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Abstract. Voice over IP (VoIP) is very fast growing technology for the delivery of 

voice communications and multimedia data over Internet with lower cost. Early 

technical solutions mirrored the architecture of the legacy telephone network. Now, 

they have adopted the concept of distributed cloud VoIP. These solutions typically 

allow dynamic interconnection between users on any domains. However, providers 

face challenges to use infrastructure in the best efficient and cost effective ways. 

Hence, efficient scheduling and load balancing algorithms are a fundamental part of 

this approach especially in presence of uncertainty of a very dynamic and 

unpredictable environment. In this paper, we formulate the problem of dynamic 

scheduling of VoIP services in distributed cloud environments and propose a model 

for bi-objective optimization. We consider it as the special case of the bin packing 

problem, and discuss solutions for provider cost optimization ensuring quality of 

service. 
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1 Introduction
 

The Quality of Service (QoS) guarantee that has to be delivered to the end users is one 

of the major challenges for cloud computing. For Voice over Internet Protocol (VoIP), it 

comprises requirements on all aspects of a call such as service response time, throughput, 

loss, interrupts, jitter, latency, resource utilization, and so on. Several ways exist to 

provide QoS: scheduling, traffic control, dynamic resource provisioning, etc. The 

development of effective dynamic VoIP scheduling solutions involves many important 

issues: load estimation and prediction, load levels comparison, performance indices, 

system stability, job resource requirements estimation, resource selection for job 

allocation, etc. (Alakeel, 2010, Tchernykh et al. 2015, Tchernykh et al. 2014, 

Schwiegelshohn et al. 2012). Virtualization in cloud computing adds other complexity 

dimension to the problem: distribution of the virtual machine (VM) and their migrations. 

Many businesses who are adopting VoIP systems are always looking for a way to cut 

down costs. Provider cost is determined by hardware efficiency, resource management 

system deployed on the infrastructure, and the efficiency of applications running on the 

system (Beloglazov et al. 2012).One of the ways to reduce a cost is to avoid provisioning 

of more resources than required by users and QoS. 

In this paper, we describe a model for VoIP load balancing focusing on both important 

aspects: QoS and provider cost optimization. There are two main beneficiaries of this 

optimization: technology providers running its software on the cloud (e.g. the VoIP 

provider) and end users. 

The paper is structured as follow. The next section briefly discusses VoIP service 

considering underlined infrastructure, software and calls. Section III presents several 

aspects of the QoS and provider cost. Section IV provides the problem definition (jobs, 

cloud infrastructure and criteria). Section V describes a general approach for VoIP 

assignation and the algorithms. Section VI presenting the result of mono-objective and 

bi-objective analysis and Section VII concludes the paper by presenting the main 

contribution of the work. 

 

2 Internet Telephony 

The Internet telephony VoIP refers to the provisioning of voice communication 

services over the Internet, rather than via the traditional telephone ISDN network1. VoIP 

services significantly reduce calling rates. 

A cloud based VoIP can further reduce costs, add new features and capabilities, 

provide easier implementations, and integrate services that are dynamically scalable. 

Other benefits include data transfer availability, integrity, and security. 

VoIP requires the service availability all the time for any number of users. To deal 

with increasing number of clients, providers can invest in a large infrastructure to avoid 

                                                           
1  ISDN (Integrated Services Digital Network) is a set of standards for digital transmission over 

ordinary telephone copper wire. 
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loss of calls (hence, users). In this case, the infrastructure is usually underutilized. 

Moreover, servers should be replaced due to resource degradation.  

Cloud-based VoIP solutions allow reducing an importance of such a Build-To-Peak 

approach. The virtual infrastructure can be easily scalable. 

VoIP calls require signaling, channel setup, voice signal digitization, encoding, etc. 

The voice nodes handle the calls with different features such as: voicemail, call 

forwarding, music on hold, conference calls, etc. depending on customers.  

From a client perspective, in order to use VoIP services, an Internet connection and an 

IP hard-phone or soft-phone are needed. The clients connect to a voice server, which is 

the main part of the VoIP telephony system, typically located in a data center or in a 

public cloud (Figure 1). The voice nodes communicate with the database in the system, 

where all the users are registered with name and password. Every call is recorded with 

details such as: destination, duration, etc. 

 

 

Fig. 1 . Cloud VoIP architecture. 

General VoIP architecture includes elements of communication infrastructure that 

connect phones remotely through the Internet. The servers provide gateway, 

interconnection switches, session controllers, firewall, etc. They use software to emulate 

a telephone exchange.  

A drawback of this architecture arises when the hardware reaches its maximum 

capacity. Traditional VoIP solutions are not scalable. To scale it is necessary to increase 

infrastructure or replace existing hardware. Overprovisioning and, hence, cost 

overrunning is not an efficient solution, even with the growing number of the customers, 

and potential safety of being able to deliver services during peak hours or abnormal 

system behavior.  

In a cloud-based VoIP solution, the voice nodes are operated as VMs that provide a 

variety of services. Distributed cloud based VoIP architecture assumes that voice nodes 

are distributed geographically; hence, they are grouped in different locations (data 

centers). To deploy and effectively manage telephones via clouds different characteristics 

need to be improved. The most important is the utilization of the infrastructure. 



   

 

   

   

 

   

   

 

   

   VoIP Service Model for Multi-objective Scheduling in Cloud Infrastructure    
 

    

 

 

   

   

 

   

   

 

   

       
 

The advantage of this architecture consists in increased scalability and low cost. 

However, it has several unsolved problems, for instance, to optimize the overall system 

performance, the processor utilization has to be high, but it reduces quality of the call. 

Hence, load of the VoIP servers should be reduced to guarantee the QoS. On the other 

hand, the processor idle time increases the useless expenses of the cloud provider. 

The most important cause of the load imbalance is the dynamic nature of the problem 

in both computational and communication costs (Tchernykh et al. 2015a). Load-

balancing is one of the mechanisms to maximize VoIP system performance by 

minimizing the number of processing units without overloading them. It can improve the 

local load imbalance and guarantee QoS.  

 

2.1  Infrastructure 

A telephone system is consisted of multiple components: telephones, cables, physical 

or virtual machines that host and run call exchange software, signaling and 

communication modules, software that establishes the voice mails, etc.  

MIXvoip (2015) developed the concept of the super-node (SN) and Super Nodes 

Cluster (SNC) to enrichment features for telephone exchanges (Figure 2). 

 

 

Fig. 2 SNC deployment 

SNC is a set of SN deployed in a cloud, and interconnected logically at a local level. 

This allows minimizing the path between two local users, and increasing the quality of 

the voice. This deployment brings redundancy on a given geographical area, but ensures 

a high voice quality between the SNC nodes through the public Internet. SNCs are 

deployed in widely distributed geographical locations. As shown in Figure 2, when a user 

in Area 1 wishes to establish a call, it will be sent to the nearest SN in his area. If 

customers are small businesses, they do pass on average 50% of their calls locally or in 

neighboring countries. The deployment of this architecture allows providing services near 

ISDN quality in a public IP network. 
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The interconnection of the system with other operators is provided through the Internet 

or a physical wire connection between two devices in a data center, where the operator 

and infrastructure meet on short distances. 

 

2.2  Software 

The most known telephone software for processing calls and providing a powerful 

control over call activity is Asterisk (Madsen et al. 2011). It is a framework under free 

license for building multi-protocol, real-time communication solutions. It establishes and 

manages connections between two end devices. It is the most known Private Branch 

Exchange (PBX) to place calls via Internet, and to connect to traditional Public Switched 

Telephone Network (PSTN). Delivering information and transferring data are based on 

specific protocols, such as Session Initiation Protocol (SIP) and Real Time Protocol 

(RTP).  

SIP is one of the most known protocols for signaling, establishing presence, locating 

users, setting, modifying and tearing down sessions between end-devices. It is used for 

controlling multimedia communication sessions such as voice and video calls over IP 

networks. 

After the connection is established, the media transportation is provided via RTP. 

Codecs are used for converting the voice portion of a call in audio packets to transmit 

over RTP streams.  

The VoIP system consists of multiple heterogeneous voice nodes that run and handle 

calls. Each node has one or multiple Asterisk running processes. Each Asterisk instance 

has a unique IP address that is used by end users to connect inside and outside the 

network. 

 

3 VoIP Quality of Service 

3.1 Utilization 

Calls have different impact on the processor utilization depending on the operations 

performed by Asterisk, when the calls are being established. If transcoding operations are 

performed, the utilization is higher than when transcoding is not used. In the latter case, 

Asterisk is in charge of only routing the call. However, depending on the binary rate of 

the codec, the processor load is influenced as well. Table 1 shows processor utilization 

for call without transcoding (Montoro and Casilari, 2009). 

VoIP gateways support a larger number of codecs and DSP modules (Digital Signal 

Processing): G.711, GSM, LPC10, Speex. G.711 A-law and U-law PCM, G.726 

ADPCM, G.728 LD-CELP, G.729 CS-ACELP, G.729a CS-ACELP, G.729 Annex-B, 

G.729a Annex-B, G.723.1 MP-MLQ, G.723.1 ACELP, G.723.1 Annex-A MP-MLQ, 

G.723.1 Annex-A ACELP, etc. Some codec compression techniques require more 

processing power than others. An example of compression methods is presented in Table 

2. 

In (Georgiou, 2015) the authors presented results of the benchmark test that includes 

stress testing of Queue Calls, VoIP Provider Calls and Normal Extension to Extension 

calls.  
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Table 1 Processor utilization for 1 call without transcoding. 

Protocol Codec 10 Calls 1 Call 

SIP/RTP G.711 2.36% 0.236% 

SIP/RTP G.726 2.13% 0.213% 

SIP/RTP GSM 2.58% 0.258% 

SIP/RTP LPC10 1.92% 0.192% 

 

Table 2 Codec Compression Method (“Understanding Codecs,” 2006). 

Abbreviation Method 

PCM Pulse Code Modulation 

ADPCM Adaptive Differential Pulse Code Modulation 

LDCELP Low-Delay Code Excited Linear Prediction 
ACELP Algebraic-Code-Excited Linear-Prediction 

MP-MLQ Multi-Pulse, Multi-Level Quantization 

CS-ACELP Conjugate-Structure Algebraic-Code-Excited Linear-Prediction 

 

Queuing Calls is used by Call Centers that prefer to answer to the incoming calls 

automatically and place them in a queue, instead of rejecting them. It allows the 

acceptance of more calls into the system than existing extensions or agents capable of 

answering them. While on hold, the callers receive different announcements (position in 

the queue) followed by music. 

Table 3 Queue Calls. 

Normal Call Center 

Activity Test 
Jitters CPU Usage Simultaneous Calls 

CPU Usage 

per 1 Call 

5 Calls to Queue None 14% 10 1.4% 

10 Calls to Queue None 18% 20 0.9% 
15 Calls to Queue None 28% 30 0.93% 

20 Calls to Queue None 36% 40 0.9% 
30 Calls to Queue None 67% 60 1.11% 

40 Calls to Queue None 84% 80 1.05% 

 

3.2 Quality of Service 

QoS requirements for VoIP are very important. The service quality degradation is 

determined by the transit of the packets across the Internet, queuing delays at the routers, 

packet travel time from source to destination, jitter: deviations of the packet inter-arrivals, 

packet loss, call set-up time, and call tear-down time, etc. 

The quality of voice is a subjective response of the listener. A common benchmark 

used to determine the quality of sound produced by specific codecs is the mean opinion 

score (MOS). Listeners judge the quality of a voice sample that corresponds to a 

particular codec on a scale of 1 (bad) to 5 (excellent). The scores are averaged to provide 

the MOS for that sample.  

In general, QoS standards for VoIP traffic are set for voice. One of the possible 

generalizations of the voice quality is processor utilization. Each codec provides a certain 

quality of speech only if processor utilization is low enough in order to ensure QoS. 

Theoretically, processor utilization of 100% provides the best expected performance. 
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However, with increasing number of call, hence utilization, CPU cannot be able to handle 

the stress anymore and jitters and broken audio symptoms will appear (Figure 3). 

 

Fig. 3 Voice quality versus processor load (utilization). 

3.3 VoIP Provider Costs 

VoIP provider costs are primarily tied to their assets and the maintenance of these 

assets. For example, providers have an infrastructure that needs to be powered and 

cooled. It has storage arrays containing storage disks, and these arrays are connected to 

chassis which are all housed. So, major provider costs can be categorized as: Servers cost 

(compute, storage, software, and associated VoIP components); Infrastructure cost 

(power distribution, cooling equipment, space for facilities, etc.); Operational cost 

(energy, cooling…); Network cost (links, transit equipment). A number of other costs 

exist.  

To offer competitive prices to prospective customers VoIP providers should optimize 

the process. Inefficient resource management has a direct negative effect on performance 

and cost. 

Virtualization technologies allow creating VoIP virtual servers, which can then be 

hosted in data centers and rented out (leased) on a subscription basis to any scale.  

In a typical cloud scenario, a VoIP provider has the choice between different resources 

that are available on demand from cloud providers with certain service guarantees. These 

service levels are mainly distinguished by the amount of computing power it is 

guaranteed to receive within a requested time, and a cost per unit of execution time the 

VoIP provider has to pay. This cost depends on the type of requested computing 

resources, for instance, VMs with different performance. 

In order to evaluate the provider cost for cloud solution, we use a metric that is useful 

for systems with VM. It must to allow the provider to measure the cost of the system in 

terms of number of demanded VMs and time of their using. 

In this paper, two criteria are considered for the model: the billing hours for VMs to 

provide a service, and their utilization to increase quality of service. 

In the first scenario, we consider single-objective optimization problem: to minimize 

the total cost of VMs. In order to ensure good QoS of the VoIP traffic, the utilization of 

the VMs should be kept under the certain threshold (e.g. 70% ).  

In the second scenario, we consider the bi-objective optimization approach that is not 

restricted to find a unique solution but a set of solution known as a Pareto optimal set. In 

this case, we minimize the cost of VMs and VM utilization. A tradeoff between the two 

objectives depends on the VoIP provider’s preference. 

 



   

 

   

   

 

   

   

 

   

   VoIP Service Model for Multi-objective Scheduling in Cloud Infrastructure    
 

    

 

 

   

   

 

   

   

 

   

       
 

4 Model. 

We address the model for VoIP in distributed cloud environment with high 

heterogeneity of the resources with different number of servers, execution speed, energy 

efficiency, amount of memory, bandwidth, etc. 

 Let us consider that VoIP cloud infrastructure consists of m heterogeneous 

SNCs: 
1 2, ,..., mSNC SNC SNC  with relative speeds msss ,...,, 21 . Each 

iSNC , for all 

1...i m , consists of 
im  SNs. Each 

i

kSN , for all 1... ik m , runns 
ik (t) VM at time t. 

We assume that VMs of one SNC are identical and have the same processing capacity.  

We denote the number of billing hours in 
iSNC  by              

    

   
   and run 

in all SNC by 
1

m

ii
m m


 . The VM is described by a tuple          , where         

is the utilization (load) of the VM at time  . VM hosts one or multiple Asterisk running 

processes that run and handle calls. 

The SNC contains a set of routers and switches that transport traffic between the SNs 

and to the outside world. They are characterized by the amount of traffic flowing through 

it (Mbps). A switch connects a redistribution point or computational nodes. The 

connections of the processors are static but their utilization is changed. The SNC 

interconnection network architecture is local. The interconnection between SNCs is 

provided through public Internet.  

We consider n  independent calls or jobs 
1 2, ,..., nJ J J   that must be scheduled on set of 

SNCs. The job jJ   is described by a tuple { , , }j j jr p u  that consists of: its release date 

0jr  , duration jp  (lifespan), and contribution to the processor utilization ju . The 

release time of a job is not available before the job is submitted, and its duration (time) is 

unknown until the job has completed. The utilization is a constant for a given job that 

depends on the used codec and normalized for the slowest machine. 

We define the provider cost model by considering a function that depends on the 

number of VMs and the running time   . 

In multi-objective optimization, one solution can represent the best solution 

concerning provider cost, while another solution could be the best one concerning the 

QoS. The goal is to choose the most adequate solution and obtain a set of compromise 

solutions that represents a good approximation to the Pareto front.  

Two important characteristics of a good solution technique are convergence to the 

Pareto front, and diversity to sample the front as fully as possible. A solution is Pareto 

optimal if no other solution improves it in terms of all objective functions. Any solution 

not belonging to the front can be considered of inferior quality to those that are included. 

The selection between the solutions included in the Pareto front depends on the system 

preference. If one objective is considered more important than the other one, then 

preference is given to those solutions that are near-optimal in the preferred objective, 

even if values of the secondary objective are not among the best obtained.  

Often, results from multi-objectives problems are compared via visual observation of 

the solution space. One of formal and statistical approaches uses a set coverage metric 

SC(A,B) that calculates the proportion of solutions in B, which are dominated by 

solutions in A:  
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 
{ | : }b B; a A a b

SC A,B
B

   


                                                                  (1) 

A metric value SC(A,B) = 1 means that all solutions of B  are dominated by A, 

whereas SC(A,B) = 0 means that no member of B is dominated by A. This way, the 

larger the value of SC(A,B), the better the Pareto front A with respect to B. Since the 

dominance operator is not symmetric, SC(A,B) is not necessarily equal to 1SC(A,B), 

and both SC(A,B) and SC(B,A) have to be computed for understanding how many 

solutions of A  are covered by B  and vice versa. 

 

5 Call Allocation 

In our model, CPU utilization is a key performance metric for VoIP quality of service 

measurement. It can be used to track QoS regressions, when it increases above the certain 

threshold, or improvement, when it is below, and is a useful for VoIP QoS problem 

studying. 

The concept of VM utilization used in our problem is simple. Assume VM is allocated 

on a single core processor of 2.0 GHz. VM utilization in this scenario is the percentage of 

time the processor spends doing VM work (as opposed to being idle). If the processor 

does 1 billion cycles worth of VM work in a second, it is 50% utilized for that second. 

In general, monitoring CPU utilization where VM is running is straightforward: from a 

single percentage of CPU utilization, to the more in-depth statistics. We can also gain a 

bit of insight into how the CPU is being used. To gain more detailed knowledge 

regarding VM utilization, we must examine all details of the VM parameters, software 

installed, and hardware of a system: 

There are a lot of factors that contribute to the processor utilization. In our case, we 

reduce our self to consider Asterisk running processes and calls.  

 

5.1 Dynamic packing with open bins 

Our problem is similar to a well-known one-dimensional on-line bin-packing problem, 

the classic NP-hard optimization problem with high theoretical relevance and practical 

importance. It concerns placing items of arbitrary height into a one-dimensional space 

(bins with fixed capacity) efficiently.  

We consider on-line variant of the problem in which items are received one by one. 

Before info about the next item is revealed, the scheduler needs to decide whether the 

next item is packed in the currently open bin or a new bin is opened.  

In other words, each decision has to be made without any knowledge on the duration 

of the call, only contribution to utilization is known due to the known used codec. 

The principal novelty of this problem variation lies in the fact that the state of the bin 

is determined not only by actions of the decision maker during item allocations, but also 

by item completions after their lifespan. Unlike in standard formulation, bins are always 

open, even completely packed, and dynamic. Items in bins can be terminated (call 

termination) and utilization can be changed at any moments. 

Bin-packing remains one of the classic difficult problems. Scientists have analyzed 

and studied this computational puzzle for decades, yet none have obtained an algorithm, 

which derives the optimal solution in reasonable amount of time.  
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In this paper, we consider that the bin size is equals to 1 that corresponds to 100% of 

VM utilization.  

We use an adaptation of three known bin packing strategies First-Fit (FFit), Best-Fit 

(BFit), and Worst-Fit (WFit) to allocate calls to VMs (Table 4). In our case, we do not 

have the option to sort the input, due to the fact that we face with an online bin packing 

problem. Instead, we sort bins in decreasing order by their utilization in the BFit strategy. 

After allocation phase, we have a set of VMs that host one or multiple Asterisk 

running processes and calls. Each VM is characterized by a relative execution speed, and 

current utilization (load). 

Table 4 Allocation Strategies 

 Description 

Rand Allocates job j to a suitable machine randomly selected using a uniform distribution. 

RR Allocates job j to a suitable machine using a Round Robin algorithm. 

FFit Allocates job j to the first machine available and capable to execute it. 

BFit Sorts VMs in decreasing order by their utilization, and allocates job j to the first VM. 

WFit Sorts VMs in decreasing order by their utilization, and allocates job j to the last VM 

 

6 Experimental Validation 

6.1 Simulation Toolkit 

All experiments are performed using the CloudSim: a framework for modeling and 

simulation of cloud computing infrastructures and services (Calheiros et al. 2011). It is a 

standard trace based simulator that is used to study cloud resource management 

problems. We have extended CloudSim to include our algorithms using the java (JDK 

7u51) programming language. 

We extend the CloudSim by introducing the support of dynamic arrival of the jobs 

(calls), updating the system parameter before scheduling decisions (utilization of the 

resources), and implementing the broker policies for call allocation. 

Parameters are directly taken from traces of real VoIP service considered in 

(Simionovici et al., 2015). We use SWF (Standard Workload Format) with four 

additional fields to process the calls.  

 

6.2 Workload 

The workload is a set of registered phone calls that have been handled by the system. 

It is recorded in the Call–Detail–Record (CDR) database with the following information: 

Index of the call, ID of the user who makes the call, IP of the phone where the call is 

placed from, IP of the local phone, Destination of the call, Destination country code, 

Destination country name, Telecommunications service provider, Beginning of the call 

(timestamp), Duration of the call (in seconds), Duration of a paid call, Cost per minute, 

etc. 

Supported call-statistics could include: Incoming/outgoing call attempts, whether 

successful or not; Calls rejected or failed; Number of calls whose connected time is less 

than the configured minimum call duration (MCD); Number of calls losing more than the 

configured number of packets; Number of calls encountering more than the configured 

amount of latency, jitter; calls disconnected; etc. 
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Examples of the call distribution during a day and week are presented in Figure 4 and 

Figure 5. For business customers, it is typical that the peak hours are between 8-11 AM 

and 13-18 PM. Over a week, the traffic is very high from Monday till Friday, while for 

weekends it decreases considerably. 

Figure 5 shows an example of call duration distribution during a working day, which 

depends significantly on the clients (e.g. call centers, schools, business companies, etc.). 

In our example, the duration of the majority of the calls is short (e.g. 1-5 minutes). 

 

Fig. 4 Example of the call distribution during a week. 

 

Fig. 5 Example of the call distribution during a week. 

Dang et al. (2004) showed that the call arrival process is fitted by a Poisson process 

and the call duration distribution by a generalized Pareto distribution with parameter 

values indicating finite variances. The silence and transmission durations are fitted by a 

generalized Pareto distribution as well. A series of probability distributions were tested 

with the data and the Generalized Pareto Distribution resulted as the best fit. The model 

agrees well with the data in high-density regions and also fits the low-density regions, 

known as tails of the distribution (Figure 6). 

For the analysis, we use 30 workloads; each includes phone calls made during one 

day.  
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Fig. 6 Example of call duration distribution and Generalized Pareto Distribution (PDF). 

6.3 Experimental results 

First, we analyze the mono-objective problem, where a utilization threshold is used to 

guaranty the QoS. Then, we realize a bi-objective analysis, where no threshold is used 

(100% of utilization is allowed) to study the relation between total cost (the number of 

hours running VMs) and the utilization of the VMs. 

Mono-objective analysis. We evaluate the performance of the five strategies with a 

70% utilization threshold of VMs to ensure the QoS. Figure 7 shows the number of 

billing hours during a month. The strategies have similar behavior when workload is low 

(during weekends). 

During the week, strategies produce significally different cost. Bfit and FFit use about 

55 billing hours, while Rand, RR, and WFit use about 70 hours. 

 

 

Fig. 7 The number of billing hours during 30 days 

Figure 8 shows an example of the number of billing hours during a day. The workload 

is low during the first hours of the day, all strategies have the same behavior and they use 
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just one VM to process the calls. The maximum number of VMs running during peak 

hours is 5 VMs. 

Figure 9 shows the average number of billing hours during 30 days. FFit and BFit are 

the best strategies. They use 42.7, 43.2 billing hours on average. 

 

Fig. 8 Example of the number of billing hours during a day. 

 

Fig. 9 Average billing hours per day. 

The monthly difference between these strategies Rand, RR, and WFit is about 13 

hours per day. Rand and RR need 55.9 and 56.1 billing hours. The worst strategy is WFit 

with 57.1 billing hours per day on average. 

Bi-objective analysis. For the bi-objective problem, we want to obtain a set of 

compromise solutions that represent a good approximation to the Pareto front. This is not 

formally the Pareto front as an exhaustive search of all possible solutions is not carried 

out, but rather serves as a practical approximation of a Pareto front. 

Figure 10 shows a set of solutions approximating the Pareto front for each of 5 

strategies: Rand, RR, FFit, BFit, WFit and 30 workloads. This two-dimensional solution 

space represents a feasible set of solutions that satisfy the problem's constraints. 

Note that we address the problem of minimizing cost and utilization. For better 

representation, we convert it to the minimization of two criteria: degradations of both the 

cost and utilization. 
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Fig. 10 The solution sets and Pareto fronts. 

The solution space covers a range of values of cost degradation from 0 to 0.67, 

whereas values of utilization degradation are in the range from 0.31 to 0.55. 

We see that BFit and FFit are located in the lower-right corner, being among the best 

solutions in terms of both objectives. They noticeably outperform Round Robin that is in 

current use for VoIP service. 

However, we should not consider only Pareto fronts, when many of the solutions are 

outside the Pareto optimal solutions. This is the case of BFit: although the Pareto front is 

of good quality, many of the generated solutions are quite far from it, and, hence, a single 

run of the algorithm may produce significantly worse results. FFit solutions cover cost 

degradations from 0 to 0.058, whereas BFit solutions are in the range from 0 to 0.057. 

Set coverage method is used to analyze the performance of the studied bi-objective 

scheduling strategies. Using this metric, two sets of non-dominated solutions can be 

compared.  

Table 4 and Table 5 report the SC results for each of the five Pareto fronts. The rows 

of the table show the values SC(A,B) for the dominance of strategy A over strategy B. 

The columns indicate SC(B,A), that is, dominance of B over A. The last two columns 

show the average of SC(A,B) for row A over column B, and ranking based on the 

average dominance. 

Similarly, the last two rows show average dominance B over A, and rank of the 

strategy in each column. We see that SC(FFit,B) dominates the front of the BFit strategy 

in 50%, on average. SC(A,FFit) shows that BFit is not dominated by the fronts of other 

strategies. Meanwhile, SC(RR,B) dominates the fronts of the other two strategies in the 

range 67% to 72%. SC(A,RR) shows that WFit and Rand dominate RR for 12% on 

average. 

The ranking of strategies is based on the percentage of coverage. The higher ranking 

of rows implies that the front is better. The rank in columns shows that the smaller the 

average dominance, the better the strategy. According to the set coverage metric, the 

strategy that has the best compromise between minimized the number of billing hours 

and minimizing utilization is FFit, followed by RR on the second position. 
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Table 4. Set coverage and ranking FFit and Bfit. 

B 

A F
F

it
 

B
F

it
 

M
ea

n
 

R
an

k
 

FFit 1.0 0.5 0.75 1 

BFit 0.0 1.0 0.50 2 

Mean 0.50 0.75    

Rank 1 2 
 

 

    

Table 5. Set coverage and ranking, Rand, RR, and WFit. 

B 

A R
an

d
 

R
R

 

W
F

it
 

M
ea

n
 

R
an

k
 

Rand 1.0 0.111 0.428 0.513  3 

RR 0.666 1.0 0.714 0.793 1 

WFit 0.444 0.111 1.0 0.518 2 

Mean 0.703 0.407 0.714    

Rank 2 1 3 
 

 

     

 7  Conclusions 

In this paper, we formulate and discuss the model for job allocation problem 

addressing VoIP in cloud computing. We define models of the provider cost and quality 

of service, and propose new allocation bin packing algorithms for VoIP super node 

clusters. It is suitable for environment with presence of uncertainty, and take into account 

QoS and cost optimization. 

It does not take into account call duration, its estimation, topology, and 

communication bandwidth. It takes allocation decisions depending on the actual cloud 

and VM characteristics at the moment of allocation such as number of available virtual 

machines, their utilization, etc.  

Due to these parameters are changing over time, allocation adapts to these changes. 

This approach can cope with different workloads, cloud properties, and cloud 

uncertainties such as elasticity, performance changing, virtualization, loosely coupling 

application to the infrastructure, parameters such as an effective processor speed, number 

of available virtual machines, and actual bandwidth, among many others.  

The proposed algorithm can be used for a VoIP cloud environment. However, further 

study is required to assess its actual efficiency and effectiveness in each domain. This 

will be the subject of future work. Moreover, dynamic consolidation and load balancing 

is another important issue to be addressed. 
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