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Abstract

We address online linear optimization problems when the possible actions of the decision
maker are represented by binary vectors. The regret of the decision maker is the difference
between her realized loss and the minimal loss she would haveachieved by picking, in hind-
sight, the best possible action. Our goal is to understand the magnitude of the best possible
(minimax) regret. We study the problem under three different assumptions for the feedback
the decision maker receives: full information, and the partial information models of the so-
called “semi-bandit” and “bandit” problems. In the full information case we show that the
standard exponentially weighted average forecaster is a provably suboptimal strategy. For the
semi-bandit model, by combining the Mirror Descent algorithm and the INF (Implicitely Nor-
malized Forecaster) strategy, we are able to prove the first optimal bounds. Finally, in the
bandit case we discuss existing results in light of a new lower bound, and suggest a conjecture
on the optimal regret in that case.

1 Introduction.

In this paper we consider the framework of online linear optimization. The setup may be described
as a repeated game between a “decision maker” (or simply “player” or “forecaster”) and an “adver-
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sary” as follows: at each time instancet = 1, . . . , n, the player chooses, possibly in a randomized
way, an action from a given finite action setA ⊂ R

d. The action chosen by the player at timet is
denoted byat ∈ A. Simultaneously to the player, the adversary chooses a lossvectorzt ∈ Z ⊂ R

d

and the loss incurred by the forecaster isaTt zt. The goal of the player is to minimize the expected
cumulative lossE

∑n
t=1 a

T
t zt where the expectation is taken with respect to the player’s internal

randomization (and eventually the adversary’s randomization).
In the basic “full-information” version of this problem, the player observes the adversary’s

move zt at the end of roundt. Another important model for feedback is the so-calledbandit
problem, in which the player only observes the incurred lossaTt zt. As a measure of performance
we define the regret1 of the player as

Rn = E

n∑

t=1

aTt zt −min
a∈A

E

n∑

t=1

aT zt .

In this paper we address a specific example of online linear optimization: we assume that the action
setA is a subset of thed-dimensional hypercube{0, 1}d such that∀a ∈ A, ||a||1 = m, and the
adversary has a bounded loss per coordinate, that is2 Z = [0, 1]d. We call this settingonline com-
binatorial optimization. As we will see below, this restriction of the general framework contains
a rich class of problems. Indeed, in many interesting cases,actions are naturally represented by
Boolean vectors.

In addition to the full information and bandit versions of online combinatorial optimization,
we also consider another type of feedback which makes sense only in this combinatorial setting.
In the semi-banditversion, we assume that the player observes only the coordinates ofzt that
were played inat, that is the player observes the vector(at(1)zt(1), . . . , at(d)zt(d)). All three
variants of online combinatorial optimization are sketched in Figure1. More rigorously, online
combinatorial optimization is defined as a repeated game between a “player” and an “adversary.”
At each roundt = 1, . . . , n of the game, the player chooses a probability distributionpt over the
set of actionsA ⊂ {0, 1}d and draws a random actionat ∈ A according topt. Simultaneously, the
adversary chooses a vectorzt ∈ [0, 1]d. More formally,zt is a measurable function of the “past”
(ps, as, zs)s=1,...,t−1. In the full information case,pt is a measurable function of(ps, as, zs)s=1,...,t−1.
In the semi-bandit case,pt is a measurable function of(ps, as, (as(i)zs(i))i=1,...,d)s=1,...,t−1 and in
the bandit problem it is a measurable function of(ps, as, (a

T
s zs))s=1,...,t−1.

1.1 Motivating examples.

Many problems can be tackled under the online combinatorialoptimization framework. We give
here three simple examples:

• m-sets. In this example we consider the setA of all
(
d
m

)
Boolean vectors in dimensiond

with exactlym ones. In other words, at every time step, the player selectsm actions out of

1In the full information version, it is straightforward to obtain upper bounds for the stronger notion of regret
E
∑n

t=1
aT
t
zt − Emina∈A

∑n

t=1
aT zt which is always at least as large asRn. However, for partial information

games, this requires more work. In this paper we only consider Rn as a measure of the regret.
2Note that since all actions have the same size, i.e.||a||1 = m, ∀a ∈ A, one can reduce the case ofZ = [α, β]d to

Z = [0, 1]d via a simple renormalization.
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Parameters: set of actionsA ⊂ {0, 1}d; number of roundsn ∈ N.

For each roundt = 1, 2, . . . , n;

(1) the player chooses a probability distributionpt overA and draws a random actionat ∈ A ac-
cording topt;

(2) simultaneously, the adversary selects a loss vectorzt ∈ [0, 1]d (without revealing it);

(3) the player incurs the lossaTt zt. She observes

– the loss vectorzt in the full information setting,

– the coordinateszt(i)at(i) in the semi-bandit setting,

– the instantaneous lossaTt zt in the bandit setting.

Goal: The player tries to minimize her cumulative loss
∑n

t=1 a
T
t zt.

Figure 1: Online combinatorial optimization.

d possibilities. Whenm = 1, the semi-bandit and bandit versions coincide and correspond
to the standard (adversarial) multi-armed bandit problem.

• Online shortest path problem.Consider a communication network represented by a graph
in which one has to send a sequence of packets from one fixed vertex to another. For each
packet one chooses a path through the graph and suffers a certain delay which is the sum of
the delays on the edges of the path. Depending on the traffic, the delays on the edges may
change, and, at the end of each round, according to the assumed level of feedback, the player
observes either the delays of all edges, the delays of each edge on the chosen path, or only
the total delay of the chosen path. The player’s objective isto minimize the total delay for
the sequence of packets.

One can represent the set of valid paths from the starting vertex to the end vertex as a set
A ⊂ {0, 1}d whered is the number of edges. If at timet, zt ∈ [0, 1]d is the vector of delays
on the edges, then the delay of a patha ∈ A is zTt a. Thus this problem is an instance of
online combinatorial optimization in dimensiond, whered is the number of edges in the
graph. In this paper we assume, for simplicity, that all valid paths have the same lengthm.

• Ranking. Consider the problem of selecting a ranking ofm items out ofM possible items.
For example a website could have a set ofM ads, and it has to select a ranked list ofm of
these ads to appear on the webpage. One can rephrase this problem as selecting a matching of
sizem on the complete bipartite graphKm,M (with d = m×M edges). In the online learning
version of this problem, each day the website chooses one such list, and gains one dollar for
each click on the ads. This problem can easily be formulated as an online combinatorial
optimization problem.

Our theory applies to many more examples, such as spanning trees (which can be useful in certain
communication problems), orm-intervals.
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1.2 Previous work.

• Full Information. The full-information setting is now fairly well understood, and an op-
timal regret bound (in terms ofm, d, n) was obtained by Koolen, Warmuth, and Kivinen
[26]. Previous papers under full information feedback also include Gentile and Warmuth
[14], Kivinen and Warmuth [25], Grove, Littlestone, and Schuurmans [15], Takimoto and
Warmuth [34], Kalai and Vempala [22], Warmuth and Kuzmin [36], Herbster and Warmuth
[19], and Hazan, Kale, and Warmuth [18].

• Semi-bandit. The first paper on the adversarial multi-armed bandit problem (i.e., the special
case ofm-sets withm = 1) is by Auer, Cesa-Bianchi, Freund, and Schapire [4] who derived
a regret bound of order

√
dn log d. This result was improved to

√
dn by Audibert and Bubeck

[2, 3]. György, Linder, Lugosi, and Ottucsák [16] consider the online shortest path problem
and derive suboptimal regret bounds (in terms of the dependency onm andd). Uchiya,
Nakamura, and Kudo [35] (respectively Kale, Reyzin, and Schapire [23]) derived optimal
regret bounds for the case ofm-sets (respectively for the problem of ranking selection) up to
logarithmic factors.

• Bandit. McMahan and Blum [27], and Awerbuch and Kleinberg [5] were the first to consider
this setting, and obtained suboptimal regret bounds (in terms of n). The first paper with
optimal dependency inn was by Dani, Hayes, and Kakade [12]. The dependency onm and
d was then improved in various ways by Abernethy, Hazan, and Rakhlin [1], Cesa-Bianchi,
and Lugosi [11], and Bubeck, Cesa-Bianchi, and Kakade [9]. We discuss these bounds in
detail in Section4. In particular, we argue that the optimal regret bound in terms ofd (and
m) is still an open problem.

We also refer the interested reader to the recent survey [8] for an overview of bandit problems in
various other settings.

1.3 Contribution and contents of the paper.

In this paper we are primarily interested in the optimalminimax regretin terms ofm, d andn. More
precisely, our aim is to determine the order of magnitude of the following quantity: For a given
feedback assumption, writesup for the supremum over all adversaries andinf for the infimum
over all allowed strategies for the player under the feedback assumption. (Recall the definition of
“adversary” and “player” from the introduction.) Then we are interested in

max
A⊂{0,1}d:∀a∈A,||a||1=m

inf supRn.

Our contribution to the study of this quantity is threefold.First, we unify the algorithms used
in Abernethy, Hazan, and Rakhlin [1], Koolen, Warmuth, and Kivinen [26], Uchiya, Nakamura,
and Kudo [35], and Kale, Reyzin, and Schapire [23] under the umbrella of mirror descent. The
idea of mirror descent goes back to Nemirovski [28], Nemirovski and Yudin [29]. A somewhat
similar concept was re-discovered in online learning by Herbster and Warmuth [20], Grove, Little-
stone, and Schuurmans [15], Kivinen and Warmuth [25] under the name of potential-based gradient
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Full Information Semi-Bandit Bandit

Lower Bound m
√
n log d

m

√
mdn m

√
dn

Upper Bound m
√
n log d

m

√
mdn m3/2

√
dn log d

m

Table 1: Bounds on the minimax regret (up to constant factors). The new results are set in boldface. In this
paper we also show thatEXP2 in the full information case has a regret bounded below byd3/2

√
n (whenm

is of orderd).

descent, see [10, Chapter 11]. Recently, these ideas have been flourishing, see for instance Shalev-
Schwartz [33], Rakhlin [30], Hazan [17], and Bubeck [7]. Our main theorem (Theorem2) allows
one to recover almost all known regret bounds for online combinatorial optimization. This first
contribution leads to our second main result, the improvement of the known upper bounds for the
semi-bandit game. In particular, we propose a different proof of the minimax regret bound of the
order of

√
nd in the standardd-armed bandit game that is much simpler than the one provided

in Audibert and Bubeck [3] (which also improves the constant factor). In addition to these upper
bounds we prove two new lower bounds. First we answer a question of Koolen, Warmuth, and
Kivinen [26] by showing that the exponentially weighted average forecaster is provably subopti-
mal for online combinatorial optimization. Our second lower bound is a minimax lower bound in
the bandit setting which improves known results by an order of magnitude. A summary of known
bounds and the new bounds proved in this paper can be found in Table1.

The paper is organized as follows. In Section2 we introduce the two algorithms discussed
in this paper. In particular in Section2.1 we discuss the popular exponentially weighted average
forecaster and we show that it is a provably suboptimal strategy. Then in Section2.2we describe
our main algorithm,OSMD (Online Stochastic Mirror Descent), and prove a general regret bound in
terms of the Bregman divergence of the Fenchel-Legendre dual of the Legendre function defining
the strategy. In Section3 we derive upper bounds for the regret in the semi-bandit casefor OSMD

with appropriately chosen Legendre functions. Finally in Section4 we prove a new lower bound
for the bandit setting, and we formulate a conjecture on the correct order of magnitude of the regret
for that problem based on this new result and the regret bounds obtained in [1, 9].

2 Algorithms.

In this section we discuss two classes of algorithms that have been proposed for online combina-
torial optimization.

2.1 Expanded Exponential weights (EXP2).

The simplest approach to online combinatorial optimization is to consider each action ofA as
an independent “expert,” and then apply a generic regret minimizing strategy. Perhaps the most
popular such strategy is the exponentially weighted average forecaster (see, e.g., [10]). (This
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strategy is sometimes called Hedge, see Freund and Schapire[13].) We call the resulting strategy
for the online combinatorial optimization problemEXP2, see Figure2. In the full information
setting,EXP2 corresponds to “Expanded Hedge,” as defined in Koolen, Warmuth, and Kivinen
[26]. In the semi-bandit case,EXP2 was studied by György, Linder, Lugosi, and Ottucsák [16]
while in the bandit case in Dani, Hayes, and Kakade [12], Cesa-Bianchi and Lugosi [11], and
Bubeck, Cesa-Bianchi, and Kakade [9]. Note that in the bandit case,EXP2 is mixed with an
exploration distribution, see Section4 for more details.

Despite strong interest in this strategy, no optimal regretbound has been derived for it in the
combinatorial setting. More precisely, the best bound (which can be derived from a standard

argument, see for example [12] or [26]) is of orderm3/2
√
n log

(
d
m

)
. On the other hand, in [26]

the authors showed that by using Mirror Descent (see next section) with the negative entropy, one

obtains a regret bounded bym
√
n log

(
d
m

)
. Furthermore this latter bound is clearly optimal (up

to a numerical constant), as one can see from the standard lower bound in prediction with expert
advice (consider the setA that corresponds to playingm expert problems in parallel withd/m
experts in each problem). In [26] the authors leave as an open question the problem of whetherit
would be possible to improve the bound forEXP2 to obtain the optimal order of magnitude. The
following theorem shows that this is impossible, and that infact EXP2 is a provably suboptimal
strategy.

Theorem 1 Letn ≥ d. There exists a subsetA ⊂ {0, 1}d such that in the full information setting,
the regret of theEXP2 strategy (for any learning rateη), satisfies

sup
adversary

Rn ≥ 0.01 d3/2
√
n.

The proof is deferred to the Appendix.

2.2 Online Stochastic Mirror Descent.

In this section we describe the main algorithm studied in this paper. We call it Online Stochastic
Mirror Descent (OSMD). Each term in this name refers to a part of the algorithm:Mirror Descent
originates in the work of Nemirovski and Yudin [29]. The idea of mirror descent is to perform a
gradient descent, where the update with the gradient is performed in the dual space (defined by
some Legendre functionF ) rather than in the primal (see below for a precise formulation). The
Stochasticpart takes its origin from Robbins and Monro [31] and from Kiefer and Wolfowitz [24].
The key idea is that it is enough to observe an unbiased estimate of the gradient rather than the true
gradient in order to perform a gradient descent. Finally theOnlinepart comes from Zinkevich [37].
Zinkevich derived the Online Gradient Descent (OGD) algorithm, which is a version of gradient
descent tailored to online optimization.

To properly describe theOSMD strategy, we recall a few concepts from convex analysis, see
Hiriart-Urruty and Lemaréchal [21] for a thorough treatment of this subject. LetD ⊂ R

d be an
open convex set, andD the closure ofD.

Definition 1 We call Legendre any continuous functionF : D → R such that

(i) F is strictly convex continuously differentiable onD,

6



EXP2:

Parameter: Learning rateη.

Let p1 =
(

1
|A| , . . . ,

1
|A|
)
∈ R

|A|.

For each roundt = 1, 2, . . . , n;

(a) Playat ∼ pt and observe

– the loss vectorzt in the full information game,

– the coordinateszt(i)1at(i)=1 in the semi-bandit game,

– the instantaneous lossaTt zt in the bandit game.

(b) Estimate the loss vectorzt by z̃t. For instance, one may take

– z̃t = zt in the full information game,

– z̃t(i) =
zt(i)∑

a∈A:a(i)=1 pt(a)
at(i) in the semi-bandit game,

– z̃t = P+
t ata

T
t zt, with Pt = Ea∼pt(aa

T ) in the bandit game.

(c) Update the probabilities, for alla ∈ A,

pt+1(a) =
exp(−ηaT z̃t)pt(a)∑
b∈A exp(−ηbT z̃Tt )pt(b)

.

Figure 2: TheEXP2 strategy. The notationEa∼pt denotes expected value with respect to the random choice
of a when it is distributed according topt.

(ii) limx→D\D ||∇F (x)|| = +∞.3

The Bregman divergenceDF : D ×D associated to a Legendre functionF is defined by

DF (x, y) = F (x)− F (y)− (x− y)T∇F (y).

Moreover, we say thatD∗ = ∇F (D) is the dual space ofD underF . We also denote byF ∗ the
Legendre-Fenchel transform ofF defined by

F ∗(u) = sup
x∈D

(
xTu− F (x)

)
.

Lemma 1 Let F be a Legendre function. ThenF ∗∗ = F and∇F ∗ = (∇F )−1 on the setD∗.
Moreover,∀x, y ∈ D,

DF (x, y) = DF ∗(∇F (y),∇F (x)). (1)

3By the equivalence of norms inRd, this definition does not depend on the choice of the norm.
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The lemma above is the key to understanding how a Legendre function acts on the space. The
gradient∇F mapsD to the dual spaceD∗, and∇F ∗ is the inverse mapping from the dual space
to the original (primal) space. Moreover, (1) shows that the Bregman divergence in the primal
space corresponds exactly to the Bregman divergence of the Legendre-Fenchel transform in the
dual space. A proof of this result can be found, for example, in [Chapter 11, [10]].

We now have all ingredients to describe theOSMD strategy, see Figure3 for the precise for-
mulation. Note that step (d) is well defined if the following consistency condition is satisfied:

∇F (x)− ηz̃t ∈ D∗, ∀x ∈ Conv(A) ∩ D. (2)

In the full information setting, algorithms of this type were studied by Abernethy, Hazan, and
Rakhlin [1], Rakhlin [30], and Hazan [17]. In these papers the authors adopted the presenta-
tion suggested by Beck and Teboulle [6], which corresponds to a Follow-the-Regularized-Leader
(FTRL) type strategy. There the focus was onF being strongly convex with respect to some norm.
Moreover, in [1] the authors also consider the bandit case, and switch toF being a self-concordant
barrier for the convex hull ofA (see Section4 for more details). Another line of work studied this
type of algorithms withF being the negative entropy, see Koolen, Warmuth, and Kivinen [26] for
the full information case and Uchiya, Nakamura, and Kudo [35], Kale, Reyzin, and Schapire [23]
for specific instances of the semi-bandit case. All these results are unified and described in details
in Bubeck [7]. In this paper we consider a new type of Legendre functionsF inspired by Audibert
and Bubeck [3], see Section3.

Regarding computational complexity,OSMD is efficient as soon as the polytopeConv(A) can
be described by a polynomial (ind) number of constraints. Indeed in that case steps (a)-(b) can be
performed efficiently jointly (one can get an algorithm by looking at the proof of Carathéodory’s
theorem), and step (d) is a convex program with a polynomial number of constraints. In many
interesting examples (such asm-sets, selection of rankings, spanning trees, paths in acyclic graphs)
one can describe the convex hull ofA by a polynomial number of constraints, see Schrijver [32].
On the other hand, there also exist important examples wherethis is not the case (such as paths on
general graphs). Also note that for some specific examples itis possible to implementOSMD with
improved computational complexity, see Koolen, Warmuth, and Kivinen [26].

In this paper we restrict our attention to the combinatoriallearning setting in whichA is a
subset of{0, 1}d and the loss is linear. However, one should note that this specific form ofA plays
no role in the definition ofOSMD. Moreover, if the loss is not linear, then one can modifyOSMD

by performing a gradient update with a gradient of the loss (rather than the loss vectorzt). See
Bubeck [7] for more details on this approach.

The following result is at the basis of our improved regret bounds forOSMD in the semi-bandit
setting, see Section3.

Theorem 2 Suppose that(2) is satisfied and the loss estimates are unbiased in the sense that
Eat∼pt z̃t = zt. Then the regret of theOSMD strategy satisfies

Rn ≤ supa∈A F (a)− F (x1)

η
+

1

η

n∑

t=1

EDF ∗

(
∇F (xt)− ηz̃t,∇F (xt)

)
.
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OSMD:

Parameters:

• learning rateη > 0,

• Legendre functionF defined onD ⊃ Conv(A).

Let x1 ∈ argminx∈Conv(A) F (x).

For each roundt = 1, 2, . . . , n;

(a) Letpt be a distribution on the setA such thatxt = Ea∼pta.

(b) Draw a random actionat according to the distributionpt and observe the feedback.

(c) Based on the observed feedback, estimate the loss vectorzt by z̃t.

(d) Letwt+1 ∈ D satisfy

∇F (wt+1) = ∇F (xt)− ηz̃t. (3)

(e) Project the weight vectorwt+1 defined by (3) on the convex hull ofA:

xt+1 ∈ argmin
x∈Conv(A)

DF (x, wt+1). (4)

Figure 3: Online Stochastic Mirror Descent (OSMD).

Proof Let a ∈ A. Using thatat andz̃t are unbiased estimates ofxt andzt, we have

E

n∑

t=1

(at − a)T zt = E

n∑

t=1

(xt − a)T z̃t.

Using (3), and applying the definition of the Bregman divergences, one obtains

ηz̃Tt (xt − a) = (a− xt)
T
(
∇F (wt+1)−∇F (xt)

)

= DF (a, xt) +DF (xt, wt+1)−DF (a, wt+1).

By the Pythagorean theorem for Bregman divergences (see, e.g., Lemma 11.3 of [10]), we have
DF (a, wt+1) ≥ DF (a, xt+1) +DF (xt+1, wt+1), hence

ηz̃Tt (xt − a) ≤ DF (a, xt) +DF (xt, wt+1)−DF (a, xt+1)−DF (xt+1, wt+1) .

Summing overt gives

n∑

t=1

ηz̃Tt (xt − a) ≤ DF (a, a1)−DF (a, an+1) +
n∑

t=1

(
DF (xt, wt+1)−DF (xt+1, wt+1)

)
.

9



By the nonnegativity of the Bregman divergences, we get

n∑

t=1

ηz̃Tt (xt − a) ≤ DF (a, a1) +
n∑

t=1

DF (xt, wt+1).

From (1), one hasDF (xt, wt+1) = DF ∗

(
∇F (xt) − ηz̃t,∇F (xt)

)
. Moreover, by writing the first-

order optimality condition forx1, one directly obtainsDF (a, x1) ≤ F (a)−F (x1) which concludes
the proof.

Note that, ifF admits an Hessian, denoted∇2F , that is always invertible, then one can prove
that, up to a third-order term

(
in z̃t

)
, the regret bound can be written as

Rn /
supa∈A F (a)− F (x1)

η
+
η

2

n∑

t=1

z̃Tt
(
∇2F (xt)

)−1
z̃t. (5)

The main technical difficulty is to control the third-order error term in this inequality.

3 Semi-bandit feedback.

In this section we consider online combinatorial optimization with semi-bandit feedback. As we
already discussed, in the full information case Koolen, Warmuth, and Kivinen [26] proved that
OSMD with the negative entropy is a minimax optimal strategy. We first prove a regret bound when
one uses this strategy with the following estimate for the loss vector:

z̃t(i) =
zt(i)at(i)

xt(i)
. (6)

Note that this is a valid estimate since it makes only use of(zt(1)at(1), . . . , zt(d)at(d)). Moreover,
it is unbiased with respect to the random draw ofat from pt, since by definition,Eat∼ptat(i) =
xt(i). In other words,Eat∼pt z̃t(i) = zt(i).

Theorem 3 The regret of OSMD withF (x) =
∑d

i=1 xi log xi−
∑d

i=1 xi (andD = (0,+∞)d) and
any non-negative unbiased loss estimatez̃t(i) ≥ 0 satisfies

Rn ≤ m log d
m

η
+
η

2

n∑

t=1

d∑

i=1

xt(i)z̃t(i)
2.

In particular, with the estimate(6) andη =
√

2m log dm
nd

,

Rn ≤
√

2mdn log
d

m
.
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Proof One can easily see that for the negative entropy the dual space isD∗ = R
d. Thus, (2) is

verified andOSMD is well defined. Moreover, again by straightforward computations, one can also
see that

DF ∗

(
∇F (x),∇F (y)

)
=

d∑

i=1

y(i) Θ

(
(∇F (x)−∇F (y))(i)

)
, (7)

whereΘ(x) = exp(x) − 1 − x. Thus, using Theorem2 and the facts thatΘ(x) ≤ x2

2
for x ≤ 0

and
∑d

i=1 xt(i) ≤ m, one obtains

Rn ≤ supa∈A F (a)− F (x1)

η
+

1

η

n∑

t=1

EDF ∗

(
∇F (xt)− ηz̃t,∇F (xt)

)

≤ supa∈A F (a)− F (x1)

η
+
η

2

n∑

t=1

d∑

i=1

xt(i)z̃t(i)
2

The proof of the first inequality is concluded by noting that:

F (a)− F (x1) ≤
d∑

i=1

x1(i) log
1

x1(i)
≤ m log

(
d∑

i=1

x1(i)

m

1

x1(i)

)
= m log

d

m
.

The second inequality follows from

Ext(i)z̃t(i)
2 ≤ E

at(i)

xt(i)
= 1.

Using the standard
√
dn lower bound for the multi-armed bandit (which corresponds to the case

whereA is the canonical basis), see e.g., [Theorem 30, [3]], one can directly obtain a lower bound
of order

√
mdn for our setting. Thus the upper bound derived in Theorem3 has an extraneous

logarithmic factor compared to the lower bound. This phenomenon already appeared in the basic
multi-armed bandit setting. In that case, the extra logarithmic factor was removed in Audibert and
Bubeck [2] by resorting to a new class of strategies for the expert problem, called INF (Implicitely
Normalized Forecaster). Next we generalize this class of algorithms to the combinatorial setting,
and thus remove the extra logarithmic factor. First we introduce the notion of a potential and the
associated Legendre function.

Definition 2 Let ω ≥ 0. A functionψ : (−∞, a) → R
∗
+ for somea ∈ R ∪ {+∞} is called an

ω-potential if it is convex, continuously differentiable, and satisfies

lim
x→−∞

ψ(x) = ω , lim
x→a

ψ(x) = +∞ ,

ψ′ > 0 ,

∫ ω+1

ω

|ψ−1(s)|ds < +∞ .

For every potentialψ we associate the functionFψ defined onD = (ω,+∞)d by:

Fψ(x) =

d∑

i=1

∫ xi

ω

ψ−1(s)ds.

11



In this paper we restrict our attention to0-potentials which we will simply callpotentials. A
non-zero value ofω may be used to derive regret bounds that hold with high probability (instead
of pseudo-regret bounds, see footnote 1).

The first order optimality condition for (4) implies thatOSMD with Fψ is a direct generalization
of INF with potentialψ, in the sense that the two algorithms coincide whenA is the canonical basis.
Note, in particular, that withψ(x) = exp(x) we recover the negative entropy forFψ. In [3], the
choice ofψ(x) = (−x)q with q > 1 was recommended. We show in Theorem4 that here, again,
this choice gives a minimax optimal strategy.

Lemma 2 Letψ be a potential. ThenF = Fψ is Legendre and for allu, v ∈ D∗ = (−∞, a)d such
thatui ≤ vi, ∀i ∈ {1, . . . , d},

DF ∗(u, v) ≤ 1

2

d∑

i=1

ψ′(vi)(ui − vi)
2.

Proof A direct examination shows thatF = Fψ is a Legendre function. Moreover, since∇F ∗(u) =
(∇F )−1(u) =

(
ψ(u1), . . . , ψ(ud)

)
, we obtain

DF ∗(u, v) =

d∑

i=1

(∫ ui

vi

ψ(s)ds− (ui − vi)ψ(vi)

)
.

From a Taylor expansion, we get

DF ∗(u, v) ≤
d∑

i=1

max
s∈[ui,vi]

1

2
ψ′(s)(ui − vi)

2.

Since the functionψ is convex, andui ≤ vi, we have

max
s∈[ui,vi]

ψ′(s) ≤ ψ′(max(ui, vi)
)
≤ ψ′(vi),

which gives the desired result.

Theorem 4 Letψ be a potential. The regret ofOSMD withF = Fψ and any non-negative unbiased
loss estimatẽzt satisfies

Rn ≤ supa∈A F (a)− F (x1)

η
+
η

2

n∑

t=1

d∑

i=1

E
z̃t(i)

2

(ψ−1)′(xt(i))
.

In particular, with the estimate(6), ψ(x) = (−x)−q, q > 1,andη =
√

2
q−1

m1−2/q

d1−2/q
1
n
,

Rn ≤ q

√
2

q − 1
mdn .

With q = 2 this gives
Rn ≤ 2

√
2mdn .

12



In the casem = 1, the above theorem improves the boundRn ≤ 8
√
nd obtained in Theorem

11 of [3].
Proof First note that sinceD∗ = (−∞, a)d and z̃t has non-negative coordinates,OSMD is well
defined (that is, (2) is satisfied).

The first inequality follows from Theorem2 and the fact thatψ′(ψ−1(s)) = 1
(ψ−1)′(s)

.

Let ψ(x) = (−x)−q. Thenψ−1(x) = −x−1/q andF (x) = − q
q−1

∑d
i=1 x

1−1/q
i . In particular,

note that by Hölder’s inequality, since
∑d

i=1 x1(i) = m,

F (a)− F (x1) ≤
q

q − 1

d∑

i=1

x1(i)
1−1/q ≤ q

q − 1
m(q−1)/qd1/q.

Moreover, note that(ψ−1)′(x) = 1
q
x−1−1/q, and

d∑

i=1

E
z̃t(i)

2

(ψ−1)′(xt(i))
≤ q

d∑

i=1

xt(i)
1/q ≤ qm1/qd1−1/q,

which concludes the proof.

4 Bandit feedback.

In this section we consider online combinatorial optimization with bandit feedback. This setting is
much more challenging than the semi-bandit case, and in order to obtain sublinear regret bounds all
known strategies add anexplorationcomponent to the algorithm. For example, inEXP2, instead
of playing an action at random according to the exponentially weighted average distributionpt,
one draws a random action frompt with probability 1 − γ and from some fixed “exploration”
distributionµ with probabilityγ. On the other hand, inOSMD, one randomly perturbsxt to some
x̃t, and then plays at random a point inA such that on average one playsx̃t.

In Bubeck, Cesa-Bianchi, and Kakade [9], the authors study theEXP2 strategy with the explo-
ration distributionµ supported on the contact points between the polytopeConv(A) and the John
ellipsoid of this polytope (i.e., the ellipsoid of minimal volume enclosing the polytope). Using this
method they are able to prove the best known upper bound for online combinatorial optimization
with bandit feedback. They show that the regret ofEXP2 mixed with John’s exploration (and with
the estimate described in Figure2) satisfies

Rn ≤ 2m3/2

√
3dn log

ed

m
.

Our next theorem shows that no strategy can achieve a regret less than a constant timesm
√
dn,

leaving a gap of a factor of
√
m log d

m
. As we argue below, we conjecture that the lower bound is of

the correct order of magnitude. However, improving the upper bound seems to require some sub-
stantially new ideas. Note that the following bound gives limitations that no strategy can surpass,
on the contrary to Theorem1 which was dedicated to theEXP2 strategy.

13



Theorem 5 Let n ≥ d ≥ 2m. There exists a subsetA ⊂ {0, 1}d such that||a||1 = m, ∀a ∈ A,
under bandit feedback, one has

inf
strategies

sup
adversaries

Rn ≥ 0.02m
√
dn , (8)

where the infimum and the supremum are taken over the class of strategies for the “player” and
for the “adversary” as defined in the introduction.

Note that it should not come as a surprise thatEXP2 (with John’s exploration) is suboptimal,
since even in the full information case the basicEXP2 strategy was provably suboptimal, see Theo-
rem1. We conjecture that the correct order of magnitude for the minimax regret in the bandit case
ism

√
dn, as the above lower bound suggests.

A promising approach to resolve this conjecture is to consider again theOSMD approach.
However we believe that in the bandit case, one has to consider Legendre functions with non-
diagonal Hessian (on the contrary to the Legendre functionsconsidered so far in this paper). Aber-
nethy, Hazan, and Rakhlin [1] propose to use a self-concordant barrier function for the polytope
Conv(A). Then they randomly perturb the pointxt given byOSMD using the eigenstructure of
the Hessian. This approach leads to a regret upper bound of ordermd

√
θn log n for θ > 0 when

Conv(A) admits aθ-self-concordant barrier function. Unfortunately, even when there exists a
O(1)-self concordant barrier, this bound is still larger than the conjectured optimal bound by a
factor

√
d. In fact, it was proved in [9] that in some cases there exist better choices for the Leg-

endre function and the perturbation than those described in[1], even when there is aO(1)-self
concordant function for the action set. How to generalize this approach to the polytopes involved
in online combinatorial optimization is a challenging openproblem.

A Proof of Theorem 1.

For the sake of simplicity, we assume thatd is a multiple of4 and thatn is even. We consider the
following subset of the hypercube:

A =

{
a ∈ {0, 1}d :

d/2∑

i=1

ai = d/4 and

(
ai = 1, ∀i ∈ {d/2 + 1; . . . , d/2 + d/4}

)
or

(
ai = 1, ∀i ∈ {d/2 + d/4 + 1, . . . , d}

)}
.

That is, choosing a point inA corresponds to choosing a subset ofd/4 elements among the first
half of the coordinates, and choosing one of the two first disjoint intervals of sized/4 in the second
half of the coordinates.

We prove that for any parameterη, there exists an adversary such that Exp2 (with parameterη)
has a regret of at leastnd

16
tanh

(
ηd
8

)
, and that there exists another adversary such that its regret is at

leastmin
(
d log 2
12η

, nd
12

)
. As a consequence, we have

supRn ≥ max

(
nd

16
tanh

(ηd
8

)
,min

(
d log 2

12η
,
nd

12

))

≥ min

(
max

(
nd

16
tanh

(ηd
8

)
,
d log 2

12η

)
,
nd

12

)
≥ min

(
A,

nd

12

)
,
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with

A = min
η∈[0,+∞)

max

(
nd

16
tanh

(ηd
8

)
,
d log 2

12η

)

≥ min

(
min
ηd≥8

nd

16
tanh

(ηd
8

)
,min
ηd<8

max

(
nd

16
tanh

(ηd
8

)
,
d log 2

12η

))

≥ min

(
nd

16
tanh(1),min

ηd<8
max

(
nd

16

ηd

8
tanh(1),

d log 2

12η

))

≥ min

(
nd

16
tanh(1),

√
nd3 log 2 · tanh(1)

128 · 12

)
≥ min

(
0.04nd, 0.01 d3/2

√
n
)
,

where we used the fact thattanh is concave and increasing onR+. As n ≥ d, this implies the
stated lower bound.

First we prove the lower boundnd
16

tanh
(
ηd
8

)
. Define the following adversary:

zt(i) =






1 if i ∈ {d/2 + 1; . . . , d/2 + d/4} and t odd,
1 if i ∈ {d/2 + d/4 + 1, . . . , d} and t even,
0 otherwise.

This adversary always puts a zero loss on the first half of the coordinates, and alternates between
a loss ofd/4 for choosing the first interval (in the second half of the coordinates) and the second
interval. At the beginning of odd rounds, any vertexa ∈ A has the same cumulative loss and
thus Exp2 picks its expert uniformly at random, which yieldsan expected cumulative loss equal to
nd/16. On the other hand, at even rounds the probability distribution to select the vertexa ∈ A is
always the same. More precisely, the probability of selecting a vertex which contains the interval
{d/2+ d/4+ 1, . . . , d} (i.e, the interval with ad/4 loss at this round) is exactly 1

1+exp(−ηd/4) . This

adds an expected cumulative loss equal tond
8

1
1+exp(−ηd/4) . Finally, note that the loss of any fixed

vertex isnd/8. Thus, we obtain

Rn =
nd

16
+
nd

8

1

1 + exp(−ηd/4) −
nd

8
=
nd

16
tanh

(ηd
8

)
.

It remains to show a lower bound proportional to1/η. To this end, we consider a different
adversary defined by

zt(i) =






1− ε if i ≤ d/4,
1 if i ∈ {d/4 + 1, . . . , d/2},
0 otherwise,

for some fixedε > 0.
Note that against this adversary the choice of the interval (in the second half of the components)

does not matter. Moreover, by symmetry, the weight of any coordinate in{d/4 + 1, . . . , d/2} is
the same (at any round). Finally, note that this weight is decreasing witht. Thus, we have the
following identities (in the big sumsi represents the number of components selected in the first
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d/4 components):

Rn =
nεd

4

∑
a∈A:ad/2=1 exp(−ηnzT1 a)∑

a∈A exp(−ηnzT1 a)

=
nεd

4

∑d/4−1
i=0

(
d/4
i

)(
d/4−1
d/4−i−1

)
exp(−η(nd/4− inε))

∑d/4
i=0

(
d/4
i

)(
d/4
d/4−i

)
exp(−η(nd/4− inε))

=
nεd

4

∑d/4−1
i=0

(
d/4
i

)(
d/4−1
d/4−i−1

)
exp(ηinε)

∑d/4
i=0

(
d/4
i

)(
d/4
d/4−i

)
exp(ηinε)

=
nεd

4

∑d/4−1
i=0

(
1− 4i

d

)(
d/4
i

)(
d/4
d/4−i

)
exp(ηinε)

∑d/4
i=0

(
d/4
i

)(
d/4
d/4−i

)
exp(ηinε)

where we used
(
d/4−1
d/4−i−1

)
=
(
1 − 4i

d

)(
d/4
d/4−i

)
in the last equality. Thus, takingε = min

(
log 2
ηn
, 1
)

yields

Rn ≥ min

(
d log 2

4η
,
nd

4

)∑d/4−1
i=0

(
1− 4i

d

)(
d/4
i

)2
min(2, exp(ηn))i

∑d/4
i=0

(
d/4
i

)2
min(2, exp(ηn))i

≥ min

(
d log 2

12η
,
nd

12

)
,

where the last inequality follows from Lemma3 in the appendix. This concludes the proof of the
lower bound.

B Proof of Theorem5

The structure of the proof is similar to that of [3, Theorem 30], which deals with the simple case
wherem = 1. The main important conceptual difference is contained in Lemma4, which is at the
heart of this new proof. The main argument follows the line ofstandard lower bounds for bandit
problems, see, e.g., [10]: The worst-case regret is bounded from below by by taking anaverage
over a conveniently chosen class of strategies of the adversary. Then, by Pinsker’s inequality, the
problem is reduced to computing the Kullback-Leibler divergence of certain distributions. The
main technical argument, given in Lemma4, is for proving manageable bounds for the relevant
Kullback-Leibler divergence.

For the sake of simplifying notation, we assume thatd is a multiple ofm, and we identify
{0, 1}d with the set ofm × (d/m) binary matrices{0, 1}m× d

m . We consider the following set of
actions:

A = {a ∈ {0, 1}m× d
m : ∀i ∈ {1, . . . , m},

d/m∑

j=1

a(i, j) = 1}.

In other words, the player is playing in parallelm finite games withd/m actions.
From step 1 to 3 we restrict our attention to the case of deterministic strategies for the player,

and we show how to extend the results to arbitrary strategiesin step 4.

First step: definitions.
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We denote byIi,t ∈ {1, . . . , m} the random variable such thatat(i, Ii,t) = 1. That is,Ii,t is
the action chosen at timet in the ith game. Moreover, letτ be drawn uniformly at random from
{1, . . . , n}.

In this proof we consider random adversaries indexed byA. More precisely, forα ∈ A, we
define theα-adversaryas follows: For anyt ∈ {1, . . . , n}, zt(i, j) is drawn from a Bernoulli
distribution with parameter1

2
− εα(i, j). In other words, against adversaryα, in theith game, the

actionj such thatα(i, j) = 1 has a loss slightly smaller (in expectation) than the other actions. We
denote byEα integration with respect to the loss generation process of theα-adversary. We write
Pi,α for the probability distribution ofα(i, Ii,τ ) when the player faces theα-adversary. Note that
we havePi,α(1) = Eα

1
n

∑n
t=1 1α(i,Ii,t)=1, hence, against theα-adversary, we have

Rn = Eα

n∑

t=1

m∑

i=1

ε1α(i,Ii,t)6=1 = nε

m∑

i=1

(1− Pi,α(1)) ,

which implies (since the maximum is larger than the mean)

max
α∈A

Rn ≥ nε

m∑

i=1

(
1− 1

(d/m)m

∑

α∈A
Pi,α(1)

)
. (9)

Second step: information inequality.
Let P−i,α be the probability distribution ofα(i, Ii,τ ) against the adversary which plays like the

α-adversary except that in theith game, the losses of all coordinates are drawn from a Bernoulli
distribution of parameter1/2. We call it the(−i, α)-adversaryand we denote byE(−i,α) integration
with respect to its loss generation process. By Pinsker’s inequality,

Pi,α(1) ≤ P−i,α(1) +

√
1

2
KL(P−i,α,Pi,α) ,

whereKL denotes the Kullback-Leibler divergence. Moreover, note that by symmetry of the
adversaries(−i, α),

1

(d/m)m

∑

α∈A
P−i,α(1) =

1

(d/m)m

∑

α∈A
E(−i,α)α(i, Ii,τ)

=
1

(d/m)m

∑

β∈A

1

d/m

∑

α:(−i,α)=(−i,β)
E(−i,α)α(i, Ii,τ )

=
1

(d/m)m

∑

β∈A

1

d/m
E(−i,β)

∑

α:(−i,α)=(−i,β)
α(i, Ii,τ)

=
1

(d/m)m

∑

β∈A

1

d/m

=
m

d
, (10)

and thus, thanks to the concavity of the square root,

1

(d/m)m

∑

α∈A
Pi,α(1) ≤

m

d
+

√
1

2(d/m)m

∑

α∈A
KL(P−i,α,Pi,α). (11)

17



Third step: computation ofKL(P−i,α,Pi,α) with the chain rule.
Note that since the forecaster is deterministic, the sequence of observed losses (up to time

n) Wn ∈ {0, . . . , m}n uniquely determines the empirical distribution of plays, and, in particular,
the probability distribution ofα(i, Ii,τ) conditionally toWn is the same for any adversary. Thus,
if we denote byPnα (respectivelyPn−i,α) the probability distribution ofWn when the forecaster
plays against theα-adversary (respectively the(−i, α)-adversary), then one can easily prove that
KL(P−i,α,Pi,α) ≤ KL(Pn−i,α,P

n
α). Now we use the chain rule for Kullback-Leibler divergence

iteratively to introduce the probability distributionsPtα of the observed lossesWt up to timet.
More precisely, we have,

KL(Pn−i,α,P
n
α)

= KL(P1
−i,α,P

1
α) +

n∑

t=2

∑

wt−1∈{0,...,m}t−1

P
t−1
−i,α(wt−1)KL(Pt−i,α(.|wt−1),P

t
α(.|wt−1))

= KL (B∅,B′
∅)1α(i,Ii,1)=1 +

n∑

t=2

∑

wt−1:α(i,Ii,1)=1

P
t−1
−i,α(wt−1)KL

(
Bwt−1 ,B′

wt−1

)
,

whereBwt−1 andB′
wt−1

are sums ofm Bernoulli distributions with parameters in{1/2, 1/2 − ε}
and such that the number of Bernoullis with parameter1/2 in Bwt−1 is equal to the number of
Bernoullis with parameter1/2 in B′

wt−1
plus one. Now using Lemma4 (see below) we obtain,

KL
(
Bwt−1,B′

wt−1

)
≤ 8 ε2

(1− 4ε2)m
.

In particular, this gives

KL(Pn−i,α,P
n
α) ≤

8 ε2

(1− 4ε2)m
E−i,α

n∑

t=1

1α(i,Ii,t)=1 =
8 ε2n

(1− 4ε2)m
P−i,α(1).

Summing and plugging this into (11) we obtain (again thanks to (10)), for ε ≤ 1√
8
,

1

(d/m)m

∑

α∈A
Pi,α(1) ≤

m

d
+ ε

√
8n

d
.

To conclude the proof of (8) for deterministic players one needs to plug this last equation in (9)
along with straightforward computations.
Fourth step: Fubini’s theorem to handle non-deterministicplayers.

Consider now a randomized player, and letErand denote the expectation with respect to the
randomization of the player. Then one has (thanks to Fubini’s theorem),

1

(d/m)m

∑

α∈A
E

n∑

t=1

(aTt zt − αT z) = Erand
1

(d/m)m

∑

α∈A
Eα

n∑

t=1

(aTt zt − αT z).

Now note that if we fix the realization of the forecaster’s randomization then the results of the
previous steps apply and, in particular, one can lower bound1

(d/m)m

∑
α∈A Eα

∑n
t=1(a

T
t zt − αTz)

as before (note thatα is the optimal action in expectation against theα-adversary).
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C Technical lemmas.

Lemma 3 For anyk ∈ N
∗, for any1 ≤ c ≤ 2, we have

∑k
i=0(1− i/k)

(
k
i

)2
ci

∑k
i=0

(
k
i

)2
ci

≥ 1/3.

Proof Let f(c) denote the expression on the left-hand side of the inequality. Introduce the random

variableX, which is equal toi ∈ {0, . . . , k} with probability
(
k
i

)2
ci
/∑k

j=0

(
k
j

)2
cj . We have

f ′(c) = 1
c
E[X(1−X/k)]− 1

c
E(X)E(1−X/k) = − 1

ck
VarX ≤ 0. So the functionf is decreasing

on [1, 2], and therefore it suffices to considerc = 2. Numerator and denominator of the left-hand
side differ only by the factor1− i/k. A lower bound for the left-hand side can thus be obtained by
showing that the terms fori close tok are not essential to the value of the denominator. To prove
this, we may use Stirling’s formula which implies that for any k ≥ 2 andi ∈ [1, k − 1],

(k
i

)i( k

k − i

)k−i √
k√

2πi(k − i)
e−1/6 <

(
k

i

)
<
(k
i

)i( k

k − i

)k−i √
k√

2πi(k − i)
e1/12,

hence

(k
i

)2i( k

k − i

)2(k−i) ke−1/3

2πi(k − i)
<

(
k

i

)2

<
(k
i

)2i( k

k − i

)2(k−i)ke1/6
2πi

.

Introduceλ = i/k andχ(λ) = 2λ

λ2λ(1−λ)2(1−λ) . We have

[χ(λ)]k
2e−1/3

πk
<

(
k

i

)2

2i < [χ(λ)]k
e1/6

2πλ
. (12)

Lemma3 can be numerically verified fork ≤ 106. We now considerk > 106. For λ ≥
0.666, since the functionχ can be shown to be decreasing on[0.666, 1], the inequality

(
k
i

)2
2i <

[χ(0.666)]k e1/6

2×0.666×π holds. We haveχ(0.657)/χ(0.666) > 1.0002. Consequently, fork > 106,
we have[χ(0.666)]k < 0.001× [χ(0.657)]k/k2. So forλ ≥ 0.666 andk > 106, we have

(
k

i

)2

2i < 0.001× [χ(0.657)]k
e1/6

2π × 0.666× k2
< [χ(0.657)]k

2e−1/3

1000πk2

= min
λ∈[0.656,0.657]

[χ(λ)]k
2e−1/3

1000πk2

<
1

1000k
max

i∈{1,...,k−1}∩[0,0.666k)

(
k

i

)2

2i , (13)

where the last inequality comes from (12) and the fact that there existsi ∈ {1, . . . , k−1} such that
i/k ∈ [0.656, 0.657]. Inequality (13) implies that for anyi ∈ {1, . . . , k}, we have

∑

0.666k≤i≤k

(
k

i

)2

2i <
1

1000
max

i∈{1,...,k−1}∩[0,0.666k)

(
k

i

)2

2i <
1

1000

∑

0≤i<0.666k

(
k

i

)2

2i.
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To conclude, introducingA =
∑

0≤i<0.666k

(
k
i

)2
2i, we have

∑k
i=0(1− i/k)

(
k
i

)2
2i

∑k
i=0

(
k
i

)(
k
k−i
)
2i

>
(1− 0.666)A

A+ 0.001A
≥ 1

3
.

Lemma 4 Let ℓ andn be integers with1
2
≤ n

2
≤ ℓ ≤ n. Letp, p′, q, p1, . . . , pn be real numbers in

(0, 1) with q ∈ {p, p′}, p1 = · · · = pℓ = q andpℓ+1 = · · · = pn. LetB (resp.B′) be the sum of
n + 1 independent Bernoulli distributions with parametersp, p1, . . . , pn (resp.p′, p1, . . . , pn). We
have

KL(B,B′) ≤ 2(p′ − p)2

(1− p′)(n+ 2)q
.

Proof LetZ,Z ′, Z1, . . . , Zn be independent Bernoulli distributions with parametersp, p′, p1, . . . , pn.
DefineS =

∑ℓ
i=1 Zi, T =

∑n
i=ℓ+1 Zi andV = Z +S. By a slight and usual abuse of notation, we

useKL to denote Kullback-Leibler divergence of both probabilitydistributions and random vari-
ables. Then we may write (the inequality is an easy consequence of the chain rule for Kullback-
Leibler divergence)

KL(B,B′) = KL
(
(Z + S) + T, (Z ′ + S) + T

)

≤ KL
(
(Z + S, T ), (Z ′ + S, T )

)

= KL
(
Z + S, Z ′ + S

)
.

Let sk = P(S = k) for k = −1, 0, . . . , ℓ+ 1. Using the equalities

sk =

(
ℓ

k

)
qk(1− q)ℓ−k =

q

1− q

ℓ− k + 1

k

(
ℓ

k − 1

)
qk−1(1− q)ℓ−k+1 =

q

1− q

ℓ− k + 1

k
sk−1,

which holds for1 ≤ k ≤ ℓ+ 1, we obtain

KL(Z + S, Z ′ + S) =

ℓ+1∑

k=0

P(V = k) log

(
P(Z + S = k)

P(Z ′ + S = k)

)

=
ℓ+1∑

k=0

P(V = k) log

(
psk−1 + (1− p)sk
p′sk−1 + (1− p′)sk

)

=
ℓ+1∑

k=0

P(V = k) log

(
p1−q

q
k + (1− p)(ℓ− k + 1)

p′ 1−q
q
k + (1− p′)(ℓ− k + 1)

)

= E log

(
(p− q)V + (1− p)q(ℓ+ 1)

(p′ − q)V + (1− p′)q(ℓ+ 1)

)
. (14)
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First case:q = p′.
By Jensen’s inequality, using thatEV = p′(ℓ+ 1) + p− p′ in this case, we get

KL(Z + S, Z ′ + S) ≤ log

(
(p− p′)E(V ) + (1− p)p′(ℓ+ 1)

(1− p′)p′(ℓ+ 1)

)

= log

(
(p− p′)2 + (1− p′)p′(ℓ+ 1)

(1− p′)p′(ℓ+ 1)

)

= log

(
1 +

(p− p′)2

(1− p′)p′(ℓ+ 1)

)
≤ (p− p′)2

(1− p′)p′(ℓ+ 1)
.

Second case:q = p.
In this case,V is a binomial distribution with parametersℓ+ 1 andp. From (14), we have

KL(Z + S, Z ′ + S) ≤ −E log

(
(p′ − p)V + (1− p′)p(ℓ+ 1)

(1− p)p(ℓ+ 1)

)

≤ −E log

(
1 +

(p′ − p)(V − EV )

(1− p)p(ℓ+ 1)

)
. (15)

To conclude, we will use the following lemma.

Lemma 5 The following inequality holds for anyx ≥ x0 with x0 ∈ (0, 1):

− log(x) ≤ −(x− 1) +
(x− 1)2

2x0
.

Proof Introducef(x) = −(x − 1) + (x−1)2

2x0
+ log(x). We havef ′(x) = −1 + x−1

x0
+ 1

x
, and

f ′′(x) = 1
x0

− 1
x2

. Fromf ′(x0) = 0, we get thatf ′ is negative on(x0, 1) and positive on(1,+∞).
This leads tof nonnegative on[x0,+∞).

Finally, from Lemma5 and (15), usingx0 =
1−p′
1−p , we obtain

KL(Z + S, Z ′ + S) ≤
(

p′ − p

(1− p)p(ℓ+ 1)

)2
E[(V − EV )2]

2x0

=

(
p′ − p

(1− p)p(ℓ+ 1)

)2
(ℓ+ 1)p(1− p)2

2(1− p′)

=
(p′ − p)2

2(1− p′)(ℓ+ 1)p
.

Acknowledgements

G. Lugosi is supported by the Spanish Ministry of Science andTechnology grant MTM2009-09063
and PASCAL2 Network of Excellence under EC grant no. 216886.

21



References

[1] J. Abernethy, E. Hazan, and A. Rakhlin,Competing in the dark: An efficient algorithm for
bandit linear optimization, Proceedings of the 21st Annual Conference on Learning Theory
(COLT), 2008, pp. 263–274.

[2] J.-Y. Audibert and S. Bubeck,Minimax policies for adversarial and stochastic bandits, Pro-
ceedings of the 22nd Annual Conference on Learning Theory (COLT), 2009.

[3] , Regret bounds and minimax policies under partial monitoring, Journal of Machine
Learning Research11 (2010), 2635–2686.

[4] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire,The non-stochastic multi-armed bandit
problem, SIAM Journal on Computing32 (2003), no. 1, 48–77.

[5] B. Awerbuch and R. Kleinberg,Adaptive routing with end-to-end feedback: distributed learn-
ing and geometric approaches, STOC ’04: Proceedings of the thirty-sixth annual ACM sym-
posium on Theory of computing, 2004, pp. 45–53.

[6] A. Beck and M. Teboulle,Mirror descent and nonlinear projected subgradient methods for
convex optimization, Operations Research Letters31 (2003), no. 3, 167–175.

[7] S. Bubeck,Introduction to online optimization, Lecture Notes, 2011.

[8] S. Bubeck and N. Cesa-Bianchi,Regret analysis of stochastic and nonstochastic multi-armed
bandit problems, Foundations and Trends in Machine Learning5 (2012), no. 1, 1–122.

[9] S. Bubeck, N. Cesa-Bianchi, and S. M. Kakade,Towards minimax policies for online linear
optimization with bandit feedback, Arxiv preprint arXiv:1202.3079 (2012).

[10] N. Cesa-Bianchi and G. Lugosi,Prediction, learning, and games, Cambridge University
Press, 2006.

[11] , Combinatorial bandits, Journal of Computer and System Sciences (2011), To ap-
pear.

[12] V. Dani, T. Hayes, and S. Kakade,The price of bandit information for online optimization,
Advances in Neural Information Processing Systems (NIPS),vol. 20, 2008, pp. 345–352.

[13] Y. Freund and R. E. Schapire,A decision-theoretic generalization of on-line learning and an
application to boosting, Journal of Computer and System Sciences55 (1997), 119–139.

[14] C. Gentile and M. Warmuth,Linear hinge loss and average margin, Advances in Neural
Information Processing Systems (NIPS), 1998.

[15] A. Grove, N. Littlestone, and D. Schuurmans,General convergence results for linear dis-
criminant updates, Machine Learning43 (2001), 173–210.

[16] A. György, T. Linder, G. Lugosi, and G. Ottucsák,The on-line shortest path problem under
partial monitoring, Journal of Machine Learning Research8 (2007), 2369–2403.

22



[17] E. Hazan,The convex optimization approach to regret minimization, Optimization for Ma-
chine Learning (S. Sra, S. Nowozin, and S. Wright, eds.), MITpress, 2011, pp. 287–303.

[18] E. Hazan, S. Kale, and M. Warmuth,Learning rotations with little regret, Proceedings of the
23rd Annual Conference on Learning Theory (COLT), 2010.

[19] D. P. Helmbold and M. Warmuth,Learning permutations with exponential weights, Journal
of Machine Learning Research10 (2009), 1705–1736.

[20] M. Herbster and M. Warmuth,Tracking the best expert, Machine Learning32 (1998), 151–
178.
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