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Abstract

We address online linear optimization problems when theiptesactions of the decision
maker are represented by binary vectors. The regret of tbiside maker is the difference
between her realized loss and the minimal loss she would &avieved by picking, in hind-
sight, the best possible action. Our goal is to understaadrtagnitude of the best possible
(minimax) regret. We study the problem under three diffeassumptions for the feedback
the decision maker receives: full information, and the iphmformation models of the so-
called “semi-bandit” and “bandit” problems. In the full ermation case we show that the
standard exponentially weighted average forecaster isxaply suboptimal strategy. For the
semi-bandit model, by combining the Mirror Descent aldomitand the INF (Implicitely Nor-
malized Forecaster) strategy, we are able to prove the fitihal bounds. Finally, in the
bandit case we discuss existing results in light of a new tdwend, and suggest a conjecture
on the optimal regret in that case.

Introduction.

In this paper we consider the framework of online linearmptation. The setup may be described
as a repeated game between a “decision maker” (or simplyéplar “forecaster”’) and an “adver-
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sary” as follows: at each time instantce- 1, ..., n, the player chooses, possibly in a randomized
way, an action from a given finite action sétC R?. The action chosen by the player at timis
denoted by, € A. Simultaneously to the player, the adversary chooses aéus$srz, € Z Cc R?
and the loss incurred by the forecasten}s;. The goal of the player is to minimize the expected
cumulative lossE Y7 | af z, where the expectation is taken with respect to the playat&rmal
randomization (and eventually the adversary’s randonaizat

In the basic “full-information” version of this problem, éhplayer observes the adversary’s
move z; at the end of round. Another important model for feedback is the so-calbehdit
problem, in which the player only observes the incurred ldss. As a measure of performance
we define the regrétof the player as

n n
R, =E E azzt —minE E a’z .
acA
t=1 t=1

In this paper we address a specific example of online line@naation: we assume that the action
setA is a subset of thé-dimensional hypercubg), 1}¢ such thatva € A, ||a||; = m, and the
adversary has a bounded loss per coordinate, that is [0, 1]%. We call this settingnline com-
binatorial optimization As we will see below, this restriction of the general framekvcontains

a rich class of problems. Indeed, in many interesting casg&gns are naturally represented by
Boolean vectors.

In addition to the full information and bandit versions oflioe combinatorial optimization,
we also consider another type of feedback which makes semgénathis combinatorial setting.
In the semi-banditversion, we assume that the player observes only the catedirofz; that
were played iny, that is the player observes the vectay(1)z,(1),...,a;,(d)z(d)). All three
variants of online combinatorial optimization are sketthe Figurel. More rigorously, online
combinatorial optimization is defined as a repeated gamedsgt a “player” and an “adversary.”
At each round = 1,...,n of the game, the player chooses a probability distributioover the
set of actions4 c {0, 1}¢ and draws a random actian € A according tg;. Simultaneously, the
adversary chooses a vectgre [0, 1]%. More formally, z; is a measurable function of the “past”
(ps, @s, 2s)s=1,...+—1. Inthe full information casey, is a measurable function ¢f, as, zs)s=1,..t—1-

In the semi-bandit case, is a measurable function @ps, as, (as(7)2s(¢))i=1,..a)s=1,..+—1 and in
the bandit problem it is a measurable functior(j@f, a, (al2,))s=1...¢1.

1.1 Motivating examples.

Many problems can be tackled under the online combinatopgtimization framework. We give
here three simple examples:

e m-sets. In this example we consider the sdtof all (i) Boolean vectors in dimensiah

with exactlym ones. In other words, at every time step, the player seleastions out of

Yn the full information version, it is straightforward to t@in upper bounds for the stronger notion of regret
E> 0, alz — Emingea > 1, a’z, which is always at least as large &,. However, for partial information
games, this requires more work. In this paper we only condigleas a measure of the regret.

2Note that since all actions have the same size|fiu¢l; = m,Va € A, one can reduce the case®df= [a, 8]¢ to
Z = [0,1]? via a simple renormalization.



Parameters: set of actions C {0, 1}¢; number of rounds, € N.

Foreachround=1,2,...,n;

(1) the player chooses a probability distributipnover .4 and draws a random actien € A ac-
cording topy;

(2) simultaneously, the adversary selects a loss vegtar|0, 1]¢ (without revealing it);
(3) the player incurs the losg z;. She observes

— the loss vectoe; in the full information setting,
— the coordinates,(i)a.(7) in the semi-bandit setting,
— the instantaneous logg z; in the bandit setting.

Goal: The player tries to minimize her cumulative 183", a] 2.

Figure 1: Online combinatorial optimization.

d possibilities. Whenn = 1, the semi-bandit and bandit versions coincide and correspo
to the standard (adversarial) multi-armed bandit problem.

e Online shortest path problem. Consider a communication network represented by a graph
in which one has to send a sequence of packets from one fixezk\eranother. For each
packet one chooses a path through the graph and suffersaaaggtay which is the sum of
the delays on the edges of the path. Depending on the tréféajelays on the edges may
change, and, at the end of each round, according to the addevetof feedback, the player
observes either the delays of all edges, the delays of eaggha@dthe chosen path, or only
the total delay of the chosen path. The player’s objectite minimize the total delay for
the sequence of packets.

One can represent the set of valid paths from the startingwéo the end vertex as a set
A c {0, 1} whered is the number of edges. If at timtgz, € [0, 1]¢ is the vector of delays
on the edges, then the delay of a patke A is z/a. Thus this problem is an instance of
online combinatorial optimization in dimensieh) whered is the number of edges in the
graph. In this paper we assume, for simplicity, that allovplaths have the same length

e Ranking. Consider the problem of selecting a rankinghoitems out ofM possible items.
For example a website could have a sef\pfads, and it has to select a ranked listoof
these ads to appear on the webpage. One can rephrase théepeasiselecting a matching of
sizem on the complete bipartite gragty,, ; (with d = m x M edges). In the online learning
version of this problem, each day the website chooses otelisticand gains one dollar for
each click on the ads. This problem can easily be formulasednaonline combinatorial
optimization problem.

Our theory applies to many more examples, such as spaneig fivhich can be useful in certain
communication problems), en-intervals.



1.2 Previous work.

e Full Information. The full-information setting is now fairly well understopdnd an op-
timal regret bound (in terms of:, d, n) was obtained by Koolen, Warmuth, and Kivinen
[26]. Previous papers under full information feedback alsduide Gentile and Warmuth
[14], Kivinen and Warmuth 75], Grove, Littlestone, and Schuurmariss], Takimoto and
Warmuth 4], Kalai and VempalaZ?], Warmuth and Kuzminj6], Herbster and Warmuth
[19], and Hazan, Kale, and Warmutid].

e Semi-bandit. The first paper on the adversarial multi-armed bandit protfles., the special
case ofmn-sets withm = 1) is by Auer, Cesa-Bianchi, Freund, and Schapiijerho derived
aregret bound of ordeydn log d. This result was improved tg/dn by Audibert and Bubeck
[2, 3]. Gyorgy, Linder, Lugosi, and Ottucsak( consider the online shortest path problem
and derive suboptimal regret bounds (in terms of the depwydenm andd). Uchiya,
Nakamura, and Kudo3f] (respectively Kale, Reyzin, and Schapit&l]) derived optimal
regret bounds for the casemfsets (respectively for the problem of ranking selectignja
logarithmic factors.

e Bandit. McMahan and Blum{7], and Awerbuch and Kleinber@] were the first to consider
this setting, and obtained suboptimal regret bounds (imgewof n). The first paper with
optimal dependency in was by Dani, Hayes, and Kakade’]. The dependency om and
d was then improved in various ways by Abernethy, Hazan, arkhiRe[ 1], Cesa-Bianchi,
and Lugosi [ 1], and Bubeck, Cesa-Bianchi, and Kakad¢ [We discuss these bounds in
detail in Sectior. In particular, we argue that the optimal regret bound im&ofd (and
m) is still an open problem.

We also refer the interested reader to the recent suijdpif an overview of bandit problems in
various other settings.

1.3 Contribution and contents of the paper.

In this paper we are primarily interested in the optimahimax regretn terms ofm, d andn. More
precisely, our aim is to determine the order of magnitudeneffollowing quantity: For a given
feedback assumption, writeip for the supremum over all adversaries anfl for the infimum
over all allowed strategies for the player under the feekllaasumption. (Recall the definition of
“adversary” and “player” from the introduction.) Then we anterested in

max infsup R,,.
AC{0,1}4:VacA,||a||1=m

Our contribution to the study of this quantity is threefokrst, we unify the algorithms used
in Abernethy, Hazan, and Rakhlir][ Koolen, Warmuth, and KivinenZ], Uchiya, Nakamura,
and Kudo B9, and Kale, Reyzin, and Schapirgd under the umbrella of mirror descent. The
idea of mirror descent goes back to Nemirovski][ Nemirovski and Yudin £9). A somewhat
similar concept was re-discovered in online learning byldstar and Warmuth?[J], Grove, Little-
stone, and Schuurmanky, Kivinen and WarmuthZ5] under the name of potential-based gradient



Full Information| Semi-Bandit Bandit

Lower Bound| m,/nlog % mdn myvdn

Upper Bound|  m,/nlog < mdn m3/2,/dnlog &

Table 1: Bounds on the minimax regret (up to constant factors). Therssults are set in boldface. In this
paper we also show thaixpP2 in the full information case has a regret bounded belowl%%\/ﬁ (whenm
is of orderd).

descent, seel], Chapter 11]. Recently, these ideas have been flourisheedgps instance Shalev-
Schwartz B3], Rakhlin [3(], Hazan [L7], and Bubeck T]. Our main theorem (Theoreg) allows
one to recover almost all known regret bounds for online daatbrial optimization. This first
contribution leads to our second main result, the improveroéthe known upper bounds for the
semi-bandit game. In particular, we propose a differenbpod the minimax regret bound of the
order of v'nd in the standardi-armed bandit game that is much simpler than the one provided
in Audibert and Bubeckd] (which also improves the constant factor). In additionltese upper
bounds we prove two new lower bounds. First we answer a quresti Koolen, Warmuth, and
Kivinen [2€] by showing that the exponentially weighted average fastras provably subopti-
mal for online combinatorial optimization. Our second loweund is a minimax lower bound in
the bandit setting which improves known results by an ordenagnitude. A summary of known
bounds and the new bounds proved in this paper can be fourabie I

The paper is organized as follows. In Sectibmwe introduce the two algorithms discussed
in this paper. In particular in Sectich1 we discuss the popular exponentially weighted average
forecaster and we show that it is a provably suboptimalegsatThen in Sectiod.2 we describe
our main algorithmpsmb (Online Stochastic Mirror Descent), and prove a generakgtdgpund in
terms of the Bregman divergence of the Fenchel-Legendreofittee Legendre function defining
the strategy. In Sectiod we derive upper bounds for the regret in the semi-bandit ftasesmbD
with appropriately chosen Legendre functions. Finally @ct®n4 we prove a new lower bound
for the bandit setting, and we formulate a conjecture on dineect order of magnitude of the regret
for that problem based on this new result and the regret koabthined in 1, 9].

2 Algorithms.

In this section we discuss two classes of algorithms thag lve@en proposed for online combina-
torial optimization.

2.1 Expanded Exponential weightsg€xpP2).

The simplest approach to online combinatorial optimizai® to consider each action of as
an independent “expert,” and then apply a generic regreinmzmg strategy. Perhaps the most
popular such strategy is the exponentially weighted awefagecaster (see, e.gl(]). (This



strategy is sometimes called Hedge, see Freund and SclpagipeWe call the resulting strategy
for the online combinatorial optimization probleexp2, see Figure. In the full information
setting,ExP2 corresponds to “Expanded Hedge,” as defined in Koolen, \Wdrnand Kivinen
[2€6]. In the semi-bandit case&xpP2 was studied by Gyorgy, Linder, Lugosi, and Ottucsal [
while in the bandit case in Dani, Hayes, and Kakaild,[ Cesa-Bianchi and LugosilLl], and
Bubeck, Cesa-Bianchi, and Kakadd.[ Note that in the bandit cas&xP2 is mixed with an
exploration distributionsee Sectiod for more details.

Despite strong interest in this strategy, no optimal regoetnd has been derived for it in the
combinatorial setting. More precisely, the best bound ¢ittan be derived from a standard

argument, see for exampleZ] or [26]) is of orderm?®?, /nlog (<£). On the other hand, ir?f]
the authors showed that by using Mirror Descent (see nekbsgevith the negative entropy, one

obtains a regret bounded by, /n log (%) Furthermore this latter bound is clearly optimal (up

to a numerical constant), as one can see from the standaed bmwind in prediction with expert
advice (consider the set that corresponds to playing expert problems in parallel with/m
experts in each problem). I2§] the authors leave as an open question the problem of whigther
would be possible to improve the bound fxpP2 to obtain the optimal order of magnitude. The
following theorem shows that this is impossible, and thdiait EXP2 is a provably suboptimal
strategy.

Theorem 1 Letn > d. There exists a subsgt C {0, 1}¢ such that in the full information setting,
the regret of theexpP2 strategy (for any learning rate), satisfies

sup R, > 0.01d%*2/n.

adversary

The proof is deferred to the Appendix.

2.2 Online Stochastic Mirror Descent.

In this section we describe the main algorithm studied ia gaper. We call it Online Stochastic
Mirror Descent 6smD). Each term in this name refers to a part of the algoritiMirror Descent
originates in the work of Nemirovski and Yudifi§]. The idea of mirror descent is to perform a
gradient descent, where the update with the gradient i®peed in the dual space (defined by
some Legendre functiof) rather than in the primal (see below for a precise formafgti The
Stochastigart takes its origin from Robbins and Monrl] and from Kiefer and Wolfowitz14].
The key idea is that it is enough to observe an unbiased dstwhthe gradient rather than the true
gradientin order to perform a gradient descent. FinallyQh&nepart comes from Zinkevichj[/].
Zinkevich derived the Online Gradient Desceatz) algorithm, which is a version of gradient
descent tailored to online optimization.

To properly describe thesmD strategy, we recall a few concepts from convex analysis, see
Hiriart-Urruty and Lemaréchal’[]] for a thorough treatment of this subject. LBtC R? be an
open convex set, arfd the closure ofD.

Definition 1 We call Legendre any continuous functibn D — R such that

(i) F is strictly convex continuously differentiable ®n

6



EXP2:
Parameter: Learning rate

_ (4 1 A
Letpr = (g0 1) € RM
Foreachround=1,2,...,n;

(a) Playa; ~ p; and observe

— the loss vectot, in the full information game,

— the coordinates; (i)1,,;)=1 in the semi-bandit game,

— the instantaneous log$ z; in the bandit game.
(b) Estimate the loss vectory by z;. For instance, one may take

— z; = z in the full information game,

o= z4(i) N - 5 .

Z(1) = S @ a:(7) in the semi-bandit game,

— 2z = Plrayal 2, with P, = E,,, (aa”) in the bandit game.

(c) Update the probabilities, for all € A,

B exp(—na’Z)p:(a)
S ST ETEATIO)

Figure 2: TheEXP2 strategy. The notatiof,,,, denotes expected value with respect to the random choice
of a when it is distributed according .
(i) lim, 5 [[VF(2)]] = +00.2
The Bregman divergende; : D x D associated to a Legendre functiéhis defined by
Dp(x,y) = F(z) = F(y) — (z —y)"VF(y).

Moreover, we say thab* = VF (D) is the dual space db under F'. We also denote b¥* the
Legendre-Fenchel transform éf defined by

F*(u) = sug (z"u— F(z)) .

Lemma 1l Let F' be a Legendre function. Thefi* = F andVE* = (VF)~! on the setD*.
MoreoverVzx,y € D,

3By the equivalence of norms IR, this definition does not depend on the choice of the norm.



The lemma above is the key to understanding how a Legendidanacts on the space. The
gradientV F' mapsD to the dual spac®*, andV F* is the inverse mapping from the dual space
to the original (primal) space. Moreovef,)(shows that the Bregman divergence in the primal
space corresponds exactly to the Bregman divergence ofdfendre-Fenchel transform in the
dual space. A proof of this result can be found, for exampléChapter 11, 10]].

We now have all ingredients to describe themb strategy, see Figure for the precise for-
mulation. Note that step (d) is well defined if the followingnsistency condition is satisfied:

VF(x)—nz € D",Vx € Conv(A) ND. (2)

In the full information setting, algorithms of this type veestudied by Abernethy, Hazan, and
Rakhlin [1], Rakhlin [30], and Hazan 7]. In these papers the authors adopted the presenta-
tion suggested by Beck and Tebouli@, [which corresponds to a Follow-the-Regularized-Leader
(FTRL) type strategy. There the focus was Brbeing strongly convex with respect to some norm.
Moreover, in [l] the authors also consider the bandit case, and switéhtieing a self-concordant
barrier for the convex hull ofd (see Sectiod for more details). Another line of work studied this
type of algorithms with?” being the negative entropy, see Koolen, Warmuth, and Kivjig] for
the full information case and Uchiya, Nakamura, and Kugig,[Kale, Reyzin, and Schapiré ]
for specific instances of the semi-bandit case. All thesalt®are unified and described in details
in Bubeck [/]. In this paper we consider a new type of Legendre functiémsspired by Audibert
and Bubeck §], see Sectior3.

Regarding computational complexitysmp is efficient as soon as the polytopenuv(.A) can
be described by a polynomial (if) number of constraints. Indeed in that case steps (a)-(bbea
performed efficiently jointly (one can get an algorithm bgpkang at the proof of Carathéodory’s
theorem), and step (d) is a convex program with a polynomiatlmer of constraints. In many
interesting examples (suchassets, selection of rankings, spanning trees, paths idiagyaphs)
one can describe the convex hull.dfby a polynomial number of constraints, see Schrijsi.[
On the other hand, there also exist important examples wihexes not the case (such as paths on
general graphs). Also note that for some specific examplepdssible to implemerdsmbd with
improved computational complexity, see Koolen, Warmutid Kivinen [26].

In this paper we restrict our attention to the combinatdearning setting in which4 is a
subset of{ 0, 1}¢ and the loss is linear. However, one should note that thisifipéorm of A plays
no role in the definition obsMmbD. Moreover, if the loss is not linear, then one can modi§mbD
by performing a gradient update with a gradient of the loath@r than the loss vectey). See
Bubeck [/] for more details on this approach.

The following result is at the basis of our improved regraids forosmb in the semi-bandit
setting, see Sectiah

Theorem 2 Suppose tha(2) is satisfied and the loss estimates are unbiased in the sbase t
Ea.~p. 2t = 2. Then the regret of thesmp strategy satisfies

R,

< SUP,eA F(:;) B F<x1) + % ZEDF* (VF(l’t) - 7]’5157 vF('Tt>) :
t=1



OSMD:

Parameters:
e learning rate; > 0,
e Legendre functior” defined orD > Conwv(A).
Letz, € argmin,coyn,(a) F'().
Foreachround=1,2,...,n;
(a) Letp, be a distribution on the set such thatr; = E,,,a.
(b) Draw a random action, according to the distributiop, and observe the feedback.
(c) Based on the observed feedback, estimate the loss vedipE;.
(d) Letw,,, € D satisfy

VE(wig1) = VF(x) — nz. (3)

(e) Project the weight vectar, ., defined by 8) on the convex hull of4:

Ty € argmin Dp(z, wyyq). 4)
zeConv(A)

Figure 3: Online Stochastic Mirror Descent (OSMD).

Proof Leta € A. Using thata, andz; are unbiased estimates:afandz;, we have

EZ(at —a)’y = EZ(zt —a)'z,.
t=1 t=1

Using 3), and applying the definition of the Bregman divergences, abtains
nz (r; —a) = (a - xt)T(VF(th) - VF(xt))
= Dp(a,x) + Dp(2, wip1) — Dr(a, wig).

By the Pythagorean theorem for Bregman divergences (sgelemma 11.3 of 1(]), we have
Dp(a,wiy1) > Dr(a, @i1) + Dre(2i41, i), hence

nth(xt —a) < Dp(a,zy) + Dp(x, wig1) — Dr(a, v41) — Dp(Tig1, weg) -

Summing ovet gives

n

ZTZ:Z}T(% —a) < Dp(a,a1) — Dp(a, apq1) + Z (D (24, wi1) — Dp(@e1, wer)) -
=1

t=1



By the nonnegativity of the Bregman divergences, we get

ant ) < Dp(a,ay) + ZDF Ty, Wip1).

t=1

From (1), one hasDp(xy, wyy1) = Dy« (VF(x;) — nZ, VF(x;)). Moreover, by writing the first-
order optimality condition for:;, one directly obtain®r(a, 1) < F(a)— F(z;) which concludes
the proof. |

Note that, if " admits an Hessian, denot&# I, that is always invertible, then one can prove
that, up to a third-order terr(in ’z“t) the regret bound can be written as

sup,eq F(a) = F(r1) | 1~ -1~
R, < A p +§sz (V2F () Z. (5)

The main technical difficulty is to control the third-ordera term in this inequality.

3 Semi-bandit feedback.

In this section we consider online combinatorial optimizatwith semi-bandit feedback. As we
already discussed, in the full information case Koolen, Migh, and Kivinen 6] proved that
osMD with the negative entropy is a minimax optimal strategy. W firove a regret bound when
one uses this strategy with the following estimate for ttss heector:

2 (i) ay(4)
zy(i)
Note that this is a valid estimate since it makes only use0t)a;(1), .. ., z;(d)a,(d)). Moreover,

it is unbiased with respect to the random drawzpfrom p;, since by definitionE,, ., a:(i) =
x¢(7). In other wordsE,, -,z (i) = z(7).

:th(@) = (6)

Theorem 3 The regret of OSMD witt#' () = 3¢, z;logz; — 3., z; (@andD = (0, +00)?) and
any non-negative unbiased loss estimafe) > 0 satisfies

: : : mlog dm
In particular, with the estimat5) andn = /2757,

R, < y/2mdnlog i
m

10



Proof One can easily see that for the negative entropy the duakdpd®’ = R?. Thus, @) is
verified andosmbD is well defined. Moreover, again by straightforward compates, one can also

see that
Dr-(VF(@.VF)) = Zy o((VF ()~ VFuO)) . ™

Where@( ) = exp(z) — 1 — z. Thus, using Theorer and the facts thad(z) < % forz <0
and>%  z,(i) < m, one obtains

Fla)— F RS
Rn S SupaeA (z) (.Tl) + E Z EDF* <VF(ZUt) - nzta VF(xt)>

L SUWbecs F(;O — Flm) | DI ILICEIOR

t=1 i=1

The proof of the first inequality is concluded by noting that:

F(a) — F(xy) <Zx1 log <mlog <Zx1(l )—mlog%.

m x1()
i=1

The second inequality follows from

N~ 2 a (i) _
Ex,(i)z (i) < Ext(z) =1

Using the standaredn lower bound for the multi-armed bandit (which correspormdhe case
whereA is the canonical basis), see e.g., [Theorem 3|), §ne can directly obtain a lower bound
of orderv/'mdn for our setting. Thus the upper bound derived in TheoBhas an extraneous
logarithmic factor compared to the lower bound. This pheeaoom already appeared in the basic
multi-armed bandit setting. In that case, the extra lobarit factor was removed in Audibert and
Bubeck ] by resorting to a new class of strategies for the expertlprapcalled INF (Implicitely
Normalized Forecaster). Next we generalize this classgufrahms to the combinatorial setting,
and thus remove the extra logarithmic factor. First we ihiice the notion of a potential and the
associated Legendre function.

Definition 2 Letw > 0. A functiony : (—oo0,a) — R for somea € R U {400} is called an
w-potential if it is convex, continuously differentiableydasatisfies

lim ¢(x) =w, li_r}n Y(x) = +o0,

r—r—00

w41
v >0, / [~ (s)|ds < +o0 .

For every potential) we associate the functiafi, defined oD = (w, +00)? by:
d i
- Z / !
i=1 ¥
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In this paper we restrict our attention @epotentials which we will simply calpotentials A
non-zero value ofv may be used to derive regret bounds that hold with high pritihabnstead
of pseudo-regret bounds, see footnote 1).

The first order optimality condition fo#] implies thatosmp with F), is a direct generalization
of INF with potentiak), in the sense that the two algorithms coincide wias the canonical basis.
Note, in particular, that with)(z) = exp(z) we recover the negative entropy féy,. In [3], the
choice ofy(x) = (—z)? with ¢ > 1 was recommended. We show in Theorénhat here, again,
this choice gives a minimax optimal strategy.

Lemma 2 Lete be a potential. The = F, is Legendre and for all, v € D* = (—o0, a)? such
thatuz- < ’UZ‘,Vi S {1, e d},

d

D W (03) (us — v).

i=1

DF*(U,U) <

(NN

Proof A directexamination shows that = F, is a Legendre function. Moreover, sinGd™ (u) =
(VF) " u) = (¢(w), ..., ¥(uq)), we obtain

D (u, ) = Z ( / b(s)ds — (s — v,-w(vz-)).

From a Taylor expansion, we get

d
1
Dps(u,v) < H[laX} iiﬁ/(s)(ul — )2
s€(uq,v;
i=1

Since the function) is convex, and;; < v;, we have

max '(s) < ' (max(u;,v;)) <9 (v;),

SE[ug,v;]

which gives the desired result. [ |

Theorem 4 Lety be a potential. The regret afsmp with /' = F;, and any non-negative unbiased
loss estimate; satisfies

SUPge Fa) = F(11) | 1y~ Z(1)?
fn = 2L LA o)

n t=1 =1

In particular, with the estimaté5), ' (x) = (—z)~9, ¢ > l,andn = q%lfgjjj//: 1
[ 2
R, < q\/——mdn .
qg—1

With ¢ = 2 this gives
R, <2vV2mdn .

12



In the casen = 1, the above theorem improves the bouRgd < 8v/nd obtained in Theorem
11 of [3].
Proof First note that sinc®* = (—o0,a)? andz; has non-negative coordinatessmbp is well
defined (that is,q) is satisfied).

The first inequality follows from Theoremand the fact that' (11 (s)) = W

Let ¢(z) = (—2)~¢. Theny~'(z) = —z~Y4 and F(z) = ——4 0 2 7"/%. In particular,
note that by Holder’s inequality, sin(Ef:1 x1(3) = m,

d
F(a) = F(z1) < 7 1 le(i)l_l/q < 7 1m(‘1—1)/qd1/q.
q—1%= q-—

Moreover, note thaty~")'(z) = 1z~'~'/%, and
iE Zt(Z)Z - qil’ (’L)l/q < qml/qdl—l/q
(W (@) T & B ’

which concludes the proof. [ |

4 Bandit feedback.

In this section we consider online combinatorial optim@atvith bandit feedback. This setting is
much more challenging than the semi-bandit case, and im toddtain sublinear regret bounds all
known strategies add axplorationcomponent to the algorithm. For example ErpP2, instead
of playing an action at random according to the exponegtia#tighted average distributign,
one draws a random action from with probability 1 — ~ and from some fixed “exploration”
distributiony with probabilityy. On the other hand, iosmD, one randomly perturbs, to some
74, and then plays at random a pointihsuch that on average one plays

In Bubeck, Cesa-Bianchi, and Kakad#g, [the authors study thexp2 strategy with the explo-
ration distribution. supported on the contact points between the polytopev(.A) and the John
ellipsoid of this polytope (i.e., the ellipsoid of minimadme enclosing the polytope). Using this
method they are able to prove the best known upper bound foreocombinatorial optimization
with bandit feedback. They show that the regreexfP2 mixed with John’s exploration (and with
the estimate described in Figuzgsatisfies

R, < 2m3/2\/3dnlog€—d.
m

Our next theorem shows that no strategy can achieve a reg®than a constant timesy/dn,

leaving a gap of a factor qf/ m log %. As we argue below, we conjecture that the lower bound is of

the correct order of magnitude. However, improving the ujgoeind seems to require some sub-
stantially new ideas. Note that the following bound givesitations that no strategy can surpass,
on the contrary to Theorethwhich was dedicated to thexp2 strategy.

13



Theorem 5 Letn > d > 2m. There exists a subsgt C {0,1}¢ such thatl|a||; = m,Va € A,
under bandit feedback, one has
inf  sup R, >0.02mVdn, (8)

strategiesygversaries

where the infimum and the supremum are taken over the classatdges for the “player” and
for the “adversary” as defined in the introduction.

Note that it should not come as a surprise thap2 (with John’s exploration) is suboptimal,
since even in the full information case the basi®2 strategy was provably suboptimal, see Theo-
rem1. We conjecture that the correct order of magnitude for th&mmax regret in the bandit case
is mv/dn, as the above lower bound suggests.

A promising approach to resolve this conjecture is to carsabain theosmbD approach.
However we believe that in the bandit case, one has to cank&gendre functions with non-
diagonal Hessian (on the contrary to the Legendre functionsidered so far in this paper). Aber-
nethy, Hazan, and Rakhliri] propose to use a self-concordant barrier function for tbigtppe
Conv(A). Then they randomly perturb the point given by osmD using the eigenstructure of
the Hessian. This approach leads to a regret upper boundlefarl/0n logn for § > 0 when
Conv(A) admits ad-self-concordant barrier function. Unfortunately, evehen there exists a
O(1)-self concordant barrier, this bound is still larger thaa tonjectured optimal bound by a
factorv/d. In fact, it was proved inq] that in some cases there exist better choices for the Leg-
endre function and the perturbation than those describédl],ireven when there is &(1)-self
concordant function for the action set. How to generalize élpproach to the polytopes involved
in online combinatorial optimization is a challenging ogenblem.

A Proof of Theorem 1.

For the sake of simplicity, we assume thlas a multiple of4 and thatn is even. We consider the
following subset of the hypercube:

/2
A= {a c {0,1}¢: Zai =d/4 and
i=1

(ai = 1,Vi e {d/2+ 1;...,d/2+d/4}) or (ai =1,Vie {d/2+d/4+ 1,...,d})}.

That is, choosing a point inl corresponds to choosing a subset/pi elements among the first
half of the coordinates, and choosing one of the two firsbdisjntervals of sizel/4 in the second
half of the coordinates.

We prove that for any parameterthere exists an adversary such that Exp2 (with paramgter
has a regret of at Iea$g tanh (%d) , and that there exists another adversary such that itstiegre

leastmin (digf, nd) | As a consequence, we have

d d dlog 2
sup R, > max (% tanh (%),min < 1;%} ,%l) )

log 2 d
> min | max nd tanh (n—d>, dlog ,n—d > min <A, n—),
16 8 129 12 12
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with
nd

dlog 2
A= min max | 22 tanh (—), 5
n€[0,+00) 8 12n

> min (min 7;_61 tanh (77—d>,min max <n—d tanh <U_d>7 dlogZ) )

nd>8 16 8 / nd<8 16 8 12n

> min nd tanh(1), min max ndnd tanh(1), dlog2
16 nd<8 16 8 12n

. [ nd nd3log 2 - tanh(1) _
> min (1_6 tanh(1), \/ 198 .19 > min (0.04 nd, 0.01 d3/2\/ﬁ) ,

where we used the fact thainh is concave and increasing @ . Asn > d, this implies the
stated lower bound.
First we prove the lower bounﬁ.@ tanh (%d) Define the following adversary:

1 if ie{d/2+1;...,d/2+d/4} and t odd
z(i) =14 1 if ie{d/2+d/4+1,...,d} and t even
0 otherwise

This adversary always puts a zero loss on the first half of doedinates, and alternates between
a loss ofd/4 for choosing the first interval (in the second half of the clioates) and the second
interval. At the beginning of odd rounds, any vertexc A has the same cumulative loss and
thus Exp2 picks its expert uniformly at random, which yiedaisexpected cumulative loss equal to
nd/16. On the other hand, at even rounds the probability distiobub select the vertex € A is
always the same. More precisely, the probability of sehgct vertex which contains the interval
{d/2+d/4+1,...,d} (i.e, the interval with al/4 loss at this round) is exactlyl—). This

+exp(—nd/4
adds an expected cumulative loss equd}ft?li). Finally, note that the loss of any fixed

i . +exp(—nd/4
vertex isnd/8. Thus, we obtain

R, = — tanh

T T B Trep(—pd/) 8 16

~nd nd 1 nd nd <7)8d)

It remains to show a lower bound proportionalltd;. To this end, we consider a different
adversary defined by

1—¢ if i <dj/4,
2 (1) = 1 if ie{d/A+1,...,d/2},
0  otherwise

for some fixede > 0.

Note that against this adversary the choice of the intemahé second half of the components)
does not matter. Moreover, by symmetry, the weight of anydioate in{d/4 + 1,...,d/2} is
the same (at any round). Finally, note that this weight iseksing witht. Thus, we have the
following identities (in the big sumsrepresents the number of components selected in the first

15



d/4 components):

ned ZaeA:ad/Qzl eXp(_nnlea)
T Yo oxp(—mela)

ned Silo (U (1) exp(—n(nd/4 — ing))

R, =

(
4 S (d%4 ) exp(—n(nd/4 — ing))
 ned Zd/ o (Y () expline)
LU (k) exp(nine)

ned ik (1= %) (1) (;71t,) exp(nine)
A S (U () exp(nine)

where we used,";!)) = (1 - %)(,/;%,) in the last equality. Thus, taking = min (%2, 1)
yields

oo (dlog2 nd) S (1 4) () min@ exp(m)) . (dlog2 nd
n = ML=, /4 (dja2 . ; =M\ 1
n >2ilo (%) min(2, exp(nn))’ g

where the last inequality follows from Lemn3an the appendix. This concludes the proof of the
lower bound.

B Proof of Theorem5

The structure of the proof is similar to that ¢f [Theorem 30], which deals with the simple case
wherem = 1. The main important conceptual difference is containedamma4, which is at the
heart of this new proof. The main argument follows the linestaindard lower bounds for bandit
problems, see, e.g.10]: The worst-case regret is bounded from below by by takingnarage
over a conveniently chosen class of strategies of the aalwershen, by Pinsker’s inequality, the
problem is reduced to computing the Kullback-Leibler diece of certain distributions. The
main technical argument, given in Lemmais for proving manageable bounds for the relevant
Kullback-Leibler divergence.

For the sake of simplifying notation, we assume th)ass a multiple ofm, and we identify
{0, 1} with the set ofm x (d/m) binary matrices[0, 1}*%. We consider the following set of

actions:
d/m

A= {a€ {01} :Vie{l,. m},Za(i,j)zl}.

In other words, the player is playing in parallelfinite games withi/m actions.
From step 1 to 3 we restrict our attention to the case of detestit strategies for the player,
and we show how to extend the results to arbitrary strategistep 4.

First step: definitions.
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We denote byl;; € {1,...,m} the random variable such that(, I,;) = 1. Thatis,/;; is
the action chosen at timein the ;" game. Moreover, let be drawn uniformly at random from

{1,...,n}.
In this proof we consider random adversaries indexedibyMore precisely, forw € A, we
define thea-adversaryas follows: For anyt € {1,...,n}, z(i,7) is drawn from a Bernoulli

distribution with parameteif — eaf(i, j). In other words, against adversaryin thei’* game, the

actionj such thatv(i, j) = 1 has a loss slightly smaller (in expectation) than the otbtoas. We

denote byE, integration with respect to the loss generation processenftadversary. We write
PP; », for the probability distribution ofv(7, /; -) when the player faces the-adversary. Note that
we haveP; ,(1) = Ea% > 1 Lag,1,.)=1, hence, against the-adversary, we have

—E Zzgl ZILt?él_nEZ 1-P zoz 5

t=1 i=1

which implies (since the maximum is larger than the mean)

_ T 1
ng}Rn > 715; (1 - W%R‘,a(”) . 9

Second step: information inequality.

LetP_, , be the probability distribution ok (i, /; ) against the adversary which plays like the
a-adversary except that in thi& game, the losses of all coordinates are drawn from a Beiinoull
distribution of parameterr/2. We call it the(—i, «)-adversaryand we denote b _; ., integration
with respect to its loss generation process. By Pinskegguality,

1
Pi,a<1) S P_i,a(l) -+ \/§KL(P_Z'7Q, ]Pi,a) s

where KL, denotes the Kullback-Leibler divergence. Moreover, nb by symmetry of the
adversarie$—i, o),

d/mmzp_w‘ B d/mmZE(““ a(i, L)
= d/m m Z / Z E(—i,a)a(i7 Ii,T)

ai(—i,0)=(~i,8)

- uhmm%;wmm4@ 2, ol

a:(—i,0)=(—1,6)

1 Z 1
(dfm)™ 2= dfm
m
- 1
o (10)
and thus, thanks to the concavity of the square root,
1 m 1
—_— P; (1) < — _ KL(P_; o, P; o). 11
(d/m)m O;A Z,Ol( ) = d + \/Q(d/m)m O;A ( 7,009 Z,Ol) ( )
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Third step: computation dL(P_, ., P; ,) with the chain rule.

Note that since the forecaster is deterministic, the sexpieh observed losses (up to time
n) W, € {0,...,m}" uniquely determines the empirical distribution of playsdain particular,
the probability distribution ofy(i, /; ;) conditionally tolV,, is the same for any adversary. Thus,
if we denote byP;, (respectivelyP”; |) the probability distribution ofi¥;, when the forecaster
plays against the-adversary (respectlvely the-7, )-adversary), then one can easily prove that
KL(P_; o, P;o) < KL(P2,; ,,P7). Now we use the chain rule for Kullback-Leibler divergence
iteratively to introduce the probability distributiof®, of the observed lossd$/; up to timet.
More precisely, we have,

KL(P2, ., P7)

= KL(PL, ,.PL) +Z > P (w1 )KL(PL,  (Jwy—1), P (we—))

=2 wy_ 16{0 ----- m}t=1

L (B(Z)v Bé)) ILOt(i,Iz‘,l)Zl + Z Z ]P)t—zloc(wt 1)KL (B’wt—17 Biut 1) )

t=2 wtfl:a(i,li,l)—l

whereB,,_, andB,, . are sums ofn Bernoulli distributions with parameters {1,/2,1/2 — ¢}
and such that the number of Bernoullis with paramét& in 5,, , is equal to the number of
Bernoullis with parameter/2 in B, plus one. Now using Lemm#é(see below) we obtain,

8 ¢?

KL (Bwt7178 ) < m

Wi—1

In particular, this gives

n

8 en
KL(P" E_W I[OéZ 7IP’_W 1).

Pe) <

ZO{?

Summing and plugging this intd.{) we obtain (again thanks td(Q)), fore < —

<1,
m 8n
d/mmz <zt

To conclude the proof ofg) for deterministic players one needs to plug this last éqonah (9)
along with straightforward computations.
Fourth step: Fubini’'s theorem to handle non-determiniglizyers.

Consider now a randomized player, andlig},; denote the expectation with respect to the
randomization of the player. Then one has (thanks to Fudinéorem),

d/mmz Zatzt = m"dd/ mz Zatzt—az

Now note that if we fix the realization of the forecastersdamization then the results of the
previous steps apply and, in particular, one can lower bq%% Y ueaBa 2ot (af 2 — a'2)
as before (note that is the optimal action in expectation against thadversary).
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C Technical lemmas.

Lemma 3 Foranyk € N* forany1 < ¢ < 2, we have

. 2 i
S (1= i/k) () e
2 .
2?:0 (l:) ¢
Proof Let f(c) denote the expression on the left-hand side of the ineguaiiroduce the random
variable X, which is equal toi € {0,...,k} with probability ()°c'/ S5 | (*)°c/. We have
f(c) =iE[X(1-X/k)] - 1E(X)E(1 - X/k) = —2VarX < 0. So the functiory is decreasing
on[1,2], and therefore it suffices to consider= 2. Numerator and denominator of the left-hand
side differ only by the factot — i/k. A lower bound for the left-hand side can thus be obtained by
showing that the terms farclose tok are not essential to the value of the denominator. To prove
this, we may use Stirling’s formula which implies that foyan> 2 andi € [1, k£ — 1],

’ - Vk -1/6 ’ - Vk 1/12
(%) <k]iz>k Qm(i_@')e "< (f) < (é) <k:liz>k Qm(Z_Z')e/ ’

>1/3.

hence
kN2 ko N2k keml/3 E\? kN2 ko o\ 20k-) et/
<§) <k—z> itk —i) (2) = (Z) (k:—z) omi
Introduce) = i/k andx(\) = sz~ We have
9¢—1/3 L 2 el/6
k i k>
o < (8) 2 < oo 12)

Lemma3 can be numerically verified fok < 10°. We now conside: > 10°. For A >
0.666, since the functiory can be shown to be decreasing [0r666, 1], the inequality(’j)22i <
[x(0.666)]*-—<"°__ holds. We have(0.657),/x(0.666) > 1.0002. Consequently, fok > 105,

2x0.666 X7

we havelx(0.666)]* < 0.001 x [x(0.657)]%/k?. So for\ > 0.666 andk > 10°, we have

B9 < 0.001 x [x(0.657)F " 0.657)F 2"
(2) < 0000 (0657 s = ges e = OO 55772
26_1/3
_ : k
_,\e[o.%}s%.%ﬂb(( ) 10007 k2
1 E\2 .
- 2% (1
= 1000k iefa,..., kﬂ?rﬁ0,0ﬁ%k) <z) - (13)

where the last inequality comes frot?j and the fact that there exists {1,...,k—1} such that
i/k € [0.656,0.657]. Inequality (L3) implies that for any € {1, ..., k}, we have

AN K\, 1 K\,
2" < —— 2" < —— 2"
Z <z) = 1000 iefa,..., kl—ri?%([o,o.%ﬁk) (@) = 1000 Z <z)

0.666k<i<k 0<i<0.666k
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To conclude, introducing! = 3" _; o 661 (+ )*2', we have

SE (1 —i/k)(%)21  (1-0.666)A 1
S (M)(E)2 A+0.0014 = 3

Lemma 4 Let/ andn be integers with} <5 <{<n. Letp,p, qnpi, ..., p,bereal numbersin

(0,1) withq € {p,p'}, pr =+ =pe = qandpy; = --- = p,. LetB (resp. B’) be the sum of
n + 1 independent Bernoulli distributions with parameter, ..., p, (resp.p’, p1,...,p,). We
have

/ 2(]3/ _p)2
KUBB) < - 20

Proof LetZ, 7', Z,, ..., Z, be independent Bernoulli distributions with parameteys, p1, . . . , pn-
DefineS = 3¢_, Z, T — > ZiandV = Z 4 S. By a slight and usual abuse of notation, we
useKL to denote Kullback-Leibler divergence of both probabitligtributions and random vari-

ables. Then we may write (the inequality is an easy consexguehthe chain rule for Kullback-
Leibler divergence)

KL(B,B) =KL((Z+S)+T,(Z' +5)+T)
<KL((Z+5,T),(Z'+ 5,T))
=KL(Z+5,72'+S).

Lets, =P(S =k)fork =—1,0,...,¢+ 1. Using the equalities

_ ¢ k l—k __ q E_k_‘_]- 14 k—1 l—k+1 q g—k‘Fl
3k—<k)Q(1 q) T4 & )4 19 Ry L

which holds forl < k& < ¢+ 1, we obtain

241
KL(Z + 8,7 + 5) = ZIP’V k) log

P(Z+S=k)
P(Z'+ S5 =k)

P Sk 1+ 1—

(5
‘ZP Doe (oo )
(v

¢ 1qk:+ 1—-p(l—k+1)
—ZIP’V k) log lq )
P=k+(1=p)(l—k+1)

CEl (p—qV+(1—-pll+1)
= g(( ’—Q)V+(1—p’)q(f+1))'

(14)
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First case:q = p/'.
By Jensen’s inequality, using that” = p'(¢ + 1) + p — p’ in this case, we get
: (p—P)E(V)+ A —pp(l+ 1))
KL(Z+ 5,2 +5) <lo (

( )= los (1 =p)p/(€+1)

1 ((p — )+ =p)p(+ 1))
(I=p)p(f+1)

—_ )2 —\2
(p—7) < _=p)
=

(1=p)p(L+1) —p)p(L+1)°

= log <1+

Second case; = p.
In this case)/ is a binomial distribution with parametefs+ 1 andp. From (L4), we have

(P =p)V+ 0 —p)p(l+ 1))
(1 —=pp(f+1)
(' —p)(V — EV))
(I=pp(t+1) )

KL(Z+S,Z'+ S) < —Elog (

(15)

< —Elog (1 +

To conclude, we will use the following lemma.
Lemma 5 The following inequality holds for any > z, with z, € (0, 1):

(r=1)"

—log(x) < —(x —1) + 57

Proof Introducef(z) = —(z — 1) + = 1 log(z). We havef'(z) = —1 + =1 + 1 and

2x0

f'(z) =L — 4. Fromf’(z) = 0, we get that/’ is negative or{z,, 1) and positive or{1, +o0).

o

This leads tof nonnegative offizy, +00). ]
Finally, from Lemmab and (L5), usingz, = 11%’; we obtain
/ 2 2
— E[(V —EV)?
KL(Z+ 8,72+ 8 g( L )
( =a=meen) T

_ ( P —p )2(€+ Dp(1 —p)*
(1—=pp(f+1) 2(1 —p')
__ W-p?
21 =p)(t+1)p
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