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Abstract— It is expected that many human drivers will still
prefer to drive themselves even if the self-driving technologies
are ready. Therefore, human-driven vehicles and autonomous
vehicles (AVs) will coexist in a mixed traffic for a long time. To
enable AVs to safely and efficiently maneuver in this mixed traf-
fic, it is critical that the AVs can understand how humans cope
with risks and make driving-related decisions. On the other
hand, the driving environment is highly dynamic and ever-
changing, and it is thus difficult to enumerate all the scenarios
and hard-code the controllers. To face up these challenges, in
this work, we incorporate a human decision-making model in
reinforcement learning to control AVs for safe and efficient
operations. Specifically, we adapt regret theory to describe a
human driver’s lane-changing behavior, and fit the personalized
models to individual drivers for predicting their lane-changing
decisions. The predicted decisions are incorporated in the
safety constraints for reinforcement learning in training and
in implementation. We then use an extended version of double
deep Q-network (DDQN) to train our AV controller within the
safety set. By doing so, the amount of collisions in training is
reduced to zero, while the training accuracy is not impinged.

Index Terms— Safe Reinforcement Learning, Human Lane-
changing Decisions, Regret Theory, DDQN

I. INTRODUCTION

Autonomous driving has attracted significant research in-
terest in the past two decades as it offers the potential
to release drivers from exhausting driving. While great
progresses have been made in the field of perception, path
planning, and controls, high-level decision-making remains
a big challenge due to the involvement of complex, clut-
tered environment and the dynamic, uncertain behaviors of
other traffic users. Some recent works have been applying
reinforcement learning (RL) methods to autonomous driving
and promising performance [1] has been reported. RL-based
methods can learn the decision-making and driving behaviors
which are hard, if not infeasible, for traditional rule-based
designs, and often with much less human effort.

However, it is reported in [2] that when using RL-based
methods lots of collisions happen before the agent starts to
behave properly. Although these collisions are not prohibitive
in simulations, in practice, the RL-based driving algorithms
must be trained, adapted, and tested in real traffic, where
collisions can cause disastrous consequences. In implemen-
tation phase, autonomous vehicles (AVs) using the trained
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RL algorithms may not behave safely in unseen driving
environment, and the trained models may choose unsafe
actions due to function approximation [3] used in most RL
algorithms, therefore, making the implementation risky.

To tackle the aforementioned issues and provide safety
guarantees in RL, the idea of safe reinforcement learning
(SafeRL) [4] has been proposed where safety supervisors
are deployed to ensure safe explorations and exploitation
for the RL agents. Nageshrao et. al. [2] incorporate a short-
horizon safety check in the RL-based method. The supervisor
replaces identified risky actions with safe ones during train-
ing and implementation. The collisions were significantly
reduced. Wang et al. [5] developed a rule-based decision-
making framework for lane-changing. The framework exam-
ines the trajectories prescribed by the controller and changes
the actions resulting in collisions. In [4], a dynamics-enabled
safe RL framework is developed to train a fuel-efficient
adaptive cruise control policy without collisions.

It is worth noting that when supervising the learning
process to avoid collisions, oversimplified, non-interactive
environment vehicles are considered in the aforementioned
safeRL studies. To enable AVs safely interacting with
manual-driven vehicles (MVs), it is crucial to understand
and characterize how human drivers make driving-related
decisions when they interact with other road users. Extant
models of human driving behaviors are either data-driven
[6] or motivational [7]. While data-driven methods lack
explaniability [8], motivational models ignore the usefulness
of data and fail in generating testable predictions [9].

Risks in driving have two dimensions: harm (costs) and
probabilities. Human drivers most times manage these risks
well. Regret theory [10] in behavioral economics is a good
candidate for modeling human decision-making under risks.
It emphasizes the regret effect: comparing the costs caused
by different actions induces anticipated regretful emotion,
which in turn biases the comparison. Two other psycho-
logical effects are also important. The probability weighting
effect claims that human brains process the probability they
see nonlinearly [11]. The range effect asserts that when
evaluating the costs, not only values of the costs themselves
but the range of the costs contribute to their evaluated
psychological goodness or badness (utilities) [12].

An extended regret decision model was developed in our
prior work [13] for describing the three psychological effects
quantitatively. In this paper, the parametric regret decision
model is further evolved such that the abstract harm and
probabilities can be described with the physical terms like
speeds and distances. Similar to motivational models, the
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regret decision model is explainable. Also, after estimating
the parameters using drivers’ data, the model can predict a
driver’s decisions, hence the movement of the MV. These
predictions can facilitate the training safety of AVs.

In this paper, we integrate a regret-based human decision-
making model into a safeRL framework to enable AVs to
learn a safe and efficient policy in a challenging scenario.
We show that the regret-based decision model is able to
estimate reasonably accurate driver-related decisions in this
new application. We design a hierarchical learning structure
that includes a RL-based decision-making agent with an
extended double Q-network (DDQN) [14] and a safety su-
pervisor that uses the driver lane-changing model to identify
unsafe actions. We exploit both safe and unsafe experiences
for training to improve the learning efficiency. The efficacy
of the proposed framework is demonstrated in CARLA [15].

The reminder of the paper is organized as follows. Section
II formulates the research problem. In Section III, we show
how to build the regret-based human lane-changing model.
Our proposed safeRL algorithm is depicted in Section IV.
Experiments, results and discussion are shown in Section V.
Conclusion and future works are discussed in Section VI.

II. PROBLEM FORMULATION

A. Traffic Scenario

In a two-lane highway scenario, as shown in Fig. 1,
the ego vehicle (blue, AV) is surrounded by environment
vehicles (green) which are MVs. Vehicles (red) far away
from the ego vehicle are not considered. All the vehicles
are heading longitudinally. They currently have different
speeds and they all want to run at their desired speeds.
To achieve that goal, they need to change lanes whenever
necessary while maintaining safe. The AV is controlled by
a RL-based intelligent agent. The agent learns how to drive,
including longitudinal speed control, lane-changing strategy,
etc, from interacting with the environment vehicles. The AV
is equipped with sensing systems. Because the statue quo is
that there is no communication between vehicles, we assume
at least no communication exists involving MVs. Each MV
makes lane-changing decisions independently.

Fig. 1. Two-lane traffic scenario

B. Training with Conventional RL

When using conventional RL for training an AV, state st
represents traffic scenarios, including the velocities, locations
of the vehicles, and the agent applies action at to navigate.
Given a reward function rst,at , the optimal policy π∗(st) is
to maximize the expected cumulative future rewards:

R , Eπ

[ ∞∑
t=0

γtrst,at

]
(1)

where scalar γ is the discount factor.
Q-learning [16] is a model-free method which works

well on discrete action space. It uses a function approxi-
mator Qφ(st, at) to approximate the Q function, where the
optimal Q value is defined by Q∗(st, at), and φ are the
parameters of the approximator. The action is chosen by
at = maxa′t Qφ(st, a

′
t).

Deep Q network (DQN) [17], [18] uses the deep neu-
ral networks to approximate the Q function. It stores the
explored experiences into a replay buffer and samples K
experiences each time to update the parameters,

φ← φ+ α
(
Y Qtarget −Qφ(st, at)

)
∇φQφ(st, at) (2)

where α is the learning rate. The target Y Qtarget is defined as

Y Qtarget , rt+1 + γmax
a′

QφN
(st+1, a

′) (3)

The parameters φN of the target network are updated only
every N steps by φN ← φ and keep fixed at other steps.

C. The Drawback of Conventional RL

There is one drawback with conventional RL. As we tested
it on autonomous driving in two-lane traffic (Section V), we
found that when using conventional RL, about 14.5% training
epochs ended with collisions. Even after the policy con-
verged, still 3.46% of the trials caused collisions. Collisions
mainly came from the fact that the AV cannot estimate the
intentions of MVs. Especially for lane-changing, collisions
can happen either because
• the ego vehicle changes its lane but collides with the

vehicles already in that lane;
• or, an environment vehicle suddenly changes to the ego

vehicle’s lane and the ego vehicle cannot react timely.
Collisions cause training unstable as the RL algorithm

needs to reset the simulation whenever collisions happen.
Real deployment of AVs will also not tolerate any collision.

To solve the problem, we present a framework for RL
to incorporate a safety supervisor which uses human lane-
changing decision model for making predictions. The archi-
tecture is given by Fig. 2.

Safety

supervisor

High-level Intelligent Agent

safe actions

Low-level controller

Human Lane-

changing Model
human decisions

control signal

actions

Driving Environment

RL Agent

Fig. 2. Framework of SafeRL system.

We adopt a hierarchical structure. A high-level intelligent
agent in the ego vehicle receives states of the traffic in the
driving environment. Inside the agent, based on the current
traffic scenario, the human-lane changing model (Section III)
estimates the lane-changing decisions that will be taken by
the MVs. In parallel, the RL agent determines optimal actions
based on the states (Section IV). The actions from the RL



agent are supervised by the safety supervisor: The supervisor
uses the predicted human decisions to check if an action is
safe. The unsafe actions are replaced with the safe actions.
The safe actions go to the low-level controller for navigating
the ego vehicle in the driving environment.

III. REGRET-BASED HUMAN LANE-CHANGING MODEL

In this section, we will present how to build a human lane-
changing decision model. Within the RL framework, the AV
needs to predict actions of MVs, which are the results of the
drivers’ decisions. One of the most safety critical decisions
in the two-lane traffic in Fig. 1 is whether a driver intends
to change lanes. When a driver can drive at the desired
speed, or faster than in the neighboring lane, the decision is
straightforward: staying in the current lane. However, when
traffic in the current lane is slower, the decision-making
becomes hard to predict. We will focus on this situation.

A. Human Decision-making in Two-lane Traffic

From the perspective of the green MV (Fig. 3a), it runs at
speed vc in the right lane. The driver has a best possible
speed vb in mind, but the current lane is blocked by an
environment vehicle (red) driving at a speed vs ≤ vb. In
the other lane, there is a stream of traffic running at a faster
speed vf ≥ vs. The vehicle (blue), which approaches the MV
longitudinally, has the size of volume V and is currently at
speed vf . The gap between the approaching vehicle and the
MV currently is d ≥ 0. The speeds vs, vc, vf , the distance
d, and the volume V can be observed by the MV and the
approaching vehicle. Speed vb seems to be private to the
driver in the MV. However, often it can be inferred by the
approaching vehicle, because it usually either is the speed
limit or the speed of the fast lane traffic. Although in Fig.
3, the right lane is slow, because of symmetry, when the left
lane is slow, similar situations can happen.

KC

a) b) c) d)

Fig. 3. The MV (green) in the traffic in (a) can either change lanes or
keep lanes. If it changes lanes, it may collide with the approaching vehicle
(b) or safely merge in (c); otherwise, it has to slow down (d).

The driver in the MV has two options. He/she can either
make a lane change (option C) or keep the current lane and
yield to the approaching vehicle (option K). If the driver
decides to change lanes, there may be two possible outcomes.
The MV may rear collide with the approaching vehicle,
as shown in Fig. 3b, or it may successfully merge in the
new lane and run at its best speed vb as shown in Fig. 3c.

The blocking vehicle is assumed not braking abruptly. If the
driver chooses to yield, the MV has to slow down to match
the speed of the blocking vehicle, letting the approaching
vehicle pass (Fig. 3d). Which option will the driver take,
and how is the decision made?

B. Regret Decision Model

The regret decision model deals with two options that are
formulated in terms of harms (costs) and probabilities. To use
regret decision model on the lane-changing problem above,
the two options, option C and option K, are expected to take
the form of Table I.

TABLE I
OPTION C AND OPTION K IN TERMS OF HARM AND PROBABILITIES

Option C Option K

Cost: 0 ccollide Cost: cslow

Probability: p 1 − p Probability: 1

Choosing option C can either lead to no harm (Fig. 3c)
with an objective and observable probability p, or lead to a
cost of collision ccollide (Fig. 3b) with the probability 1− p.
Choosing option K is always safe. But deceleration generates
some cost cslow (Fig. 3d), with probability 1.

The regret decision model includes three components to
address the three psychological effects, namely, the range
effect, the regret effect, and the probability weighting effect.
The range effect claims that the utility u of a cost c is relevant
to a reference cost |c̄| that defines the overall severity of the
decision-making problem. In the lane-changing problem, a
collision is the most critical event that may happen. Cost
ccollide thus draws drivers particular attention and is used as
the reference to judge the situation. Hence, it is plausible
that |c̄| , |ccollide|. The utilities are defined as the scaled
costs [12]: u , c/|ccollide|.

Since the anticipated regret emotion in the regret effect
is triggered by the comparison of costs in different options,
when using regret decision model, it is convenient to trans-
form Table I to Table II.

TABLE II
OPTION C AND OPTION K REPRESENTED IN THE COMPARATIVE FORM

Events: No collision Collision

Joint probability: p 1 − p

Cost:
Option C 0 ucollide

Option K uslow uslow

Each column is a comparison between utilities. The prob-
ability in a column is the joint probability for both utilities
in the comparison to happen. Since the influence of regret
emotion is nonlinear, the regret effect is depicted as [19],

q(∆u) , σ1 sinh(σ2∆u) + σ3∆u, (4)

where ∆u is the difference between utilities, e.g., ucollide −
uslow (column 4 in Table II). The parameters σ1, σ2, σ3 ≥ 0



are specific to individuals and will be determined ( Section
V). The linear part, i.e., σ3∆u, represents the objective (so-
called rational) evaluation of utility differences; the nonlinear
part, i.e., σ1 sinh(σ2∆u), represents the influence of regret
emotion triggered by cost differences.

The probability weighting effect is described by another
nonlinear function [20]:

w(p) , exp(−β1(− log(p))β2), (5)

where parameters β1, β2 ≥ 0 are specific to individuals
and will be determined (Section V). Comparing with the
naive weighting w(p) = p, Eqn. (5) either overweights or
underweights objective probability p.

To use the three components, |c̄|, q(∆u), and w(p), to
make a decision, the regret decision model calculates the net
advantage of option C over option K:

eck , w(p) q(0− uslow) + (1−w(p))q(ucollide − uslow). (6)

When eck > 0, choose option C; otherwise choose option K.

C. Human Drivers’ Lane-changing Decision-making

The driver in the MV, however, is not readily presented
with the values of objective probability p and the objective
costs ccollide and cslow as in Table I. What he/she knows and
can observe are the physical terms that define the traffic,
including the speeds vs, vb, vc, vf , the distance d, and the
volume V of the approaching vehicle. To use the regret
decision model, we should develop a bridge between the
traffic defining terms and the costs and probabilities.

Not all the drivers have experienced collisions, but all of
them can perceive the threat of a potential collision. It is
plausible to assume that the driver in the MV perceives the
threat of the approaching vehicle to be proportional to its
kinematic energy 1

2ρV v
2
f . This is because, as common sense,

the vehicles of larger size are always perceived of greater
threat, and the threat grows more than linearly when vehicle
speed increases. Hence, we define

ccollide(vf , V ) , λ
ρV v2

f

2
, (7)

where parameter λ < 0 is the subjective threat factor.
We also speculate that the cost of slow-down cslow is the

time loss and is defined as

cslow(vd, vo) ,
da
vd
− da
vo

= τa

(
1− vd

vo

)
. (8)

In Eqn. (8), we introduce two new variables: vd and vo.
While the desired speed of the driver is vd, choosing one
option the MV will run at speed vo. Note, as discussed below,
the desired speed vd may not necessarily equal the best speed
vb. Over some anticipated distance da, the different speeds
generate the time loss cslow(vd, vo). One example in daily life
is that when we are stuck in a traffic jam, we may feel grilled,
because stopping at the spot means the time to reach our
destinations is infinitely long. Again, the anticipated distance
da to travel is subjective. It is defined as da , τa vd, where
parameter τa ≥ 0 is the subjective anticipated impediment-
free time.

The arguments vd and vo in cost cslow(vd, vo) take different
values when the driver is reasoning over the options and
conditions. If option C was chosen and no collision could
happen, the desired speed for the MV was vd = vb, and
the MV could run at vo = vb. In this case, cost cslow = 0.
If no collision could happen for choosing option C but the
driver was considering to choose option K, the desired speed
was vd = vb, and the MV had to match the speed of the
blocking vehicle with vo = vs. In this case, the slow-down
cost became cslow = τa − τavb

vs
. If collision could happen

when option C was taken, option K actually became the only
feasible option: The driver had no choice but took option K.
The desired speed for the driver became vd = vs, and the MV
ran at vo = vs. The slow-down cost is cslow = 0. If collision
could happen when option C was taken but the driver was
considering to choose option C, this decision would realize
the collision, causing cost ccollide(vf , V ).

The objective probability p to make a successful lane
change is also hidden from the driver; what can be observed
are the distance d and the relative speed vf − vc. The driver
must estimate a probability p̂ directly from the observed
physical variables. We speculate that probability p̂ strongly
relates to the time-to-collision with the approaching vehicle
tc that is defined as

tc ,

{
d

vf−vc , vc < vf ;

∞, vc ≥ vf .
(9)

We further speculate that tc is compared against a subjective
time constant τs which represents the duration for safely and
comfortably changing lanes. The estimated probability p̂ is

p̂ ,

{
tc
τs
, 0 ≤ tc ≤ τs;

1, tc > τs.
(10)

The definitions of costs and probabilities and the definition
of utilities, u = c/|ccollide|, express Table II in terms of the
observable physical variables. If we further assume all the
vehicles in the traffic are of the same size, as in Fig. 3, we
can treat volume V as a constant parameter. To reduce the
total amount of parameters, we define η1 , − 2τb

λρV ≥ 0. The
two options faced by the driver are in Table III. Based on
(6), The decision of the driver is modelled as

eck = w(p̂) q
(
η1

( vb
vsv2

f

− 1

v2
f

))
+ (1− w(p̂))q(−1), (11)

where functions w(·) and q(·) are defined in Eqns. (5) and
(4), respectively. When eck > 0, choose option C; choose
option K, otherwise.

TABLE III
OPTION C AND OPTION K IN TERMS OF PHYSICAL VARIABLES

Events: No collision Collision

Joint probability: p̂ 1 − p̂

Cost:
Option C 0 −1

Option K η1

(
1
v2
f

− vb
vsv

2
f

)
0



IV. SAFE RL ALGORITHM

In this section, we will focus on the development of a
safe RL algorithm that integrates a safety supervisor. First,
we define the state representation, the action space and the
reward function for the reinforcement learning agent. Then,
we demonstrate how to incorporate the human lane-changing
model as safety supervisor into the RL algorithm.

A. Reinforcement Learning Agent

1) States Representation: Methods like [21] use mediated
perception, by stacking multiple input images, and encode
the images to low dimensional states for representing the
world. These methods not only need carefully designed
encoders but also need to collect manually labeled data.
They are really time-consuming and hard to train. Recently,
works [22], [23] start to use the affordance indicators as the
world representation. It shows advantages over the mediated
perception: they only use a small number of key world
indicators which are obtained from sensing systems, such
as vehicles’ locations on roads, relative distances and speeds
between vehicles.

In this work, we also use the affordance indicator method.
For a two-lane road as shown in Fig.1, assume we need the
following indicators to represent the world.
• In front of the ego vehicle, the relative distances and

the relative velocities of the vehicle in the right lane
are dfr and vfr; those of the vehicle in the left are dfl
and vfl.

• To the rear of the ego vehicle, the relative distances and
the relative velocities of the vehicle in the right lane are
drr and vrr; those of the vehicle in the left are drl and
vrl.

Besides the above 8 affordance indicators, we also include
the lateral position y, longitudinal velocity vx, steering angle
θ and throttle value of the ego vehicle. A total of 12
affordance indicators are considered as the input to the RL
agent. For generalization consideration, we normalize all
indicators to range [−1, 1].

2) Action Space: Laterally, the ego vehicle can take two
actions, turning left or right. We assume the ego vehicle uses
constant lateral speed vy ∈ {−v̄y, 0, v̄y} for lane changing.
Longitudinally, there are three actions, decelerating, cruising
or accelerating, i.e., ax ∈ {−āx, 0, āx}. The RL agent
chooses one of the above actions each time. If the action
is safe, it is sent to the low-level controller for generating
control signals.

3) Reward Function: RL algorithms rely on reward func-
tions to guide the agent to learn the desired policy. A
reward/cost function penalizes the agent for choosing danger-
ous actions and rewards actions that bring efficiency, safety,
and comfort. Here we adopt a linear reward function as

r = wsrs + wvrv + wcrc + whrh, (12)

where ws, wv , wc and wh are weighting parameters for
collision evaluation rs, stable-speed evaluation rv , lane-
centering evaluation rc, and headway evaluation rh, respec-

tively. Safety is the most important criteria, so we choose
ws � wv, wc, wh.

The various performance evaluations are defined as fol-
lows. The collision evaluation is defined as a binary function:

rs ,

{
−1, Collision happened,
0, Otherwise.

(13)

We encourage the ego vehicle to run at a stable speed. Hence,
the stable-speed evaluation is

rv ,


vx−v̄min

v̄target−v̄min
, v̄min < vx ≤ v̄target;

v̄max−vx
v̄max−v̄target

, v̄target < vx ≤ v̄max;

0, vx ≤ v̄min or vx > v̄max;

(14)

where vx is the current longitudinal speed of the vehicle,
constant v̄min, v̄target and v̄max are minimum, target and
maximum speeds, respectively. Any speed larger than the
maximum speed or less than the minimum speed is sup-
pressed. Speeds v̄min and v̄max can be changed according to
different traffic conditions. We want the ego vehicle to stay
at the center of the road. So, the lane-centering evaluation is

rc ,

{
−1, |y − yc| ≥ d̄c;
0, Otherwise,

(15)

where yc is the lateral location of center of the current
lane, and d̄c is a constant distance threshold. Lastly, the ego
vehicle should keep a safe time headway and distance. The
headway evaluation is defined as

rh ,

{
−1,

df∗
|vf∗−vx| < T̄min or df∗ < d̄s;

0, Otherwise,
(16)

where affordance indicators df∗ are either dfl or dfr
whichever shares the same lane; vf∗ is defined in the same
way; and constants T̄min and d̄s are safety thresholds.

B. Safety Supervisor & Low-level Controller

1) Safety Supervisor: To train the ego vehicle safely and
avoid frequent resets due to collisions, the safety supervisor
makes use of the human lane-changing model. Since the
physical variables observed by the driver in a MV, vs, vc, vf ,
vb, d, can also be measured by the AV through its sensing
system, the lane-changing decisions of the driver can be
predicted by the AV through the human lane-changing model.
Whereas there are different types of drivers, in this work
we assume all drivers are the same; we save the task of
modelling and identifying types of various drivers as our
future work.

Using these predictions, the safety supervisor can evaluate
the consequences of actions from the RL agent. Regarding
inter-vehicle consequences, within a short prediction time
horizon tpred, the future locations of a MV is estimated
based on the predicted lane-changing decision and the current
velocity of the MV. Likewise, the future locations of the ego
vehicle within tpred is also estimated based on its current
action and velocity. A collision is predicted if the distance
between the MV and the ego vehicle is within a predefined



threshold d̄s at any moment according to the projected
trajectories. The action is labelled as unsafe. The safety
supervisor reselects and replaces action as follows (Lines
6-11 in Alg. 1).
• If the unsafe action is to change lanes, then the replacing

action is to stay in the current lane instead.
• If the unsafe action is to speed up, and the ego vehicle

will choose to slow down to avoid collisions.
Sometimes, the consequences involve only the ego vehicle,

e.g., the ego vehicle chooses an action that pulls it off-road.
In such cases, the safety supervisor predicts the trajectory
and determines that the ego vehicle will be off-track. Then,
it provisions a default safe action, for instance, lane keeping.

The actions which are admitted by the safety supervisor
are labelled as safe actions. They are sent to the lower-
level controller, which controls the AV to interact with the
environment and generate rewards according to Eqn. (12).
A safe action, the states before and after the action, and the
corresponding reward are considered as a safe experience.

To fully utilize the experiences, an unsafe action and
the associated experience is not simply discarded; we keep
unsafe experiences by attaching appropriate penalties and
recording the associated states. We store the unsafe expe-
riences along with the safe experiences into the experience
replay buffer. Every time we sample a mini-batch experiences
from the replay buffer, we use the experiences to update our
policy (Lines 12-25 in Alg. 1).

2) Low-level Controller: Once receiving an action from
the high-level agent, the low-level controller controls the
vehicle directly. This hierarchical design greatly reduces the
training time compared to methods using agents to output
control signals directly. For a low-level controller, classical
feedback control methods, for instance, PID and MPC, are
good choices. In this work, we use PIDs for both lateral
(steering angle) and longitudinal controls (throttle).

C. The SafeRL Algorithm

Our SafeRL algorithm is shown in Alg. 1. We use an
improved version of DQN called Double deep Q-Network
(DDQN), which mitigates the over-estimation problem of
DQN [14]. Though we used the DDQN in our experiment,
the proposed framework is suitable for other RL algorithms.

As parameters, M is the total number of training epochs,
T is the total training time in each epoch, and K is the size
of sampled experiences at each time. After initialization, line
5 shows the action selection using ε− greedy method [16].
Lines 6–11 illustrate how the safety supervisor works: Every
time after the RL agent chooses an action at, the supervisor
checks whether this action is safe or not. It is replaced by
a safe action at

′ if it is determined unsafe. Line 8 stores
the unsafe experience (st, at, ∗, rcol) to the replay buffer
D, where st is the previous state, ∗ means no next state
because of collision, and rcol is the penalty of collision.
After the agent takes the safe actions, Lines 12–17 save
the corresponding experiences with different rewards, rcol or
rt+1, to the replay buffer. Lines 18–25 update the Q-network.
Line 18 samples a mini-batch of experiences from the replay

buffer. Lines 19–22 estimate the value of the policy by the
target network either as rt+1 or as

Y DDQN
target , rt+1 + γQφN

(st+1, argmaxa′Qφ(st+1, a
′)) (17)

Lines 24 calculates the gradients with respect to φ (Eqn.
(2)) and updates the Q-network. Line 25 updates the target
network every N steps and keeps it fixed at other steps.

Algorithm 1 SafeRL for autonomous driving
Parameters: M,T,K

1: Initialize the Q-network, Qφ; the corresponding target
network QφN

← Qφ; and the safe replay buffer D ← ∅

2: for j = 0 to M − 1 do
3: Initialize t← 0 and initial state s(0)← s0

4: while t < T do
5: Select a random action with probability ε, otherwise

select action at ← argmaxa′ Qφ(st, a
′)

6: if at is unsafe then
7: Replace it with a safe action at′

8: Store (st, at, *, rcol) to D
9: else

10: at
′ ← at

11: end if
12: Perform at

′ and observe st+1, rt+1

13: if termination then
14: Store (st, at, *, rcol) to D
15: else
16: Store (st, at, st+1, rt+1) to D
17: end if
18: Sample a mini-batch of size K from D
19: if termination then
20: Y DDQN

target ← rt+1

21: else
22: Update Y DDQN

target according to Eqn. (17)
23: end if
24: Update Qφ according to Eqn. (2)
25: Update QφN

← Qφ every N steps
26: end while
27: end for

V. EXPERIMENT, RESULTS, & DISCUSSION

In this section, we will present the experiments conducted
for identifying the parameters of the proposed human lane-
changing decision model, as well as for evaluating our
SafeRL methods. The experiments are performed on an open-
source driving simulation platform CARLA [15].

A. Variables & Parameters in Human Lane-changing Model

To exploit the human drivers’ regret decision model in
AV learning, values of the objective variables, vs, vc, vf , vb,
d, and the parameters, σ1, σ2, σ3, η1, β1, β2, τs, must be
obtained. We assume that human drivers are well informed
about the driving-related objective variables, which are inputs
to the decision-making model in Eqn. (11). On the other



hand, the parameters are driver-specific constants that can
be estimated through well-designed experiments.

Due to space limit, we will only sketch the procedure of
parameter estimation through experiments in this work. We
developed a driving simulator based on CARLA as in Fig.
4. As a pilot study, one subject was invited to drive in a
two-lane traffic scenario. The environment vehicles were set
up with different speeds and distances to test the subject’s
lane-changing decision-making. The objective variables, vs,
vc, vf , vb, d, and the lane-changing decisions, option C or
option K, were collected to construct a labelled data set.
We then used logistic regression to fit the parameters to the
dataset. The accuracy of the fitted model on the data set is
83.33%. Tab. IV summarizes the parameters we obtained. We
have already applied IRB for this project and will perform
more human subject tests in our future work.

Fig. 4. A subject is on the simulator for collecting lane-changing decisions.

TABLE IV
PARAMETERS FOR HUMAN LANE-CHANGING DECISION MODEL.

σ1 σ2 σ3 η1 (m2/s2)

10.1795 0.1130 0.5108 152.5796

β1 β2 τs (s)

9.9170 2.3812 3.5193

B. Experimentation of SafeRL
We created a 400-meter standard two-lane road scenario

in CARLA. The driving scenario setup is shown in Fig. 3,
where the blue one is the AV (ego) while the green and
the red one are two MVs. The current speed vc of the red
MV is 5.56 m/s and its best speed vb is also 5.56 m/s. On
the other hand, the speed vc of the green MV is 5.56 m/s
while its vb is 12.5 m/s. Since the green MV is behind the
red, it may want to change lanes. The distance between the
blue ego vehicle and the green MV, d, is 10 m. The MVs
are assumed to use the regret-based human lane-changing
model identified above for high-level decision-making. Low-
level controls of MVs are implemented uisng the default PID
controllers in CARLA. The ego vehicle was controlled by
the SafeRL agent. The dynamical models of all the vehicles
were provided by CARLA.

The trajectories of both the AV and MVs are predicted
using the Euler’s method:

vx(t+ 1) = vx(t) + ax(t)∆t, (18a)
x(t+ 1) = x(t) + vx(t)∆t, (18b)
y(t+ 1) = vy(t) + vy(t)∆t. (18c)

For the AV, the longitudinal acceleration ax and lateral
velocity vy are from the RL agent as discussed in Sec. IV-
A.2. The safeRL agent was trained in CARLA simulations
for 1500 epochs. At the beginning of each training epoch,
all the vehicles started from prespecified positions. An epoch
will stop when a collision happens or the ego vehicle reaches
the end of the road.

The Q-network Qφ and the target network QφN
are neural

networks of 2 fully-connected layers and each layer has 64
nodes followed by ReLU activation. The networks are trained
by Adam optimizer [24] with learning rate α = 1e − 4.
The exploration rate is continuously annealed from 1 to 0.05
over the first 1000 epochs and then kept constant for the
remaining epochs. Actions are updated every two steps [23].
Parameters for the reward function, network training, and
Euler’s equation are shown in Tab. V.

TABLE V
SIMULATION PARAMETERS.

ws wv wc wh d̄c d̄s

2000 10 3 15 0.5 m 18 m

T̄min v̄target v̄min v̄max tpred M

2 s 12.5 m/s 5.56 m/s 16.67 m/s 0.7 s 1200

K γ ∆t āx v̄y

256 0.99 0.1 s 2 m/s2 1.8 m/s

C. Results and Discussion

We compare our proposed SafeRL algorithm against the
conventional DDQN without safety supervision (we call it
ConvRL thereafter). Fig. 5 shows the learning curves of the
SafeRL and the ConvRL.
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Fig. 5. Learning curves of SafeRL and ConvRL

It is clear that SafeRL quickly leads to a reasonably good
control policy with much larger rewards than ConvRL in the
first 200 epochs. This is because the SafeRL is able to avoid
collisions and thus offers more training experience without
early epoch termination. Indeed, Tab. VI shows that there was
no collisions during training when using SafeRL, whereas
using the ConvRL 8.6% epochs ended up in collision. Safety
is guaranteed during training when using the SafeRL.

We should note that the safety supervisor in the SafeRL
decreases the exploration space to avoid collisions. As a



result, the available explorations of the SafeRL are less than
the ConvRL. However, in Fig. 5, as the training progresses,
the two curves converge almost at the same level, around the
800th epoch, despite the fact that the SafeRL has a smaller
exploration space. This is reasonable because the optimal
policy for choosing actions should be within the constraints
set by the safety supervisor. The action space that SafeRL
cannot explore is the part that the AV should indeed avoid.

TABLE VI
COLLISION COMPARISON.

Collision amount Collision Ratio

ConvRL 129 8.6%

SafeRL 0 0

Conversely, the unconstrained exploration by the ConvRL
leads to slightly degraded evaluation performance. Fig. 6
shows performance of the policies evaluated every 50 epochs
during training. The total rewards of an epoch of the SafeRL
are always better. Its learning was smoother and more stable
as evidenced by the constant improving rate. The initial
setbacks of the ConvRL were due to the many collisions.
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Fig. 6. Evaluating curve of SafeRL and ConvRL.

After both the models converge, after the 800th epoch in
Fig. 5, the SafeRL is more stable. The ConvRL still has large
fluctuations even after convergence. This is because colli-
sions still happen. So even the completed trained ConvRL
model still cannot guarantee to be collision-free. The SafeRL,
nevertheless, ensures no collision for the trained model. We
hence demonstrate the efficacy of the proposed SafeRL with
safety guarantee as well as more efficient and stable learning.

VI. CONCLUSIONS

We presented a framework for RL to incorporate a safety
supervisor which uses human lane-changing decision model
for making predictions. We developed the human lane-
changing model and did pilot testing to show its validity. The
predictions help RL learn its driving policy safely and stably.
Experimental results showed that our proposed SafeRL can
reduce collisions to zero during training and implementation,
while keep the training performance not impinged.

As the future work, we will make our method more robust
to different traffic scenarios and further improve the learning
efficiency for faster learning rate.

REFERENCES

[1] P. Wang, C.-Y. Chan, and A. de La Fortelle, “A reinforcement learning
based approach for automated lane change maneuvers,” in 2018 IEEE
Intelligent Vehicles Symposium (IV), pp. 1379–1384, IEEE, 2018.

[2] S. Nageshrao, E. Tseng, and D. P. Filev, “Autonomous highway driving
using deep reinforcement learning,” CoRR, vol. abs/1904.00035, 2019.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.
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