
Performance Analysis of SaaS Ticket Management
Systems

Pano Gushev
Innovation Dooel

1000 Skopje, Macedonia

pano.gushev@innovation.com.mk

Sasko Ristov, Marjan Gusev
Ss. Cyril and Methodius University, FCSE

1000 Skopje, Macedonia

{sashko.ristov, marjan.gushev}@finki.ukim.mk

Abstract—Cloud architecture has the ability of sharing hard-
ware resources and services among multiple tenants. In this paper
we measure the performance for the multi-VM (multiple virtual
machines) cloud architecture and compare it with the single-
VM architecture. Renting resources on a cloud usually comes
with a variety of options, such as use of more and smaller
virtual machines or use of less and bigger virtual machines. The
objective of this research is to find out which scenario gives better
performance for the same price of rented resources. This will be
done by comparing the following attributes: Average response
time, Pages per second, Average page time, Requests per second,
CPU time. We setup a hypothesis that the multi-VM approach
would be better, and the best architecture is the one offering the
highest number of small virtual machines, predicting that the
computational demands will spread to different virtual machines
in a balanced manner. The results confirm the hypothesis and
lead to a recommendation for an optimal architecture of a cloud
based solution for a common transactional web solution.

Index Terms—Cloud; Web Services; Windows Azure.

I. INTRODUCTION

C
LOUD computing has a growing trend in the past few

years and companies increasingly understand its benefits

[1]. Gartner [2] determined that the size of the cloud market

is $150 Billion by 2013 and predicts that virtualised server

workloads will reach a high of 60% in 2014. This trend pushes

companies to migrate their services and applications in the

cloud.

Benchmarking the cloud and multi-tier applications that

are hosted within will help the developers to determine the

most appropriate architecture, services, and settings [3]. In

this paper we present results of the performance analysis of

different approaches in building possible cloud architectures

and solutions of the Ticket Management System (TMS).

The objective of this research is to find out which scenario

performs the best for the same price of rented resources. We

assume that a single processor with four cores has approxi-

mately the same price with 4 CPUs with one core, 8 GB RAM

has roughly the same price with two RAMs of 4 GB etc.

Traditional distributed approach claims that the best per-

formance is achieved when the workload is distributed to a

huge number of processing units executing balanced tasks.

However, it is very hard to organise the tasks with perfect

load balancing in a distributed system. The cloud, on the

other hand, initiates new challenges, such as predicting server

CPU utilisation and resource under-provisioning. In addition,

scalability and elasticity are main concerns when the cus-

tomers desire to deploy their solutions on the cloud. Client

expectations are very important, due to the recent huge offer

of cloud providers. Summarising the above, a typical customer

challenge is selection which architecture performs the best,

renting more and less powerful Virtual Machines (VMs) or a

smaller number of more processing powerful VMs.
We have set a hypothesis that the best performance will

be achieved if the processing is distributed to more less

powerful VMs. The testing environment is deploying the

ticket management SaaS solution on various Windows Azure

configurations with approximately the same cost.
The rest of the paper is organised as follows. In Section II,

we discuss the related work and in Section III describe the

testing environment, ticket management web service and test

data. Section IV presents the results and Section V compares

the results and evaluates the performance. The final Section VI

is devoted to conclusion and future work.

II. RELATED WORK

This section presents the recent research in the area of cloud

performance benchmarking, resource allocation and multi-tier

transactional cloud web application.

A. Cloud performance discrepancy

Renting the same amount of IaaS (Infrastructure as a

Service) resources on the Azure cloud [4] costs the same,

regardless whether they are all provisioned in a single huge

virtual machine or into several smaller virtual machines. This

pricing scheme also follows the other most common public

clouds [5], [6].
An orchestration of hardware resources on the cloud im-

pacts the performance of the hosted cloud application or

web service. Allocating the resources among many concurrent

instances of virtual machines is better than using VM with

multiprocessors using parallelization [7].
Gusev et al. [8] determined a region where response time

is up to 10 times better if web services are spread among

several small VMs, rather than in a single VM. This phe-

nomenon motivated us to analyse how orchestration impacts

the performance of the real cloud N-tier application in Azure.
Cloud multitenant virtual environment also provides dis-

crepant performance during the time and therefore, a perfor-

mance isolation is required [9]. Koh et al. reported that a VM

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 753–760

DOI: 10.15439/2014F331

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 753

provides different performance on the same physical machine

during the time, if it is instantiated among the other active VMs

[10]. Jayasinghe et al. [11] reported that a configuration that

provides the best performance in one cloud can provide the

worst performance in another. Iakymchuk proposed a method

to improve the performance with underutilization of physical

resources by adding more nodes [12].

B. Windows Azure performance

Many authors have conducted research on Azure’s perfor-

mance. It is most suitable for application with small amount

of communication [13] and it does not work well for tightly-

coupled applications compared to Amazon EC2 or cluster

[14]. Hill et al. [15] provided a performance analysis of VMs,

storage services and SQL services in Azure. Azure also can

decrease the costs and time for deployment, as well as support

efficient TCP data transfers [16].

C. Multi-tier performance benchmarking

Today’s web applications are usually 3 or 4-tier applications,

commonly identified as multi-tier (n-tier) applications. Each

tier is usually hosted on a separate machine or VM. These

architectures are usually interesting due to several bottlenecks

that can appear, which will decrease rapidly their performance.

Several authors propose benchmark tools and methodologies

to simulate the multi-tier cloud web applications to analyse

their performance and determine their deficiencies.

Turner et al. [17] propose a C-MART benchmark, which

emulates a modern web application hosted in a cloud envi-

ronment. Rubis [18] is another benchmark application that

simulates an auction site and evaluates design patterns and

the performance scalability of application servers. However, it

cannot be used as a modern application benchmark because

there are many flaws for Web 2.0 applications [19]. Also it

requires a lot of effort to install, which outweighs its usefulness

[20]. TPC-W is also a transactional web benchmark, which

emulates an online bookstore [21]. But, it also has deficiencies

[3]. In this paper, we use a real cloud SaaS application hosted

in Azure to determine the scalability and user load impact on

different customers’ and cloud service provider’s parameters.

Apart from benchmarking tools, several methodologies for

benchmarking the N-tier applications are proposed and eval-

uated with them. Wang et al. [22] proposed a method for

bottleneck detection, which correlates throughput and load.

Chen et al. [23] proposed a predictive performance model that

analyses cloud based N-tier web applications and determines

appropriate resource allocation to each tier of an application.

III. METHODOLOGY

This section describes the architecture of the system and the

environment used for testing, including the testing tools, hard-

ware architecture, test cases and implementation procedure.

A. TMS Architecture

As a testbed-application we use our TMS SaaS solution

[24] as a scalable and elastic multi-VM cloud solution. This

benchmark has all features to evaluate performances of a

typical transactional based SaaS solution, such as, simple

operations for each transaction, and variable and huge number

of users that generate different workload.

The benchmark TMS solution consists of three code mod-

ules and one optional module [24]. Core modules are: System

management module (SMM), Company management module

(CMM) and Core functions module (CFM) and optional is

Additional functional module (AFM).

The core of this TMS cloud solution is the SMM module,

shared for all companies. All resource provisioning in the

cloud are managed by this module. It is always active to

provide company subscription management, authentication,

authorisation etc.

CMM is a company specific module, personalised and

customised by TMS users. Each company offers this module

as a service to its end customers. This module is responsible

for all general configurations within a company.

Another company specific module is the CFM module,

responsible for all essential processes to realise ticket man-

agement (bug reporting) within a company. It enables a con-

nection between companies (providers) and their customers.

This module provides functionalities such as: ticket creation,

responds by a resolver, customer approvals of the responses,

creation and execution of test-cases etc.

The only optional module is the AFM module, dedicated for

add-on functions, such as enabling a possibility to create and

execute test cases, especially useful for bug reporting systems.

All modules in this TMS solution are divided in two groups:

static and dynamic modules. Static modules are always active

modules, unlike dynamic modules that are activated only when

some company needs them. From the modules we mentioned

above SMM is a static module and the other three are dynamic

modules.

This system integrates a very important Broker module in

order to communicate with different company specific modules

and acts as a role of system service orchestrator. Fig. 1 [24]

presents three agents that are a part of the Broker module.

Let us explain shortly how this system organisation works.

As we mentioned before SMM is the main module of the

system and it is always active to provide features for ”pay-

by-use” cloud concept, including authentication, authorisation,

accounting with management of the company, its’ contracts

and subscriptions etc. This module is realised by two agents:

• Admin agent, which provides the accounting features for

the company.

• Infrastructure agent, which instantiates and closes vari-

ous instances, providing the optimal resource utilisation

and reducing the overall cost for renting the hardware

resources.

The dynamic modules of this system have the opportunity

to be hosted on the same machine or on different virtual

machines, which is essential for our testing of the elasticity,

because we want to analyse and compare the performances

obtained in a single-VM and multi-VM environments.

754 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

SMM

Static VM

Admin

Agent

Infrastructure

Agent

Company specific modules

Dynamic VMs

VM Instance 2

VM Instance 1

Company

Agent

CFM

CMM

AFM

Company

data

Resource

provision

AM PM RE CUCM

Fig. 1: Architecture of benchmark TMS SaaS solution

Each dynamic VM hosts two core software modules: the

CMM and CFM modules, independently for each company.

Additionally dynamic part of the AFM module is hosted on

each dynamic VM.

The Company agent is hosted on the same VM, to enable a

communication with SMM and data synchronisation between

the SMM and VM.

B. Testing environment

The testing environment consists of VMs and Windows

Azure Cloud [4]. Windows Azure provides on-demand in-

frastructure that scales and adapts to the user ever changing

business needs. With Windows Azure, the user can spin up

new Windows Server and Linux VMs relatively fast and

customise the environment. To create fast robust deployment,

Windows Azure allows using custom images or building on

the pre-configured images.

To realise the experiments we have created architecture for

four different scenarios that use one Database and Testing VM

(DTVM) and a set of transactional VMs (TVMs). All of them

are deployed on Windows Azure as presented on Fig. 2.

The testing machine is used to run the tests for all experi-

ments. The DTVM consists of AMD Opteron 4171 HE 2.10

GHz CPU with 8 cores and 14GB RAM. It hosts the SQL

database for all scenarios. Windows Server 2012 Datacenter is

running on the DTVM. The installed testing tools are selected

from the Visual Studio 2012. The experiment results are

measured with the Web Performance and Load Test Project,

as a powerful tool for this kind of research.

The main function of the DTVM is to run all the tests

for predefined scenarios. The first scenario is predefined as

a single-VM, while the rest of them concern the multi-VM

SCENARIO 1

SCENARIO 2

SCENARIO 4

SCENARIO 3

TVMTVM

TVM 1TVM 1 TVM 2TVM 2

TVM 6TVM 6 TVM 7TVM 7 TVM 8TVM 8

TVM 1TVM 1 TVM 2TVM 2 TVM 3TVM 3 TVM 4TVM 4

DTVMDTVM

TVM 5TVM 5TVM 4TVM 4TVM 3TVM 3TVM 2TVM 2TVM 1TVM 1

Fig. 2: Architecture of testing environment and scenarios.

TABLE I: Test case specification

Scenario VM Type Cores RAM Resources

All DTVM 8 14 GB 8 Cores 14 GB
Scenario 1 1 TVM 8 14 GB 8 Cores 14 GB
Scenario 2 2 TVMs 4 7 GB 8 Cores 14 GB
Scenario 3 4 TVMs 2 3.5 GB 8 Cores 14 GB
Scenario 4 8 TVMs 1 1.75 GB 8 Cores 14 GB

approach. The TVMs are configured to have equal cost in each

scenario using resources on a machine with AMD Opteron

4171 HE 2.10 GHz CPU with 8 cores and 14GB RAM.

Therefore, the first scenario is defined by one TVM that uses

8 CPU cores and has 14 GB of RAM. Two TVMs are used

in the second scenario, each of them with 4 CPU cores and

7 GB of RAM. The third scenario uses 4 TVMs with 2 CPU

cores and 3.5 GB of RAM, while the fourth scenario 8 TVMs

with 1 CPU core and 1.75 GB of RAM.

All scenarios use VMs with same type of CPU and RAM.

Windows Server 2012 Datacenter is preinstalled on TVMs

including IIS and Application roles. Detailed features of the

DTVM and TVMs in all scenarios are shown in Table I.

Experiments are tested by simulating two types of net-

work: Cable DSL 1.5Mbps and Cable DSL 768Mbps. All

experiments are realised with the use of a web browsers. To

enable platform independence we have tested the experiments

by equally using all of the following web browsers: Internet

Explorer versions 9 and 10, Firefox, Chrome and Safari.

C. Web Service Description

TMS [25] is a cloud solution realised as a transactional

web based software, where a user can access a dynamically

created web page, browse the site, list page details and update

a selected information, as most of typical web solutions.

The objective of this research is to find the best architecture

when analysing the performance for the same price of rented

resources. Our hypothesis is based on an assumption that

multi-VM approach would be better and the best performance

will be obtained renting the largest number of small VMs

PANO GUSHEV, SASKO RISTOV, MARJAN GUSEV: PERFORMANCE ANALYSIS OF SAAS TICKET MANAGEMENT SYSTEMS 755

for different companies. Note that the database is deployed

on a separate VM in all experiments and the testing mostly

relates to selecting a proper configuration for a web server that

realises functions of web browsing and database update.

We define two test cases to analyse the performance. The

first test case is based only on a web service providing a

functionality of browsing through the application and the

second uses update functionality with data store in database.

In the first test case, the user logs into the system, opens

a page with presented tickets and selects a ticket to display

relevant information. The user can browse the site and list the

content of a given page. In the second test case, despite the

previous steps realised for browsing and listing the required

information, the user responds on the information by entering

an additional information and changing the ticket status. It

finishes with database update.

These web services are hosted by all VMs defined by each

scenario. Note that the DTVM does not deploy these web

services, but hosts the testing tools and the database required

by the web services. The 4 scenarios realise both the single-

VM and multi-VM approaches using the same amount of

available resources. Hosting the web service and database on

separate VMs may reduce the overall performance, because

of communication needed between the VMs. But in case of

large user loads all requests for a web service and interaction

with the database will be distributed between VMs. Database

operations are more expensive than the communication in

Windows Azure, where all VMs are connected in virtual

network with stable network connection between them.

D. Testing procedure

Visual Studio 2012 Web Performance and Load Test Project

is a tool that offers many testing options. We decided to use

the test ”Tests based of the number of virtual users” for the

purpose of this research providing relevant information about

throughput and achieved speed.

We choose Visual studio because this tool provides a lot of

possibilities for parametrisation. With Visual Studio 2012 we

can choose different types of tests, depending of the number

of the users or number of tests. Also we can choose the type

of networks, type of browsers that we use for testing. Tests

can be executed on different ways depending of number of

tests or time span. A very important issue is that the results

from tests are specified with sufficient details.

Visual studio 2013 provides a new option to run tests in

Windows Azure without new configuration. Administrators do

not have to deploy any VM or to configure different services.

Through Load Test Web Service, Visual Studio 2013 loads the

tests on the cloud. Behind this service is a pool of test agents

that is used to run the tests. All results from a test, along with

other performance counters are available.

Four experiments are defined, each for a test case defined

by a corresponding scenario:

• Experiment 1 - a single-VM with a DTVM and 1 TVM

• Experiment 2 - a multi-VM with a DTVM and 2 TVMs

• Experiment 3 - a multi-VM with a DTVM and 4 TVMs

Fig. 3: Test plan for each experiment

• Experiment 4 - a multi-VM with a DTVM and 8 TVMs

All experiments use two VMs with 8 cores and 14GB RAM

each. The first experiment simulates a single-VM environment,

while the remaining a multi-VM environment with different

configuration of TVMs enabled by renting the same cloud

resources. Experiments perform different tests based on dif-

ferent loads defined by a various number of virtual users of

the system per test.

The selected test runs every test for 3 minutes and 40

seconds. Certain number of users is defined per each testing

interval to simulate increased load, as shown in Fig. 3. Our

workload generation for multi-tier web application in the cloud

is similar to other similar approaches [26]. The initial load

configuration starts from 100 concurrent users and this is

increased by a step of 100 users every 20 seconds, ending

with a maximum of 1100 users.

All test case scenarios are executed for each experiment.

To ensure good results, the tests started only after a 2 minutes

warm up period of Visual Studio.

E. Test data

The selected testing tool measures and calculates a lot of

parameters. For the purpose of our research, the following five

different parameters are analyzed:

• Tr - Average response time,

• P - Pages per second,

• Tp - Average page time,

• R - Requests per second, and

• CPUU - CPU utilisation.

The values of each of these criteria are based on the selected

load defined by the number of users.

The performance factors for measured times are calculated

as reciprocal value and indicated as throughput and speed, by

the following measures:

• T - Overall throughput calculated as T = 1/Tr,

• S - CPU speed calculated as S = 1/CPUU .

Each experiment (for a different scenario) results with

different performance factors. Let i, j ∈ {1, 2, 3, 4} identify

756 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 4: Average response time as a function of user load

two experiments. Their relative index as presented in (1) gives

the relative comparison value for performance factor F , which

stands instead of T , P , R, or S, corresponding to overall

throughput, page throughput, request throughput and achieved

processor speed. The higher the relative performance factor is,

the better performance.

Fij =
Fi − Fj

Fj

(1)

In addition, when compared to Experiment 1 we obtain

relative performance increase of multi-VM vs single-VM

approach for the same number of users.

IV. EXPERIMENTS AND RESULTS

This section presents the results achieved for each per-

formance criteria: average response time, pages per second,

average page time, handled requests per second and CPU

utilisation. Parameters are analysed as a function of user load.

The brown line in each graph presents the results for

scenario 1, the blue line scenario 2, the orange line scenario

3 and the grey line scenario 4.

A. Average Response Time Tr

Response Time refers to the average time that is necessary

to receive the entire response to a request, starting from

the moment when a request is sent to the web server. The

difference between the Response Time and Transaction Time

is in think time that occurs during a transaction. Transaction

Time includes think time, but Response Time does not [27].

Fig. 4 presents the average response time results for all ex-

periments. The average response time proportionally depends

on the load increase defined by the number of concurrent users.

Two different regions are observed with different behaviors. In

the left region (N ≤ 500) all four scenarios provide similar

average response times. However, Scenario 1 is the worst,

while Scenario 2 is slightly better than others for all test cases

in the region. Scenario 1 also provides the worst performance

in the right region (N > 500), but now Scenario 4 has the

smallest average response time. All curves in the left region

Fig. 5: Pages per second as a function of user load

have a trend for linear increment until the value 1.5s, which

saturates in the right region in the range of [1.5s, 3s].

B. Average pages per second P

Average pages per second refers to the number of pages

that are sent per second during the load test run [27]. Fig. 5

displays the results for the performance factor P defined by

achieved average pages per second.

Single-VM (Scenario 1) also shows the lowest performance

for this parameter for each user load. Multi-VM scenarios

provide similar performance for smaller load (N ≤ 500), but

the results are similar as the previous parameter for greater

load. That is, using greater number of smaller TVMs is better

than having smaller number of greater TVMs.

All curves in the left region also have a trend for linear

increment starting from 40 to 110, which saturates in the right

region in the range of [100, 150].

C. Average page time Tp

Average page time refers to the average response time for all

requests for a single web page [27]. The results of the average

page time are shown in Fig. 6. Also in this case, the results

show that the multi-VM approaches perform better than the

single-VM scenario. Scenario 4 performs the best for a large

number of concurrent users higher than 700, while Scenario

2 for smaller loads.

The curves follow the similar trend as the previous two

parameters, in the regions divided with N = 500 concurrent

requests. The average page time increases starting from 0.5 to

2.5s and saturates in the range [2.0s, 3.5s] for all scenarios.

D. Handled requests per second R

Requests per second consist of details for individual re-

quests that are sent during a load test. This includes all HTTP

and dependent requests such as images. Request per second

refers to the rate per second of a request during the load test

run [27].

Results for the overall handled requests per second are

presented in Fig. 7. The obtained behavior and performance

PANO GUSHEV, SASKO RISTOV, MARJAN GUSEV: PERFORMANCE ANALYSIS OF SAAS TICKET MANAGEMENT SYSTEMS 757

Fig. 6: Average page time as a function of user load

Fig. 7: Requests per second as a function of user load

trend is similar to the cases with previous analysed parameters.

That is, the scenarios with greater number of smaller TVMs

(scenarios 4 and 3) are better than having smaller number of

greater TVMs (scenarios 2 and 1).

We observe small discrepancy compared to other param-

eters. That is, the curves start to saturate for different user

load. Scenarios 1 and 2 increase the values for the handled

requests starting from 50 to 120, while scenarios 3 and 4

provide increase from 70 to 140.

Scenarios 3 and 4 slightly saturates for N > 300 (they

continue to increase, but with smaller intensity) in the range

[140, 210], while scenarios 1 and 2 saturate for N > 400 and

their curves are almost constant in the right region around the

range [120, 140].

E. CPU Utilization R

Processor time denotes the percentage of time that a VM

instance charges against the processor user time for individual

request issued during a load test. The theoretical maximum

Fig. 8: CPU utilization as a function of user load

for this parameter is number of processors · 100.

CPU utilisation is very important parameter for cloud ser-

vice provider because it is directly connected with cost for

power supply and cooling due to increased heating. The results

for this parameter are shown in Fig. 8. Although all scenarios

are very similar, lower CPU utilisation is noticed for the single-

VM environment, while Scenario 2 mostly utilizes the CPU.

Similar two regions are observed, which are divided with

N = 400. The curves increase in the left region until 65%, and

then the CPU utilization saturates in the range of [65%, 70%].

V. DISCUSSION

This section compares the results achieved from the four

cloud approaches and discussed relevant explanations for

analyzed behavior and performance trends.

A. Parameter correlations

This section presents the correlations between the response

time and page throughput and between the response time and

CPU utilization.

1) Response time vs page throughput: The parameters Tr,

P , Tp, and TR are correlated among each other, as shown

in figures 4, 5, 6, and 7. The results show that user loads for

N = 400 or N = 500 are borders of two different regions. The

parameters behave the same in a single region, i.e., increasing

trend in the left region (smaller load) and saturating trend in

the right region (heavy load).

2) Response time vs CPU utilization: Figures 9 and 10

present the overall throughput and CPU speed. We can con-

clude that both figures are very similar, which confirms that

both parameters are very correlated as a function of user load.

B. Scenario comparisons

In most cases, especially for increased loads, we concluded

that Scenario 4 performs the best compared to the others.

The load defined by the number of concurrent users has

noticeable impact on the results. All performance factors lead

758 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 9: Overall throughput T as a function of user load

Fig. 10: Achieved CPU speed S as a function of user load

to a conclusion that our hypothesis is proved for increased

loads higher than 400 users.

Figures 11, 12 and 13 present the relative values of parame-

ters for the three multi-VM scenarios compared to the single-

VM scenario. They confirm the previous conclusions that the

scenarios with greater number of smaller VMs is better than

smaller number of bigger VMs as TVM.

VI. CONCLUSION

Performance is critical when choosing appropriate config-

uration for rented cloud resources. Cloud providers offer a

variety of options, so the users get confused when selecting the

optimal configuration. This research brings conclusion about

a typical behavior in transactional web solutions for expected

small and medium number of concurrent users. The ticket

management solution is a transactional-based dynamic web

site where a lot of information fluctuates among users, and

information update is a frequent task. It uses a lot of users

which access a dynamic web site.

Fig. 11: Relative throughput T12, T13 and T14.

Fig. 12: Relative pages per second R12, R13 and R14.

Fig. 13: Relative page time between multi- and single-VM

PANO GUSHEV, SASKO RISTOV, MARJAN GUSEV: PERFORMANCE ANALYSIS OF SAAS TICKET MANAGEMENT SYSTEMS 759

The presented architecture for the cloud solution is based

on separating the database layer form the business logic and

presentation layers on different VMs. This solution uses a

database allocated to a single and powerful VM, and distribut-

ing the transactional business logic and presentation layer to

a set of other VMs. An intended user may choose whether to

host a new powerful VM or to distribute the load to more less

powerful VMs using the same cloud resources.
We have performed load testing with increasing number of

users, testing the performance of 4 different configurations

that use the same rented resources. We were motivated by

the challenge to find the most optimal configuration that

performs the best. This research proves our hypothesis that

using a higher number of small VMs performs better than other

configurations, confirming the traditional distributed concept

to distribute tasks on more balanced processing units.
This result suggests an architecture for cloud based so-

lutions that performs the best for transactional web sites,

which do not perform complex computations and are mainly

based on page browsing and database update operations. The

recommendation is to separate the database layer from other

layers, allocating the database layer to a powerful VM and

distributing the business logic and presentation layers to more

less powerful VMs.

REFERENCES

[1] A. Murua, I. Gonzalez, and E. Gomez-Martinez, “Cloud-based assistive
technology services,” in Computer Science and Information Systems

(FedCSIS), 2011 Federated Conference on, Sept 2011, pp. 985–989.
[2] L. Toomey. 5 cloud computing statistics you may find surprising.

Cloudspectator. [Online]. Available: http://cloudcomputingtopics.com/
2011/11/5-cloud-computing-statistics-you-may-find-surprising/

[3] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is the weather
tomorrow?: Towards a benchmark for the cloud,” in Proceedings of

the Second International Workshop on Testing Database Systems, ser.
DBTest ’09. ACM, 2009. doi: 10.1145/1594156.1594168 pp. 9:1–9:6.
[Online]. Available: http://doi.acm.org/10.1145/1594156.1594168

[4] Microsoft. Windows azure. Microsoft. [Online]. Available: http:
//www.windowsazure.com

[5] Google, “Compute Engine,” 2013. [Online]. Available: http://cloud.
google.com/pricing/

[6] Amazon, “EC2,” 2013. [Online]. Available: http://aws.amazon.com/ec2/
[7] M. Gusev and S. Ristov, “The optimal resource allocation among virtual

machines in cloud computing,” in Proceedings of The 3rd International

Conference on Cloud Computing, GRIDs, and Virtualization (CLOUD

COMPUTING 2012), 2012, pp. 36–42.
[8] M. Gusev, S. Ristov, G. Velkoski, and M. Simjanoska, “Optimal resource

allocation to host web services in cloud,” in Proceedings of the 2013

IEEE Sixth International Conference on Cloud Computing, ser. CLOUD
’13, USA, June 2013. doi: 10.1109/CLOUD.2013.103 pp. 948–949.
[Online]. Available: http://dx.doi.org/10.1109/CLOUD.2013.103

[9] W. Wang, X. Huang, X. Qin, W. Zhang, J. Wei, and
H. Zhong, “Application-level cpu consumption estimation: Towards
performance isolation of multi-tenancy web applications,” in Cloud

Computing (CLOUD), 2012 IEEE 5th Int. Conf. on, 2012.
doi: 10.1109/CLOUD.2012.81 pp. 439–446. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6253536

[10] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An
Analysis of Performance Interference Effects in Virtual Environments,”
in Performance Analysis of Systems Software, 2007. ISPASS 2007. IEEE

International Symposium on, april 2007, pp. 200 –209.
[11] D. Jayasinghe, S. Malkowski, Q. Wang, J. Li, P. Xiong, and C. Pu,

“Variations in performance and scalability when migrating n-tier
applications to different clouds,” in Cloud Computing (CLOUD),

2011 IEEE Int. Conf. on, 2011. doi: 10.1109/CLOUD.2011.43 pp.

73–80. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=6008695&isnumber=6008659

[12] R. Iakymchuk, J. Napper, and P. Bientinesi, “Improving high-
performance computations on clouds through resource underutilization,”
in Proceedings of the 2011 ACM Symposium on Applied Computing, ser.
SAC ’11. ACM, 2011. doi: 10.1145/1982185.1982217 pp. 119–126.
[Online]. Available: http://doi.acm.org/10.1145/1982185.1982217

[13] E. Roloff, F. Birck, M. Diener, A. Carissimi, and P. Navaux, “Evaluating
high performance computing on the windows azure platform,” in Cloud

Computing (CLOUD), 2012 IEEE 5th International Conference on,
June 2012. doi: 10.1109/CLOUD.2012.47. ISSN 2159-6182 pp. 803–
810. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=6253582&isnumber=6253471

[14] V. Subramanian, H. Ma, L. Wang, E.-J. Lee, and P. Chen, “Rapid 3D
Seismic Source Inversion Using Windows Azure and Amazon EC2,” in
Proceedings of IEEE, ser. SERVICES ’11, 2011, pp. 602–606.

[15] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey,
“Early observations on the performance of windows azure,” in
Proceedings of the 19th ACM International Symposium on High

Performance Distributed Computing, ser. HPDC ’10. ACM, 2010.
doi: 10.1145/1851476.1851532. ISBN 978-1-60558-942-8 pp. 367–376.
[Online]. Available: http://doi.acm.org/10.1145/1851476.1851532

[16] R. Tudoran, A. Costan, G. Antoniu, and L. Bougé, “A performance
evaluation of Azure and Nimbus clouds for scientific applications,” in
Proc. of the 2nd Int. Workshop on Cloud Computing Platforms, ser.
CloudCP ’12. ACM, 2012. doi: 10.1145/2168697.2168701 pp. 4:1–4:6.
[Online]. Available: http://doi.acm.org/10.1145/2168697.2168701

[17] A. Turner, A. Fox, J. Payne, and H. Kim, “C-mart:
Benchmarking the cloud,” Parallel and Distributed Systems, IEEE

Transactions on, vol. 24, no. 6, pp. 1256–1266, June 2013. doi:
10.1109/TPDS.2012.335. [Online]. Available: http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=6381404&isnumber=6507529

[18] “Rubis,” 2014. [Online]. Available: http://rubis.ow2.org/
[19] E. Cecchet, V. Udayabhanu, T. Wood, and P. Shenoy, “Benchlab:

An open testbed for realistic benchmarking of web applications,” in
Proc. of the 2Nd USENIX Conf. on Web Application Development,
ser. WebApps’11, 2011, pp. 4–4. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2002168.2002172

[20] B. Pugh and J. Spacco, “Rubis revisited: Why j2ee benchmarking is
hard,” in Companion to the 19th Annual ACM SIGPLAN Conf. on

Object-oriented Programming Systems, Languages, and Applications

(OOPSLA ’04). ACM, 2004. doi: 10.1145/1028664.1028751 pp. 204–
205. [Online]. Available: http://doi.acm.org/10.1145/1028664.1028751

[21] “Tpc benchmarkw(web commerce) specification,” 2002. [Online].
Available: http://www.tpc.org/tpcw/spec/tpcw v1.8.pdf

[22] Q. Wang, Y. Kanemasa, J. Li, D. Jayasinghe, T. Shimizu,
M. Matsubara, M. Kawaba, and C. Pu, “Detecting transient
bottlenecks in n-tier applications through fine-grained analysis,”
in Distributed Computing Systems (ICDCS), 2013 IEEE 33rd

International Conference on, July 2013. doi: 10.1109/ICDCS.2013.17
pp. 31–40. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=6681573&isnumber=6681559

[23] X. Chen, H. Chen, Q. Zheng, W. Wang, and G. Liu, “Characterizing
web application performance for maximizing service providers’ profits
in clouds,” in Cloud and Service Computing (CSC), 2011 International

Conference on, Dec 2011, pp. 191–198.
[24] M. Gusev, S. Ristov, and P. Gushev, “Developing a ticket management

saas solution,” in MIPRO, 2014 Proceedings of the 37th International

Convention, IEEE Conference Publications, Croatia, 2014, pp. 328–333.
[25] P. Gushev, A. Guseva, S. Ristov, and M. Gusev, “Cloud solutions for

bug reporting,” in XLVIII Int. Scientific Conf. on Information, Comm.

and Energy Systems and Technologies, 2013, pp. 227–230.
[26] W. Iqbal, M. Dailey, and D. Carrera, “Sla-driven dynamic resource

management for multi-tier web applications in a cloud,” in Cluster,

Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM

International Conference on, May 2010. doi: 10.1109/CCGRID.2010.59
pp. 832–837. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=5493374&isnumber=5493340

[27] Microsoft. Analyzing load test results and errors in
the tables view of the load test analyzer. Microsoft.
[Online]. Available: http://msdn.microsoft.com/en-us/library/ms404656.
aspx#analyzingloadtestresultserrorstablesviewtherequeststable

760 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

