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Abstract—Thanks to photon-counting detectors, spectral com-
puterized tomography records energy-resolved data from which
the chemical composition of a sample can be recovered. This
problem, referred to as material decomposition, can be formu-
lated as a nonlinear inverse problem. In previous work, we
proposed to decompose the projection images using a regularized
Gauss-Newton algorithm. To reduce further the ill-posedness of
the problem, we propose here to consider equality and inequality
constraints that are based on physical priors. In particular, we
impose the positivity of the solutions as well the total mass
in each projection image. In practice, we first decompose the
projection images for each projection angle independently. Then,
we reconstruct the sample slices from the decomposed projection
images using a standard filtered-back projection algorithm. The
constrained material decomposition problem is solved by the al-
ternating direction method of multipliers (ADMM). We compare
the proposed ADMM algorithm to the unconstrained Gauss-
Newton algorithm in a numerical thorax phantom. Including
constraints reduces the cross-talk between materials in both the
decomposed projections and the reconstructed slices.

Index Terms—Alternating direction method of multipliers,
spectral computed tomography, material decomposition, nonlin-
ear inverse problem

I. INTRODUCTION

While standard computerized tomography (CT) integrates
data over the X-ray spectrum, losing the energy signature of
the materials, spectral CT (SPCT) keeps tracks of the energy
of the detected photons. Therefore, the material composition
of the sample can be recovered. There are various methods
for acquiring energy-resolved data, which include the use
of rapid kVp-switching, multiple source beams, multi-layer
detectors [1], or a photon-counting detector [2]. The latter
approach records multiple energy bins using one source beam
only, which reduces the irradiation dose. SPCT is particularly
interesting for imaging K-edge materials [3] (i.e., gold, iodine
or gadolinium) used as contrast agents and has many potential
medical applications such as neck and head cancer [4].

Material decomposition and tomographic reconstruction can
be done jointly [5] or sequentially, i.e., decomposing the
projection images first and performing the tomographic re-
construction afterward [6], [7]. Here, we consider material
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decomposition in the projection domain since it allows to
decompose each projection in parallel. We propose to address
material decomposition as a nonlinear inverse problem. In [7],
we considered a Gauss-Newton algorithm to minimize a regu-
larized cost function. This approach enjoys a fast convergence,
but it does not ensure the solutions to be positive. Positivity
constraints for material decomposition have been enforced
in both the image [8] and projection [9] domains. However,
these methods use first-order algorithm to minimize a cost
function, thus with a low convergence rate. Our contribution
here is to develop a fast constrained algorithm. In this work,
we also consider equality constraints. Indeed, the quantity of
injected contrast agent is known, which can improved material
decomposition.

Our constrained algorithm uses the augmented Lagrangian
formulation to incorporate inequality and equality constraints
[10]–[14]. An alternating direction method of multipliers
(ADMM) minimizes the Lagrangian function to recover the
projected material maps. ADMM has been already used to
postprocess volumes obtained afer tomographic reconstruction
[15] or for joint decomposition-tomographic reconstruction
[16]. Both approaches considered a linearized forward model.
In this work, we consider a nonlinear forward model and
perform material decomposition of the projections. Our con-
strained algorithm is tested on realistic simulated projections
of numerical thorax phantom and compared with an uncon-
strained Gauss-Newton algorithm.

The rest of the paper is organized as follows. Fist, we
present the forward and inverse problems. Second, we describe
our optimization algorithm. Then, we report and discuss some
numerical experiments.

II. MATERIAL DECOMPOSITION IN SPECTRAL CT

A. Forward model

Considering a photon-counting detector with P pixels and
I energy bins, the measured data is gathered in a vector s ∈
RIP .

s = [s1,1, . . . , sI,1, . . . , sI,P ]
T (1)

The projected mass density describes the mass of M materials
on the P pixels, thus a ∈ RMP

a = [a1,1, ..., am,1, ..., aM,P ]
T (2)



The standard forward model [6], [7] reads as:

si,p =

∫
R

n0i (E) exp

(
−

M∑
m=1

am,pτm(E)

)
dE (3)

where si,p is the number of photons detected at the pixel p
for the ith energy bin, n0i (E) is the effective spectrum (ac-
counting for the incident spectrum and the detector response)
at the energy E for the i-th energy bin, τm(E) is a function
representing the attenuation of the m-th material at the energy
E and am,p is the projection mass of the m-th material at
pixel p, such as

am,p =

∫
Lp

ρm(x)dx (4)

with Lp is the x-ray path and ρm(x) is the material density
at the voxel x.

B. Constrained Inverse problem

For each projection angle, we propose to recover the
material map a from the data s by solving the constrained
optimization problem

min
a
C(a, s) s.t

{
a ≥ 0∑
p am,p = cm

, (5)

where C is the cost function and cm represents the total mass
of the m-th material. Here, we assume that materials maps are
positive and that the total mass of each material cm is know
and constant across angles, which is a valid hypothesis when
the detector field-of-view is wide enough.

To stabilize the minimization in the presence of noise, we
consider

C(a, s) = D(a, s) + αRR(a) (6)

where D is the data fidelity term, R the regularization term,
and αR the regularization parameter. Following [7], we choose

D(a, s) = ||s−F(a)||2W (7)

where F represents the forward model of Eq. (3) and W is
a diagonal weighting matrix with elements 1/

√
s. Assuming

that only three materials (soft tissues, bones and gadolinium
as a marker) are present in the sample, we choose

R(a) = ||∆asoft||22 + ||∇abone||1 + ||∇aGd||1 (8)

where∇ and ∆ are first- and second-order differential operator
and ||.||2 and ||.||1 are the `2- and `1-norm, respectively.

III. CONSTRAINED MATERIAL DECOMPOSITION ADMM
ALGORITHM

We propose an ADMM algorithm to solve the minimization
problem described above. To this aim, we minimize the
augmented Lagrangian functional

L(a,b,αααI, αE, s) = D(a, s) + αRR(a)

+HE(a, αE) + GE(a) (9)
+HI(a,b,αααI) + GI(a,b) + 1(b)

where HE and HI are the Lagrangian terms associated to the
equality and inequality constraints, respectively, GE and GI
are the augmented Lagrangian terms, 1 denotes the indicator
function of the positive orthant, αE ∈ R and αααI ∈ RMP

are the Lagrangian multipliers, and b ∈ RMP is an auxiliary
variable.

1) Inequality constraint: To enforce the inequality con-
straints, we introduce an auxiliary variable b and rewrite the
constraint as

a = b (10)
b ≥ 0 (11)

The constraints (10) and (11) translate into

HI(a,b,αααI) = αααT
I (b− a) (12)

GI(a,b) =
βI
2
||b− a||22 (13)

whereas Eq. (11) is formulated with the term

1(b) =

{
0, if b ≥ 0

∞, otherwise
(14)

Where βI ∈ R is an augmented Lagrangian parameter.
2) Equality constraint: The equality constraints lead to

HE(a, αE) = αE

(
P∑
p=1

agd,p
cgd

− 1

)
(15)

GE(a) =
βE
2

(
P∑
p=1

agd,p
cgd

− 1

)2

(16)

where βE ∈ R is an augmented Lagrangian parameter. Note
that the constraint applies to the gadolinium material only.

3) Minimization scheme: According to the ADMM frame-
work, a saddle point of the augmented Lagrangian functional
is obtained alternating the update of the primal variables and
the Lagrangian multipliers [10]:

a`+1 ∈ argmin
a
L(a,b`, α`E,ααα

`
I) (17)

b`+1 ∈ argmin
b
L(a`+1,b, α`E,ααα

`
I) (18)

α`+1
E ∈ argmax

αE

L(a`+1,b`+1, αE,ααα
`
I) (19)

ααα`+1
I ∈ argmax

αααI

L(a`+1,b`+1, α`+1
E ,αααI) (20)

The projected mass map a is updated using a Gauss-Newton
algorithm (SPRAY toolbox [17]), the auxiliary variable b
is updated using a proximal algorithm, and the Lagrangian
multipliers αE and αααI are updated with an ascent gradient
algorithm [10]. The parameters βE and βI are increased every
outer iteration ` with a multiplicative udpate:

β`+1
E = ωβ`E (21)

β`+1
I = ωβ`I (22)

with a positive constant ω > 1. This update rule for the
Lagrangian parameter allows the algorithm to minimize in
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Fig. 1. Euclidean decomposition error ξθD over all projections for the
constrained algorithm (in blue) and the unconstrained algorithm (in red)

the first iterations the function C(a, s), and then after a
few outer iterations the constraints since they become the
predominant contribution to the Lagrangian. Denoting Π the
projector operation onto the positive orthant and considering
elements-wise operations, the constrained algorithm is given
in Algorithm 1.

Algorithm 1: ADMM algorithm

while Stopping criteria aren’t met for the outer loop do
while Stopping criteria aren’t met for the inner loop
do

solve
(
Hkδak = −gk

)
ak+1 = ak + λkδak

k = k + 1
end
a`+1 = ak−1

b`+1 = Π(a`+1 − ααα`
I

βI
)

α`+1
E = α`E + βE

HE(a`+1
m )

α`
E

ααα`+1
I = ααα`I + βI(b

`+1 − a`+1)

β`+1
E = ωβ`E

β`+1
I = ωβ`I

if β`+1
E > β`max then
β`+1
E = β`max

end

if β`+1
I > β`max then
β`+1
I = β`max

end
` = `+ 1

end

IV. NUMERICAL EXPERIMENTS

A. Phantom, simulation and decomposition parameters
In this work, a numerical phantom of a thorax is considered

(240 × 185 × 84 voxels) [18]. The phantom is composed of
M = 3 materials, namely soft tissues, bones and gadolinium
(in the portal vein). Projections are created using the radon
function of Matlab, providing 84× 306 images.
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Fig. 2. Quantification error ξθE over all projections for the constrained
algorithm (in blue) and the unconstrained algorithm (in red)

We consider a 120 kV X-Ray source, generated by the
spekCalc software [19]. The photon-counting detector de-
tect photons in I = 4 energy bins. For each pixel, 107 photons
are send.

For both algorithms (unconstrained and constrained), the
initialization is the same, with uniform materials maps a0m = 0
g.cm−2 for all materials. The regularization parameter is the
same as well, set at αR = 1. For the unconstrained algorithm,
the algorithm stops after 100 iterations to ensure the optimal
solution, for a better comparison. For the ADMM algorithm
the Lagrangian multipliers are initialized α0

E = 0 and ααα0
I = 0.

The following initialisation parameters are used: β0
E = 100

and β0
I = 10−2, with a maximum at β`max = 1010 and an

evolution parameter ω = 1.5. The algorithm stops the inner
loop (update of a, Eq. (17)) if the relative decrease of L is
small (< 10−3) or if there is more than 30 iterations. The
outer loop stops if the constraints are satisfied: ||a` − b`|| <
10−3 and |

(∑P
p

a`gd,p
cgd
− 1

)
| < 10−3 for the index m =

corresponding to gadolinium.
The decomposition are made for every degree in the range

θ = [0°, 359°]. We denote aθ the decomposition for the angle
θ and ρρρz the decomposed material at a given slice z.

B. Evaluation of the methods

The constraints are evaluated by looking at the percentage
of negative values, the smallest value in the projections:
min(aθm) ∀m, θ and by computing the relative distance be-
tween the sum of the gadolinium projections and the constraint
cgd:

ξθE =
|
∑P
p=1 a

θ
gd,p − cgd|
cgd

(23)

The decomposed projections are also evaluated by computing
the `2 distance between the decomposition and the ground
truth:

ξθD =

M∑
m

||aθm − atruth,θm ||2 (24)

In the image domain (after the tomographic reconstruction),
the `2 distance is also computed to evaluate the decomposed
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Fig. 3. Decomposition of the thorax for θ = 90°. Ground truth (first column), unconstrained algorithm (second column) and constrained (ADMM) algorithm
(third column) for the 3 different materials: soft tissues (top row), bones (middle row) and gadolinium (bottom row).
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Fig. 4. Euclidiean decomposition error χsD over all slices for the constrained
algorithm (in blue) and the unconstrained algorithm (in red)

slices, as:

χzD =

M∑
m

||ρρρzm − ρρρtruth,zm ||2 (25)

where ρρρtruth,zm is the reconstructed slice from the ground truth
sinogram.

V. RESULTS AND DISCUSSION

A. Projection domain

Table I presents the percentage of negative values, the
smallest projection value, and the smallest and highest values
for ξE for all the angles θ. The error ξθD and ξθE are displayed in
Fig. 1 and Fig. 2, respectively, for all angles θ. These metrics
show that the constrained algorithm gives better decomposition
than the unconstrained one (by looking at the error ξD),
and that the constraints are well satisfied for the constrained
algorithm. The decomposition images are displayed in Fig. 3
for θ = 90°. The first column displays the ground truth, the

Constrained algorithm Unconstrained algorithm
% of negative value 2.08% 27.7%

Smallest value −0.02 −3.78
Smallest ξE 3.19× 10−4 0.12
Biggest ξE 0.39 0.54

TABLE I
PERCENTAGE OF NEGATIVE VALUES, SMALLEST VALUE, SMALLEST AND
LARGEST ξE , CONSIDERING ALL PROJECTIONS FOR BOTH ALGORITHMS.

second one the reconstruction obtained with the unconstrained
algorithm and the third one the image obtained with the
constrained algorithm (ADMM). We can see that the proposed
algorithm gives visually better decomposition. Moreover, there
is less bones in the gadolinium image, i.e., less cross-talk.

B. Image domain

The evolution of the error χD is displayed on Fig. 4 as a
function of the slice number z. As in the projection domain, a
better decomposition is obtained with the proposed constrained
algorithm. Fig. 5 displays two slices: z = 1 and z = 40.
The first column shows the ground truth, the second one the
slice reconstructed with unconstrained algorithm and the third
one the reconstruction obtained with the constrained algorithm.
The left picture, for z = 1, is a slice where there is no marker.
The constrained algorithm leads to very small values whereas
the unconstrained one shows some bone regions. The effect of
the constrained algorithm is more clear at slice z = 40 where
there is a lot of cross-talk with the unconstrained algorithm
that disappears with our algorithm.

VI. CONCLUSION

We proposed an algorithm for material decomposition in
SPCT. The non linear inverse ill-posed problem is solved by
minimizing a cost function. Equality and inequality constraints
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Fig. 5. Reconstruted slice of the thorax after tomographic reconstruction for z = 1 (left) and z = 40 (right). Ground truth (first column), unconstrained
algorithm (second column) and constrained (ADMM) algorithm (third column) for the 3 different materials: soft tissues (top row), bones (middle row) and
gadolinium (bottom row), for each slice.

were included in an augmented Lagrangian formulation. An
ADMM algorithm was used to found its saddle point. Our new
algorithm was compared with an unconstrained algorithm (a
Gauss-Newton algorithm) on a numerical phantom of a thorax.
Decomposition on the projections shows an improvement
(qualitatively and quantitatively) of the material decomposi-
tion. Indeed, the cross-talk is reduced when the constraints
are included. The improvement of the decomposition on the
projection domain is maintained in the image domain after
the tomographic reconstruction. Future work will address the
decomposition of real data.
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