
HAL Id: hal-04523554
https://hal.umontpellier.fr/hal-04523554v1

Submitted on 30 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-level Analysis of GPU Utilization in ML Training
Workloads

Paul Delestrac, Debjyoti Bhattacharjee, Simei Yang, Diksha Moolchandani,
Francky Catthoor, Lionel Torres, David Novo

To cite this version:
Paul Delestrac, Debjyoti Bhattacharjee, Simei Yang, Diksha Moolchandani, Francky Catthoor, et
al.. Multi-level Analysis of GPU Utilization in ML Training Workloads. DATE 2024 - 27th Design,
Automation and Test in Europe Conference, Mar 2024, Valencia, Spain. �hal-04523554�

https://hal.umontpellier.fr/hal-04523554v1
https://hal.archives-ouvertes.fr


Multi-level Analysis of GPU Utilization
in ML Training Workloads

Paul Delestrac† Debjyoti Bhattacharjee‡ Simei Yang‡ Diksha Moolchandani‡

Francky Catthoor‡∗ Lionel Torres† David Novo†

†LIRMM, Univ. Montpellier, CNRS, Montpellier, France ‡IMEC, Leuven, Belgium ∗KU Leuven, Leuven, Belgium

Abstract—Training time has become a critical bottleneck due
to the recent proliferation of large-parameter ML models. GPUs
continue to be the prevailing architecture for training ML models.
However, the complex execution flow of ML frameworks makes it
difficult to understand GPU computing resource utilization. Our
main goal is to provide a better understanding of how efficiently
ML training workloads use the computing resources of modern
GPUs. To this end, we first describe an ideal reference execution
of a GPU-accelerated ML training loop and identify relevant
metrics that can be measured using existing profiling tools.
Second, we produce a coherent integration of the traces obtained
from each profiling tool. Third, we leverage the metrics within
our integrated trace to analyze the impact of different software
optimizations (e.g., mixed-precision, various ML frameworks,
and execution modes) on the throughput and the associated
utilization at multiple levels of hardware abstraction (i.e., whole
GPU, SM subpartitions, issue slots, and tensor cores). In our
results on two modern GPUs, we present seven takeaways and
show that although close to 100% utilization is generally achieved
at the GPU level, average utilization of the issue slots and tensor
cores always remains below 50% and 5.2%, respectively.

I. INTRODUCTION

Recent years have seen an explosion of new Deep Learning
(DL) models (e.g., Convolutional Neural Networks (CNNs),
transformer-based large language models (LLMs), etc.) with
increasing amounts of trainable parameters (e.g., GPT-3 has
175 billion parameters [1]). With this increase in parameters,
the training time is now a major bottleneck, pushing for
additional compute power for model development.

Although extensive research is conducted in new specialized
accelerator design [2], GPUs remain the prevailing architecture
for training Machine Learning (ML) workloads. Previous
works [3]–[5] show that GPU architectures have evolved (e.g.,
the addition of tensor cores in 2017) to increase throughput
and reduce ML training latency. However, throughput and
latency improvements can be achieved through brute force
approaches, which do not necessarily translate to a well-
balanced use of computing resources, wasting area/cost and
inducing energy overheads. Thus, to design more compute-
efficient accelerators, it is important to evaluate how efficiently
ML training workloads use the computing resources of modern
architectures such as GPUs.

However, state-of-the-art GPU architectures are intricate
proprietary designs and their interaction with ML frame-
works relies on complex runtimes [6] and optimized closed-
source libraries [7]. This makes gathering performance metrics
tedious as it requires using multiple profiling tools across
different abstraction layers and matching their traces. Hence,

512

1

0.1

256128643216
Batch size

G
P

U
 u

ti
li

za
ti

o
n

Mixed precision

Full precision

8421

100%

N
o
rm

a
li

ze
d

th
ro

u
g

h
p

u
t 

(+
)

0%

20%

40%

60%

80%

Fig. 1: GPU utilization and throughput when executing
ResNet-50 training with different batch sizes.

design decisions are often based either on high-level metrics
(e.g., GPU utilization), which can be misleading because they
may not reflect the utilization of the internal components of
the GPU architecture; or, on low-level metrics (i.e., tensor
cores utilization), which cannot capture the efficiency of the
host/device interactions happening at the high level.

As an illustration, let’s consider one training loop of
ResNet-50 running on a single-GPU system. We can define
GPU utilization as the proportion of time the GPU is actively
used during training time. One could argue that a higher GPU
utilization is desirable, as it signifies that the training process
can consistently harness the superior GPU computing power.
In practice, however, certain training processes can attain
shorter training times by compromising GPU utilization. Using
mixed-precision in our example, we observe a decrease in the
overall GPU utilization while also increasing the throughput
for the most performant batch sizes (see Fig. 1).

Our main goal is to evaluate how efficiently ML training
workloads use the computing resources of modern GPUs. To
this end, we make the following contributions:

• We describe an ideal reference execution of a GPU-
accelerated ML training loop and identify relevant metrics
that can be measured using existing profiling tools.

• We produce a coherent integration of the traces obtained
from each profiling tool and explain how to evaluate
utilization at four abstraction levels of GPU resources.

• We analyze the impact of different software optimiza-
tions (e.g., mixed-precision, various ML frameworks, and
execution modes) on the throughput and the associated
utilization at multiple levels (i.e., GPU, SM subpartitions,
issue slots, and tensor cores) in two modern GPUs
running representative ML training workloads.

The source code of our tools and traces is freely available at
https://gite.lirmm.fr/adac/delestrac2024multilevel.

https://gite.lirmm.fr/adac/delestrac2024multilevel


(a)

(b)

Fig. 2: (a) Typical eager execution trace. (b) CPU and GPU
events are listed in the ML profiler trace file. GPU’s perfor-
mance counters are listed in the GPU profiler report.

II. RELATED WORKS

NVIDIA provides several profiling interfaces [8]–[10] for
developers to evaluate GPU performance bottlenecks. ML
frameworks also provide framework-specific profiling tools for
developers to evaluate the performance of their models [11],
[12]. In this paper, we gather metrics using both NVIDIA
Nsight Compute [10] and ML frameworks profilers [11], [12].

Previous works have also leveraged these existing profiling
tools to provide analyses on ML workloads. Some directly use
these tools to analyze ML workloads [4]. Others develop meta-
tools that can identify bottlenecks by doing some automatic
post-processing of the data reported by one profiler [13]–[15],
or aggregated data from multiple profilers [16], [17]. While
most of these related works evaluate performance through
metrics like throughput and latency, some works also evaluate
GPU utilization [4], [16], [17]. However, to the best of our
knowledge, this is the first work to systematically evaluate
GPU resource utilization at multiple levels and across multiple
training workloads, ML frameworks, and execution modes.

III. EFFICIENT ML TRAINING LOOP EXECUTION ON GPU

In this section, we describe an ideal reference ML training
loop execution on GPU at multiple hardware abstraction levels.
For each level, we identify metrics that can be measured to
evaluate the utilization of the GPU computing resources.

GPU level. GPU utilization is the ratio of kernel time over
the total execution time. The time during which the GPU is
inactive is the ML framework overhead. At runtime, for each
GPU-compatible operation that has to execute, the ML frame-
work has to launch one or multiple kernels on the GPU. Before
launching these kernels, the ML framework needs to execute
other enabling tasks on CPU, such as parsing the Python code,
copying data between CPU and GPU, etc. Ideally, this setup
time would be hidden by the parallel execution of previously
launched GPU kernels. However, in practice, the setup time
creates bubbles of GPU inactivity (see Fig. 2a).

GPU utilization can increase either by extending kernel exe-
cution time while keeping the same ML framework overhead,
or by reducing the ML framework overhead while keeping
the kernel execution time. In practice, a common and easy
way to extend the kernel execution time without changing the

model is to increase the batch size. Reducing the ML frame-
work’s overhead can be done using more optimized modes
of execution than eager, like just-in-time (JIT) compilation.
These optimized modes leave the flexibility of Python [18] to
enable high-level code transformations or optimizations across
multiple operations of the model (e.g., dead code elimination,
constant folding, arithmetic simplification, kernel fusion).

However, GPU utilization alone can be misleading as it only
shows how well the setup time is hidden by the execution
of GPU kernels. Throughput, defined as the number of input
samples processed per second, is a better metric to compare
different workloads, but it lacks specificity in pinpointing
performance bottlenecks.

SM level. When a GPU kernel is launched, its threads are
grouped in thread blocks and automatically distributed across
multiple streaming multiprocessors (SMs) by the GPU sched-
uler. The scheduler keeps SMs busy by distributing the thread
blocks evenly. However, during the beginning and end of the
execution, some SMs may run out of thread blocks to execute.
This can lead to SM underutilization [19]. At a given cycle, we
consider an SM as active if it has at least one warp (i.e., a set
of 32 threads executing the same instruction) to execute. SMs
of modern NVIDIA GPUs are composed of four subpartitions.
For finer granularity, we choose to evaluate utilization at SM
subpartition (SMSP) level. We define SMSP active utilization
as the number of active SMSP cycles over the total number of
elapsed cycles on the GPU. Hence, the difference between
GPU and SMSP utilization evaluates the GPU scheduler’s
ability to effectively parallelize threads across SMSPs.

Instruction issue level. An active SMSP does not necessarily
imply that warp instructions are being issued. Indeed, the warp
scheduler (internal to the SMSP) can stall the issuing of a warp
instruction for different reasons (e.g., waiting for data to be
fetched from memory, or waiting for a dependent instruction
to finish execution). A cycle during which the warp scheduler
is stalled (i.e., cannot issue any instruction to the GPU cores)
is called stall cycle. Otherwise, the cycle is called issue cycle.
We define the SMSP issue slot utilization as the ratio of issue
cycles over the total number of elapsed cycles on the SMSP. In
modern GPUs, each SMSP can issue one warp instruction per
active cycle. Hence, the SMSP active utilization is an upper
bound for the SMSP issue slot utilization.

Tensor core level. Tensor cores (TC) are specialized GPU
cores designed to accelerate matrix multiplications. As a result,
peak GPU performance in terms of Floating Point Operations
Per Second (FLOPS) can only be achieved through the use
of tensor cores. Ideally, maximizing the tensor core utilization
relies on three conditions. First, the number of TC instructions
should dominate the total number of issued instructions (i.e.,
SMSP issue slot utilization). Second, the number of TC active
cycles should dominate the total number of active SMSP
cycles (i.e., SMSP active utilization). Finally, the issued TC
instructions should achieve peak throughput of the tensor
cores. Due to the latency and instruction bandwidth of the
tensor cores, this last condition is frequently not met [5].



IV. PROFILING METHODOLOGY

ML training workloads comprise thousands of identical iter-
ations. Instead of profiling the complete training, we limit our
scope to a single iteration and ignore the data preprocessing
steps that are executed on CPU (see Fig. 2a). We choose the
target iteration using a preliminary run of multiple iterations.
We select the first iteration with a stable execution time
and ignore the iterations including initialization overheads.
These overheads are negligible in comparison with the overall
training time and do not reflect the characteristics of an
average training iteration.

We gather metrics from ML framework profilers and the
GPU kernel profiler. The ML framework profilers (i.e., Ten-
sorFlow Profiler [11] or PyTorch Profiler [12]) provide the list
of events as JSON files that we parse to gather our metrics
of interest. We list the selected high-level metrics at the top
of TABLE I. Instead, the GPU kernel profiler (i.e., NVIDIA
Nsight Compute [10]) provides a report file that lists all the
executed kernels during the profiled iteration along with the
values of the GPU performance counters. We list the selected
low-level metrics at the bottom of TABLE I.

Note that the tensor core metrics that we gather only cover
two of the three conditions required to achieve peak tensor
core utilization (described in Section IV). This limitation is
because the GPU profiler only provides the total number
of instructions that have been issued to the tensor cores,
without distinguishing between their different types. Hence,
we evaluate tensor core utilization between two bounds: (1)
the ratio of tensor core instructions over the amount of issued
instructions, and (2) the ratio of active tensor core cycles over
the amount of active SMSP cycles.

Analyzing the profiled metrics at the granularity of ML
model architectures (e.g., per DL layer type) is not straight-
forward. On the one hand, the ML framework profiler does
not gather the low-level metrics from the GPU performance
counters for each kernel. On the other hand, the GPU kernel
profiler cannot provide any information regarding the ML
framework runtime. Hence, we need to identify the correspon-
dence between kernels from the ML profiler trace and kernels
from the GPU profiler report.

Previous works have done this by running a tracer in parallel
with the ML profiler [16], allowing the analysis code to run
in parallel with the profiling of the ML workload. Instead,
we propose to match the traces offline by comparing kernel
metrics that are common between both profiling tools (e.g.,
kernel name, block and thread dimensions, kernel duration,
memory usage, etc.). Based on these metrics, we establish a
correlation matrix between the kernels from the ML profiler
trace and the kernels from the GPU profiler report. We then use
this correlation matrix to identify the corresponding kernels
and match both high-level and low-level metrics.

V. EXPERIMENTAL SETUP

Workloads. We choose three well-known supervised DL
workloads (i.e., ResNet-50, BERT, and DLRM) from the
MLPerf training benchmark suite [20]. These models are

TABLE I: High-level (top) and low-level (bottom) metrics

Name Description

Total execution time Total duration of the traced iteration
GPU kernel exec. time Aggregate duration of all the GPU events
GPU utilization GPU kernel exec. time / Total execution time
Achieved throughput Batch size / Total execution time

SMSP elapsed cycles Elapsed GPU cycles counted at SMSP level
SMSP active cycles SMSP cycles with at least 1 warp active
SMSP active utilization SMSP active cycles / SMSP elapsed cycles
SMSP issue cycles SMSP cycles with an instruction issued
SMSP issue slot utilization SMSP issue cycles / SMSP elapsed cycles
TC active cycles SMSP cycles with at least 1 active tensor core
TC active utilization TC active cycles / SMSP elapsed cycles
TC issue cycles Number of tensor core instructions issued
TC issue slot utilization TC issue cycles / SMSP elapsed cycles

TABLE II: Main GPU features

NVIDIA A100 NVIDIA V100

Architecture Ampere Volta
SMSPs 432 320
DRAM Memory 80 GiB 32 GiB
Tensor Cores (Peak TFLOPS) 432 (312) 640 (125)

representative of common model architectures like CNN,
Transformer-based, and recommendation models, respectively.
We use PyTorch (PT) and TensorFlow (TF) as the refer-
ence ML frameworks, due to their maturity. ResNet-50 (PT),
BERT (PT and TF), and DLRM (TF) implementations are
downloaded from the NVIDIA repository [21]. DLRM (PT)
implementation is downloaded from the MLPerf Training
benchmarks reference models. ResNet-50 (TF) implementa-
tion is provided directly inside the TensorFlow library [22]. All
of the training parameters are chosen following the MLPerf
Training benchmarks rules. Our results show less than 1%
standard deviation across three runs for each workload.

ML frameworks. We use PyTorch and TensorFlow with
two different modes of execution: eager execution and just-
in-time (JIT) compilation. For eager execution, we use the
default eager execution runtimes. For JIT compilation, we use
XLA JIT for TensorFlow and the TorchScript JIT backend
of PyTorch. Additionally, we run each mode using both full-
precision (FP) and mixed-precision (AMP).

GPUs. We use NVIDIA V100 and A100 GPUs paired with
an AMD Milan EPYC 7543 CPU with 32 cores at 2.8GHz.
TABLE II lists the main GPU features.

Profiling tools. We use TensorFlow Profiler [11] and PyTorch
Profiler [12] to gather high-level metrics and NVIDIA Nsight
Compute [10] to gather low-level kernel metrics.

VI. RESULTS

In this section, we measure and analyze the GPUs’ training
compute efficiency from two perspectives: (A) performance
vs. memory utilization and (B) compute resource utilization.
Additionally, we draw some general implications and insights.



A. Performance vs. Memory Utilization

GPU memory & Batch size. We evaluate the raw per-
formance by measuring training throughput (i.e., amount of
processed items per second). Industry and research-leading
benchmarks such as MLPerf [20] rank the participants on
training time, which is inversely proportional to throughput.
Fig. 3 shows the normalized throughput (y-axis) of running
ResNet-50 with various batch sizes (annotated on the markers)
and ML framework options, including the corresponding GPU
memory allocated (x-axis), using both the A100 (Fig. 3a) and
V100 (Fig. 3b) GPUs. Only batch sizes that use more than 10%
of the GPU memory are shown. We include this workload as
an illustration, but the other workloads follow a similar trend.

We can observe that both GPU memory allocated and
throughput increase with growing batch size. For example,
using the A100, transitioning from batches of 128 to 2048
images, TF XLA JIT with mixed-precision achieves a 3.8×
increase in throughput, while allocating around 15× more
GPU memory. However, while the GPU memory allocated
grows linearly with the batch size, throughput saturates when
approaching the biggest batch sizes. For the same example,
going from 1024 to 2048 only increases throughput by 3%
(1% for FP), while doubling (1.98×) the allocated memory.

This saturation is less visible when using the V100, which
has less memory capacity than the A100 (i.e., 32GB vs. 80GB,
respectively). In fact, TF XLA JIT still achieves a 58% (40%)
increase in throughput when going from batches of 128 (256)
to 256 (512) images (i.e., biggest batch size that can fit in the
V100’s memory) using full-precision (mixed-precision).

Key takeaway 1. The A100 provides enough memory to
saturate throughput, eliminating utilization gaps caused by
limited memory capacity and the push for larger batch sizes.

ML framework execution modes. We compare memory
usage and throughput across eager execution and JIT compi-
lation for both TF and PT. Fig. 3 shows different markers for
eager execution (round markers) and JIT compilation (square
markers). We make two observations. First, TF XLA JIT
allocates less GPU memory than TF eager for the same batch
size, which increases throughput (as discussed in our first

(a) A100 (b) V100

N
o
rm

a
li

ze
d

 t
h

ro
u

g
h

p
u

t

1

0.1

0.01
4 8

Memory usage (GB)

Full/Mixed precision
Eager/Compiled

M
a
x 

G
P

U
 m

e
m

o
ry

 (
8

0
G

B
)

M
a
x 

G
P

U
 m

e
m

o
ry

 (
3

2
G

B
)

Memory usage (GB)
16 4 8 1632 64 2

TensorFlow/PyTorch

Fig. 3: Normalized throughput vs. GPU memory usage for
ResNet-50 workloads on (a) A100 and (b) V100 GPUs.

(a) A100 (b) V100

U
ti

li
za

ti
o
n

Memory usage (GB) Memory usage (GB)

100%

80%

60%

40%

20%

0%
0.5 64321684

GPU Active
SMSP Active

SMSP Issue slots
TC Active

TC Issue slots

21 0.5 16 328421

512
256

128

64

32

1024

168421

512
256

128

64

32
16

8421
Batch size 

Fig. 4: Multi-level utilization vs. GPU memory usage. Tensor-
Flow eager execution of a mixed-precision ResNet-50 across
various batch sizes on (a) A100 and (b) V100.

takeaway). For example, running a TF eager execution requires
65% of the A100’s memory for a batch size of 512, whereas
XLA JIT only requires 48% of the memory for the same batch
size. As a result, XLA JIT can fit larger batch sizes within the
GPU memory. Second, XLA JIT can achieve 8× (25×) higher
throughput than TF eager execution in the A100 (V100).

When comparing precision modes, we can make two ob-
servations. First, mixed-precision (grey markers) consistently
uses around 50% of the memory allocated by full-precision
(blue markers). This enables to fit larger batch sizes in the
same amount of memory, which increases throughput com-
pared to full-precision. Additionally, mixed-precision provides
a boost in throughput for the same respective batch sizes
as full-precision. For example, using PT, mixed-precision
achieves around 1.5× (2×) the throughput of full-precision
for the same batch sizes with the A100 (V100).

Key takeaway 2. JIT compilation and mixed-precision in-
crease throughput by fitting larger batch sizes in GPU memory.

When comparing ML frameworks, we observe that PT eager
uses less memory and achieves better throughput than TF ea-
ger, particularly with large batch sizes. For example, using full-
precision with a batch size of 512, PT eager achieves 1.3× the
throughput of TF eager and uses 12% less memory. However,
when using JIT compilation, TF XLA JIT outperforms every
other mode of execution, achieving the best throughput across
all batch sizes and using less memory. For example, using
full-precision with a batch size of 512, TF XLA JIT achieves
5.8× the throughput of PT JIT and uses 17% less memory.

Key takeaway 3. Generally, TF XLA JIT significantly out-
performs PT TorchScript JIT in both throughput and memory.

B. GPU Compute Resource Utilization

We evaluate the utilization of the GPU’s compute resources
as GPU utilization, SM subpartition utilization, issue slot
utilization, and tensor core utilization, as described in Sec-
tion IV. Fig. 4 shows the GPU resource utilization at each
level for a ResNet-50 TF eager mixed-precision run on the
A100 and V100. We use this run as an illustration of the
measured utilization at different levels of the GPU hardware
abstraction for different batch sizes. Instead, Fig. 5 shows the
utilization results for all the workloads but only for the batch
size achieving the highest throughput in the A100 GPU.



1

0.1

0.01

GPU active SMSP active TC active SMSP issue slots TC issue slots

Fig. 5: Multi-level utilization (A100 workloads): GPU, SMSP (active & issue slots), and tensor core (active & issue slots).
Batch size chosen based on best throughput value for each workload. Throughput is normalized by best value for each model.

(a) A100 (b) V100

80%

40%

60%

20%

Is
su

e
 s

lo
ts

 u
ti

li
za

ti
o
n

Batch size Batch size

0% 512
1024

2048
25612864

100%

32168421 512
2561286432168421

Fig. 6: Distribution of SMSP issue slot utilization for all
kernels of ResNet-50 using XLA JIT with mixed-precision
for multiple batch sizes on (a) A100 and (b) V100 GPUs.

GPU utilization. In Fig. 4, we observe that GPU utilization
increases as the batch size increases, reaching a maximum
of 95% and 91% for the A100 and V100, respectively. We
observed this link between the increase of batch size and the
increase of GPU utilization for all of our workloads. In Fig. 5,
we can observe that BERT using TF eager execution achieves
the lowest GPU utilization, which tops at 76% using full-
precision and 78% using mixed-precision. We also observe
that PT achieves a slightly (2 to 6%) higher GPU utilization
than TF. However, this higher GPU utilization does not always
lead to a higher throughput. For example, DLRM full-precision
achieves 99.3% GPU utilization with PT eager compared to
87.4% with TF eager. However, TF eager achieves 4.4× higher
throughput than PT eager, which can likely be attributed to the
higher utilization of tensor cores.

Key takeaway 4. Higher GPU utilization does not correlate
with higher throughput.

SMSP active utilization. Fig. 4 shows that SMSP active
utilization follows the same trend as GPU utilization across
different batch sizes for ResNet-50 TF eager with full-
precision. We observed the same behavior for all our work-
loads. However, as discussed in Section IV, GPU utilization
is an upper bound for SMSP active utilization. We observe
that SMSP active utilization is consistently 1% to 15% lower
than GPU utilization. Similarly to GPU utilization, we observe
no correlation between SMSP active utilization and achieved
throughput across workloads.

Key takeaway 5. SMSP active utilization mirrors GPU uti-
lization across batch sizes, staying 1% to 15% lower.

U
ti

li
za

ti
o
n

Conv2D Conv2D
BackpropFilter

Conv2D MatMul
BackpropInput

100%

0%

20%

40%

60%

80%

SMSP Issue slotsSMSP Active TC Issue slotsTC Active

Fig. 7: Per-layer SMSP and TC utilization distributions (show-
ing only layers with over 3% average TC issue slot utilization).

SMSP issue slot utilization. Fig. 4 shows that SMSP issue
slot utilization follows the same trend as GPU and SMSP
active utilization. We observed the same behavior for all the
workloads. However, Fig. 5 shows that average SMSP issue
slot utilization generally stays below 40%, except for BERT
and DLRM using PT full-precision, where it approaches 54%.

To better understand SMSP issue slot utilization, Fig. 6
shows the distribution for all kernels of the ResNet-50 model
using mixed-precision XLA JIT for multiple batch sizes for
the A100 (Fig. 6a) and V100 (Fig. 6b) GPUs. Average SMSP
issue slot utilization (dotted line on Fig. 6) follows the same
trend as seen in Fig. 4, and saturates near 40%. However, data
distribution (violin plots and vertical bars in Fig. 6) shows
maximum SMSP issue slot utilization ranging between 50%
and 80%, generally increasing with batch size. We also observe
that although the average (and maximum) value is very similar
for both GPUs, the A100 includes a higher population of
kernels with an SMSP issue slot utilization above 60%.

Key takeaway 6. The average SMSP issue slot utilization
increases with the batch size, but it seldom exceeds 40%.

Tensor core utilization. We compare tensor core utilization
across all workloads for different batch sizes using two met-
rics: TC active utilization and TC issue slot utilization. Fig. 4
shows an increase in both metrics as the batch size increases
for ResNet-50 using TF eager execution with full-precision.
However, Fig. 5 shows that tensor cores are active for less than
35% of the total execution time. Furthermore, less than 5% of
the total execution cycles are spent issuing TC instructions.

To gain more insights, Fig. 7 shows the tensor core utiliza-
tion distribution for all the kernels in the TF eager workloads,
aggregated by layer. We observe that only MatMul-based layer



Percentage of time using tensor cores Percentage of time using tensor cores

Fig. 8: Cumulative distribution of kernels’ TC issue slot
utilization for eager workloads using the A100 GPU. Batch
size chosen based on best throughput value for each workload.

types, namely convolution (i.e., Conv2D) and fully connected
(i.e., MatMul) layers, achieve TC issue slot utilization above
3%. On the one hand, the average TC active utilization can
reach close to 80% for pure MatMul operations, while it is
limited to around 50% for convolution layers. On the other
hand, the average TC issue slot utilization tops at 10%, with
some kernels achieving near 15% at peak. These same layers
all achieve above 90% average SMSP active utilization and up
to 40% average SMSP issue slot utilization.

To better understand how this relatively low issue rate of
tensor core instructions impacts performance, Fig. 8 shows
the cumulative training time as a function of TC issue slot
utilization, for the eager workloads on TensorFlow (a) and
PyTorch (b). The kernels that do not issue any tensor core
instructions amount to 30 to 95% of the total A100 training
time depending on the workload. Furthermore, kernels with
less than 12% of TC issue slot utilization represent more
than 99% of the total GPU kernel execution time of all
workloads. Despite these low utilization rates, the use of tensor
cores significantly increases training throughput (see Fig. 5).
However, we observe that even the workloads benefiting the
most from tensor cores are now limited by the execution time
of kernels that do not use tensor cores (Amdahl’s law at play).

Key takeaway 7. The majority of the kernels do not use
tensor cores. Kernels that use tensor cores more extensively
amount to a small proportion of the total GPU execution time.

C. Implications and Insights

To achieve sustainable performance improvements within
ML training workloads, it is important to maintain a balanced
utilization of key architectural resources. GPUs have increased
their memory capacity in recent generations, enabling en-
hanced throughput and higher utilization through the support
of larger batch sizes. However, our experiments on represen-
tative workloads suggest a plateau has been reached, and the
additional memory in the A100 no longer leads to enhanced
utilization ratios. We also show that modern GPUs can achieve
impressive acceleration but typically operate below 50% of
their instruction-issuing potential. Furthermore, we observe
that the tensor cores, which are the instructions delivering
the highest raw computational power, are kept idle most of
the time, and the evaluated ML training workloads are now

constrained by kernels not using tensor cores. Thus, our results
suggest that the current GPU paradigm is reaching a satura-
tion point, and motivate further research into programmable
architectures to sustainably accelerate ML training workloads.

VII. CONCLUSION

In this work, we analyze the efficiency of executing ML
training workloads on modern GPUs by describing an ideal
GPU-accelerated ML training loop and identifying relevant
performance metrics. We combine traces from existing profil-
ing tools and compare the execution of various ML training
workloads to the ideal loop. We present our results with
seven key takeaways, showing that high utilization is typically
achieved at the GPU level. Yet, the average instruction issue
slot utilization remains below 50%, with tensor core instruc-
tions reaching less than 5.2%. We believe this work highlights
the need for advanced profiling to unravel GPU limitations.

VIII. ACKNOWLEDGEMENT

This work was performed using HPC/AI resources from
GENCI-IDRIS (Grant AD011012967).

REFERENCES

[1] T. Brown et al., “Language models are few-shot learners,” in Proceed-
ings of NeurIPS, 2020.

[2] A. Reuther et al., “AI and ML accelerator survey and trends,” in
Proceedings of HPEC, 2022.

[3] C. Yang et al., “Hierarchical roofline analysis for GPUs,” Concurrency
and Computation: Practice and Experience, vol. 32, no. 20, 2020.

[4] S. Verma et al., “Demystifying the MLPerf training benchmark suite,”
in Proceedings of ISPASS, 2020.

[5] W. Sun et al., “Dissecting tensor cores via microbenchmarks: Latency,
throughput and numeric behaviors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 34, 2022.

[6] P. Delestrac et al., “Demystifying the TensorFlow eager execution of
deep learning inference on a CPU-GPU tandem,” in Proceedings of DSD,
2022.

[7] S. Chetlur et al., “cuDNN: Efficient primitives for deep learning,” 2014.
[8] “NVIDIA CUDA Profiling Tools Interface (CUPTI).” [Online].

Available: https://developer.nvidia.com/cupti
[9] “NVIDIA Management Library (NVML).” [Online]. Available: https:

//developer.nvidia.com/nvidia-management-library-nvml
[10] “NVIDIA Nsight Compute.” [Online]. Available: https://developer.

nvidia.com/nsight-compute
[11] “TensorFlow profiler: Profile model performance.” [Online]. Available:

https://www.tensorflow.org/tensorboard/tensorboard profiling keras
[12] “PyTorch profiler.” [Online]. Available: https://pytorch.org/tutorials/

recipes/recipes/profiler recipe.html
[13] K. Zhou et al., “GPA: A GPU performance advisor based on instruction

sampling,” in Proceedings of CGO, 2021.
[14] A. Saiz et al., “Top-down performance profiling on NVIDIA’s GPUs,”

in Proceedings of IPDPS, 2022.
[15] H. Zhang et al., “Understanding the performance of GPGPU applications

from a data-centric view,” in Proceedings of ProTools, 2019.
[16] C. Li et al., “XSP: Across-stack profiling and analysis of machine

learning models on GPUs,” in Proceedings of IPDPS, 2020.
[17] J. Gleeson et al., “RL-Scope: Cross-stack profiling for deep reinforce-

ment learning workloads,” in Proceedings of MLSys, 2021.
[18] H. He, “Making deep learning go brrrr from first principles,” 2022.

[Online]. Available: https://horace.io/brrr intro.html
[19] S. Park et al., “Analysis of thread block scheduling algorithms for

general purpose GPU systems,” in Proceedings of CSDE, 2021.
[20] P. Mattson et al., “MLPerf training benchmark,” in Proceedings of

MLSys, 2020.
[21] NVIDIA, “NVIDIA deep learning examples.” [Online]. Available:

https://github.com/NVIDIA/DeepLearningExamples
[22] H. Yu et al., “TensorFlow Model Garden,” 2020. [Online]. Available:

https://github.com/tensorflow/models

https://developer.nvidia.com/cupti
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://horace.io/brrr_intro.html
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/tensorflow/models

	Introduction
	Related works
	Efficient ML training loop execution on GPU
	Profiling methodology
	Experimental setup
	Results
	Performance vs. Memory Utilization
	GPU Compute Resource Utilization
	Implications and Insights

	Conclusion
	Acknowledgement
	References

