
Int. J. of Web and Grid Services, Vol. x, No. x, xxxx 1

Service Selection Based on a Practical Interface
Assessment Scheme

Abstract Service-Oriented Computing promotes building applications by
consuming reusable services. However, facing the selection of adequate ser-
vices for a specific application still is a major challenge. Even with a reduced
set of candidate services, the effort on assessing candidates could be over-
whelming. We have defined an approach to assist developers inthe selection
of services, which mainly comprises an assessment process for service In-
terface Compatibility. This assessment process is based on a comprehensive
structural scheme for services’ interfaces matching. The scheme allows de-
velopers to gain knowledge on likely services’ interactions and their required
adaptations to achieve a successful integration. We evaluated the performance
of the Interface Compatibilityanalysis with a data-set of 453 services and
two different service discovery registries. The experiments shown an improve-
ment of up to 17% in precision and up to 8% in the DCG usefulnessmetric,
with regard to the previous results obtained using only textual (syntactical)
queries.

Keywords: Service oriented Computing, Web Services, Interface Compatibil-
ity, Web Service Discovery, Web Service Selection

1 Introduction

Service-Oriented Computing (SOC) is a paradigm that promotes the development of
rapid, low-cost, interoperable, evolvable, and massivelydistributed applications through
a network of services, which can create dynamic business processes that span organiza-
tions and computing platforms (Papazoglou et al., 2008). SOC lets developers dynami-
cally grow application portfolios rapidly by creating compound solutions using organiza-
tional software assets – including enterprise informationand legacy systems (Rodriguez
et al., 2013b) – and combining them with external componentsresiding in remote net-
works. From a business perspective, aservice-oriented applicationimplies a business
facing solution which consumes services from one or more providers and integrates
them into the business process (Sprott and L., 2004). From anarchitectural perspective,
it can be viewed as a component-based application that is created by assembling both
internal and externalcomponents, where the latter are statically or dynamicallybound
to services.

Mostly, the software industry has adopted the SOC paradigm by using Web Service
technologies. A Web Service is a program with a well-definedinterface(contract) and
an id (URI), which can be located, published and invoked through standard Web proto-
cols (Papazoglou et al., 2008). The Web Service contract (mostly specified in WSDL)
exposes public capabilities as operations without any tiesto proprietary communication
frameworks. The terms “Web Service” and “service” will be used interchangeably in
this paper.

However, a broadly use of the SOC paradigm requires efficientapproaches to allow
service consumption from within applications (McCool, 2005). Currently, developers are
required to manually search for candidate services mainly exploring web catalogs usu-
ally showing poorly relevant information. This implies a large effort into discovering
services and analyzing the suitability of retrieved candidates. Even with a reduced set
of services, the required assessment effort could be overwhelming. Exploration on can-
didate services includes envisioning the required adaptations for a correct integration

Copyright © 2013 Inderscience Enterprises Ltd.

of

2

and safe consumption of services. Without properly extracting meaningful information,
selecting the most suitable candidate service resembles tofortune-telling.

In order to ease the development of service-oriented applications we have defined
an approach to assist developers in theselectionof services. This proposal is based on
a recent approach (Flores and Polo, 2012), that was initially developed to select the
most suitable off-the-shelf (OTS) software components as asolution for substitutability
of component-based systems. Since Web Services involve a special case of software
component (Kung-Kiu and Zheng, 2007), we were able to apply adjustments to such
component selection to define an approach for serviceselection.

Particularly, this paper is focused in an assessment process for serviceInterface
Compatibility, which mainly supports the selection method. This process has been de-
fined to identify different structural aspects concerning the interfaces of candidate ser-
vices. Through a comprehensive Assessment Scheme, interfaces are evaluated accord-
ing to requirements of internal components from a service-oriented application. The
matchmaking process is characterized through a series of structural compatibility cases.
This conveys not only the usual programming standards (e.g., operation names and
parameters), but also differentiating strong and potential similarity cases. Our previ-
ous work (Flores and Polo, 2012) had a reduced underlying model to cover just few
matching cases, what made it unable to outline a likely solution for mismatching cases.
Currently, the approach is implemented for the widely adopted Java platforma. In this
context, Java interfaces are automatically derived from services’ WSDL specifications
– through the Apache Axis2 frameworkb. This encourages regular Java developers to
adopt the SOC paradigm without a deep expertise in service technologies.

In this work, the Assessment Scheme has been divided into twomain parts:
automatic-strong matchings and semiautomatic-potentialmatchings. The former involves
similarity cases directly recognized from Java interfacesof candidate services. The latter
involves cases that could be solved trough a semi-automaticassistance. The whole infor-
mation package gathered from this process provides an important insight about candidate
services and their required adaptations for integration.

In addition, the process to yield such information can be seen as a white-box model
that provides an explicit view of intermediate results fromcarried out evaluations. Con-
versely, other approaches usually provide just a high-level view of the final results (e.g.,
a synthesized numeric value), without a clear view of the underlying rationale. This
avoids developers to gain knowledge about the reasons from accepting/rejecting can-
didate services, which eventually may help to improve design skills for architecting a
system that might be filled up with third-party Web Services.

To sum up, the main contributions of this paper are:

• A comprehensive Assessment Scheme for serviceInterface Compatibilityanalysis.

• A semi-automatic assistance to fix service interface incompatibilities.

• A white box model to improve design skills for architectinga service-oriented
system.

• An early view of candidate services adaptation effort for integration.

In addition, performance of theInterface Compatibilityanalysis has been validated
by running different experiment settings with a data-set of453 services. Two different

ahttp://www.java.com/
bhttp://axis.apache.org/axis2/

Service Selection Method 3

service discovery registries were populated and queried. First, using only textual (syn-
tactic) information. Then, executing theInterface Compatibilityanalysis with structural
queries. Theprecision-at-nin the first positions of the retrieved lists of candidate ser-
vices has shown an improvement of up to 17%.

The rest of the paper is organized as follows. Section 2 presents related work. Sec-
tion 3 gives details ofInterface Compatibilityanalysis, also introducing a case study to
illustrate the assessment process. Section 4 describes theexperimental evaluation of the
Interface Compatibilityanalysis. Conclusions and future work are presented afterwards.

2 Related Work

First, two surveys of service discovery approaches are introduced. Then, current ap-
proaches are presented. Finally, a summary of the related work is outlined.

The surveys in (Kokash, 2006, Crasso et al., 2011) provide a comparative analysis
of existing approaches to improve Web Services discovery. This is closely related to
service selection, since an improved discovery method performs a partial preliminary se-
lection among candidates. Particularly, Information Retrieval (IR) techniques have been
used on several approaches as an effort to increase precision of Web Service discovery
without involving any additional level of semantic markup.Although such approaches
report concrete improvements, they seem to be insufficient for automatic retrieval if they
are applied without using any complementary technique. A strategy for a semantic basis
consists of formal ontology-based methods, which yet involve a high cost making ser-
vice designers be alienated from their use in practice (Kokash, 2006). One of the main
differences is what such approaches consider/require as service descriptions. Seman-
tic approaches depend on shared ontologies and annotated resources, whereas IR-based
ones depend on textual descriptions. Although those service discovery systems strive to
solve the same problem, they may be appropriate in a particular environment but not in
others (Crasso et al., 2011).

The approach in (Stroulia and Wang, 2005) is focused in the support of program-
matic service discovery. The authors have developed a suiteof methods to assess the
similarity between two WSDL specifications based on the structure of their data types
and operations, and the semantics of their natural languagedescriptions and identifiers.
Given only a textual description of the desired service, a semantic IR method can be
used to identify and rank the most relevant WSDL specifications. If a (potentially partial)
specification of the desired service behavior is also available, this set of likely candi-
dates can be further refined by a semantic structure-matching step. The structural and
semantic similarity of the retrieved services are summarized through a similarity score.
However, this score is not intended to represent the underlying adaptation effort after
selecting certain candidate service. In our approach, the assessment process is mainly
concerned on addressing adaptation factors, which fosterssafe interaction with other
services to deliver truthful business processes.

The approach in (Wu and Wu, 2005) presents a service discovery process in which
a Web Service Conceptual Model must be built-up and registered into a UDDI-based
registry. The conceptual model consists of four categories: common properties, special
properties, interface and quality of service (QoS). Commonproperties include service
name, key, description, owner and URI. Special properties include domain knowledge.
Interfaces consists of sets of operations, described by operation names and input/output

4

parameters. QoS refers to the measurement of Web Service’s usability, reliability and
fidelity. These categories are built by parsing services’ WSDL documents when stored
into the registry. Necessarily, this approach relies on service providers that develop Web
Services in acontract-firstmanner, a method that encourages designers to first derive
a service’s WSDL document to then supply an implementation,achieving better and
highly discoverable services. However, the most used approach to build Web Services
by the industry iscode-first (Rodriguez et al., 2013b). This means that a developer
first implements a service and then generates the corresponding WSDL document by
using language-specific tools that automatically derive the interface from the service
code. Then, WSDL documents are not directly created by humans but are instead au-
tomatically derived via language-dependent tools. Consequently, the resulting WSDL
documents may manifestanti-patterns, a set of indicators of poor quality service in-
terfaces (O. Coscia et al., 2013). Our approach, instead, relies only in service contract
information that can be gathered from a WSDL specification generated either in acode-
first or in a contract-firstmanner.

In (M. Nezhad et al., 2010) authors distinguish between two types of service mis-
matches: interface-level and protocol-level. Mismatchesat the interface-level character-
ize heterogeneities related to operation definition in WSDLinterfaces. This level in-
cludes message signature (different name and/or data types), message split/merge and
missing/extra messages (M. Nezhad et al., 2007). Interfacemismatches are addressed
through a matching component implemented on top of the COMA++ toolc (Aumueller
et al., 2005). COMA++ is a matching tool that uniformly supports schemes and on-
tologies – e.g., XML Schema and OWL. Thereby, interface-level mismatches are iden-
tified primarily by assessing service’s XML schemes. As a complement, contextual in-
formation of message types (input/output) is gathered fromthe WSDL specifications.
The message-level matching implies a high overhead by raising the number of required
matchings up to the Cartesian product of number of messages in the two analyzed inter-
faces. Considering multiple candidate services (e.g., a window of 10 candidates as the
experiment in Section 4), this strategy may not be applicable in practice. In our work,
essential matching information is gathered from WSDL documents, since they usually
declare most of the service’s functionality-wise (M. Nezhad et al., 2007).

Likewise, Web Service similarity is addressed in (Tibermacine et al., 2013), as a
key solution for service interoperability, mainly to find relevant substitutes for failing
Web Services. This approach is parameterized (customized)by weighted scores and a
set of similarity metrics, which are measured by analyzing WSDL specifications. The
measurement process encompasses calculating (at the same time) lexical and seman-
tic similarity between identifiers – comprising service names, operations, input/output
messages, parameters, and documentation. To compare message structures and complex
XML schema types, authors make use of schema matching through a similarity flooding
algorithm, representing complex types as labeled orientedgraphs. As we stated earlier,
an initial comparison of complex type similarity can be performed without dealing with
the complexity of a XML schema. In our approach, the analysisof WSDL documents
allows addressing complex data types while aiming a lightweight proposal.

The work in (Ouederni, 2011) is based on formal comparisons through a generic
flooding-based technique for measuring the compatibility degree of service protocols.
A generic framework is proposed, where the interfaces compatibility degree can be au-
tomatically measured according to different compatibility notions. A formal model has

chttp://dbs.uni-leipzig.de/de/Research/coma.html

Service Selection Method 5

been defined for describing service interfaces with interaction protocols. A global and
unique compatibility degree is calculated from the detailed measures to help in rank-
ing and selecting some services from many possible candidates. This proposal seems
to be more appropriate for critical systems, such as the automotive or aerospace in-
dustries where a formal basis may become crucial. Our approach can be considered
as a programmatic-oriented model, more suitable for software developers engaged with
business-centered requirements without a high-risk factor.

The work in (Ait-Bachir, 2008) presents a similarity measure between behavioral
interfaces of Web Services by simulation. The authors differentiate among services’
structural and behavioral aspects. The former implies provided operations and messages’
schema expressed by WSDL specifications. The latter is defined by the control flow
and interdependencies of the involved operations. In conversational services, such be-
havioral interfaces can be described using BPEL, for instance. Nevertheless, Finite State
Machines is the formal model adapted in this work to describebehavioral interfaces. In
particular, such structural aspect is related to our goals.Though, the authors express that
their work does not include neither detecting nor fixing (structural) complex incompati-
bilities between compared services’ interfaces.

In (De Antonellis and Melchiori, 2003) a comparison of services’ structure based
on a semantic markup is presented. This comparison is performed through a tool named
ARTEMIS, which calculates a set of similarity coefficients and clusters the services
to evaluate their level of compatibility. In this work, the assessment is accomplished
between an abstract service and a concrete service instancefrom a certain category.
Instead, we compare a required interface against the interface of a candidate service.
Our work is structurally oriented, including an aspect which is usually neglected, related
to failed function executions represented by exceptions, as mentioned in (Crasso et al.,
2010). This aspect is even important on service protocols affecting expected execution
sequences.

Finally, there is a competing architectural style for building Web Services besides
the WS-* standards (SOAP):RESTfulservices. REST is an alternative approach to
SOC which uses basic HTTP methods (PUT, POST, GET, and DELETE) applying
their intended semantics to access a resource (Fielding, 2000). A resource is any in-
formation that could be referenced by an URI such as a document, an image, a tweet
or a weather forecastd. In (Richardson and Ruby, 2008) authors identify four system
properties of RESTful services: uniform interface, addressability, statelessness, and con-
nectedness, that are embodied in resources. On the contrary, WS-* services exhibit all
but the first property. A uniform interface shared by all services plus non-standardized
documentation make the automatic discovery of RESTful services very hard in pub-
lic repositories (Adamczyk et al., 2011). Besides, RESTfulWeb Services currently
do not use a standardized format for representing resources– e.g., XML messages.
Given their lack of formally described interfaces, they arealso cumbersome to com-
pose (Pautasso et al., 2008). In terms of architectural principles, conceptual decisions
and technological decisions, the authors in (Pautasso et al., 2008) recommend using
REST for ad-hoc integration and using WS-* for enterprise-level application integra-
tion where transactions, reliability, and message-level security are critical. Recent ef-
forts in large-scale legacy system migration to SOA have demonstrated the suitability of
WS-* technologies and standards (Rodriguez et al., 2013b).

de.g., http://www.weather.gov/forecasts/xml/rest.php

6

Summary of related work.

First, some proposals rely on semantic descriptions of services (Di Martino, 2009) that
generally are not available, since publishers must put extra effort into describing ser-
vices by means of semantic meta-data (Crasso et al., 2011). As stated in (Brogi, 2011),
a true spread of semantic services will only start when the derived advantages become
of clear interest for the market. Second, there is an evidentlack of meaningful informa-
tion in WSDL documents due to the proliferation of code-firstWeb Services (Mateos
et al., 2011) that decreases precision of service discoveryregistries. Finally, services are
usually assessed to be integrated in business processes, interacting with other services
and components. This creates the need of serviceadaptation, which is addressed mostly
at protocol level (M. Nezhad et al., 2007). However, it is also necessary to support
interface level adaptation as a non-trivial activity.

For these reasons, we propose a practical service selectionmethod, which assesses
services mainly through their WSDL specifications that are usually available. Through
gathering available structural information from code-first (or contract-first) Web Ser-
vice contracts, our approach has shown an improvement in precision w.r.t. initial results
from service discovery registries. The assessment processis mainly concerned on com-
prehensively addressing interface adaptation, achievingearly and meaningful amending
information. Thereby, this can be seen as an adaptability-oriented approach.

3 Interface Compatibility Analysis

During development of a service-oriented application, specific parts of a system may
be implemented in the form of in-house components. Besides,some of the comprising
software pieces could be fulfilled by the connection to Web Services. In this case, a list
of candidate Web Services could be obtained by making use of any service discovery
registry. Nevertheless, even with a wieldy candidates’ list, a developer must be skill-
ful enough to determine the most appropriate service for theconsumer’s application.
Therefore, a reliable and practical support is required to make those decisions. In this
approach, theInterface Compatibilityanalysis is the main assessment process to select
the most appropriate candidate service. We assume for this analysis the availability of
the documentation artifacts describing the expected software architecture (as knowledge
sources). From these documents, useful information is outlined to avoid early discard-
ing a candidate service upon simple mismatches, also preventing from a unmanageable
incompatibility. In addition, the adaptation effort of a candidate may take shape for a
successful integration into the consumer application.

This section provide details of theInterface Compatibilityanalysis. First, a case
study is presented to illustrate the comprising steps of such analysis.

3.1 Proof-of-Concept

A simple case study has been outlined as aPersonal Communication Application(PCA)
being developed under the Java platform. The main required key feature is aChat tool,
which allows creating a user and a chat session (in a synchronous way) with any instant
messaging client. This feature will be fulfilled by a third-party Web Service. Figure 1
shows a concrete structure for thePCA’s required interface (IR), namelyChatIF. By
searching on web-cataloges, a list of candidate services has been built-up, as presented

Service Selection Method 7

in Table 1. Notice that although the correspondingURI for each candidate’s WSDL
specification is shown, due to a common volatility factor of prototype Web Services
suchURIs may change or even become unavailable after some time.

Figure 1: Required Interface forPCA’s main feature

Table 1 Candidate Services forChat feature ofPCA

Required
Interface

Candidate
Service

URI Candidate
Service

URI

ChatIF
OMS www.nims.nl/soap/oms.wsdl OMS2_simple www.nims.nl/soap/oms2_simple.wsdl

OMS2 www.nims.nl/soap/oms2.wsdl OnlineMessenger† 127.0.0.1:8080/TestWebServices/
services/OnlineMessenger?wsdl

†deployed locally

In order to clearly illustrate theInterface Compatibilityanalysis, the candidate ser-
vice OMS2 is taken from Table 1, whose interface comprises a set of 38 operations
using some complex types such asMessage. The evaluation of the remaining candidate
services is presented in Section 3.5.

3.2 Assessment Scheme

The main asset of theInterface Compatibilityanalysis is a practical Assessment Scheme
that covers a comprehensive range of matching cases, from which a developer may
easily understand causes of compatibility results. The scheme has been divided into
two parts: automatic matching cases and semi-automatic potential matchings. Both parts
characterize structural similarity cases into four compatibility levels (named:exact, near-
exact, soft, near-soft). This allows comprehensively describing similarity cases repre-
senting structural constraints for pairs of operations (opR ∈ IR,opS ∈ IS), whereIR is a
required interface andIS is the interface of a candidate serviceS. Particularly, those
constraints are based on individual conditions for each element comprising operations
signature: theReturn type(R), the operation Name(N), the Parameters list(P), and the
Exceptions list(E). Table 2 summarizes the set of operation matching conditions.

Table 2 Structural Operation Matching Conditions forInterface Compatibility

Return R0: Not compatible R1: Equal return type
Type R2: Equivalent return type (subtyping, Strings

or Complex types)
R3: Not equivalent complex types or lost precision

Operation N1: Equal operation name
Name N2: Equivalent operation name (substring) N3: Operation name ignored

Parame-
ters

P0: Not compatible P1: Equal amount, type and order for parameters
P2: Equal amount and type for parameters P3: Equal amount and type at least equivalent (sub-

typing, Strings or Complex types) for some
P4: Not equivalent complex types or lost pre-
cision

parameters into the list

Exceptions
E0: Not compatible E1: Equal amount and type, and also order for ex-

ceptions
E2: Equal amount and type for exceptions E3: If non-empty original’s exception list, then non-

empty candidate’s list (no matter the type)

8

Table 3 presents the Assessment Scheme that is able to recognize 108 cases forInter-
face Compatibility, divided in two parts of 54 cases, from the combination of individual
conditions. Following is presented the first part of the scheme which can automatically
recognize direct matching cases. Then, the second part of the scheme applied for solving
mismatching cases is detailed.

Table 3 Assessment Scheme: Automatic and Semi-Automatic Matching

Level Part Constraints
� Exact

Match
Automatic
(1 case)

Two operations must have identical signatures (four identical conditions):
[R1,N1,P1,E1]. This implies an equivalence value of 4 (by adding the value
1 of each condition)

� Near-
Exact
Match

Automatic
(13 cases)

Three or two identical conditions. The remaining might be conditions
(R2/N2/P2/E2). Exceptional cases: three identical conditions with a remaining
third condition (N3/P3/E3), implying equivalence values between 5 and 6.

Example: operationlogout of ChatIF has anear-exactequivalence withOMS2_Logout
of OMS2 by three identical conditions and a substring equivalence for the operation name:
[R1,N2,P1,E1]
Semi-
Automatic
(1 case)

Three identical conditions with the return that may have a noequivalent com-
plex type or lost precision: [R3,N1,P1,E1]. This implies an equivalence value
of 6.

� Soft
Match

Automatic
(26 cases)

Similar to the previous level, but only two identical conditions. Previous ex-
ceptional cases may occur with lower equivalence conditions. This implies
equivalence values between 7 and 8.

Semi-
Automatic
(13 cases)

Two identical conditions, similar to automatic scheme. Either return or param-
eter (not both) with a nonequivalent complex type or lost precision (R3/P4).
This also implies equivalence values between 7 and 8.

Example: operation sendMessageTo of ChatIF could match operation
OMS2_PostMessage. However, the first operation includes a complex parameter
(Content) without an automatic match. This can be re-evaluated considering that the
wildcard type String might contain a concatenation of fields from the complex type-–
i.e. a soft equivalence [R1,N2,P4,E1]

� Near-
Soft
Match

Automatic
(14 cases)

There cannot be two identical conditions, i.e. all conditions can be relaxed
simultaneously. This implies equivalence values between 9and 11.

Semi-
Automatic
(40 cases)

Either two identical conditions with the condition P4 or relaxing all conditions
simultaneously. This implies equivalence values between 9and 13.

Assesment Scheme: Automatic Matching

This first part of the Assessment Scheme has been defined with aset of specific con-
straints describing highly meaningful matching cases between operations fromIR and
IS. The four compatibility levels are outlined from such constraints, by different combi-
nations of structural conditions for an operation signature – according to Table 2.

The automatic part of the Assessment Scheme comprises the strongest constraints,
to clearly identify direct matching cases. A criterion of “no-inclusion” was defined in-
volving two low compatibility conditions from Table 2:R3 andP4. These conditions are
evaluated in the first part of the scheme as incompatibilities – R0 andP0 respectively.
For R3, either the return type of operationopR is a complex type without equivalence
to the return type of operationopS, or the return type ofopS implies losing precision
w.r.t. the return type ofopR – e.g., the candidate has anint type but adouble type
is required. ForP4, either some parameter ofopR is defined through a complex type
without equivalence to any parameter intoopS, or a pair of corresponding parameters
implies losing precision. This occurs between operationssendMessageTo of ChatIf
andOms2_PostMessage, as shown in the example of Table 3.

Service Selection Method 9

Assessment Scheme: Solving Mismatches

In general, when certain mismatch cases are detected for theinterfaceIR, a developer
may outline a likely solution with the support of context information from the applica-
tion’s business domain. We have identified specific cases in which a concrete compat-
ibility can be set up by providing a semi-automatic mechanism to ease this procedure.
Thus, a given operationopR ∈ IR can be linked to a specific operationopS ∈ IS (of a
candidate Web ServiceS), with which initially there was no correspondence throughthe
automatic interface assessment.

The second part of the Assessment Scheme shown in Table 3 has been defined upon
the 4 compatibility levels as well. Theno-inclusion criterionapplied to identify incom-
patibilities during the automatic assessment process becomes now the base to recognize
potential cases to save a candidate serviceS from being early discarded. Therefore, con-
ditions R3 (return) andP4 (parameters) from Table 2, are considered for combinations
with other conditions for signature elements. This part of the Assessment Scheme is
comprised of 54 additional cases making the whole scheme able to recognize 108 cases
for Interface Compatibility.

In addition, the goal of this second part is not only to assiston solving mismatch
cases, but also to “prioritize” certain correspondences even when an automatic match
has been previously identified. In this case, a developer mayconsider that for a spe-
cific operationopR ∈ IR, there is another correspondence that better fits for the applica-
tion’s context. Such correspondence may be considered firstfor adapting candidate ser-
vice operations for integration in a service-oriented application. For example, operation
SendMessage from ChatIF could match operationOMS2_SendMessageToChat. How-
ever, a developer may outline a likely matching with operation OMS2_PostMessage

that is prioritized for adapting candidate service operations.
The set of structural conditions summarized in Table 2 are detailed in the following

section to identify equivalence on operations’ signatures.

3.3 Assessment Scheme: Structural Equivalence Conditions

Let IR be an interface of a required functionality for a client application andIS the
interface of a candidate Web ServiceS. For every pair of operations (opR,opS), where
opR ∈ IR and opS ∈ IS, a likely equivalence between those operations is based on the
structural conditions for each element of an operation’s signature presented in Table 2.

Notice that signature elements are named according to the Java terminology, rather
than using the WSDL convention for Web Service contracts. The reason is that assess-
ments are performed upon Java interfaces, previously derived from WSDL specifica-
tions. Thus, in case ofresponseand fault from a messagedefinition, termsreturn and
exceptionare used instead respectively.

Main aspects concerning the set of structural conditions are detailed below.

Data Type Equivalence – Subtyping

ConditionsR2 andP3 concern data type equivalence according to Table 2. This involves
the subsumesrelationship or subtyping (written<:), which implies adirect subtyping
(written <1) in case of built-in types in the Java language (Gosling et al., 2005), as
shown in Table 4. Thus, subtyping relations are considered for operations’ signatures
as shown in Table 5, where it is expected that types on operations from IS have at

10

least as much precision as types onIR. For example, if operationopR includes anint
type, then a corresponding operationopS cannot have a lower precision likeshort or
byte (among numerical types). There is a special case with theString type, which is
considered as a “wildcard” type since it is generally used in practice to allocate different
kinds of data. This practice is defined in (Pasley, 2006) as a risk factor in the attempt
to make Web Services’ interfaces extensible. As a negative side effect, this increases
complexity and results in ambiguous interface definitions.Since this practice is still
commonly used, in this approach theString type is considered as a supertype for all
numerical types.

Table 4 Built-in Direct
Subtyping

1st Type 2nd Type

byte <1 short

short <1 int

int <1 long

long <1 float

float <1 double

Table 5 Subtyping Equivalence for Operations

Type on opR Type on opS

char String
byte short, int, long, float, or double, or String
short int, long, float, or double, or String
int long, float, or double, or String

long float, or double, or String
float double, or String

double String

Complex Data Types

Complex data types require a special treatment in which there must be a correspondence
for each field of a complex type from an operationopR to a counterpart complex type
of an operationopS. For conditions (R2, P3), if operationopR includes a complex type
in return or parameters, there must be an equivalent counterpart complex type into op-
erationopS. This means, they must coincide on number and order of fields (one-to-one)
inside the corresponding complex data types. For conditions (R3, P4), if operationopR

includes a complex type in return or parameters, there must be an equivalent counterpart
complex type into operationopS, where the order of fields’ types is relaxed.
Example. OperationreceiveMessage of ChatIF returns a complex type (Content),
and operationOMS_ReceiveMessage of the OMS2 service also returns a complex
type (Message). Both complex types are equivalent because their fields have equiva-
lent types (R2). Therefore, operationreceiveMessage has anear-exactequivalence
with OMS_ReceiveMessage, since they coincide on parameters and exceptions with an
equivalent operation name – i.e., [R2,N2,P1,E1].

Operation Name Equivalence

ConditionN2 implies that an operationopS includes an equivalent operation name with
regard to operationopR. Name equivalence concerns identifying a substring similarity,
by considering the current naming conventions, as presented in Table 6. In general, de-
velopers combine a verb and a noun for denoting an operation name, such asgetQuote
or get_quote, from where the name can be decomposed into wordsget andquote,
and a likely string coincidence could be found.

Table 6 Rules for decomposing an Operation Name

Notation Rule Source Result

Java Beans Split when changing text case getZipCode get Zip Code
Hungarian Split when changing text case ulAccountNum ul Account Num
Special Symbols Split when either “_” or “-” occurs get_Quote get Quote

Service Selection Method 11

Analyzing Exceptions

In general, a functionality enclosed into an operation requires input and output data rep-
resented by the operation’s parameters and return respectively. However, a complete and
more adequate design of any operation’s functionality should consider exceptions (i.e.,
faults in WSDL terminology). In fact, in the context of Web Services, faults definitions
have not become a common practice. This phenomenon is definedin (Crasso et al.,
2010) as an anti-pattern for well-defined WSDL interfaces, named “Undercover fault in-
formation within standard messages”, where output messages are used to notice about a
service’s operation error. Therefore, developers should be prevented from handling such
hidden faults in an incorrect manner. Hence, by assuming software development best
practices, exceptions or faults must be analyzed accordingly.

In the Assessment Scheme, certain aspects are considered when analyzing excep-
tions. First, any operationopR ∈ IR may define a default type exception – i.e., named
“Exception” – or ad-hoc exceptions. Also, an operationopS (of a candidate serviceS),
may define afault as a message that includes a specific attribute, which acts asthe ex-
ception name. In the Assessment Scheme, for conditionsE1 andE2 each exception type
declared into operationopR must have an identical corresponding exception type into
opS. In addition, the size of both exception’s lists must coincide. For conditionE3, if
there is at least one exception type declared inopR there must be at least one exception
type (not necessarily alike) inopS.

3.4 Assessment Scheme: Compatibility Gap Value

The final outcome of theInterface Compatibilityanalysis is a matching list, where each
correspondence is characterized according to the four levels of the Assessment Scheme,
namedInterface Matchinglist. This outcome makes the whole procedure a white-box
model providing an explicit view of carried out evaluations, to understand reasons for
accepting/rejecting candidate services. For each operation opR∈ IR, a list of compatible
operations fromIS is shaped. For example, let beIR with three operationsopRi, 1≤ i ≤ 3,
and IS with five operationsopS j, 1≤ j ≤ 5. After the procedure, theInterface Matching
list might result as follows:

{ (opR1, {opS1, opS5}), (opR2, {opS2, opS4}), (opR3, {opS3}) }

An additional aspect can be highlighted from the AssessmentScheme. Each of the
four levels of compatibility aggregates different equivalence cases, which also allows
generating additional information concerning a specific numeric equivalence value for
those cases. For example, the value ofexactequivalence [R1,N1,P1,E1] is 4 as a result
from adding the value 1 of each condition. Therefore, from the Interface Matchinglist,
a totalized equivalence value could be calculated, namedCompatibility Gap(formula
1), which allows to synthesize the achieved degree ofInterface Compatibilityfor a can-
didate interfaceIS (from a serviceS) w.r.t. a required interfaceIR. Only the strongest
equivalence degree (lower value) from theInterface Matchinglist is considered for each
operation inIR.

compGap(IR, IS) =
∑N

i=1 Min(opRi,CompMap(IR, IS))

N∗4
−1 (1)

where N is the size of interfaceIR, andCompMapare the values for the compatibility cases
found for operationopRi.

12

In case that all operations in theInterface Matchinglist present anexactequivalence,
the Compatibility GapbetweenIR and IS is zero. Although this might seem a perfect
interface match, this initially only means thatIR is included intoIS, while the size of
interfaceIS may be larger, including additional operations. The success on the precision
achieved during theInterface Compatibilityanalysis is essential to reduce the subsequent
adaptation effort when integrating a candidate service into a SOC-based application.
This is the main reason for the definition of the whole Assessment Scheme, in which
different design and programming heuristics have been applied, mostly from a practical
perspective.

3.5 Results of the Case Study

This section presents the results of theInterface Compatibilityanalysis for the case
study about thePersonal Communication Application(PCA) presented in Section 3.1.

The required feature forPCA was described as a simpleChat Tool, from where the
required interfaceChatIF was built-up. A set of candidate services was also presented
in Section 3.1.

After assessing the candidate services, the best (lower) matching value per operation
is available. Thus, thecompatibility gapcan be calculated, as shown in Table 7 – except
for the OMS service marked asnot-applicable(N/A), since its interface does not contain
an operation to match thelogout operation ofChatIF. In the case ofChatIF and
theOMS2 service thecompatibility gapcan be calculated as 29/20−1= 0.45 according
to formula (1). Because the lower value is the better, the suggested candidate to fulfill
the requiredChat functionality would be theOMS2 service. The complete set of corre-
spondences betweenChatIF and theOMS2 service is shown in Table 8, with the best
(lower) associated equivalence degrees, conditions and values.

Table 7 Summary of Interface Compatibility forChatIF and candidate services

Candidate Service Total Equivalence‡ Compatibility Gap
OMS N/A N/A
OMS2 29 0.45
OMS2_Simple 36 0.8
OnlineMessenger 30 0.5
‡ Total best value: 20 (based onChatIF size)

Table 8 Final Interface Compatibility betweenChatIF and theOMS2 service

ChatIF OMS2 Degree Conditions Value
createUser OMS_CreateUser near-exact R1, N2, P1, E1 5

sendMessage OMS_PostMessage soft R1, N2, P4, E1 8

receiveMessage OMS_ReceiveMessage near-exact R2, N2, P1, E1 6

logout OMS2_Logout near-exact R1, N2, P1, E1 5

login OMS_Login near-exact R1, N2, P1, E1 5
ChatIF size: 5 Total Equivalence 29

At this point, a selected candidate service is available forthe Chat feature of the
(PCA) application. Candidate services were assessed without any knowledge from their
underlying model and logic rules, but only analyzing their provided interfaces (service
contract). After carrying out this simple case study, it is glimpsed how a developer may
gain specific and valuable knowledge about an application’scontext by the support of
the Assessment Scheme upon theInterface Compatibilityanalysis. Moreover, an exper-
imental evaluation of the process is presented in the following section.

Service Selection Method 13

4 Experimental Evaluation

To evaluate theInterface Compatibilityanalysis, we used a data-set to populate two ser-
vice registries with both relevant and irrelevant services. Relevant services were taken
from the data-set in (Mateos et al., 2011). Such services came from real-life projects im-
plementing either Web Services or servified EJBs (Enterprise Java Beans). The projects
were gathered from Google Code, Exemplar (Grechanik et al.,2010) and Merobasef.

A set of syntactic queries was automatically generated fromthe data-set and used
to query the service discovery registries. The results for certain subsets of queries were
post-processed converting the retrieved WSDL documents toJava interfaces through the
Apache Axis2 WSDL2Javag tool. Then, the queries were expanded to add structural
information by different combinations of operation’s signature elements (return types,
parameters). This allows representing each structural query as a fully-described single-
operation required interface (IR). Finally, the Interface Compatibilityanalysis was per-
formed with the Java interfaces (IS) of the candidate services and the expanded structural
queries as required interfaces (IR).

Indeed, most Web Service discovery registries consist on a catalog-style browsing
based on keywords matching. Hence, a structural-based service assessment process can
be used to identify and to rank the most relevant WSDL specifications (Stroulia and
Wang, 2005). Thereby, the goal of this experiment is to analyze whether performing
the Interface Compatibilityanalysis after querying a service discovery registry, could
increase the probability of selecting a more suitable candidate service.

4.1 Experiment configuration

Data-set Preprocessing.

The considered data-set consisted in 60 relevant services mentioned above, plus 393
noisy WSDL specifications extracted from the data-set in (Heß et al., 2004). The result-
ing data-set of 453 services was used to populate two servicediscovery registries:

• EasySOC(Rodriguez et al., 2013a) service registry, which maps queries and ser-
vices onto vectors in the Vector Space Model and uses the Query-by-example
search engine (Crasso et al., 2008).

• ApacheLuceneh registry, a well-known cross-platform text search engine based on
indexation and Information Retrieval techniques (Hatcheret al., 2004). As Lucene
has been designed for indexing any kind of textual documents, reserved words of
WSDL may introduce noise to the search engine. For this reason, we used a WSDL-
aware Lucene version (Rodriguez et al., 2010).

These service discovery registries implement distinct discovery mechanisms with
different performance, which mainly depends on the used queries and data-set. Using
two service discovery registries allows us to carry out an unbiased experiment.

Query Expansion.

An original set of 430 syntactic queries consisting only in operation names was auto-
matically generated from available service operations in the data-set. Then, some query

fhttp://merobase.com
ghttp://axis.apache.org/axis2/java/core/
hhttp://lucene.apache.org/core/

14

expansions were defined to include structural information about the return type and
parameters. After that, each expanded query can be encapsulated as a Java (required)
interface with only one operation.

Initially, three different expansions were defined to perform serviceInterface Com-
patibility analysis, as follows:

• Query Expansion 0 (QE0). A default query expansion, tryingto capture the se-
mantics of the original syntactic query which comprised only the operation name.
Queries are expanded with avoid return type, no parameters and no excep-
tions – e.g. if the syntactic query wasgetUser, applying QE0 results in:void
getUser(). This expansion is always included, as a representation of the original
queries.

• Query Expansion 1 (QE1). Awildcard query expansion, including aString
parameter and return type, and no exceptions. As pointed outin Section 3.3,
the String type is generally used in practice to allocate different kinds of
data – e.g., for the syntactic querygetUser, applying QE1 results in:String
getUser(String x1).

• Query Expansion 2 (QE2). An ad-hoc query expansion. When analyzing the WSDL
documents of the data-set, we noticed that many of them defined complex types to
encapsulate either return data or parameters. Regardless of their structure (fields),
those complex types are in general named as the operation, adding the suffix “Re-
sponse” for return types. Thereby, QE2 captures this fact adding an ad-hoc complex
type for the parameters and another ad-hoc complex type for the return – e.g., the
getUser query is expanded as:GetUserResponse getUser(GetUser x1).

Although each query expansion was instantiated in a certainway for this experiment,
the provided guidelines could lead to the definition of different instantiations. When as-
sessing another set of structural features in services’ specifications, the query expansions
could be parametrized in a distinct way.

Query Replacement.

To decide which of the 430 syntactic queries will be replaced(with structural queries),
we analyzed the results of textually querying both service discovery registries –
EasySOCandLucene– from a developer’s perspective. In this context, finding a needed
Web Service in a registry involves two steps. First, rankingWSDL specifications ac-
cording to a given syntactic query, automatically performed through the discovery step.
Then, inspecting the topn results, which is usually done by developers manually. When
relevant WSDL specifications are not retrieved at the topmost positions – e.g., among
the first three or four positions – it would be worthy to count with a mechanism that au-
tomatically rearranges (improving) service discovery results. To do this, we have defined
two differentcutoff-pointcriteria for query replacement:

• Cutoff-at-4. The syntactic queries where the relevant service appearedafter the 4th

position in the result list are replaced by expanded queries.

• Cutoff-at-5. The syntactic queries where the relevant service appearedafter the 5th

position in the result list are replaced by expanded queries.

Service Selection Method 15

Interface Compatibility Execution.

To execute theInterface Compatibilityanalysis in the context of this experiment, we
defined two query expansion schemes, by combining the query expansions (QE0, QE1,
QE2). On one side, QE0 + QE1, including the default query expansion and thewildcard
one, aiming generality. On the other side, QE0 + QE2, including the default query
expansion and thead-hocone, aiming specialization.

Then, two experimentalScenarioswere defined bringing together the service reg-
istries, query expansions schemes and query replacement cutoff points. In Scenario 1
services were published in theEasySOCregistry. Considering the criteria defined above,
the experiment configuration implies the execution ofInterface Compatibilityusing
QE0+QE1 and QE0+QE2 expansion schemes withcutoff-at-4andcutoff-at-5.

For Scenario 2services were indexed in theLuceneregistry and the experiment
configuration implies the execution ofInterface Compatibilityusing QE0+QE1 and
QE0+QE2 expansion schemes with acutoff-at-5criterion. For this scenario, we have
decided to only apply thecutoff-at-5criterion. This is based on preliminary experiments,
the Scenario 1 results, and the Lucene results using the original syntactic queries.Cutoff-
at-4 would not bring substantial improvements in Scenario 2 – i.e., rearranging relevant
services to better positions in candidate lists.

In both scenarios, an initial ranked list of the first 10 retrieved candidate services per
syntactic query were considered. When the relevant servicedoes not appear in the first
10 results, the window is extended until that service is found, so its Java interface can
be generated. Then, theInterface Compatibilityanalysis is performed when the relevant
service is not retrieved at the list’s topmost positions.
Example. Let be the syntactic querygetUser with relevant serviceAccounting
Service. The retrieved candidate list (ordered by position) beforeexecutingInterface
Compatibility could be:

{(1,VomsAdminService), (2,VomsTrustedAdminService), (3,Service6.Accounts),

(4,Service7.Accounts), (5,AccountService),...}

As can be seen, the relevant service was retrieved in the fifthposition. This is be-
cause the first four services also provide an operation namedgetUser, from a syntac-
tical standpoint. Services in position 1 and 2 are from the data-set of real-life services
and the following two are noisy services.

Through theInterface Compatibilityanalysis this list is rearranged considering struc-
tural information both from the expanded query and the services in the list. Thus, the
relevant service is arranged in the first positions of the list – e.g., among the first three
or four positions. In this case, the rearranged list could be:

{(1,AccountService), (2,VomsAdminService), (3,VomsTrustedAdminService),

(4,Service6.Accounts), (5,Service7.Accounts),...}

Thus, the goal of this experiment is to show how theInterface Compatibilityanalysis
could increase the visibility of a more suitable candidate service to be selected.

4.2 Results

For the two experimental scenarios, we queried the corresponding registry with the syn-
tactic queries. Then, obtained results were post-processed by executing theInterface
Compatibility analysis (with different query expansion schemes and cutoff-points). Fi-
nally, we compared both results according to three well-known IR metrics:

16

• Precision-at-n. Indicates in which position are retrieved the relevant services, at
different cut-off points. For example, if the top 5 documents are all relevant to a
query and the next 5 are all non-relevant, precision-at-5 is100%, while precision-
at-10 is 50%. In this case, precision-at-n has been calculated for each query withn
in [1-10]. This window size was decided considering the balance between number
of candidates, relevant services per syntactic query and manageability of results list.

• Recall. Formally, Recall is defined as:

Recall=
Relevant
Retrieved

(2)

In particular, for this experiment the numerator of the Recall formula could be
0 or 1 – i.e., when the relevant service is included within theresults – and the
denominator (Retrieved) is always 10.

• DCG. The DCG is a measure for ranking quality and measures the usefulness
(gain) of an item based on its relevance and position in the provided list. The higher
the DCG, the better ranked list. Formally, DCG is defined as:

DCG=
p

∑
i=2

reli
log2i

(3)

where p is the size of the candidate list, andreli indicates if the candidate
retrieved in theith position of the list was relevant.

The DCG values for all queries can be averaged to obtain a measure of the average
performance of a ranking algorithm, named Normalized DCG (NDCG).

Those metrics have been broadly used in the context of Web Service discovery and
selection (F. Diaz et al., 2006, Rodriguez et al., 2010). Services containing the needed
operation (one per query) were arbitrarily selected and associated to the query as the
relevant one in order to evaluate the results. Finally, an average of each metric was
generated over the total number of queries.

Scenario 1: EasySOC service registry.

In Scenario 1, the EasySOC registry was populated with the data-set and then queried
with the 430 original syntactic queries. Figure 2 depicts the cumulative average
Precision-at-n values corresponding to the original results, and theInterface Compatibil-
ity post-processed results. Figure 2a represents precision values where syntactic queries
are replaced with thecutoff-at-4criterion, expanding 26% of the original queries. Fig-
ure 2b represents precision values where syntactic queriesare replaced with thecutoff-
at-5 criterion, expanding 17% of the original queries. Results show that, in general, ap-
plying the Interface Compatibilityanalysis improves the Precision-at-n between 7% and
14% for the first positions (when n=[1-4]). Although precision tends to converge whenn
approaches to 10, the improvements in the first positions aresignificant since users tend
to select higher ranked search results, regardless of theiractual relevance (Agichtein
et al., 2006). Moreover, withcutoff-at-5 – i.e., replacing and expanding 17% of the
syntactic queries – results are as good as withcutoff-at-4. This implies that executingIn-
terface Compatibilityanalysis over less query results still brings improvementsin terms
of precision.

Service Selection Method 17

(a) With cutoff-at-4 (b) With cutoff-at-5

Figure 2: Averaged Precision-at-n results for Scenario 1 (EasySOC)

Table 9 summarizes the results for Precision-at-n (with n=[1-4]), recall and normal-
ized DCG in the first scenario, with eithercutoff-at-4or cutoff-at-5 for replacing and
expanding queries. Table 9 suggests that performing theInterface Compatibilityanaly-
sis only for queries where relevant services were beyond position 5 in the results list
slightly improves both NDCG (between 6% and 8%) and recall (about 4%), besides the
above discussed enhancements in precision results.

Table 9 Precision, Recall and NDCG in Scenario 1 – EasySOC

Original
Results

Cutoff-at-4 (26% of original
queries expanded)

Cutoff-at-5 (17% of original
queries expanded)

Syntactic QE0+QE1 QE0+QE2 QE0+QE1 QE0+QE2

Precision-at-1 0.27 0.34 0.36 0.31 0.33
Precision-at-2 0.63 0.75 0.77 0.72 0.74
Precision-at-3 0.74 0.85 0.88 0.83 0.85
Precision-at-4 0.82 0.89 0.89 0.91 0.93

Recall 0.91 0.91 0.91 0.95 0.95
NDCG 0.78 0.84 0.85 0.84 0.86

Scenario 2: Lucene service registry.

In Scenario 2, the Lucene registry was populated with the data-set and then queried with
the 430 original queries. Then, the post-processing steps defined in Section 4.1 were
performed settling the corresponding cutoff point and query replacement schemes for
the Interface Compatibilityexecution. In this case,cutoff-at-5implies replacing 12% of
the original queries. The chart in Table 10 depicts the cumulative average Precision-at-n
values for the original andInterface Compatibilitypost-processed results.

Additionally, Table 10 summarizes the Precision-at-n (with n=[1-4]), recall and nor-
malized DCG values in Scenario 2. As in the previous scenario, the Interface Compat-
ibility analysis increased Precision, ranging between 5% and 8% when n=[1-4]. It is
worth noticing that the cumulative precision-at-3 when applying Interface Compatibility
exceeded 90% – i.e., for 9 out of 10 queries, the relevant service was among the three
first results. Also, recall and NDCG slightly improved, about 4% and 6% respectively.

These results show thatInterface Compatibilityanalysis outperformed original val-
ues for precision, recall and NDCG independently of the underlying service discovery
registry that constructed the candidate services lists.

In addition

18

Table 10 Precision, Recall and NDCG in Scenario 2 – Lucene

Original
Results

Cutoff-at-5 (12% of ori-
ginal queries expanded)

Syntactic QE0+QE1 QE0+QE2

Precision-at-1 0.39 0.44 0.46
Precision-at-2 0.75 0.82 0.82
Precision-at-3 0.83 0.91 0.91
Precision-at-4 0.88 0.96 0.96
Recall 0.92 0.96 0.96
NDCG 0.84 0.9 0.9

Concluding Remarks.

A final note about execution time of the experiment. Costs of the Interface Compatibility
in terms of computation time were measured and averaged through several runs. Query
expansion step took an average of 125 milliseconds, performing two expansions (QE0
plus QE1 or QE2) per time. TheInterface Compatibilityanalysis (average) execution
time was 6.65 minutes with a standard deviation of 1.6 minutes. This values depended
on the number of replaced and expanded queries. For instance, one of the more intensive
experiments was Scenario 1 withcutoff-at-5and query expansions QE0 + QE2. Total
queries raised to 484 after replacing, expanding and eliminating duplicated queries, and
the execution time was about 9.3 minutes. In this case, such time represents an average
of 1.15 seconds per query.

Conclusively, the experiments show that executing theInterface Compatibilityanal-
ysis over previously discovered services (published either in EasySOC or Lucene reg-
istries) improves the visibility of relevant services. Such an improvement is expressed in
terms of slight gains in Precision, Recall and NDCG. It is important to notice that results
can be specifics for the data-set and queries used, and cannotbe merely generalized to
other experimental configurations. However, considering that the selection of candidate
services is performed after any discovery process, increasing the visibility of most suit-
able candidates in a list of previously discovered servicesmay ease the development of
service-oriented applications.

5 Conclusions and Future Work

In this paper we have presented details of serviceInterface Compatibilityanalysis,
which allows evaluating a candidate Web Service for its likely integration into a service-
oriented application under development. For this, a practical Assessment Scheme is pro-
vided where a synthesis of design and programming heuristics have been applied, both
to improve possibilities to identify potential matchings,but also to help developers to
gain knowledge on an application’s context for a candidate service. Additionally, the
compatibility gapprovides an observable value as a meaningful support for candidates
selection.

Several experiments have been performed to evaluate the performance of theInter-
face Compatibilityanalysis. Results were measured in terms of well-known Informa-

Service Selection Method 19

tion Retrieval metrics – i.e., Precision-at-n, Recall and Normalized Discount Cumulative
Gain (NDCG). We believe that our assessment process will significantly improve rank-
ing results obtained from many service discovery registries.

Our current work is focused on exploring Information Retrieval techniques to bet-
ter analyzing concepts from interfaces. In particular, considering terms collected from
parameters names, in which different heuristics could be applied under the support of
some semantic basis – e.g., taxonomies, ontologies or dictionaries. These improvements
are oriented to fine-tune the Assessment Scheme to gain accuracy for service selection,
while increasing adaptability and integrability of SOC-based applications. Gained accu-
racy should be measurable in terms of precision, recall, NDCG and other IR metrics.

In addition, we are currently working in aBehavioral Compatibilitystep (Garriga
et al., 2012). This analysis is based on assessing the operational behavior execution of
services. This is achieved by applying a testing framework,in which a compliance test
suite (TS) is generated, based on the required functionality (Flores and Polo, 2012).
Then, the TS is executed against candidate services to confirm the outcome from the
Interface Compatibilityanalysis. Besides, a wrapper (adapter) could be built to allow
the client component to safely call the selected service. Thus, theBehavioral Compat-
ibility step complements theInterface Compatibilityanalysis achieving a protocol-level
assessment. This makes our proposal a comprehensive selection method.

Moreover, with the increasing number of Web Services with similar or identical
functionality, the nonfunctional properties of a Web Service are becoming more and
more important (Blanco et al., 2012). Thereby, Quality of Service will be considered for
service selection.

Another concern is the composition of candidate services tofulfill functionality,
which is particularly useful when a single candidate service cannot provide the whole
required functionality. We will expand the current procedures and models mainly based
on business process descriptions and service orchestration (Peltz, 2003, Weerawarana
et al., 2005).

References

P. Adamczyk, P. H Smith, R. Johnson, and M. Hafiz. REST and Web services: In Theory and in Practice.
In Erik Wilde and Cesare Pautasso, editors,REST: from Research to Practice, chapter 2, pages 35–57.
Springer, 2011.

E. Agichtein, E. Brill, S. Dumais, and R. Ragno. Learning User Interaction Models for Predicting Web
Search Result Preferences. In29th Annual ACM SIGIR International Conference on Research and De-
velopment in Information Retrieval, pages 3–10. ACM Press, 2006.

A. Ait-Bachir. Measuring Similarity of Service Interfaces. In ICSOC PhD Symposium, Australia, 2008.
D. Aumueller, H. Do, S. Massmann, and E. Rahm. Schema and Ontology Matching with COMA++. In

ACM SIGMOD International Conference on Management of Data, pages 906–908. ACM Press, 2005.
E. Blanco, Y. Cardinale, and M. Vidal. Experiences of sampling-based approach for estimating qos param-

eters in the web service composition problem.International Journal of Web and Grid Services, 8(1):
1–30, 2012.

A. Brogi. On the potential advantages of exploiting behavioural information for contract-based service
discovery and composition.The Journal of Logic and Algebraic Programming, 80(1):3 – 12, 2011.

M. Crasso, A. Zunino, and M. Campo. Easy web service discovery: A query-by-example approach.Science
of Computer Programming, 71(2):144–164, April 2008.

M. Crasso, J. M. Rodriguez, A. Zunino, and M. Campo. RevisingWSDL Documents: Why and How.
IEEE Internet Computing, 14(5):48–56, 2010.

M. Crasso, A. Zunino, and M. Campo. A survey of approaches to web service discovery in service-oriented
architectures.Journal of Database Management (JDM), 22(1):102–132, 2011.

V. De Antonellis and M. Melchiori. An Approach to Web ServiceCompatibility in Cooperative Processes.
In Applications and the Internet Workshop Symposium, 2003.

20

B. Di Martino. Semantic web services discovery based on structural ontology matching. International
Journal of Web and Grid Services, 5(1):46–65, 2009.

O. F. Diaz, R. Santaolaya, and I. Solis. Using case-based reasoning for improving precision and recall in
web services selection.International Journal of Web and Grid Services, 2(3):306–330, 2006.

R. Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD thesis,
University of California, CA, USA, 2000.

A. Flores and M. Polo. Testing-based Process for Component Substitutability. Software Testing, Verification
and Reliability, 22(8):529–561, 2012.

M. Garriga, A. Flores, A. Cechich, and A Zunino. Behavior assessment based selection method for
service oriented applications integrability. InProceedings of the 41st Argentine Symposium on Software
Engineering, ASSE ’12, pages 339–353, La Plata, BA, Argentina, 2012. SADIO. URL http://www.
41jaiio.org.ar/sites/default/files/374_ASSE_2012.pdf.

J. Gosling, B. Joy, G. Steele, and G. Bracha.JavaT M Language Specification. Sun Microsystems, Inc.
Addison-Wesley, US, 3rd. edition, 2005. http://java.sun.com/docs/books/ jls/third_edition/html/j3TOC.html.

M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and C. Cumby. A Search Engine for Finding
Highly Relevant Applications. InSoftware Engineering, 2010 ACM/IEEE 32nd International Conference
on, volume 1, pages 475–484. IEEE Computer Society Press, 2010.

E. Hatcher, O. Gospodnetic, and M. McCandless.Lucene in Action. Manning Publications Greenwich, CT,
2004.

A. Heß, E. Johnston, and N. Kushmerick. Assam: A tool for semi-automatically annotating semantic web
services. InThe Semantic Web–ISWC 2004, pages 320–334. Springer, 2004.

N. Kokash. A Comparison of Web Service Interface SimilarityMeasures. InStarting AI Researchers
Symposium, STAIRS, Amsterdam, Netherlands, 2006. I O S Press.

L. Kung-Kiu and W. Zheng. Software Component Models.IEEE Transactions on Software Engineering,
33(10):709–724, October 2007.

H. R. M. Nezhad, B. Benatallah, A. Martens, F. Curbera, and F.Casati. Semi-automated Adaptation of
Service Interactions. In16th International Conference on World Wide Web, pages 993–1002. ACM Press,
2007.

H. R. M. Nezhad, B. Benatallah, and Xuyuan G. Protocol-AwareMatching of Web Service Interfaces for
Adapter Development. InWWW 2010, Raleigh, North Carolina, USA, 2010.

C. Mateos, M. Crasso, A. Zunino, and J. O. Coscia. Detecting WSDL bad practices in code–first Web
Services. International Journal of Web and Grid Services, 7(4):357–387, 2011.

R. McCool. Rethinking the Semantic Web.IEEE Internet Computing, 9(6):86–87, 2005.
J. O. Coscia, C. Mateos, M. Crasso, and A. Zunino. Anti–pattern free code–first web services for state–of–

the–art java wsdl generation tools.International Journal of Web and Grid Services, 9(2):107–126, 2013.
ISSN 1741-1106. In Press.

M. Ouederni. Measuring the Compatibility of Service Interaction Protocols. In ACM, editor,ACM Sympo-
sium on Applied Computing, SAC, pages 1560–1567, 2011.

M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented computing: A research roadmap.
International Journal of Cooperative Information Systems, 17(02):223–255, 2008.

J. Pasley. Avoid XML Schema Wildcards For Web Service Interfaces. IEEE Internet Computing, 10(3):
72–79, 2006.

C. Pautasso, O. Zimmermann, and F. Leymann. Restful Web services vs. “Big” Web services: Making
the Right Architectural Decision. In17th International Conference on World Wide Web, pages 805–814.
ACM Press, 2008.

C. Peltz. Web Services Orchestration and Choreography.IEEE Computer, 36(10):46–52, 2003.
L. Richardson and S. Ruby.RESTful Web services. O’Reilly Media, 2008.
J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo. Improving web service descriptions for effective

service discovery.Science of Computer Programming, 75(11):1001–1021, 2010.
J. M. Rodriguez, M. Crasso, C. Mateos, and A. Zunino. Best practices for describing, consuming, and

discovering web services: a comprehensive toolset.Software: Practice and Experience, 43(6):613–639,
2013a.

J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino, and M. Campo. Bottom-up and top-down cobol system
migration to web services: An experience report.IEEE Internet Computing, 17(2):44–51, 2013b.

D. Sprott and Wilkes. L. Understanding Service-Oriented Architecture.The Architecture Journal. MSDN Li-
brary. Microsoft Corporation, 1:13, January 2004. http://msdn.microsoft.com/en-us/library/aa480021.aspx.

E. Stroulia and Y. Wang. Structural and Semantic Matching for Assessing Web-Services Similarity.Inter-
national Journal of Cooperative Information Systems, 14:407–437, 2005.

O. Tibermacine, C. Tibermacine, and F. Cherif. Wssim: a toolfor the measurement of web service
interface similarity. InProceedings of the french-speaking Conference on SoftwareArchitectures (CAL’13),
Toulouse, France, May 2013.

S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. Ferguson. Web Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall
PTR, 2005.

J. Wu and Z. Wu. Similarity-based Web service Matchmaking. In IEEE International Conference on
Services Computing, 2005, volume 1, pages 287–294. IEEE Computer Society Press, 2005.

