IV) is  recognized in the CA’s  rule  space [15].  Although the so-
called “edge of chaos” in [15] may be an artifact of the mathematical
techniques  [16],  the  phase  transition  in  the  CA  is  of  scientific  and
practical interest in various subjects. Here we consider the phase tran-
sition of the CA from the viewpoint of symmetropy. For this,  we de-
rive the relation between symmetry and entropy in classes II,  III,  and
IV. As an application, we discuss how the number of cells affects the
symmetry and entropy of the CA patterns. 

The  structure  of  this  paper  is  as  follows.  In  Section  2,  we  explain
data on the one-dimensional legal CAs. In Section 3, we briefly review
the  discrete  Walsh  analysis  for  estimating  entropy  and  symmetry  of
the CA patterns. In Section 4, we describe the results. In Section 5, we

         
           
           

352 K. Yamasaki, K. Z. Nanjo, and S. Chiba

Complex Systems, 20 © 2012 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.20.4.351



            
           

         
            

discuss  the  results  and  consider  the  relationship  between  the  entropy
and symmetry of the CA patterns from the viewpoint of phase transi-
tion and scale dependence. Section 6 is devoted to the conclusions. 

2. Data

For simplicity, this paper concentrates on the classical CAs in the well-
known  Wolfram  classification  [5],  that  is,  the  one-dimensional  legal
CAs that obey the 32 possible legal totalistic rules. The totalistic rules
involve nearest and next-nearest neighbors, and each cell has two pos-
sible colors:  white (color 0) and black (color 1).  Wolfram [5] discov-
ered that  while  the patterns obtained with different  rules  all  differ  in
detail, they appear to fall into four qualitative classes:  

Class  I:  Evolution leads to a homogeneous state  (fixed point)  (realized
for codes 0, 4, 16, 32, 36, 48, 54, 60, and 62). 

Class II: Evolution leads to a set of separated simple stable or periodic
structures (periodic) (codes 8, 24, 40, 56, and 58). 

Class III: Evolution leads to a chaotic pattern (chaotic) (codes 2, 6, 10,
12, 14, 18, 22, 26, 28, 30, 34, 38, 42, 44, 46, and 50). 

Class  IV:  Evolution  leads  to  complex  localized  structures,  sometimes
long-lived (complex) (codes 20 and 52). 

In this paper, we do not use all codes in class I because the patterns
are trivial (i.e., most of the cells are white or black). Because the sym-
metry  is  related  to  the  scale  [12],  we  change  the  size  (the  number  of
cells)  of  the  CA  pattern.  That  is,  the  CAs  are  composed  of  2k  sites
where the positive  integer  k  is  shifted from k ! 3 to k ! 7,  and iter-
ated during 2k  time steps. (We do not use the cases k ! 1, 2 because
the number of cells is too small in this case.) After all, the total num-
ber of cells of the CA pattern is the product of the number of the sites
and the number of the time steps: 2kä2k, where k ! 3 ~ 7. The initial
state is taken as disordered, with each site having values 0 (white cell)
and  1  (black  cell)  with  independent  equal  probabilities.  We  run  the
CA program 100 times in a code with fixed k (i.e., we obtain 100ä5
patterns for each code because k is shifted from 3 to 7). As described
in  Section  3,  we  estimate  the  entropy  E  and  symmetry  S  of  the  pat-
terns for each code and k  and use the mean values of E  and S  as the
characterization of the patterns. 

3. Method: The Discrete Walsh Analysis

As details of the mathematical procedures of the discrete Walsh analy-
sis  were  given  in  previous  papers  [9,  11],  only  a  brief  outline  is  de-
scribed below. The Walsh function walHr, xL of order r  and argument
x  can  be  represented  over  the  interval  0 § x < 1  as  follows:
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walHr, xL ! €i!0
m-1 sgnAIcos 2i p xMriE,  where ri ! 0 or 1,  r ! ⁄i!0

m-1 ri 2i,
and  m  is  the  smallest  positive  integer  such  that  2m > r.  Dyadic  ad-
dition  of  non-negative  integers  r  and  s  is  defined  as

r ! s ! ⁄i!0
f †ri - si§ 2i, where r ! ⁄i!0

f ri 2i  and s ! ⁄i!0
f si 2i. Conse-

quently,  the  product  of  the  two  Walsh  functions  is  given  by
walHr, xLwalHs, xL ! walHr ! s, xL. From this multiplication, the Walsh
functions can be shown to form an orthonormal set.  In this  case,  we
can define the Walsh transform just like the Fourier transform.  

The two-dimensional discrete Walsh function can be represented in
matrix  form  as  @Wm nHi, jLD,  where  Wm nHi, jL  is  the  value  of  theHm, nLth-order Walsh function in the ith row cell in the jth column. Pat-
terns used in this paper are restricted to square matrices, each consist-
ing  of  NäN ! 2kä2k  square  cells,  where  k  is  a  positive  integer  and
takes  the  range  3 ~ 7  (see  Section  2).  This  pattern  can  be  written  asAxi jE, where xi j  is the value of the gray level in the ith  row cell in the

jth  column and i, j ! 0, 1, … , N - 1. If just two gray levels exist,  for
example, “black” and “white,” xi j  is usually represented by 1 and 0,
respectively (Figure 1(a); see also p. 573 in [1]). The two-dimensional
discrete Walsh transform of the pattern Axi jE is given by 

am n !
1

N2
‚
i!0

N-1 ‚
j!0

N-1

xi j Wm nHi, jL
where  m, n ! 0, 1, 2, … , N - 1.  The  functions  am n  and  Ham nL2  are
the  two-dimensional  Walsh  spectrum  and  power  spectrum,  respec-
tively. The Walsh power spectrum can be normalized as follows: 

(1)pm n !
Ham nL2

K
,

with K ! ⁄m!0
N-1 ⁄n!0

N-1 Ham nL2 - Ha00L2. In this case, we obtain  

(2)‚pm n ! 1,

where  the  sum  is  taken  over  all  ordered  pairs  Hm, nL  for
0 § m, n § N - 1, except for Hm, nL ! H0, 0L.  

The spatial pattern is considered as an information source consist-
ing of dot patterns.  The dot patterns emitted from the source are as-
sumed  to  occur  with  the  corresponding  probabilities  given  by  equa-
tion  (1).  Applying  the  entropy  function  in  information  theory  to  the
normalized power spectrum pm n,  we obtain the  information entropy
concerned with the following pattern: 

(3)E ! -
1

log2IN2 - 1M ‚
m!0

N-1 ‚
n!0

N-1

pm n log2 pm n,
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where  log2IN2 - 1M  is  the  normalization  constant.  In  this  case,  E
ranges  from 0  to  1  bit.  If  the  value  of  a  certain  component  is  larger
than  the  values  of  the  other  components,  equation  (3)  shows  that  E
decreases, that is, the pattern becomes systematic. If, however, the val-
ues  of  the  components  are  almost  equal  to  each  other,  E  increases,
that is, the pattern becomes random.  

Next, we consider the information entropy resulting from the sym-
metry  of  the  pattern.  Because  the  two-dimensional  Walsh  functions
can be easily divided into four types of symmetry (Figure 1(b)), equa-
tion (2) can be rewritten as 

(4)‚
i!1

4

Pi ! 1,

where  

(5)
vertical symmetric component: P1 ! ‚

m!even,

n!odd

pm n,

(6)
horizontal symmetric component: P2 ! ‚

m!odd,

n!even

pm n,

(7)
centrosymmetric component: P3 ! ‚

m!odd,

n!odd

pm n,

(8)
double symmetric component: P4 ! ‚

m!even,

n!even

pm n.

When the spatial pattern is regarded as an information source consist-
ing  of  four  types  of  symmetry,  the  corresponding  probabilities  are
given by equations (5) to (8). Applying the entropy function in infor-
mation theory to these four symmetric components, we obtain  

(9)S ! -‚
i!1

4

Pi log2 Pi.

Equations  (4)  and  (9)  show  that  S  ranges  from  0  to  2  bits.  Because
this entropy relates to the symmetry, it is called symmetropy [9]. The

        
             
            

            
          

              

Symmetry and Entropy of One-Dimensional Legal Cellular Automata 355

Complex Systems, 20 © 2012 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.20.4.351



             
          

symmetropy  can  be  considered  a  quantitative  and  objective  measure
of symmetry. If the value of a certain component is larger than the val-
ues of the other three components, the pattern is rich in symmetry re-
lated to the certain component. In this case, equation (9) shows that S
decreases. Conversely, if the values of the four components are almost
equal to each other, the pattern is poor in symmetry and S increases.  

In the sense of the discrete Walsh analysis, the symmetry of a pat-
tern  is  not  necessarily  correlated  with  entropy  of  the  pattern,  as
shown in Figure 2 (see [13] for more details). However, previous stud-
ies have concentrated on the symmetry [11, 12]. In this case, we can-
not  quantify  the  difference  between  the  patterns  that  have  the  same
symmetry  but  different  entropy.  Therefore,  the  possibility  exists  that
we  overlooked  important  geometric  information  in  the  CA  patterns.
Hence in this  paper,  we estimate not  only the symmetry but  also the
entropy of the CAs. 

Figure 2. Symmetropy (S) and entropy (E) of samples. Figure 2(a) Ø 2(b): the
pattern restores the particular symmetry (S decreases) to maintain the random-
ness  (constant  E).  Figure  2(a)  Ø  2(c):  the  pattern  becomes  systematic  (E  de-
creases)  with  the  predominance  of  particular  symmetry.  Figure  2(a)  Ø  2(d):
the pattern becomes random (E increases) to maintain the degree of symmetry
(constant S). Data from [13]. 

4. Results

Figure  3(a)  shows  the  symmetropy  S  and  the  entropy  E  for  the  CA
patterns of each code with k ! 7. The square indicates class II, the tri-
angle  indicates  class  III,  and  the  cross  indicates  class  IV.  All  results
have  been  rounded  to  no  more  than  seven  significant  figures.  As  a
whole, the  relationship between S  and E  can be described as  a  linear
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equation. However, each class exhibits a unique relationship between
S  and E.  In  class  III  (chaotic),  S  remains  constant  and E  varies  com-
pared to the other classes. The code 52 in class IV (complex behavior)
seems to show some deviation from the linear equation. These results
almost hold for other k values.  

HaL HbL
Figure 3. (a)  The  relationship  between  the  symmetropy  and  the  entropy  for
class II (square), class III (triangle), and class IV (cross). The numbers 20 and
52  represent  the  code  number.  (b)  The  plot  of  the  mean  value  of  the  sym-
metropy for each class against the scale parameter k. 

Figure 3(a) also shows that the symmetropy of class IV is held be-
tween classes II and III. In the other k values (¥5), this relationship al-
most  holds,  as  shown  in  Figure  3(b).  Figure  3(b)  shows  plots  of  the
mean values of symmetropy for each class against the k value. With a
decrease in k (i.e., a decrease in the number of cells), the symmetropy
of class II increases, that of class III decreases, and that of class IV re-
mains almost constant. As a result, the symmetropy of class IV is held
between classes  II  and III  from k ! 7 to k ! 5.  For the smallest  case
(k ! 3), all of the classes almost took the same value. 

Figure  4  shows  plots  of  the  mean  values  of  the  concrete  symme-
tries: vertical symmetry (P1), horizontal symmetry (P2), centrosymme-
try,  and  double  symmetry  (P4)  for  each  class  against  the  scale  k.
When  k ¥ 5  (i.e.,  when  enough  cells  were  present),  concrete  symme-
tries  of  class  IV  were  held  between  those  of  class  II  and  those  of
class!III, except for the vertical symmetry (P1). 
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Figure 4. Plot  of  the  four  symmetry  types  against  the  scale  parameter  k.
(a)!Vertical  symmetry  (P1).  (b)  Horizontal  symmetry  (P2).  (c)  Centrosymme-
try (P3). (d) Double symmetry (P4). The square indicates class II, the triangle
indicates class III, and the cross indicates class IV. 

5. Discussion

Wolfram [5] discovered that one-dimensional legal CAs appear to fall
into  four  qualitative  classes—class  I  (fixed  point),  class  II  (periodic),
class  III  (chaotic),  and  class  IV  (complex)—and  considered  their  be-
havior from a viewpoint of entropy. Here we considered the symmetri-
cal  property  of  CAs and showed that  these  classes  have peculiar  val-
ues of symmetropy S and entropy E (Figure 3(a)). This means that the
algebraic rules for CAs restrict not only the entropy but also the sym-
metry of the CA patterns, in the sense of the discrete Walsh analysis.  
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Recently,  some investigations  have  been conducted on the  unique-
ness  of  the  code  52,  such  as  the  dynamic  behavior  exhibited  by  the
“gliders”  [17,  18]  and  the  global  equivalence  classification  [19].
Hence, discussing the uniqueness of code 52 in the context of the dis-
crete Walsh analysis is intriguing. Figure 3(a) shows that the relation-
ship between S and E can be described by a linear equation in general.
In class IV, code 20 is on a straight line, but code 52 shows some devi-
ation from this line due to the lower entropy. Class III also shows de-
viation  from  a  straight  line,  but  this  may  be  attributable  to  the  fact
that the maximum value of S  is 2.0 bits. Therefore, code 52 is essen-
tially unique in the entropy. In this case, Figure 3(a) shows that code
52  is  useful  for  drawing  relatively  regular  patterns  (lower  entropy)
with middle symmetric properties (middle symmetropy). 

Next, we discuss the phase transition of the CA patterns. Langton
showed the phase transition of class behavioral regimes with increas-
ing  Langton  parameters  [14–16].  The  Langton  parameter  suggested
on  average  a  phase  transition  from  class  II  to  class  III  through
class!IV. (Of course, a specific value of the Langton parameter can be
associated with more than one class, so the parameter reflects the av-
erage behavior of a class of rules [14].) Symmetropy has been applied
to the analysis  of  the  phase  transition of  various  phenomena such as
rock fragmentation [11, 12] and cell–cell adhesion [13], so discussing
this  point  further  here  is  relevant.  Figure  3(a)  shows  that  the  sym-
metropy of class IV is in the transition area between that of classes II
and III. To understand this, we extracted the concrete symmetry from
the  CA  pattern  for  each  class,  as  in  Figure  4.  We  found  in  Fig-
ures!4(b), (c), and (d) that several symmetries of class IV are also held
in  classes  II  and III  when k ¥ 5 (i.e.,  when enough cells  are  present).
This implies that the transition from class II to class III through class
IV can be also recognized in the hidden symmetry of the CA patterns.
In  Figure!4(a),  when  k ¥ 6,  the  prominence  of  the  vertical  symmetry
in class!IV appears to reflect the long-range correlation of class IV. 

This analysis holds when the system has a large enough number of
cells:  k ¥ 5  or  k ¥ 6.  In  nature,  especially  in  biology,  the  number  of
cells  is  not  infinite  because  the  cost  of  forming cells  is  finite.  How is
the number of cells, characterized by the scale parameter k, related to
symmetry  in  the  discrete  patterns?  Figure  3(b)  shows  that  when  the
number of cells decreases, the regular (class II) and random (class III)
patterns  approach  each  other.  This  scale  dependence  of  the  sym-
metropy has also been observed in physical systems, for example, frac-
turing  in  rock  experiments  [12].  With  a  decrease  in  scale,  the  sym-
metropy  of  the  regular  fracture  pattern  (nucleation  of  the  fracturing
process)  increases,  and  that  of  the  random fracture  pattern  (the  pre-
and  post-nucleation  phases)  decreases.  In  summary,  the  scale  depen-
dence  of  the  patterns  caused  by  classes  II  and  III  is  also  observed  in
the  fracturing  process.  However,  Figure  3(b)  shows  that  the  pattern
caused by class IV almost has the same symmetropy. This scale inde-
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pendence  has  not  been  observed  in  the  fracturing  process  [12].  This
uniqueness of the class IV rule is useful for drawing complicated pat-
terns when the system must keep the number of cells low. For exam-
ple,  in biological  systems one must sometimes draw complicated pat-
terns while reducing the cost of forming cells. 

6. Conclusions

Our main conclusions are as follows. (1) The discrete Walsh analysis
shows that the relationship between the symmetry and the entropy of
the  cellular  automaton  (CA)  patterns  correspond  to  the  class  of  the
CA.  (2)  The  change  in  symmetropy  shows  that  class  IV  is  held  be-
tween classes  II  and III.  This  implies  the  transition from the periodic
(class II)  to the chaotic (class III)  through the complex (class IV) just
as  previous  studies  have  indicated.  (3)  The  scale  dependence  of  the
symmetropy  of  class  IV  shows  that  this  class  is  useful  for  drawing
complicated patterns when the system must  keep the number of  cells
low.  

References  

[1] S.  Wolfram,  A New Kind  of  Science,  Champaign,  IL:  Wolfram Media,
Inc., 2002. 

[2] H.  Akin,  “The  Entropy  of  Linear  Cellular  Automata  with  Respect  to
Any Bernoulli Measure,” Complex Systems, 18(2), 2009 pp. 237–244. 

[3] J. R. Sanchez and R. Lopez-Ruiz, “Symmetry Pattern Transition in Cel-
lular  Automata  with  Complex  Behavior,”  Chaos,  Solitons  &  Fractals,
37(3), 2008 pp. 638–642. doi:10.1016/j.chaos.2006.09.052.

[4] H. V. McIntosh, One Dimensional Cellular Automata, Beckington, UK:
Luniver Press, 2009. 

[5] S. Wolfram, “Universality and Complexity in Cellular Automata,” Phys-
ica D: Nonlinear Phenomena, 10(1–2), 1984 pp. 1–35.
doi:10.1016/0167-2789(84)90245-8.

[6] K.  Cattell  and  J.  C.  Muzio,  “Partial  Symmetry  in  Cellular  Automata
Rule  Vectors,”  Journal  of  Electronic  Testing:  Theory  and Applications,
11(2), 1997 pp. 187–190. doi:10.1023/A:1008226724350.

[7] H. Moraal, “Highly Symmetric Cellular Automata and Their Symmetry-
Breaking  Patterns,”  Physica  D:  Nonlinear  Phenomena,  148(3–4),  2001
pp. 255–271. doi:10.1016/S0167-2789(00)00195-0.

[8] A. Enciso, “Symmetry in Cellular Automata,” Electromagnetic Phenom-
ena, 6(2), 2006 pp. 234–236.
http://www.emph.com.ua/17/pdf/enciso.pdf.

[9] E.  Yodogawa,  “Symmetropy,  an  Entropy-Like  Measure  of  Visual  Sym-
metry,” Perception and Psychophysics, 32(3), 1982 pp. 230–240.

360 K. Yamasaki, K. Z. Nanjo, and S. Chiba

Complex Systems, 20 © 2012 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.20.4.351



[10] K.  Z.  Nanjo,  H.  Nagahama,  and  E.  Yodogawa,  “Symmetropy  of  Fault
Patterns: Quantitative Measurement of Anisotropy and Entropic Hetero-
geneity,” Mathematical Geology, 37(3), 2005 pp. 277–293.
doi:10.1007/s11004-005-1559-z.

[11] Y. Nishiyama, K. Z. Nanjo,  and K. Yamasaki,  “Geometrical  Minimum
Units  of  Fracture  Patterns  in  Two-Dimensional  Space:  Lattice  and  Dis-
crete Walsh Functions,” Physica A: Statistical  Mechanics and Its Appli-
cations, 387(25), 2008 pp. 6252–6262.
doi:10.1016/j.physa.2008.07.014.

[12] K. Yamasaki and K. Z. Nanjo, “A New Mathematical Tool for Analyz-
ing the Fracturing Process in Rock: Partial Symmetropy of Microfractur-
ing,”  Physics  of  the  Earth  and  Planetary  Interiors,  173(3–4),  2009
pp. 297–305. doi:10.1016/j.pepi.2009.01.010.

[13] K.  Yamasaki,  K.  Z.  Nanjo,  and  S.  Chiba,  “Symmetry  and  Entropy  of
Biological  Patterns:  Discrete  Walsh  Functions  for  2D  Image  Analysis,”
BioSystems, 103(1), 2011 pp. 105–112.
doi:10.1016/j.biosystems.2010.10.010.

[14] J.  L.  Schiff,  Cellular  Automata:  Discrete  View of  the  World,  Hoboken,
NJ: John Wiley & Sons, 2008. 

[15] C.  G.  Langton,  “Computation at  the  Edge of  Chaos:  Phase  Transitions
and  Emergent  Computation,”  Physica  D:  Nonlinear  Phenomena,
42(1–3), 1990 pp. 12–37. doi:10.1016/0167-2789(90)90064-V.

[16] M. Mitchell, J. P. Crutchfield, and P. T. Hraber, “Dynamics, Computa-
tion,  and  the  ‘Edge  of  Chaos’:  A  Re-examination,”  in  Complexity:
Metaphors,  Models,  and  Reality  (G.  A.  Cowan,  D.  Pines,  and
D. Melzner, eds.), Reading, MA: Addison-Wesley, 1994 pp. 491–513. 

[17] J. G. Freire and J. A. C. Gallas, “Synchronization and Predictability un-
der Rule 52, a Cellular Automaton Reputedly of Class 4,” Physics Let-
ters A, 366(1–2), 2007 pp. 25–29. doi:10.1016/j.physleta.2007.01.071.

[18] J. G. Freire, O. J. Brison, and J. A. C. Gallas, “Spatial Updating, Spatial
Transients,  and  Regularities  of  a  Complex  Automaton  with  Nonperi-
odic Architecture,” Chaos, 17(2), 2007 p. 026113.
doi:10.1063/1.2732896.

[19] S.  Shen  and  J.  Guan,  “The  Study  of  One-Dimensional  Cellular  Au-
tomata  with  Nearest-Nearest  Neighborhoods,”  in  International  Work-
shop  on  Chaos-Fractal  Theories  and  Applications  (IWCFTA10),  Kun-
ming, China, Piscataway, NJ: IEEE, 2010 pp. 232–236.
doi:10.1109/IWCFTA.2010.29.

Symmetry and Entropy of One-Dimensional Legal Cellular Automata 361

Complex Systems, 20 © 2012 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.20.4.351



<<
  /ASCII85EncodePages false
  /AllowPSXObjects false
  /AllowTransparency false
  /AlwaysEmbed [
    true
  ]
  /AntiAliasColorImages false
  /AntiAliasGrayImages false
  /AntiAliasMonoImages false
  /AutoFilterColorImages true
  /AutoFilterGrayImages true
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CheckCompliance [
    /None
  ]
  /ColorACSImageDict <<
    /HSamples [
      1
      1
      1
      1
    ]
    /QFactor 0.15000
    /VSamples [
      1
      1
      1
      1
    ]
  >>
  /ColorConversionStrategy /LeaveColorUnchanged
  /ColorImageAutoFilterStrategy /JPEG
  /ColorImageDepth -1
  /ColorImageDict <<
    /HSamples [
      1
      1
      1
      1
    ]
    /QFactor 0.15000
    /VSamples [
      1
      1
      1
      1
    ]
  >>
  /ColorImageDownsampleThreshold 1.50000
  /ColorImageDownsampleType /Bicubic
  /ColorImageFilter /DCTEncode
  /ColorImageMinDownsampleDepth 1
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /ColorImageResolution 300
  /ColorSettingsFile ()
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /CreateJDFFile false
  /CreateJobTicket false
  /CropColorImages false
  /CropGrayImages false
  /CropMonoImages false
  /DSCReportingLevel 0
  /DefaultRenderingIntent /Default
  /Description <<

  >>
  /DetectBlends true
  /DetectCurves 0
  /DoThumbnails false
  /DownsampleColorImages true
  /DownsampleGrayImages true
  /DownsampleMonoImages true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /EmbedOpenType false
  /EmitDSCWarnings false
  /EncodeColorImages true
  /EncodeGrayImages true
  /EncodeMonoImages true
  /EndPage -1
  /GrayACSImageDict <<
    /HSamples [
      1
      1
      1
      1
    ]
    /QFactor 0.15000
    /VSamples [
      1
      1
      1
      1
    ]
  >>
  /GrayImageAutoFilterStrategy /JPEG
  /GrayImageDepth -1
  /GrayImageDict <<
    /HSamples [
      1
      1
      1
      1
    ]
    /QFactor 0.15000
    /VSamples [
      1
      1
      1
      1
    ]
  >>
  /GrayImageDownsampleThreshold 1.50000
  /GrayImageDownsampleType /Bicubic
  /GrayImageFilter /DCTEncode
  /GrayImageMinDownsampleDepth 2
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /GrayImageResolution 300
  /ImageMemory 1048576
  /JPEG2000ColorACSImageDict <<
    /Quality 30
    /TileHeight 256
    /TileWidth 256
  >>
  /JPEG2000ColorImageDict <<
    /Quality 30
    /TileHeight 256
    /TileWidth 256
  >>
  /JPEG2000GrayACSImageDict <<
    /Quality 30
    /TileHeight 256
    /TileWidth 256
  >>
  /JPEG2000GrayImageDict <<
    /Quality 30
    /TileHeight 256
    /TileWidth 256
  >>
  /LockDistillerParams false
  /MaxSubsetPct 100
  /MonoImageDepth -1
  /MonoImageDict <<
    /K -1
  >>
  /MonoImageDownsampleThreshold 1.50000
  /MonoImageDownsampleType /Bicubic
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /MonoImageResolution 1200
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /NeverEmbed [
    true
  ]
  /OPM 1
  /Optimize true
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.25000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXBleedBoxToTrimBoxOffset [
    0
    0
    0
    0
  ]
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXOutputCondition ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputIntentProfile ()
  /PDFXRegistryName ()
  /PDFXSetBleedBoxToMediaBox true
  /PDFXTrapped /False
  /PDFXTrimBoxToMediaBoxOffset [
    0
    0
    0
    0
  ]
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /ParseICCProfilesInComments true
  /PassThroughJPEGImages true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /sRGBProfile (sRGB IEC61966-2.1)
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




