
P4-based Hitless FaaS Load Balancer for
Packet-Optical Network Edge Continuum

István Pelle,1,2,3,* Francesco Paolucci,4,* Balázs Sonkoly1,2,3 and Filippo Cugini4
1 HSNLab, TMIT, VIK, BME, Budapest, Hungary, 2 MTA-BME Network Softwarization Research Group,

Budapest, Hungary, 3 ELKH-BME Cloud Applications Research Group, Budapest, Hungary, 4 CNIT, Pisa, Italy
*pelle.istvan@vik.bme.hu, francesco.paolucci@cnit.it

Abstract: P4 and novel node telemetry are leveraged to provide load balancing of ultra-
low latency serverless application to multiple edges. Handling the overload of one edge
without observable change in application delay is demonstrated. © 2022 The Author(s)

1. Introduction

Recent advances fueled by the deployment of 5G and research of beyond 5G technologies clearly identify edge
computing as a balancing point between the low latency provided by onboard computations on end-user equipment
and the virtually unlimited compute power of the cloud. In the last five years, serverless computing has attracted
significant research interest in the edge domain [1]. Serverless and its main implementation, Function as a Service
(FaaS), offer fast and efficient deployment and scaling for short-lived stateless components, dubbed functions,
running in containerized environments. In converged fronthaul and backhaul packet-optical networks Software
Defined Networking (SDN) concepts have shown up to facilitate more flexible network traffic steering. Here, P4
has emerged as one of the most prominent technologies [2, 3]. Recent works have shown that combining FaaS
with P4 programmable networks enables fast service re-deployment in overloaded 5G optical networks [4, 5].

In this work, we deepen the interaction between these two technologies to enhance application performance
when deployed on edge resources that approach full utilization. Thus, here we present a three-fold contribution.
First, we introduce a novel solution enabling effective interaction between FaaS deployment and application com-
ponents and a P4 load balancer that can spread computation tasks to multiple edge nodes. Second, we give the
details on our P4 implementation supporting two different load balancing methods. One of these takes decisions
based on online telemetry of edge node CPU utilization, as it highly affects application performance. Third, we
evaluate our implementations using a remote vehicle control application (RVCA) in a programmable packet-
optical edge environment. We demonstrate that using our best load balancing method, it is possible to steer traffic
dynamically to different edge nodes based on their actual CPU load while the application can successfully operate
without observable latency increase even when one of its edge nodes reaches overload.

2. Serverless Application Deployment and P4-Driven Load Balancing

To realize load balancing, we tie three crucial concepts together. i) We use stateless on-demand FaaS functions that
are instantiated on multiple edge nodes and can serve requests on any of those. ii) We monitor the load on the nodes
and iii) feed it to a P4 programmable switch that can interpret the metrics and alter its behavior based on them. The
top part of Fig. 1 shows a more detailed view on how we combine these. In step 1, we use the edge infrastructure
description to set up our application layout, resource and placement specifications (LRPS) and our novel P4 Load
Balancer (P4LB). We use layouts where specific application components are deployed to multiple edge nodes
among which the P4LB distributes the traffic. In step 2 of Fig. 1, we submit the application’s structure and code to
our Serverless Deployment Engine (SDE) that transforms the application into deployable serverless artifacts based
on the LRPS. The SDE merges the specified f application components into F =W (f) FaaS functions (multiple f s
can be part of a single F) and adds a special W wrapper. When deployed, W will handle all interactions between
f s, datastore access and monitor these actions (capturing latency, rate and transferred data sizes). The SDE adds
special Node Telemetry functions (NTF) that capture node CPU and memory load and provide those for the P4LB.
In step 3, the SDE deploys these artifacts to the given edge (or cloud) infrastructure via a Provider API that gives
low-level access to infrastructure components. We use Amazon Web Services (AWS) as a provider and leverage
its IoT Greengrass v1 service at the edge. After deployment, W works as an extension to the default Greengrass
runtime and provides direct connection between edge nodes using UDP. (The default AWS mechanism does not
offer direct communication channels between nodes.) The NTFs periodically send load metrics with a rate of
3/s to specific layer 2 and 3 addresses using novel Edge Resource Monitoring (ERM) messages. As shown in
Fig. 2, the 4 bytes-long ERM extra-header runs over UDP and includes the protocol version, the sender edge node
identifier (i.e., Edge ID) and the list of monitored metrics with their actual values. In this work we convey the



edge CPU load and consumed memory as monitored metrics, both expressed in percentage, however, we consider
only the CPU load information for traffic steering operation. The P4LB parses the ERM messages and can alter
application traffic steering based on the carried metrics.

Serverless Deployment Engine (SDE)

Provider API

Application structure, code
2 Submit

Layout, compute resource sizes, placement Edge infrastructure

II: Grab
Image

Vehicle

V: Control
One Vehicle

Node E0

IV: Control
All Vehicles

read: vehicle,
inference

camera image control: go/stop

III: Infer

P4 switch

write: vehicle,
inference

Node E1

5

6

9

10

11

7b7a

Node
Telemetry

EMR: CPU/memory
usage

EMR: CPU/memory usage

vehicle
vehicle

Vehicle
Connection

Manager
I: Connect

Vehicle

UDP: vehicle, image

Control Node

4 HTTP: startup: vehicle

ABDB III: Infer
write: vehicle,

inference

Node E2

Node
Telemetry

ABDB

ABDB

P4 Load Balancer (P4LB)

NIC NIC
Pluggable

Optics

ROADM

NIC

Pluggable
Optics

Pluggable
Optics

UDP: vehicle, image

3 Deploy

8a 8b

1 Setup

Fig. 1. Application deployment to testbed infrastructure

Control Plane API

Edge Resource
State (ERS)

Ethernet
IP
UDP
ERM

Parser Ingress pipeline

ERM? Egress
pipeline

N

Y

Next Edge
(NE)

In
Out

Next Hop Flow Table

ERM Flow Table

Flow match

ERM steer Forward

Round-
Robin

Least
Loaded

P4 Registers

Application
packet

ERM
packet

Flow rules ERM rules

Rewrite
destination
MAC/IP address

Ethernet header
0 1 2 3

IP header

UDP checksumUDP length
Edge

memory
(88%)

Edge
CPU
(49%)

Edge
ID
(1)

ERM
Version
(1)

UDP source port UDP destination
port = ERM port

Octet offset

ERM telemetry packets
from E0, E1, E2

Application
packets

ERM UDP port

E
R

M
te

le
m

et
ry

ex
tr

a
he

ad
er

Fig. 2. ERM and P4LB operation schematics

As depicted in Fig. 2, the P4LB includes a parser, two pipelines and two main P4 registers. The Parser includes
the custom ERM header detection. ERM messages are processed by the ERM Flow Table with the aim of updating
the state of the sending edge node in terms of current CPU load, stored in the Edge Resource State (ERS) register
and computing the best destination edge node to be written in the Next Edge (NE) register. Two algorithm actions
are implemented in this work. The Round-Robin action reads the NE and switches its value to the value of the
alternative edge node. The Least Loaded (LL) action reads the ERS, compares the current CPU loads, computes
the least loaded edge node and stores it in the NE. Application traffic is submitted to the Next Hop Flow Table,
with the possibility to perform either ERM steering or standard SDN forwarding (forward action using control
plane API flow rules). In the former case, the assigned output port is read from the NE register and applied to
the packet. Moreover, its MAC and IP destination addresses are updated according to the selected edge node.
The P4LB design enables three main balancer options: i) normal forwarding (NF), using the forward action and
ignoring ERM; ii) round-robin (RR), using ERM steering and the Round-Robin action, with the result of equally
splitting traffic between the two edge nodes; iii) CPU load-based (CB), using ERM steering and the Least Loaded
action, with the result to steer the traffic to the currently least loaded edge node.

3. Experimental Testbed and Results

We deploy our RVCA to four edge nodes, as depicted in Fig. 1. The RVCA is controlled from the Control Node
that supplies data of multiple v vehicles (step 4). The deployment contains a detection (DL) and a control loop
(CL) using 5 FaaS functions. In the DL (steps 5–8), Connect Vehicle picks a vi from which Grab Image collects
a camera image and Infer analyzes it. In the CL (steps 9–11), Control All Vehicles takes a v j and Control One
Vehicle (COV) interprets the result of the corresponding inference and sends a control message to v j. The DL is
triggered with a rate of 12/s and the CL 10/s. To avoid the cold start phenomenon of the FaaS functions, our
W wrapper warms up 4 instances of each on-demand function that is sufficient for handling the given trigger
rates (based on benchmark function execution delays). Infer, the most compute-intensive function, is deployed to
nodes E1 and E2 while the rest of the RVCA and vehicle emulation are deployed to E0. These three nodes also
host an AnnaBellaDB (ABDB) [6] cluster used by the Infer and the COV functions to share data. ABDB is an
in-memory key-value store that provides access to a key from all nodes but stores it only on the node where it is
most frequently used (to reduce mean access delay). The Control Node and E0 are physical machines. E1 and E2
are virtual machines (8 Intel Xeon E5-2650 v3 vCPUs, 6 GB RAM) that run Greengrass v1.11.3 and are initialized
with an ∼37% CPU load. All nodes are connected via an optical fronthaul through the P4 BMv2 software switch
executing the P4LB on a server with 6 Intel Xeon E5-2620 (2.10 GHz) CPU cores, 16 GB of RAM and three
Gigabit Ethernet Network Interface Cards. The P4LB determines which node receives the image of a certain vi
(steps 7a/b). Each testbed device runs Ubuntu 18.04.

Fig. 3 shows RVCA DL delay (DLD, latency of producing inference for an image) under varying CPU load and
different forwarding behaviors. In the first ∼560 s of the test, the P4LB executes the NF balancer option where
the application determines which node to use for the Infer function. Under base load (BL) mean DLD is 53 ms.
At the NF3 point (see top of Fig. 3), we add an extra ∼30% partial load (PL) on E1 by an external application
which increases DLD but does not overwhelm the node. We increase this load to a level that overloads (OL) E1 at
NF4 which causes mean DLD to rise to 193 ms. Forcing the application to E2 at NF5 reduces DLD to high-normal
level (62 ms) which is caused by a slight difference between E1 and E2. Between 580–1000 s in our test in Fig. 3,



50

100

150

200

∆NF OL
RR OL ≈ 73 ms

∆NF OL
CB OL ≈ 134 ms

NF1: Normal forwarding test start

NF2: application start
NF3: add partial load

NF4: overload
NF5: offload to E2

RR1: round robin load balancer test start

RR2: application start
RR3: add partial load

RR4: overload

CB1: CPU load-based load balancer test start

CB2: application start
CB3: add partial load

CB4: overload
In

fe
re

nc
e

la
te

nc
y

[m
s]

50

100

150

200
Average
On Node E1
On Node E2

40
60
80

100

C
PU

lo
ad

[%
] Node E1 Node E2

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500
20
40
60
80

100

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
99
.5

10
0

10
0

10
0

10
0

10
0

10
0

46
.8

48
.5

48
.4

49
.6

50
.8

48
.9

50
.2

51
.7

50
.9

48
.8

46
.7

50
.4

50
.4

50
.4

51
.2

50
.9

48
.3

48
.3

49
.9

50
.5

48
.1

45
.7

44
.8

47
.9

98
.5

98
.5

97
.8

95
.2

97
.9

97
.8

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

53
.2

51
.5

51
.6

50
.4

49
.2

51
.1

49
.8

48
.3

49
.1

51
.2

53
.3

49
.6

49
.6

49
.6

48
.8

49
.1

51
.7

51
.7

50
.1

49
.5

51
.9

54
.3

55
.2

52
.1

Relative time [s]

L
oa

d
sh

ar
e

[%
]

Node E1 Node E2

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500
20
40
60
80

100

Fig. 3. Experimental results. Top: latency of the Infer function capped at 230 ms (3 s average: green;
individual executions on E1: blue; on E2: red). Middle: CPU load on E1−2 (1 s [gray] and 3 s [col-
ored] averages). Bottom: ratio of Infer functions executed on E1 (blue) and E2 (red) in 20 s windows.

we can observe the RR balancer option. As expected, it always splits the load between E1 and E2 approximately
equally (see Fig. 3 bottom). Under BL (between the RR2 and RR3 points), CPU load also reaches the same level
on both nodes while DLD is 57 ms. In later phases (after RR3), the increase of the mean DLD is around half of
what we see in the respective phase of the NF case. Under PL, we see only a 10 ms addition, while we achieve
73 ms lower DLD under OL. The CB balancer option acts similarly to RR under BL halving the load between the
used nodes. Adding PL already produces a higher CPU load on E2 than in RR’s case. Looking at the mid chart of
Fig. 3, we can see that occasionally the CPU load at E1 dips below that of E2 which gives reason for the P4LB
to keep 1%–5% of the inference executions at E1. Thanks to the severely reduced number of executions at E1,
the node receives a smaller load from the application than in the RR case which enables it to complete executions
with a 15 ms lower delay on average (calculated on the individual executions displayed in the top chart of Fig. 3).
When overloading E1, all inferences are executed at E2. CB manages to keep a low DLD: under BL it matches
RR’s 57 ms while it achieves 59 ms throughout the PL and OL phases, without observable increase between them.

The Wireshark capture of Fig. 2 (top) shows an excerpt of the packets processed by the P4LB with the CB
option. Application packets (e.g., frame 4017) are first sent by E0 (IP address 192.168.10.100) and steered to E1
(101). Then, ERM telemetry packets are received from all the nodes, triggering ERS and NE register updates. The
capture shows the details of the metric fields sent by E1 reporting its current CPU load at 49% (frame 4019). In
this case, traffic continues to be steered to E1 due to a higher E2 CPU load (see frames 4023–4024).

The latency introduced by the P4LB when application traffic is processed (i.e., intra-switch latency) is around
250 µs with NF and around 300 µs with RR and CB. Thus, the impact of ERM-based stateful steering is an
approximately 50 µs increased latency with respect to plain forwarding, corresponding to the additional ESR
register read operation performed by both the RR and LL actions.

4. Conclusion

In this work we presented a novel framework jointly exploiting serverless computing and P4 network programma-
bility specifically designed for latency-sensitive 5G applications running at the edge. The framework successfully
enables serverless deployments, on a per-packet basis, between two edges for load balancing (or reliability) pur-
poses. Results show effective dynamic distribution of computational load with negligible increase of application
latency with respect to static forwarding towards a single edge.
Acknowledgment. This work was supported by I) the Ministry of Innovation and Technology of Hungary from the National Research, De-
velopment and Innovation Fund through projects i) no. 135074 under the FK 20 funding scheme, ii) 2019-2.1.13-TÉT IN-2020-00021 under
the 2019-2.1.13-TÉT-IN funding scheme, II) the B5G-OPEN Project, funded by the European Union under grant agreement No 101016663.

References
1. G. A. S. Cassel, V. F. Rodrigues, R. da Rosa Righi, M. R. Bez, A. C. Nepomuceno, C. A. da Costa, “Serverless

computing for Internet of Things: A systematic literature review,” in Future Gener. Comput. Syst., vol. 128, 2022.
2. F. Cugini et al., “Applications of P4-based Network Programmability in Optical Networks,” in OFC 2022, 2022.
3. Y. Yan, A. F. Beldachi, R. Nejabati and D. Simeonidou, “P4-enabled Smart NIC: Enabling Sliceable and Service-Driven

Optical Data Centres,” J. Lightw. Technol., vol. 38, n. 9, pp. 2688-2694, 2020.
4. I. Pelle, et al., “Fast Edge-to-Edge Serverless Migration in 5G Programmable Packet-Optical Networks,” in OFC, 2021.
5. I. Pelle, et al., “Latency-Sensitive Edge/Cloud Serverless Dynamic Deployment Over Telemetry-Based Packet-Optical

Network,” in IEEE J. Sel. Areas Commun., 2021.
6. M. Szalay, P. Matray, L. Toka, “AnnaBellaDB: Key-Value Store Made Cloud Native,” in CSCM 2020, 2020, pp. 1–5.


