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1 Introduction

In this paper, we consider the linearly constrained composite convex optimization
problem

min
x∈Rn

F (x) := f(x) + g(x)

s.t. Ax = b,

(1.1)

where A ∈ R
m×n and b ∈ R

m; f(x) is a convex smooth function with Lf -Lipschitz
continuous gradient; and g(x) is a closed convex (not necessarily smooth) function.
An important example of problem (1.1) is that g(x) is an indicator function of a
closed convex set X , that is,

g(x) = IndX (x) :=















0, if x ∈ X ,

+∞, otherwise.

In this case, problem (1.1) can be rewritten as

min
x∈X

f(x), s.t. Ax = b. (1.2)

One efficient approach to solving problem (1.1) is the augmented Lagrangian
(AL) method [11, 30, 32]. The AL function of problem (1.1) is

Lβ(x;λ) := f̂β(x;λ) + g(x), (1.3)

where

f̂β(x;λ) := f(x) + 〈λ,Ax− b〉+ β

2
‖Ax− b‖2, (1.4)

λ ∈ R
m is the Lagrange multiplier associated with the linear constraint, and β > 0

is the penalty parameter. The augmented Lagrangian dual of problem (1.1) is

max
λ∈Rm

d(λ) (1.5)

with
d(λ) := min

x∈Rn

Lβ(x;λ). (1.6)

It is well-known that the dual function d(λ) in (1.6) is differentiable and its gradient
is given by ∇d(λ) = Ax(λ)−b, where x(λ) is the solution of problem (1.6) (see [3]).

Given λk, the AL method for solving problem (1.1) updates the primal and
dual variables via

x(λk) = arg min
x∈Rn

Lβ(x;λ
k) (1.7)

and
λk+1 = λk + β

(

Ax(λk)− b
)

,

respectively. The AL method for solving problem (1.1) is essentially a dual gradient
ascent method for solving the dual problem (1.5), which updates the dual variable
by performing a dual gradient ascent step

λk+1 = λk + β∇d(λk).
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The AL method can also be interpreted as a proximal point algorithm applied to
solve the classical Lagrangian dual problem [32]

max
λ

d′(λ), (1.8)

where

d′(λ) := min
x∈Rn

{f(x) + 〈λ,Ax− b〉+ g(x)} .

In this paper, we always refer to the augmented Lagrangian dual (problem) when-
ever we talk about the Lagrangian dual (problem) or the dual (problem), un-
less otherwise specified. More generally, the AL method can be derived through
the Bregman regularization approach [9, 29, 37] and it enjoys the so-called error-
forgetting property [36] when applied to solve problem (1.1) where F (x) is a piece-
wise linear function. For various variants of the AL method with nonquadratic
penalty terms and other multiplier update formulas, please see [2, Chapter 5],
[5, 12, 34, 38].

When the problem dimension n is large, finding an exact solution of AL
subproblem (1.7) can be computationally expensive and thus the exact gradient
∇d(λk) is often unavailable. As a result, many works focused on inexact versions
of (dual) gradient methods; see [4, 6, 7, 16, 18–20, 22–24, 31–33, 35] and references
therein. For instance, Necoara and Patrascu [22] analyzed dual first-order meth-
ods for solving a class of strongly convex conic programs and provided a detailed
(ergodic and non-ergodic) convergence rate analysis of the methods. The methods
in [22] are the exact gradient methods applied to solve the dual problem (1.5)
where the penalty parameter β in (1.4) is set to be zero (i.e., problem (1.8)) and
thus is different from the AL method where the penalty parameter β in (1.4) is
positive. For the inexact augmented Lagrangian (IAL) framework, Rockafellar [32]
proposed an IAL framework, where the AL subproblem is solved until a point xk+1

is found such that

Lβ

(

xk+1;λk
)

− Lβ

(

x(λk);λk
)

≤ η2k, (1.9)

and showed that the proposed IAL framework converges if the nonnegative toler-
ance sequence {ηk} is summable. Very recently, Devolder, Glineur, and Nesterov [6]
proposed a general inexact gradient framework and analyzed the ergodic conver-
gence rate of their framework when it is applied to solve dual problem (1.5).
In [24], Nedelcu, Necoara, and Tran-Dinh proposed an IAL method, where the
AL subproblem was approximately solved by Nesterov’s gradient method [25–27]
such that (1.9) is satisfied and showed again the ergodic convergence rate of the
proposed IAL method. The non-ergodic convergence rate result for the IAL frame-
work/method has been missing in the literature for a long time until in a very re-
cent work by Lan and Monterio [16], where they proposed an IAL method (where
the AL subproblems are approximately solved by Nesterov’s gradient method) and
analyzed the non-ergodic convergence rate for the proposed method.

We make the following assumptions throughout this paper.

A1 there exists a Lagrange multiplier λ∗ such that the optimal value of problem
(1.1) is equal to d(λ∗);

A2 the function g(x) has a bounded domain.
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Assumption A1 is the strong duality assumption and assumption A2 is made
in the paper mainly for the ease of presentation. In fact, for problem (1.1) arising
from many applications of interest such as machine learning, statistics, and signal
processing, we often can easily find a bounded set X such that the solution of
problem (1.1) lies in X . Therefore, we can restrict the definition of g(x) over this
bounded set. Let us take the following basis pursuit problem in compressed sensing
as an example:

min
x∈Rn

‖x‖1

s.t. Ax = b,

(1.10)

which is a special case of problem (1.1) with f(x) = 0 and g(x) = ‖x‖1. We can
restrict the definition of ‖x‖1 over the bounded domain

{x | ‖x‖1 ≤ ‖x̂‖1} ,
where x̂ is any point satisfying Ax̂ = b. It is worth remarking that problem (1.2)
has been considered in the existing papers such as [16,23,24] and they all assumed
that the set X is convex and compact.

The contribution of this paper is twofold. First, we propose a new IAL frame-
work (see Algorithm 1) for solving problem (1.1), where the AL subproblem is
approximately solved until a point xk+1 is found such that

max
x∈Rn

{〈

∇f̂β(xk+1;λk), xk+1 − x
〉

+ g(xk+1)− g(x)
}

≤ ηk. (1.11)

Here ∇f̂β(x;λ) is the gradient of f̂β(x;λ) with respect to x. The termination
condition (1.11) in our proposed IAL framework is weaker and (potentially) eas-
ier to check than (1.9) in most of the existing IAL frameworks/methods. More
specifically, to check whether xk+1 satisfies (1.11) or not, we only need to solve
the convex optimization problem on the left-hand side of (1.11), which can be
solved exactly or to a high precision in time (essentially) linear to the size of the
input for many g(x) such as the ℓ1-norm and the nuclear norm; see more exam-
ples in [13]. In contrast, it is generally hard to check whether xk+1 satisfies (1.9)
or not (because x(λk) is unknown). Second, we establish the global convergence
of the proposed IAL framework under the assumption that the sequence {ηk} in
(1.11) is summable; see Theorem 3.4. We also show, in Theorems 4.1 and 4.3, the
non-ergodic convergence rate (under weaker conditions than that in [16]) for the
proposed IAL framework, which reveals how the error in solving the AL subprob-
lem affects the convergence rate.

It is worth highlighting here that the non-ergodic analysis focuses on the it-
erates generated by the algorithm while the ergodic analysis focuses on some
(weighted) average of the iterates generated by the algorithm. In practice, the
non-ergodic iterates tend to share structural properties of the solution of the prob-
lem such as sparsity in ℓ1 minimization problem (1.10), while the ergodic iterates
tend to “average out” these properties. Therefore, the non-ergodic solution is more
preferable in practical applications. In fact, our simulation results on the basis pur-
suit problem in Section 6 show that the last iterate indeed is much better than the
average of all iterates in terms of the sparsity. From the perspective of theoretical
analysis, the non-ergodic convergence implies and thus is stronger than the ergodic
convergence. This paper will focus on the non-ergodic convergence analysis.
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2 The IAL framework

In this section, we present the IAL framework for solving problem (1.1). The
proposed IAL framework is given in Algorithm 1. At the k-th iteration, the IAL
framework first solves AL subproblem (2.1) with fixed dual variable λk in an
inexact manner until a point xk+1 satisfying (1.11) is found; then updates the
dual variable by performing an inexact gradient ascent step (2.2).

Algorithm 1: The IAL framework for solving problem (1.1)

1 Initialize x1 ∈ X , λ1 ∈ R
m, and the nonnegative sequence {ηk} .

2 for k ≥ 1: do
3 Find an approximate solution xk+1 of the AL subproblem

min
x∈Rn

{

Lβ(x;λ
k) := f̂β(x; λ

k) + g(x)
}

(2.1)

such that (1.11) is satisfied;
4 Update the dual variable via

λk+1 = λk + β
(

Axk+1 − b
)

. (2.2)

Three remarks on the proposed IAL framework are in order. First, the termi-
nation condition (1.11) in our proposed IAL framework is (potentially) easier to
check than (1.9) in most of the existing IAL frameworks/methods. Let us take
problem (1.10) as an example again. In this case, to check whether xk+1 satisfies
(1.11) or not, we only need to solve the following convex optimization problem

max
‖x‖1≤‖x̂‖1

{〈

∇f̂β(xk+1;λk), xk+1 − x
〉

+
∥

∥

∥x
k+1

∥

∥

∥

1
− ‖x‖1

}

,

where ∇f̂β(xk+1;λk) = AT
(

λk + β
(

Axk+1 − b
))

. Let īk+1 be the index of the

largest entry of ∇f̂β(xk+1;λk) in magnitude, then the solution to the above opti-
mization problem is

x̄k+1 =















−‖x̂‖1sign
(

[

∇f̂β(xk+1;λk)
]

īk+1

)

eīk+1
, if

∣

∣

∣

∣

[

∇f̂β(xk+1;λk)
]

īk+1

∣

∣

∣

∣

≥ 1;

0, otherwise,

where eīk+1
is the n-dimensional vector with the īk+1-th entry being 1 and all

other entries being 0 and sign(·) is the sign function.
Second, the smaller the tolerance ηk is, the more computational cost is needed

in Algorithm 1 to find the point xk+1 satisfying (1.11). On the other hand, the
larger the tolerance ηk is, the larger the approximation error between the approx-
imate gradient Axk+1− b and the true gradient ∇d(λk) is (see Lemma 3.2 further
ahead), which might lead to slow convergence or even divergence of the proposed
Algorithm 1. Therefore, the choice of {ηk} is important in balancing the computa-
tional cost (of finding the point xk+1 satisfying (1.11)) and the global convergence
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and convergence rate (of the framework). We will discuss the possible choices of
{ηk} in more details in Section 4.

Third, AL subproblem (2.1) can be efficiently solved in an inexact manner by
various (first-order) methods such as the accelerated proximal gradient methods
in [1,25–27] and the Frank-Wolfe (a.k.a. conditional gradient) methods in [8,10,14,
15,28]. Next, we discuss the (inner) iteration complexity of finding the point xk+1

satisfying (1.11) when the accelerated proximal gradient methods and the Frank-
Wolfe methods are applied to solve problem (2.1). Although any of the accelerated
proximal gradient methods in [1, 25–27] and also any of the Frank-Wolfe methods
in [8, 10, 14, 15, 28] can be used in solving AL subproblem (2.1), we choose the
algorithms in [1] and [28] in our following analysis.

Let us fist define
Lf̂ = Lf + β‖A‖2, (2.3)

where ‖A‖ denotes the largest singular value of the matrix A. It is simple to see
that∇xf̂β(x;λ) (with respect to x) is Lipschitz continuous with Lipschitz constant
Lf̂ . Note that Lf̂ does not depend on the Lagrange multiplier λ. Moreover, let X
denote the bounded domain of the function g(x) and let

D = max
x,y∈X

‖x− y‖ < +∞ (2.4)

denote the diameter of the set X .

Algorithm 2: The fast iterative shrinkage-thresholding algorithm (FISTA)
for solving AL subproblem (2.1) [1]

1 Initialize yk,1 = xk,0 ∈ X and t1 = 1.
2 for ℓ ≥ 1: do

3 Set tℓ+1 =
1+

√

1 + 4(tℓ)2

2
;

4 Compute

xk,ℓ = arg min
x∈Rn

{

〈

∇f̂β(y
k,ℓ; λk), x− yk,ℓ

〉

+
L
f̂

2

∥

∥

∥x− yk,ℓ
∥

∥

∥

2
+ g(x)

}

and

yk,ℓ+1 = xk,ℓ +

(

tℓ − 1

tℓ+1

)

(

xk,ℓ − xk,ℓ−1
)

;

Theorem 2.1 Let
{

xk,ℓ
}

ℓ≥1
be the sequence generated by FISTA (i.e., Algorithm

2) when applied to solve AL subproblem (2.1), where ℓ is the index of the inner
iteration. Suppose that x̂k,ℓ is the point such that

x̂k,ℓ = arg min
x∈Rn

{

〈

∇f̂β(xk,ℓ;λk), x− xk,ℓ
〉

+
Lf̂

2

∥

∥

∥
x− xk,ℓ

∥

∥

∥

2
+ g(x)

}

. (2.5)

Then,

max
x∈Rn

{〈

∇f̂β(x̂k,ℓ;λk), x̂k,ℓ − x
〉

+ g(x̂k,ℓ)− g(x)
}

≤
4Lf̂D

2

ℓ+ 1
, ∀ ℓ ≥ 1. (2.6)
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In other words, it takes at most

⌈

4Lf̂D
2

ηk

⌉

− 1 (2.7)

FISTA iterations and one proximal gradient iteration (equivalent to solving prob-
lem (2.5)) to find the point xk+1 satisfying (1.11).

Proof For simplicity, denote f̂β(x;λ) by f̂(x), Lβ(x;λ) by L(x), and xk,ℓ and x̂k,ℓ

by xℓ and x̂ℓ (respectively) for all ℓ ≥ 1 in the proof. First, it follows from [1,
Theorem 4.4] and the definitions of Lf̂ in (2.3) and D in (2.4) that

L(xℓ)− L(x(λk)) ≤
2Lf̂D

2

(ℓ+ 1)2
, ∀ ℓ ≥ 1. (2.8)

Note that x̂ℓ in (2.5) is obtained after performing a proximal gradient step from
xℓ. Then, from [1, Lemma 2.3] and [27, Theorem 2], we get

L(xℓ)− L(x̂ℓ) ≥
Lf̂

2

∥

∥

∥
x̂ℓ − xℓ

∥

∥

∥

2
. (2.9)

Combining (2.8) and (2.9) yields

∥

∥

∥
x̂ℓ − xℓ

∥

∥

∥
≤ 2D

ℓ+ 1
, ∀ ℓ ≥ 1. (2.10)

By the optimality of x̂ℓ, we have

〈

∇f̂(xℓ) + Lf̂

(

x̂ℓ − xℓ
)

, x− x̂ℓ
〉

+ g(x)− g(x̂ℓ) ≥ 0, ∀ x ∈ X , (2.11)

where X is the domain of g(x). Therefore, for any x ∈ X ,
〈

∇f̂(x̂ℓ), x̂ℓ − x
〉

+ g(x̂ℓ)− g(x)

=
〈

∇f̂(x̂ℓ)−∇f̂(xℓ), x̂ℓ − x
〉

+
〈

∇f̂(xℓ), x̂ℓ − x
〉

+ g(x̂ℓ)− g(x)

≤
〈

∇f̂(x̂ℓ)−∇f̂(xℓ), x̂ℓ − x
〉

+
〈

Lf̂

(

x̂ℓ − xℓ
)

, x− x̂ℓ
〉

≤ 2Lf̂D
∥

∥

∥
x̂ℓ − xℓ

∥

∥

∥

≤ 4Lf̂D
2/(ℓ+ 1),

where the first inequality comes from (2.11); the second inequality is due to the
Cauchy-Schwarz inequality, the definition of D in (2.4), and the fact that ∇f̂(x)
(with respect to x) is Lf̂−Lipschitz continuous; the third inequality follows from

(2.10). Taking the maximum over x ∈ X in the above inequality leads to the
desired result (2.6). �
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Algorithm 3: The Frank-Wolfe algorithm for solving AL subproblem (2.1)
[28]

1 Initialize xk,0 ∈ X .
2 for ℓ ≥ 0: do
3 Set γℓ = 2/(ℓ + 2);
4 Compute

υℓ = arg min
x∈Rn

{〈

∇f̂β(x
k,ℓ;λk), x− xk,ℓ

〉

+ g(x)
}

; (2.12)

Update xk,ℓ+1 = xk,ℓ + γℓ(υℓ − xk,ℓ);

Theorem 2.2 Let
{

xk,ℓ
}

ℓ≥1
be the sequence generated by the Frank-Wolfe method

(i.e., Algorithm 3) when applied to solve AL subproblem (2.1), where ℓ is the index
of the inner iteration. Then there exists 1 ≤ ℓ̂ ≤ ℓ such that

max
x∈Rn

{〈

∇f̂β(xk,ℓ̂;λk), xk,ℓ̂ − x
〉

+ g(xk,ℓ̂)− g(x)
}

≤
6Lf̂D

2

ℓ+ 2
, ∀ ℓ ≥ 1. (2.13)

In other words, it takes at most
⌈

6Lf̂D
2

ηk

⌉

−2 (2.14)

Frank-Wolfe iterations to find the point xk+1 satisfying (1.11).

Proof For simplicity, denote f̂β(x;λ) by f̂(x), Lβ(x;λ) by L(x), and xk,ℓ by xℓ for
all ℓ ≥ 0 in the proof. Define

∆ℓ = L(xℓ)− L(x(λk))

and
V ℓ =

〈

∇f̂(xℓ), xℓ − υℓ
〉

+ g(xℓ)− g(υℓ).

From the convexity of f̂(x) and the definition of υℓ in (2.12), we get

∆ℓ ≤
〈

∇f̂(xℓ), xℓ − x(λk)
〉

+ g(xℓ)− g(x(λk)) ≤ V ℓ. (2.15)

Recall xℓ+1 = xℓ + γℓ(υℓ − xℓ). Since ∇f̂(x) is Lf̂ -Lipschitz continuous, it follows
that

f̂(xℓ+1) ≤ f̂(xℓ) + γℓ
〈

∇f̂(xℓ), υℓ − xℓ
〉

+
Lf̂

(

γℓ
)2

2

∥

∥

∥
υℓ − xℓ

∥

∥

∥

2
. (2.16)

By the convexity of g(x), we get

g(xℓ+1) ≤ γℓg(υℓ) +
(

1− γℓ
)

g(xℓ). (2.17)

Combining (2.16) and (2.17), we have, for ℓ = 0, 1, ...,

L(xℓ+1) ≤ L(xℓ)− γℓV ℓ +
Lf̂

(

γℓ
)2

2

∥

∥

∥
υℓ − xℓ

∥

∥

∥

2
, (2.18)
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which, together with (2.15), implies

∆ℓ+1 ≤
(

1− γℓ
)

∆ℓ +
Lf̂

(

γℓ
)2

2

∥

∥

∥
υℓ − xℓ

∥

∥

∥

2

and thus

∆ℓ+1 ≤ ℓ

ℓ+ 2
∆ℓ +

(

2

ℓ+ 2

)2 Lf̂D
2

2
.

By mathematical induction, it can be verified that

∆ℓ ≤
2Lf̂D

2

ℓ+ 2
, ℓ ≥ 1. (2.19)

Based on (2.19), we can use the same argument (by contradiction) as in [14,21]
to show the desired result (2.13). The idea is to show that {Vm}ℓm=1 cannot stay
large over many consecutive iterations. For completeness, we give the details below.
Denote

Ĉ = 2Lf̂D
2, ℓ1 = ⌈ ℓ

2
⌉, and ν =

ℓ1 + 1

ℓ+ 2
.

Suppose on the contrary that

Vm >
3Ĉ

ℓ+ 2
, ∀ m = ℓ1, ℓ1 + 1, . . . , ℓ. (2.20)

From (2.18), we have,

∆ℓ+1 ≤ ∆ℓ − 2V ℓ

ℓ+ 2
+

Ĉ

(ℓ+ 2)2
, ℓ ≥ 0.

Summing this inequality for indices from ℓ1 to ℓ yields

∆ℓ+1 ≤ ∆ℓ1 −
ℓ
∑

m=ℓ1

2Vm

m+ 2
+

ℓ
∑

m=ℓ1

Ĉ

(m+ 2)2

< ∆ℓ1 − 6Ĉ

ℓ+ 2

ℓ+2
∑

m=ℓ1+2

1

m
+

ℓ+2
∑

m=ℓ1+2

Ĉ

m2

≤ Ĉ

ν (ℓ+ 2)
− 6Ĉ

ℓ+ 2

ℓ− ℓ1 + 1

ℓ+ 2
+

Ĉ (ℓ− ℓ1 + 1)

(ℓ+ 2) (ℓ1 + 1)

=
Ĉ

ν (ℓ+ 2)
(2− 6ν (1− ν)− ν) , (2.21)

where the second inequality is due to (2.20), and the third inequality is due to
(2.19) and the fact

∑b
m=a

1
k2 ≤ b−a+1

b(a−1) for any b ≥ a > 1. Define φ(x) = 2 −
6x (1− x)−x. Since ν ∈ [ 12 ,

2
3 ], it follows from (2.21) that ∆ℓ+1 < Ĉ

ν(ℓ+2)φ(ν) ≤ 0,
which is a contradiction. The proof is completed. �
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The convergence rate result (2.19) is not new when g(x) = IndX (x); see [14,17,
21] and references therein. For the general composite minimization case, Nesterov
proved

L(xℓ)− L(x(λk)) ≤
4Lf̂D

2

ℓ+ 1
, ℓ ≥ 1;

see Eq. (2.16) in [28]. Roughly speaking, our result (2.19) improves the above
bound by a factor of two.

Compared to accelerated proximal gradient methods when applied to solve AL
subproblem (2.1), the Frank-Wolfe methods generally need more iterations to find
the point xk+1 satisfying (1.11), while the computational cost per iteration in the
Frank-Wolfe methods is generally cheaper.

3 Global convergence

In this section, we present the global convergence result of our IAL framework
(Algorithm 1), which is independent of the methods used to find the point xk+1

satisfying (1.11). Theorem 3.4 shows global convergence of the IAL framework
under the assumption that the nonnegative sequence {ηk} is summable.

It is worth remarking that (3.4), (3.5), and (3.6), which build a bridge between
the exact dual function value and dual gradient and the approximate ones, are
crucial for establishing global convergence and non-ergodic convergence rate results
in this paper. We shall show that condition (1.11) implies (3.4), (3.5), and (3.6);
see the proofs of Lemma 3.1 and Lemma 3.2. Clearly, condition (1.11) can be
replaced with some other conditions (e.g., condition (1.9)) in Algorithm 1 and
global convergence and non-ergodic convergence results of Algorithm 1 will still
follow as long as the new conditions imply (3.4), (3.5), and (3.6).

For the ease of presentation, we define

x(λk) := arg min
x∈Rn

Lβ(x;λ
k), k = 1, 2, . . . , (3.1)

∇d(λk) :=Ax(λk)− b, k = 1, 2, . . . ,

d̄(λk) :=Lβ(x
k+1;λk), k = 1, 2, . . . , (3.2)

∇d̄(λk) :=Axk+1 − b, k = 1, 2, . . . , (3.3)

where xk+1 is generated by Algorithm 1 and satisfies (1.11).

We first prove the following two lemmas (Lemma 3.1 and Lemma 3.2), which
have been proved for smooth function F (x) in [6, 16, 24]. We now extend them
to composite nonsmooth function F (x). In particular, Lemma 3.1 shows that
d(λk+1) can be bounded from both above and below and Lemma 3.2 shows that
∥

∥∇d(λk)−∇d̄(λk)
∥

∥ is bounded by
√

ηk/β.

Lemma 3.1 The following two inequalities hold:

d(λ) ≤ d̄(µ) +
〈

∇d̄(µ), λ− µ
〉

, ∀ λ, µ, (3.4)

and

d(λk+1) ≥ d̄(λk) +
β

2

∥

∥

∥
∇d̄(λk)

∥

∥

∥

2
− ηk. (3.5)
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Proof We first show (3.4). By the definitions of d(λ) and Lβ(x;λ), we have

d(λ) = min
x∈Rn

{Lβ(x;λ)} ≤ Lβ(xµ;λ) = Lβ(xµ;µ) + 〈λ− µ,Axµ − b〉,

where xµ satisfies d̄(µ) = Lβ(xµ;µ). This, together with the definition of ∇d̄(µ)
(cf. (3.2)), yields (3.4).

We now prove (3.5). By the convexity of f(x), the definition of ∇d̄(λk), and
(2.2), we get

Lβ(x;λ
k+1) ≥ f(xk+1) +

〈

∇f(xk+1), x− xk+1
〉

+ g(x) +
〈

λk+1, Ax− b
〉

+
β

2
‖Ax− b‖2

= Lβ(x
k+1;λk) + β

(

〈

∇d̄(λk), Ax− b
〉

+
1

2

∥

∥

∥
(Ax− b)−∇d̄(λk)

∥

∥

∥

2
)

+
〈

∇f̂β(xk+1;λk), x− xk+1
〉

+ g(x)− g(xk+1).

Taking the minimum over x ∈ R
n on both sides of the above inequality, we have

d(λk+1) ≥ Lβ(x
k+1;λk) + β min

x∈Rn

{

〈

∇d̄(λk), Ax− b
〉

+
1

2

∥

∥

∥
(Ax− b)−∇d̄(λk)

∥

∥

∥

2
}

+ min
x∈Rn

{〈

∇f̂β(xk+1;λk), x− xk+1
〉

+ g(x)− g(xk+1)
}

.

By using the definition of d̄(λ) and (1.11), we immediately get the desired result
(3.5). �

Lemma 3.2 The following inequality holds:

∥

∥

∥
∇d(λk)−∇d̄(λk)

∥

∥

∥

2
≤ ηk

β
. (3.6)

Proof It follows from the optimality of x(λk) (cf. (3.1)) that

〈

∇f̂β(x(λk);λk), x(λk)− xk+1
〉

+ g(x(λk))− g(xk+1) ≤ 0.

By setting x = x(λk) in (1.11), we get

〈

∇f̂β(xk+1;λk), xk+1 − x(λk)
〉

− g(x(λk)) + g(xk+1) ≤ ηk.

Adding the above two inequalities yields

ηk ≥
〈

∇f̂β(xk+1;λk)−∇f̂β(x(λk);λk), xk+1 − x(λk)
〉

=
〈

∇f(xk+1) + βAT (Axk+1 − b)−∇f(x(λk))− βAT (Ax(λk)− b), xk+1 − x(λk)
〉

≥
〈

βAT (Axk+1 − b)− βAT (Ax(λk)− b), xk+1 − x(λk)
〉

=β
∥

∥

∥
∇d(λk)−∇d̄(λk)

∥

∥

∥

2
,

where the second inequality is due to the convexity of f(x) and the second equality
is due to the definitions of ∇d(λk) and ∇d̄(λk). �
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The following Lemma 3.3 shows that the sequence
{

λk
}

generated by Algorithm
1 is bounded.

Lemma 3.3 Let
{

λk
}

be generated by Algorithm 1. Suppose the sequence {ηk}
satisfies (3.10), then

∥

∥

∥
λk − λ∗

∥

∥

∥
≤ B, k = 1, 2, . . . , (3.7)

where

B :=

√

√

√

√‖λ1 − λ∗‖2 + 2β

+∞
∑

k=1

ηk < +∞. (3.8)

Proof We have
∥

∥

∥
λk+1 − λ∗

∥

∥

∥

2
=
∥

∥

∥
λk − λ∗ + β∇d̄(λk)

∥

∥

∥

2

=
∥

∥

∥
λk − λ∗

∥

∥

∥

2
+ 2β

〈

∇d̄(λk), λk − λ∗
〉

+ β2
∥

∥

∥
∇d̄(λk)

∥

∥

∥

2

≤
∥

∥

∥
λk − λ∗

∥

∥

∥

2
+ 2β

(

d̄(λk)− d(λ∗)
)

+ β2
∥

∥

∥
∇d̄(λk)

∥

∥

∥

2

=
∥

∥

∥
λk − λ∗

∥

∥

∥

2
+ 2β

(

d(λk+1)− d(λ∗)
)

+ 2β
(

d̄(λk)− d(λk+1)
)

+ β2
∥

∥

∥
∇d̄(λk)

∥

∥

∥

2

≤
∥

∥

∥
λk − λ∗

∥

∥

∥

2
+ 2β

(

d(λk+1)− d(λ∗)
)

+ 2βηk

≤
∥

∥

∥
λk − λ∗

∥

∥

∥

2
+ 2βηk,

where the first inequality is due to (3.4) (with λ and µ replaced by λ∗ and λk

respectively), the second inequality is due to (3.5), and the last inequality is due
to the fact that d(λk+1) ≤ d(λ∗) for all k ≥ 1. Summing the above inequality, we
obtain

∥

∥

∥
λk − λ∗

∥

∥

∥

2
≤
∥

∥

∥
λ1 − λ∗

∥

∥

∥

2
+ 2β

k−1
∑

i=1

ηi, k = 1, 2, . . . ,

which, together with (3.8), completes the proof. �

Before presenting the main result of this section, i.e., the global convergence
result of our IAL framework, we define

θ :=
β

4B2
, (3.9)

where B is given in (3.8).

Theorem 3.4 Let
{

xk
}

and
{

λk
}

be generated by Algorithm 1. Suppose the non-
negative sequence {ηk} satisfies

+∞
∑

k=1

ηk < +∞. (3.10)

Then,

δk := d
(

λ∗
)

− d(λk) → 0 and
∥

∥

∥
Axk+1 − b

∥

∥

∥
→ 0,

where λ∗ is an optimal solution to problem (1.5) and d(λ) is defined in (1.6).
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Proof It suffices to show
∑

k

δ2k < +∞, (3.11)

and
∑

k

∥

∥

∥
Axk+1 − b

∥

∥

∥

2
< +∞. (3.12)

By (3.5) and the definition of d̄(λk), we obtain

d(λk+1) ≥ d(λk) +
β

2

∥

∥

∥
∇d̄(λk)

∥

∥

∥

2
− ηk, (3.13)

which, together with (3.6) and the inequality a2 ≥ b2/2− (a− b)2, implies

d(λk+1) ≥ d(λk) +
β

4

∥

∥

∥
∇d(λk)

∥

∥

∥

2
− 3

2
ηk. (3.14)

Moreover, it follows from (3.7) and the concavity of d(λ) that

d(λ∗)− d(λk) ≤
〈

∇d(λk), λ∗ − λk
〉

≤
∥

∥

∥
λk − λ∗

∥

∥

∥

∥

∥

∥
∇d(λk)

∥

∥

∥
≤ B

∥

∥

∥
∇d(λk)

∥

∥

∥
.

Combining the above, (3.9), and (3.14), we immediately obtain

δk+1 ≤ δk − θδ2k +
3

2
ηk, k = 1, 2, . . . , (3.15)

which further implies

δk ≤ δ1 − θ

k−1
∑

i=1

δ2i +
3

2

k−1
∑

i=1

ηi, k = 1, 2, . . . (3.16)

From the definition of δk, we know δk ≥ 0 for all k ≥ 1. From this, (3.10), and
(3.16), we obtain (3.11).

Next, we prove (3.12). It follows from (3.3) and (3.13) that

∥

∥

∥
Axk+1 − b

∥

∥

∥

2
≤ 2

β

(

d(λk+1)− d(λk) + ηk
)

, k = 1, 2, . . . . (3.17)

Summing (3.17) from i = 1 to k yields

k
∑

i=1

∥

∥

∥
Axi+1 − b

∥

∥

∥

2
≤ 2

β

(

d(λk+1)− d(λ1) +

k
∑

i=1

ηi

)

≤ 2

β

(

d(λ∗)− d(λ1) +

k
∑

i=1

ηi

)

≤ 2

β

(

1

2β

∥

∥

∥
λ1 − λ∗

∥

∥

∥

2
+

k
∑

i=1

ηi

)

≤ B2

β2
,

where the third inequality is due to the facts that ∇d(λ∗) = 0 and ∇d(λ) is
1
β -Lipschitz continuous [3] and the last inequality is due to (3.8). The proof of
Theorem 3.4 is completed. �
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Theorem 3.4 shows the global convergence of Algorithm 1 under conditions
(1.11) and (3.10). Classical conditions in [32] that guarantee the global convergence
of the IAL framework are (1.9) and (3.10). Since (1.9) implies (1.11) (by Theorem
2.1), our conditions (1.11) and (3.10) are weaker than conditions (1.9) and (3.10)
in [32].

4 Non-ergodic convergence rate

In this section, we present the non-ergodic convergence rate result of our IAL
framework (Algorithm 1). Theorems 4.1 and 4.3 show the non-ergodic convergence
rate of the IAL framework.

Since δk → 0 (cf. Theorem 3.4) and ηk → 0, there exists k0 ≥ 4 such that

max
k≥k0

{δk} ≤ 1

2θ
and max

k≥k0

{ηk} ≤ 1

24θ
, (4.1)

where θ is given in (3.9). Define

τ1 :=
k0
4θ

and τ2 :=
1

4θ
√
ηk0

. (4.2)

It is easy to verify

τ1 ≥ 1

θ
and τ2 ≥

√

3

2θ
. (4.3)

Theorem 4.1 Let
{

λk
}

be generated by Algorithm 1. Suppose that the positive
sequence {ηk} is nonincreasing and satisfies (3.10) and

√

ηk+1

ηk
≥ k − 2

k
, k = k0, k0 + 1, . . . , (4.4)

where k0 satisfies (4.1). Then,

δk ≤ τ1
k

+ τ2
√
ηk, k = k0, k0 + 1, . . . , (4.5)

where τ1 and τ2 are defined in (4.2).

Proof We prove the theorem by induction. From (4.1) and (4.2), we know

δk0
≤ 1

2θ
=
τ1
k0

+ τ2
√
ηk0

.

Therefore, the inequality (4.5) holds for k = k0. Next, we assume that (4.5) holds
for some k ≥ k0, and we consider the case k + 1. We have

δk+1 ≤ δk − θδ2k +
3

2
ηk

≤ τ1
k

+ τ2
√
ηk − θ

(τ1
k

+ τ2
√
ηk

)2
+

3

2
ηk

=
τ1

k + 1

(k + 1) (k − θτ1)

k2
+ τ2

√
ηk+1

√
ηk
(

1− 2θτ1

k

)

√
ηk+1

+

(

3

2
− θτ22

)

ηk

≤ τ1
k + 1

+ τ2
√
ηk+1,
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where the first inequality is due to (3.15), the second inequality is due to the
facts that the function x − θx2 is an increasing function in x ∈ (−∞, 1

2θ ] and
τ1

k + τ2
√
ηk ≤ τ1

k0
+ τ2

√
ηk0

= 1
2θ for all k ≥ k0 (because {ηk} is nonincreasing),

and the last inequality is due to (4.3) and (4.4). The proof of Theorem 4.1 is
completed. �

As shown in (4.5), the rate that {δk} converges to zero depends on two terms,
i.e., τ1

k and τ2
√
ηk, and the rate is determined by the slower one of them: if k

√
ηk →

0, then δk → 0 with a rate of O (1/k) ; otherwise, δk → 0 with a rate of O
(√
ηk
)

.
In particular, if ηk = 0 for all k ≥ 1, then Algorithm 1 reduces to the exact dual
gradient ascent method, and achieves the O (1/k) convergence rate.

These facts indicate that the sequence {ηk} in Algorithm 1 should not be
chosen such that

{√
ηk
}

converges faster than {1/k} to zero. This is because such
a choice would increase the computational cost of solving the AL subproblem, but
theoretically cannot improve the convergence rate of {δk} , which is O (1/k) in this
case. One possible choice of the sequence {ηk} is

ηk =
σ

k2α
, k = 1, 2, . . . (4.6)

with some constant σ > 0 and α ∈ ( 12 , 1]. It is easy to check that (4.6) satisfies all
conditions required in Theorem 4.1.

The following Theorem 4.3 gives the non-ergodic convergence rate of Algorithm
1 when ηk is chosen as in (4.6). We first present a lemma, which is useful in proving
Theorem 4.3.

Lemma 4.2 Suppose the nonnegative sequence {δk} satisfies

E

2
δ2k+1 + δk+1 ≤ δk, k = 1, 2, . . . , (4.7)

where E > 0 is a constant. Then, we have

δk ≤ max
{

δ1,
4
E

}

k
, k = 1, 2, . . . . (4.8)

Proof Again we prove this by induction. Clearly, the inequality (4.8) is true for
k = 1. Next, assuming (4.8) is true for some k ≥ 1, we show it is also true for
k + 1. In fact, we have

δk+1 ≤ −1 +
√
1 + 2Eδk
E

≤ −1 +

√

1 + 2E
max{δ1, 4

E
}

k

E

=
2max

{

δ1,
4
E

}

k +
√

k2 + 2Emax
{

δ1,
4
E

}

k

≤ max
{

δ1,
4
E

}

k + 1
,

where the first inequality is due to the inequality (4.7), and the second inequality
is due to the assumption that (4.8) holds for k. �
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Theorem 4.3 Let
{

xk
}

and
{

λk
}

be generated by Algorithm 1. Suppose that the
positive sequence {ηk} is chosen as in (4.6). Then,

δk ≤ C

kα
, k = 1, 2, . . . , (4.9)

where

C = 4

√

3
(

3
2θσ + 1

)

σ

θ
+

4

3
max

{

δ1,
4

θ

}

, (4.10)

and θ is given in (3.9);

∥

∥

∥
Axk+1 − b

∥

∥

∥

2
≤ ψk :=

2

β

(

C + σ

kα

)

, k = 1, 2, . . . ; (4.11)

−
∥

∥λ∗
∥

∥

√

ψk − β

2
ψk ≤ F (xk+1)− F (x∗) ≤

(∥

∥λ∗
∥

∥+B
)
√

ψk + ηk, k = 1, 2, . . . ,

(4.12)

where λ∗ is an optimal solution to problem (1.5) and B is given in (3.9); and

max
x∈Rn

{〈

∇f(xk+1) +ATλk+1, xk+1 − x
〉

+ g(xk+1)− g(x)
}

≤ ηk, k = 1, 2, . . .

(4.13)

Proof We show (4.9), (4.11), (4.12), and (4.13) separately.
We first show (4.9) by induction. Clearly, the inequality (4.9) holds for k = 1.

Next, we assume that (4.9) holds for some k ≥ 1, and show it is also true for k+1.
We use the contrapositive argument. Assume that (4.9) does not hold for k + 1,
i.e.,

δk+1 >
C

(k + 1)α
, (4.14)

where C is given in (4.10). Let z∗ = C
4 − 1

θ > 0. If

θ

2

(

δk+1 −
z∗

(k + 1)α

)2

+

(

δk+1 −
z∗

(k + 1)α

)

≤
(

δk − z∗

kα

)

(4.15)

holds, then it follows from Lemma 4.2 that

δk+1 −
z∗

(k + 1)α
≤ max

{

δ1,
4
θ

}

k + 1
,

and

δk+1 ≤ z∗ +max
{

δ1,
4
θ

}

(k + 1)α
<

C

(k + 1)α
. (4.16)

Clearly, (4.16) contradicts (4.14), which implies that (4.9) is true. Next, we prove
(4.15), which is equivalent to

P (z∗) :=
θ

2

(

δk+1 −
z∗

(k + 1)α

)2

+

(

δk+1 − z∗

(k + 1)α

)

−
(

δk − z∗

kα

)

≤ 0.
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We consider the following quadratic function Q(z) with respect to z :

Q(z) =
θ

2
z2 −

(

θC

4
− 1

)

z +
3

2

(

3θσ

2
+ 1

)

σ.

It can be verified that the minimizer of Q(z) is z∗. Since the discriminant of Q(z)
is nonnegative, it follows that the minimum value

Q(z∗) ≤ 0. (4.17)

Moreover, for any k ≥ 1, we have

(3.15) =⇒ δk+1 ≤ δk +
3

2
ηk =⇒ 1

2
δ2k+1 ≤ δ2k +

9

4
η2k =⇒ −δ2k ≤ −1

2
δ2k+1 +

9

4
σηk.

Combining the last inequality in the above with (3.15) yields

θ

2
δ2k+1 + δk+1 ≤ δk +

3

2

(

3θσ

2
+ 1

)

ηk, (4.18)

which further implies

P (z∗) =
θ

2
δ2k+1 + δk+1 − δk − θδk+1z

∗

(k + 1)α
+

θ(z∗)2

2(k + 1)2α
− z∗

(k + 1)α
+
z∗

kα

≤ 3

2

(

3θσ

2
+ 1

)

ηk − θδk+1z
∗

(k + 1)α
+

θ(z∗)2

2(k+ 1)2α
− z∗

(k + 1)α
+
z∗

kα
. (4.19)

By ηk ≤ σ
k2α , the assumption δk+1 >

C
(k+1)α (cf. (4.14)), the facts (k+1)2α ≤ 4k2α

and (k + 1)α − kα ≤ 1 for all k ≥ 1 and α ∈ (0, 1], we get

3

2

(

3θσ

2
+ 1

)

ηk − θδk+1z
∗

(k + 1)α
+

θ(z∗)2

2(k + 1)2α
− z∗

(k + 1)α
+
z∗

kα

≤
3
2

(

3θσ
2 + 1

)

σ

k2α
− θC

4k2α
z∗ +

θ

2k2α
(z∗)2 +

1

k2α
z∗

=
Q(z∗)

k2α
,

which, together with (4.17) and (4.19), yields P (z∗) ≤ 0.
We now show (4.11). From (3.17), we obtain

∥

∥

∥
Axk+1 − b

∥

∥

∥

2
≤ 2

β

(

d(λk+1)− d(λk) + ηk
)

≤ 2

β

(

d(λ∗)− d(λk) + ηk
)

=
2

β
(δk + ηk) ,

which, together with (4.6) and (4.9), yields (4.11).
Next, we show (4.12). From the strong duality and the definition of Lβ(x;λ)

(cf. (1.3)), we obtain

F (x∗) ≤ Lβ(x
k+1;λ∗) = F (xk+1) +

〈

λ∗, Axk+1 − b
〉

+
β

2

∥

∥

∥
Axk+1 − b

∥

∥

∥

2

≤ F (xk+1) +
∥

∥λ∗
∥

∥

∥

∥

∥
Axk+1 − b

∥

∥

∥
+
β

2

∥

∥

∥
Axk+1 − b

∥

∥

∥

2
.
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This, together with (4.11), implies

F (xk+1)− F (x∗) ≥ −‖λ∗‖
√

ψk − β

2
ψk. (4.20)

On the other hand, we have

Lβ(x
k+1;λk) ≤ f̂β(x(λ

k);λk) +
〈

∇f̂β(xk+1;λk), xk+1 − x(λk)
〉

+ g(xk+1)

= d(λk) +
〈

∇f̂β(xk+1;λk), xk+1 − x(λk)
〉

+ g(xk+1)− g(x(λk))

≤ d(λk) + ηk

≤ F (x∗) + ηk,

where the first inequality is due to the convexity of f̂β(x;λ) with respect to x,
the first equality is due to the definition of d(λk), the second inequality is due
to (1.11), and the last inequality is due to the fact d(λk) ≤ F (x∗). Recall the
definition of Lβ(x;λ), we get

F (xk+1) +
〈

λk, Axk+1 − b
〉

+
β

2

∥

∥

∥
Axk+1 − b

∥

∥

∥

2
≤ F (x∗) + ηk,

which, together with (3.7), immediately implies

F (xk+1)− F (x∗) ≤
(

‖λ∗‖+B
)
√

ψk + ηk. (4.21)

Combining (4.20) and (4.21) yields (4.12).
Finally, we show (4.13). It follows from (2.2) and the definition of f̂β(x;λ) in

(1.4) that

∇f(xk+1) +ATλk+1 = ∇f(xk+1) +AT
(

λk + β
(

Axk+1 − b
))

= ∇f̂β(xk+1;λk).

The above, together with (1.11), immediately implies (4.13). The proof of Theorem
4.3 is completed. �

As a direct consequence of Theorem 4.3, we obtain the following result.

Corollary 4.4 Let
{

xk
}

and
{

λk
}

be generated by Algorithm 1 with ηk = σ
k2 .

Then,

δk = O
(

1

k

)

,
∥

∥

∥
Axk+1 − b

∥

∥

∥
= O

(

1√
k

)

,
∣

∣

∣
F (xk+1)− F (x∗)

∣

∣

∣
= O

(

1√
k

)

(4.22)
and

max
x∈Rn

{〈

∇f(xk+1) + ATλk+1, xk+1 − x
〉

+ g(xk+1)− g(x)
}

= O
(

1

k2

)

.

Next, we present some iteration complexity results of Algorithm 1 to return
an ǫ-optimal solution of problem (1.1). Our definition of the ǫ-optimal solution is
given as follows, which is a perturbation of the KKT optimality conditions.
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Definition 4.5 (ǫ-optimal solution) For any given ǫ > 0, (xǫ, λǫ) is called an
ǫ-optimal solution pair if they satisfy

‖Axǫ − b‖ ≤ √
ǫ (4.23)

and

max
x∈Rn

{〈

∇f(xǫ) +ATλǫ, xǫ − x
〉

+ g(xǫ)− g(x)
}

≤ ǫ. (4.24)

Theorem 4.6 (Iteration Complexity) For any ǫ > 0, set

α = σ = 1 (4.25)

in (4.6) and the penalty parameter

β =
2(C + 1)√

ǫ
, (4.26)

where C is defined in (4.10). Then, the total number of iterations for Algorithm
1, where AL subproblem (2.1) is approximately solved by Algorithms 2 or 3 until
a point xk+1 satisfying (1.11) is found, to return an ǫ-optimal solution of problem
(1.1) satisfying (4.23) and (4.24) is at most

T1 :=

⌈

4

(

Lf +
2 (C + 1) ‖A‖2√

ǫ

)

D2

ǫ3/2

⌉

(4.27)

and

T2 :=

⌈

6

(

Lf +
2 (C + 1) ‖A‖2√

ǫ

)

D2

ǫ3/2

⌉

, (4.28)

respectively, where Lf is the Lipschitz constant of ∇f(x) and D is defined in (2.4).

Proof LetK = ⌈1/√ǫ⌉ . Substituting k = K, α and σ in (4.25), and β in (4.26) into
(4.11) and (4.13), we immediately see that the pair (xk+1, λk+1) satisfies (4.23)
and (4.24). Next, we compute the total iteration complexity of Algorithm 1 with
Algorithm 2 being used to solve the AL subproblem. By invoking Theorem 2.1,
we know that the total number of iterations is

K
∑

k=1

{⌈

4Lf̂D
2

ηk

⌉

− 1

}

≤ 4
(

Lf + β‖A‖2
)

D2

σ

K
∑

k=1

k2α ≤ T1.

Using the same argument, we can show that the iteration complexity of Algorithm
1 with Algorithm 3 being used to solve the AL subproblem is upper bounded by
T2. We omit the details for succinctness. �
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5 Comparisons with existing works [16,23]

In this section, we make some remarks on the comparison of our proposed IAL
framework (Algorithm 1) and two closely related methods in [16, 23] for solving
the linearly constrained convex programming problems.

We first compare our proposed IAL method with the one in [16]. The method
in [16] is designed for solving problem (1.1) with g(x) = IndX (x). It applies Nes-
terov’s optimal first-order method to solve AL subproblem (2.1) until a point xk+1

satisfying (1.9) is found. Our IAL framework can be used to solve more general
problem (1.1) (with a general composite function g(x)). Our framework requires
approximately solving subproblem (2.1) until a point xk+1 satisfying (1.11) (which
is easier to check than (1.9)) is found.

The work [16] shows the same non-ergodic convergence rate results as ours in
(4.22) in Corollary 4.4, but under a much stronger condition that the sequence
{ηk} in (1.9) satisfies

k
∑

i=1

η2i = O
(

1

k

)

.

To make it more clearly, consider the special case where we are interested in finding
an exact solution of problem (1.1), which requires k → +∞ in Corollary 4.4. In
this case, the method in [16] needs to solve each AL subproblem exactly (i.e., ηi
in (1.9) needs to be zero for all i = 1, 2, . . .), while our IAL framework only needs
to solve each subproblem approximately (i.e., ηi in (1.11) only needs to be in the
order of O(1/i2) for i = 1, 2, . . .).

Next, we compare our proposed IAL method with the one in [23]. The closest
related method in [23] to our IAL method, called inexact gradient augmented
Lagrangian, is designed for solving a class of convex conic problems

min
u∈U

f(u), s.t. Gu+ g ∈ K, (5.1)

where U ⊆ R
n is a convex compact set, K ⊆ R

m is a convex cone, G ∈ R
m×n, and

g ∈ R
m. It is easy to show that problem (5.1) is a special case of problem (1.1).

At the k-th iteration, the method in [23] applies Nesterov’s optimal first-order
method to solve AL subproblem (2.1) until a point xk+1 satisfying

Lβ

(

xk+1;λk
)

− Lβ

(

x(λk);λk
)

≤ δ (5.2)

is found, where δ > 0 is the given accuracy; then the method updates the dual
variable by

λk+1 = λk +
β

2

(

Axk+1 − b
)

. (5.3)

Again, our framework requires approximately solving subproblem (2.1) until a
point xk+1 satisfying (1.11) is found and updates the dual variable via (2.2).
Notice that the dual variable update formula (5.3) in [23] is different from (2.2) in
the classical AL method.

The work [23, Corollary 3.3 and Theorem 3.4] shows the ergodic convergence
rate results in terms of the dual function values, the primal infeasibility, and the
primal function values. Moreover, the work [23, Theorem 3.5] shows that it takes
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the algorithm (with an optimal choice of the penalty parameter β and the solution
tolerance δ) a total number of O (1/ǫ) iterations to return an ǫ-optimal solution
uǫ defined as follows:

|f(uǫ)− f∗| ≤ ǫ and distK(Guǫ + g) ≤ ǫ, (5.4)

where f∗ is the optimal value of problem (5.1). As mentioned in [23], the algo-
rithm behind the above complexity result reduces to a quadratic penalty method
(without any update of the dual variable) and therefore there is no convergence
guarantee for the dual variable.

In summary, the results in our paper significantly differ from the ones in [23] in
terms of global convergence results, convergence rate results, and the algorithms.

- Global convergence. Our IAL framework enjoys the global convergence (un-
der the assumption that the error sequence {ηk} is summable), but the inexact
gradient augmented Lagrangian method in [23] does not have global conver-
gence guarantee, due to the existence of the positive accuracy constant δ.

- Convergence rate. The convergence results for our IAL framework in terms
of the dual objective values, the primal infeasibility, and the primal objec-
tive values are all for the non-ergodic solution, but the results for the inexact
gradient augmented Lagrangian method in [23] are for the ergodic solution.

- Algorithms and dual optimality guarantee. The dual variable update
formula in our IAL framework and the one in [23] are different. The algorithms
behind the iteration complexity results (see Theorem 3.8 in [23] and Theorem
4.6 in our paper) are also sharply different from each other. The algorithm
behind Theorem 3.8 in [23] is essentially a penalty method (without any update
of the dual variable) but the algorithm behind Theorem 4.6 in our paper indeed
is an IAL method. Therefore, there is no convergence guarantee for the dual
variable in [23], while it is guaranteed in our paper. In particular, from Theorem
4.3 and with the choice of the parameters in Theorem 4.6, we get

max
x∈Rn

{〈

∇f(xk+1) +ATλk+1, xk+1 − x
〉

+ g(xk+1)− g(x)
}

≤ ǫ

and
d(λ∗)− d(λk+1) = O

(√
ǫ
)

.

- Definition of ǫ-optimal solution. Our definition of the ǫ-optimal solution
is a natural perturbation of the KKT optimality conditions of problem (1.1),
which involves the dual variable. The definition of the ǫ-optimal solution in [23],
i.e., (5.4), does not involve the dual variable.

6 Numerical results

In this section, we present some preliminary numerical results for the purpose
of comparing the following two things: (i) the difference of the ergodic and non-
ergidoc solutions; (ii) the difference of the “exact” augmented Lagrangian (EAL)
method and our IAL method. Our codes were written in MATLAB and the results
were obtained on a standard PC.

The numerical experiments were conducted on basis pursuit problem (1.10).
In Table 6.1 we report the results for some small problem with m = 60, n = 100
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and sparsity (number of nonzero entries) s = 15. The 10 instances were randomly
generated in the following manner: the entries of A were generated randomly
following the standard Gaussian distribution N (0, 1); the positions of the nonzero
entries in x∗ were uniformly randomly chosen and their values were generated
following the uniform distribution in (0, 1); and finally b is set to b = Ax∗. To
construct the bounded set containing the true solution, we set x̂ = A−1

m b, where
Am is the square matrix formed by the first m columns of A. We use x̄ to denote
the solution returned by EAL or IAL.

We ran both of IAL and EAL for K = 200 (dual) iterations. We set both
of the initial (primal) point x1 and the initial (dual) Lagrange multiplier λ1 to
0. We applied the proximal gradient method to solve the AL subproblem until
(1.11) is satisfied with ηk = 1/k2 for IAL and ηk ≡ 10−4 for EAL. We reported
the comparison results in Table 6.1. In particular, we reported the cpu time (in
seconds), the relative error of the solution (denoted by relerr = ‖x̄ − x∗‖/‖x∗‖),
the residual of the linear constraint (denoted by resi = ‖Ax̄−b‖), and the objective
value error (denoted by objerr = |‖x̄‖1 − ‖x∗‖1|). Moreover, we also reported the
sparsity (the number of the nonzero entries) of the returned non-ergodic solution
x̄ (denoted by sn) and the sparsity of the ergodic solution xe :=

∑K
k=1 x

k/K
(denoted by se).

We see from Table 6.1 that IAL and EAL are comparable in terms of the
solution quality measured by relerr, resi, and objerr, and there is no evidence
showing that one is better than the other. However, IAL is much faster than EAL
in terms of the cpu time. This is expected because the AL subproblems are solved
much less accurately in IAL in the first 100 iterations (compared to EAL). It is
worth mentioning that ηk < 10−4 for k > 100 and ηk = 0.25 ∗ 10−4 for k = 200
in IAL, that is, the last 100 AL subproblems in IAL are solved slightly more
accurately than EAL, but IAL is still much faster.

We also observe from Table 6.1 that for both IAL and EAL, the non-ergodic
solution x̄ is significantly more sparse than the ergodic solution xe. In fact, the
sparsity pattern of the non-ergodic solution always perfectly matches that of the
true solution x∗. This well justifies the importance of our global convergence and
convergence rate analysis on the non-ergodic solution in this paper.

We also report numerial results for some larger problem instances in Table
6.2. The problem instances are randomly generated in the same manner as before.
From Table 6.2 we have the same observations as the ones from Table 6.1: IAL is
much faster than EAL in terms of the cpu time and the non-ergodic solutions are
significantly more sparse than the ergodic solutions.
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Table 6.1 Numerical results of IAL and EAL for solving basis pursuit problem (1.10) with
m = 60, n = 100, s = 15, where ID denotes the problem instance index.

IAL EAL

ID se sn relerr resi objerr cpu se sn relerr resi objerr cpu

1 40 15 2.0e-08 1.9e-07 2.8e-08 2.2 40 15 1.4e-08 1.3e-07 5.7e-08 3.9

2 27 15 1.0e-08 9.6e-08 1.2e-08 0.6 27 15 8.0e-09 7.0e-08 1.6e-08 1.3

3 16 15 3.3e-08 3.5e-07 1.2e-08 0.2 16 15 3.9e-08 4.0e-07 1.4e-08 0.3

4 23 15 7.2e-09 8.1e-08 2.7e-08 0.3 23 15 9.0e-09 9.8e-08 3.0e-08 0.5

5 25 15 1.7e-08 1.7e-07 9.1e-09 0.4 25 15 6.4e-09 5.7e-08 3.1e-09 0.8

6 26 15 3.0e-09 2.2e-08 8.5e-10 1.1 26 15 2.8e-09 2.1e-08 1.8e-09 2.0

7 26 15 5.3e-08 4.7e-07 1.7e-07 0.7 26 15 3.5e-08 3.0e-07 1.3e-07 1.7

8 23 15 2.9e-08 2.7e-07 2.5e-08 0.3 22 15 1.1e-08 1.0e-07 4.6e-08 0.7

9 25 18 6.0e-04 6.7e-03 1.3e-03 0.5 25 18 6.0e-04 6.7e-03 1.3e-03 1.0

10 17 15 6.4e-08 6.8e-07 7.6e-08 0.2 17 15 4.7e-08 4.6e-07 3.0e-08 0.3
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