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Abstract 

This paper reports on an effort to integrate symbolic and mathematical mod- 
els to  tailor the optimal output of an operations research model to tlie particular 
domain of a decision maker. AESOP combines tlie Blacli-Scholes model of stock 
options pricing with an expert system; the integrated model is designed for use 
by an options specialist on the American Stock Exchange. The specialist makes 
a number of adjustments to the output of the mathematical model; the purpose 
of the symbolic model is to make as many of these rnodificatioils as possible au- 
tomatically. The paper reports on the development and strtlcture of AESOP and 
presents data on its use. 

1. Introduction 

Operations Research has made a major contribution to management through mathematical 
modeling. A model usually provides an optimal solution for the decision-maker given that 
the model's assumptions are valid. A number of factors can, horvever, limit the applicability 
or usefulness of these models in real-world situations. For example, a user who is not well- 
versed in operations research may find it difficult to interpret the output of a mathematical 
model. Also a mathematical model may provide an optimal soltztion for a general class of 
problems, but the user may need to adjust the model to fit his or her particular domain. 

-4s an example, the Black-Scholes model for stock options pricing presented later in 
this paper provides a theoretical point estimate for the price of an option. For an investor 
interested in purchasing or selling an option, this price may be entirely satisfactory. However, 
for the market-maker or specialist on tlie Exchange floor, a tlleoretical point estimate is not 
adequate for direct use. The specialist's problem solving domain and the rules he uses to 
adjust the output of the model are difficult to represent in the framework of a mathematical 
model. 
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1.1. Integrated Models 

?Vhat options are available to the model-builder when it is difficult or impossible for math- 
ematics to  reflect all of the relevant aspects of a problem setting? In such a case, it may be 
possible to combine a symbolic and mathematical model to form an enriched model for a 
particular domain. One type of symbolic model is an Expert System (ES), a system which 
attempts to apply human knowledge to solving a complex problem. An Expert System com- 
bines a knowledge base about some domain or application area with an inference capability 
to perform tasks that normally require considerable human expertise ([TSS]); for examples 
of ES see [RS4]. 

A mathematical model represents a decision problem with variables and relationships 
among variables. In a management setting, the goal of the modeler is often to provide an 
optimal solution to a problem. Techniques for solving mathematical rnoclels include the use 
of linear programming, dynamic programming and calculus to solve for a minimum cost 
solution. 

A symbolic model uses variables or symbols, too. Elowever, this model resembles logic 
more than computational mathematics. The symbolic model nliglit represent a complex 
decision through the use of IF THEN rules or through first-order predicate calculus. Symbolic 
models of this type do not attempt to optimize; rather they describe a problem domain and 
its solution through logic. 

How can a symbolic model be integrated with a mathematical one to  provicle enhanced 
problem-solving ca,pability? There are several possibilities: 

I. The symbolic model helps the user build or use the mathematical model. 

This first type of integrated model features a symbolic component which assists the 
decision-maker in building and/or using a mathematical model. For example, [hlh'lSSS] have 
developed an expert system to help a user formulate large linear programming models. 

11. The mathematical model generates output which is modified in some way by the 
symbolic model. 

Another possibility is for the symbolic model to a.djust the output, of the mathematical 
model so that it fits the domain of the problem-solver. AESOP, the expert system discussed 
in this paper, is an integrated model of this type. 

111. The symbolic model chooses an appropriate mathematical model. 

The symbolic model examines the problem domain and uses its knowledge to recommend 
the appropriate mathematical model. Nostradamous [PVeSS] is an example of this type of 
system; it examines a user's forecasting problem and selects an appropriate mathematical 
forecasting mode1 given the user's domain. 

IV. The symbolic and mathematical models interact during execution. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-90-20 



This final possibility represents the closest possible coupling of mathematical and sym- 
bolic models. While we are unaware of an example of this level of integration, it is possible 
to envision a system in which an iterative procedure like a goal programming model interacts 
with a symbolic model to modify or revise goals during problem solutio11. 

1.2. An Example 

As an example of type I1 integration, suppose that a  slath he ma tical model for pricing a stock 
option produced a theoretical price of $4.50. Further, assume that the problem domain had 
the following requirements represented in a symbolic model: 

e Prices of options above $3 must have t,heir fractions stated in eighths. 

e There is to be a bidlask spread of $.50 (i.e., the clecision-~nalier wants to ha\+e two 
prices; he is willing to buy options at  the bid price and sell them at  the ask price.) 

e The bid/ask spread shoulcl be symmetric around the theoretical price. 

e There is a limit order to sell a May 40 call at 4^5. 

The symbolic mode! would apply tlse rules above to recommend a bicl/asl; price of $4^2 
bid, $4^6 asked where :̂! is :!/Sths, etc. 

The symbolic model would examine the theoretical price of $4.50 and recommend a 
bid price of the theoretical price minus one-half the spread price and an ask price of the 
theoretical price plus one-half the spread price. Before recommending this price, however, it 
would discover the existence of a limit order within this range. The symbolic model woulcl 
therefore adjust the ask price down to 5/Sths and recalculate the bid at  ~ 2 ~ 1 .  It would then 
recognize that .25 is 2/Sths and .'73 is 6/Sths, resulting in the final recommended bid/& 
prices. 

Could the symbolic model be stated in nsathensatical terms? It is possible to state the 
logic in the example mathematically, though the presence of the limit orcler introduces a great 
deal of complexity. The logic of the symbolic model is easier to follow in tlse form of the 
rules presented above. In addition, it is easy to envision many more complex recluirements 
that would be very difficult or impossible to represent in a mathematical model. Having 
the expertise expressed symbolically in the form of rules, rather than hidden inside a closed- 
form equation, allows the system to explain why it has recommencled a particular price 
by displaying the rules that it follo~ved to generate the recommenclation. This use of a 
mathematical model combined with a set of rules of expertise in effect mimics the way the 
options specialist, himself, uses the Black-Scholes moclel. The combination of mathematical 
and symbolic models provides an enriched model; it produces results that are more useful 
to  the decision-maker than the output of either model alone. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-90-20 



This paper reports on the development of a system which combines mathematical and 
symbolic models to  assist an options specialist on the American Stock Exchange establish 
quotations for stock options. AESOP, an Expert for Stock Options Pricing, integrates the 
mathematical Black-Scholes options pricing model with a symbolic model in the form of an 
Expert System to  support pricing decisions by the specialist. This system must perform in 
a demanding environment in "real-time." 

The specialist has limited time to arrive at quotations and can incur a significant financial 
loss by posting a poor price. He must perform a large number of calculations and apply 
judgment to the results in a very short period of time. An espert specialist participated 
in the development of the system described here and another specialist in his firm used the 
system for several months on the Exchange floor. 

The major contributions of this research are 1) the development of an integrated math- 
ematical and synlbolic model and 2) the successful application of the resulting system in a 
demanding environment. 

The Domain: AMEX and Options Trading 

2.1. The Stock Option 

An option is a security giving the holder the right to buy or sell an asset at  a specified time. 
A stock option call is the right to buy a share of stock at a certain price at  a future date 
while a put is the right to sell a share of stock. The price at which one may purchase or sell 
the stock is called the strike price. On tile American Stock Exchange (AhlEX), options have 
an expiration date before which they may be exercised; a position in an option may also be 
closed out by purchasing an offsetting contract. All options expire on the third Saturday of 
the month of exercise. 

Table 1 is an example of a call option for SYZ stock. The price of a &fay option to buy 
a share of XYZ at  $40 (the ask price) is $3 and 718th~.  (Below $3 options are priced in 
1/16ths and above $3 they are priced in l/Sths.) The bid price for the hlay 40 is 83 and 
S/Sths. The quote for the May 50 call option is no  bid, 1/Sth asked, meaning the specialist 
will pay nothing to  buy the option but is willing to sell it for $l/S. The price is given for 
an option to  buy or sell one share of the stock, however, contracts on the rZhllEX are for 100 
shares. An option for a stock at a certain strike price is called an options series. 

Assume that the current price of a share of XYZ is $42. A hilay 40 call is said to be 
i n  the m o n e y  because an option owner has the right to buy a share for $40 and can sell it 
immediately for $42. The May 45 and 50 calls are out  of the money.. For puts, the opposite 
logic holds. A May 40 put is out of the money because, if the $42 stock price holds until the 
option expires, there is no gain from having the right to sell a share of stock at $40 when 
the market price is $42. The May 45 and May 50 puts, on the other hand, are in the money. 
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2.2. The Specialist 

The options specialist is a market rnaker in an option. He or she is responsible for posting 
the bid and ask quotes for the stock option at the options post on the floor of the Exchange. 
There is only one specialist on the Exchange for each stock option. The specialist maintains 
an entire inventory of options and can trade from his or her own account. Specialists also 
maintain a position in the underlying stock as a hedge on their inventory of options. 

An important role of the specialist is to represent limit orders. The limit order is an offer 
to buy or sell an option at a particular price. The specialist is responsible for executing a 
trade for the limit order when the option price reaches the price on the limit orcler, assuming 
he has a customer who will take the other side of the trade or that he will handle the tracle 
from inventory. 

For example assume the specialist has a customer who puts in a limit order to buy at 4 
and 218th~;  the current bid price for the option is 4 and 318 th~ .  The specialist can lower his 
quotation so that the public bid price is 4 and 218th~; however, he cannot lower it to 4 and 
118th because he holds a limit orcler from a buyer willing to pay 4 and 21Sths. Representing 
limit orders is currently a manual process relying on slips of paper and a good memory on 
the part of stock options specialists at the AMEX. A limit order is placed for the day only 
or on a good until cancelled (GTC) basis. According to the specialist many of the errors 
made in pricing are due to the difficulty of remembering all of the limit orders on hand and 
reflecting them in his pricing strategy. 

2.3.  .The AMEX Floor 

The atmosphere on the exchange floor is not especially conducive to decision making; the 
more active an option, the more turbulent the environment. The specialist may have from 
1 to 20 or more floor traders and brokers gathered around his or her post. This boisterous 
crowd consists of individuals shouting for information or delivering bids and limit orders. 
The environment is a difficult one for the introduction of a computer-based system. 

The Black-Scholes Model 

Many of the options specialist at the ARIEX use a classic model for valuing options developed 
by Black and Scholes ([BS73]). The model arrives at a theoretical options price based on 
the following assumptions: 

1. A known and constant interest rate 

2. A stock price following a random walk with a variance proportional to the square of 
the price 
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3. The st-ock pays no dividends or distributioris 

4. The option is exercised only at expiration 

5. There are no transactions costs 

6. One can borrow to purchase or hold at the interest rate in 1 

7. There are no penalties to selling short, i-e., selling without owning the security. 

Given these assumptions, the model for the theoretical price of an option is (([BS73]) 

where: 

e w(x, t )  is the value of an option on stock with price x at time t 

e c is the exercise (strike) price 

e r is the T-bill rate 

e t* - t is the duration of the option 

e v is the variance of the rate of return or the volatility of the stock 

e iV is the cumulative normal density function 

3.1. The Specialist and the Model 

The specialist involved in this research has used the Black-Scholes model for a number of 
years; his current system for computing the model runs on a personal computer and was 
provided by his options clearing firm. This Options Valuation System (OVS) maintains a 
record of the specialist's position in options and underlying stock and also computes the 
Black-Scholes theoretical prices for his options. 

The specialist provides the parameters for the model; his most frequent change is in the 
underlying stock price. The stock for his options is traded on the New York Stock Exchange 
and the monitor a t  his post displays the bid and ask prices as well as the last sale price of 
the underlying stock at  the NYSE. The specialist also changes the interest rate used by the 
model and inputs new volatilities for the stock. 
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To provide him with an idea of the sensitivity of option prices to movement in the under- 
lying stock price, the specialist uses OVS each morning to print out a matrix of theoretical 
prices which he references when the stock price A~~ctuates  during the day. Looking at  the 
theoretical prices, the specialist posts quotations by putting a bicl/ask spread around the 
theoretical price for each options series. 

The output of the Black-Scholes model is of invaluable assistance to the specialist. How- 
ever, due to the assumptions of the model and the unique situation of the specialist, his 
problem domain does not allow him to make direct use of the theoretical price that the 
Black-Scholes model calculates. Instead his pricing strategy requires that he take the follow- 
ing into consideration when pricing: 

e The requirement to post a bid/& spread around the theoret.ica1 price. 

e The statutory ban on pricing through limit orders, requiring constant reference to his 
book of limit orders. 

The exchange regulations on pricing, e.g., the maximum spreacl allowed between bid 
and ask prices, the requirement to price in 1/16ths below $3 and 1 1 8 t h ~  above. 

e The specialist's own inventory position in a series. 

The possibility that certain quotations when combinecl provide an opportunity for 
someone to arbitrage against the specialist. 

e The level of current tracling activity in the option. 

AESOP 

AESOP integrates the Black-Scholes mathematical moclel with a synlbolic model in the form 
of an expert system; AESOP provides recommended quotations for the specialist which are 
closer to  what he can post than the theoretical prices procluced by the mathematical model 
alone. The AMEX sponsored the development of the system with a research grant; its 
objective was to assess the use of Expert Systems technology at the exchange. The objectives 
of the researchers were to demonstrate that the combination of a maimhematical model and 
a symbolic one would produce more useful results than either model alone in the specialized 
domain of a decision maker. 

The researchers also wanted to show that the special circumstances of the specialist could 
best be modeled symbolically and that the symbolic and mathematical models could be suc- 
cessfully integrated. Another goal was to show that such an integrated model could succeed 
in the challenging environment of the exchange floor. hfany expert systems are advisory 
and operate with loose time constraints. The options pricing specialist must function in 
close to "real-time" as the market changes. The existing Black-Scholes model was used in 
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"batch mode;" typically the specialist worked with a printed report shoiving theoretical op- 
tions prices for different underlying stock prices. AESOP would have to function on the 
floor of the Exchange and provide recommendations whenever the specialist changed input 
parameters; the recommended prices would have to appear quickly enough to be posted to 
the public quote board before a trader could talie advantage of an "old" price. 

4.1. The Expert 

The Expert System was developed over a two-year period with a senior options specialist 
at the AMEX as the human expert. (A significant amount of time was lost during and 
after October, 1987.) The ES uses rules to represent the knowledge of the specialist. This 
particular approach to  knowledge representation seemed natural given the environment; the 
American Stock Exchange has a series of rules that apply to options prices. The heuristics 
used by the espert specialist also seemed to follo~v an If-Then structure: for esample, "If I 
am long on contracts, then reduce the asking price by one increment." The expert model is 
presented in greater detail later in the paper. 

4.2. Overview of AESOP 

Figure 1 presents an overview of the AESOP system. The specialist interacts with the system 
through the User Interface which is managed by AESOP'S control module. The functions of 
the interface are explained in the nest section. When the user changes any parameter, the 
control module invokes the Black-Scholes mathematical model to generate theoretical prices 
for each series. If the specialist has four different strike prices for each expiry month, with 
four months listed for both puts and calls, there are 32 theoretical values to be computed 
(four strikes x four months for puts and calls). 

The symbolic model represents the pricing strategy of the specialist, something that 
would be difficult to do mathematically. The symbolic model always considers the specialist's 
desired spreads (the difference between bid and ask prices) and always applies the specialist's 
rounding rules. (Public quotations must be stated in sixteenths and eighths of a dollar.) 

If the specialist's position in any series exceeds a threshold level, then the symbolic rnodel 
adjusts the price of that option to encourage (specialist is long) or discourage (specialist is 
short) trading. The symbolic model also looks for limit orders and adjusts the bid/& prices 
based on the presence of these orders. Limit order adjustments are the most complicated 
and potentially the most valuable feature of the symbolic moclel. 

The symbolic model always checks the AMEX rules to be sure that eschange regulations 
are not violated. The model also scans for arbitrage possibilities. In almost all cases, 
arbitrage arises because bid/ask prices have been adjusted away from the theoretical price 
for some reason, most often because of the presence of a limit order. 
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AESOP presents the recommended quotations of tile symbolic model along wit11 the 
theoretical prices generated by the mathematical model. The user is free to override any 
recommendations, ask for an explanation or trace of the symbolic model, and/or change 
parameters and rerun the entire system. 

4.3. The User Interface 

The interface development effort grew well beyond what the researcliers had originally en- 
visioned. Figure 2 shows a hard copy of the main AESOP screen, but the figure in no way 
does justice to the color coding and pop up windows that characterize the interface. The 
menu within the user interface is activated by function keys shoxn at the bottom of Figure 
2; submenus appear on the second and third line of the screen and follow Lotus conventions. 
The interface to AESOP provides the following functions: 

1. Entering and processing limit orders 

2. Invoking the OVS system for updating contracts, positions, etc. 

3. Changing parameters in the Black-Scholes model or bid/asli spreads. 

4. Explaining the reasoning behind each price quotation 

5. Alerting the user to arbitrage possibilities. 

6. Manually overriding any recommended price. 

7. Simulating the posting of prices to the "Current Board." 

3. Displaying the position or changing the thresl~old position for position rules to apply. 

9. Logging the interaction with the system. 

10. Running the Black-Scholes r nod el. 

5. The Symbolic Model 

Before the development of the Black-Scholes model the specialist conlputed cluotations from 
experience and a feel for the market. After the development of the Black-Scholes model, in 
theory the specialist could calculate prices automatically for posting. However, as described 
in Section 3, the specialist cannot post the Black-Scholes recommended quotations directly 
due to (1) the need to place a bid-ask spread around the recommended price, (2) exchange 
rules, and (3) the specialist's limit orders and position. 

The symbolic part of AESOP takes the output of the mathematical Black-Scholes model 
and adjusts it to incorporate the pricing strategies of a specialist on the American Stock 
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Exchange. The goal of the symbolic model is to reconlnlend bid and ask prices for each put 
and call for a particular option series assigned to the specialist. 

5.1. Details of the Model 

The symbolic model of AESOP is represented using a large number of Prolog predicates. 
Some of these predicates capture the pricing rules used by the specialist and constitute the 
kno~vledge base of AESOP, while other predicates are used to control the overall execution of 
AESOP, in particular the priority of various rules in the overall pricing strategy. To illustrate 
the symbolic model, this section presents rules used by the expert for reflecting any limit 
orders in the bid and ask prices, checking that no AhlEX rules are violated by the proposed 
prices, and alerting the specialist to  potential arbitrage possibilities. 

Table 2 presents two examples of rules, one with and one withollt arguments. The rules 
are presented as first-order predicate calculus formulas, rather than in Prolog s jn tas ,  for ease 
of presentation. The rule in Table 2a is declarative ancl can be read as a logical asiom; the 
symbol "t-" represents logical implication. Such rules can be read bacliwards or forwards; 
for the purposes of this paper forward reading is employed. The rule in Table 2a can therefore 
be read as: 

TO reflect l imi t  -orders 
determine_activelimit_orders 
AND 
reflect ac t ivel imi t  _orders 

Rules may also have predicates with arguments: in the tables of examples, AESOP argu- 
ments which are constants begin with lower-case letters and those which are variables begin 
with upper-case letters. When a rule has variables or constants. its meaning is slightly more 
compIex as shown by the example in Table 2b. Variables in the body or right hand side of 
the clause (on the right of the t-) are esistentially quantified. Variables in the head of the 
clause, on the left hand side of the t- are universally quantified. The rule in Table 2b should 
be read as: 

FOR ALL Options with "buy" orders with a Price-List and a QtyJlist,  
limitarderis-active IF  
THERE EXISTS a recommended Quote-Bid for the Option SUCH THAT 

maximum limit order on the Pricelist is Highest-Order 
AND 
Highest-Order is greater than the Quote-Bid 

Table 3 contains a list of variables used in the symbolic model along with their definitions. 
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5.2. The Highest Level 

As described earlier, the user works with AESOP through the interface program. Any 
actions taken by the user which potentially impact the Black-Scholes theoretical prices cause 
AESOP to  automatically compute new theoretical prices. As an esample, if the user changes 
the underlying stock price, interest rates or volatilities, adds limit orders or makes similar 
changes, AESOP reinvokes the Black-Scholes model. Whenever the system invokes Black- 
Scholes, it also applies the symbolic model to each theoretical price to make adjustments 
reflected in recommended quotes. 

AESOP'S expert system component contains over 3000 lines of Prolog code with nearly 
200 rules consisting of 400 clauses and nearly 1500 terms. It is impossible to present the 
full details of the symbolic model in a reasonable amount of space. The rest of this section 
presents examples of limit order rules, stock exchange rules, and rules for detecting arbitrage 
opportunities. 

5.3. Limit Order Rules 

Table 4 contains the limit order rules. AESOP must first determine if a limit order is active, 
that is, if there is a limit order that affects a given series. The first four predicates in Table 4 
determine whether or not a limit order affects this series. X limit order must be considered 
if it is a buy limit order and the price of the limit order is higher than the bid price AESOP 
would like to recommend. Posting the recommencled quotation is not allowed because a 
buyer with a limit order is willing to pay more than the recommended quotation. Similar 
logic applies if there is an active sell limit order with a limit order price less than the price 
that AESOP would like to recommend. 

The last four predicates in Table 4 show how AESOP adjusts the recommended quotes to 
reflect limit orders. For example, in the first "reflect-activelirnit_ouders" predicate, if there 
is a sell limit order with a price higher than the recommended quote, AESOP will post the 
highest limit order price as the recommended buy quote along with the ask quote already 
computed from earlier rules. 

5.4, AMEX Rules 

The AMEX rules have a high priority as the specialist in general does not want to violate an 
exchange regulation. The second predicate in Table 5, as an example, checks to be sure that 
AESOP'S recommended spread is not larger than the masimum spread allowed by Exchange 
rules. If the spread is too big, AESOP must adjust it to fall within regulations. It is also 
possible that a spread is too small; the third predicate in Table 5 esamines this possibility. 

Adjusting recommended quotes at this point is complex because conflicts may develop. 
Suppose that two limit orders have narrowed the spread on an option to  the point that it 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-90-20 



violates Exchange rules. There is no solution that AESOP can apply; i f  the system widens 
the spread to satisfy Exchange rules, it will price through a limit order and violate limit 
order rules. There is a conflict which the system cannot resolve; it will report the conflict 
back to the human specialist to solve. (His most 1il;ely course of action is to process one or 
both of the limit orders to eliminate their influence on the recommended quotations.) Most 
of the predicates in Table 5, then, deal with trying to  resolve a violation of AMEX rules. 

5.5. Arbitrage Rules 

Table 6 contains the predicates AESOP uses to check for four types of arbitrage; the first 
predicate includes each type: box, conversion, dividend and discount. The different types 
of arbitrage can be performed against the specialist; the arbitrageur makes money a t  the 
expense of the specialist. As an example, in conversion arbitrage, the arbitrageur buys the 
underlying stock and buys a put option while selling a call option having the same term. 
Under certain conditions, this position will have a loclied in profit if the total cost of the 
position is less than the strike price of the option. 

RffcMillan ([Rl86]) gives the following example: 

Stock price $55.00 Buy 
January 50 call at  $6 and 1/2 Sell 
January 50 put at  $1 Buy 

The arbitrageur pays $55 for the stock and receives $6.50 for selling the call while paying 
1$ for the put, yielding a total cost of $49.50. The arbitrageur is guaranteed a minimum 
profit of $0.50. If the stock price is above $50 at option expiration, the call option will be 
exercised and the stock sold at $50 (the strike price of the call). The put will expire since 
the stock price is $50 or above. The cost of the position was $49.50 and the profit is 8.50. 

If the stock price is below $50 at option expiration, the arbitrageur would exercise his 
put and sell the stock for $50 while the call expires as worthless. Again, the guaranteed 
profit is $.50. Of course, this example assumes no transactions costs and carrying costs. 

The arbitrage rules in Table 6 check across options series for arbitrage possibilities; note 
that the conversion above involves a put and a call. While all other ilESOP rules apply 
to a single series, the arbitrage rules must check across series. These rules compute a cost 
of carrying a position based on daily interest rates and warn the specialist if an arbitrage 
opportunity exists. Generally arbitrage opportunities are created when quotes have been 
adjusted due to  limit orders. 

Since the specialist may respond in any number of ways to an arbitrage situation, AESOP 
restricts itself to alerting him to the possibility. By using the trace function in the interface, 
the user can display a pop-up window explaining exactly what the potential is and the nature 
of the arbitrage, e.g. a conversion. 
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Evaluation 

AESOP was used on an experimental basis for two months by a specialist who works with 
the expert who helped design the system. Literature on system implementation ([Lug 11 ) 
suggests that one measure of success for a voluntary system is use. AESOP is clearly a 
voluntary system; since it contains the previously used Blacli-Scholes computation and in- 
ventory system in its entirety, the specialist could ignore the expert part of the system and 
work from a report of theoretical prices for different stocli price ranges. However, the spe- 
cialist used the system with enthusiasm and provided a great deal of feedback during the 
experimental period. 

To evaluate the performance of the system, the designers logged all user input for a 
sample of different days osier a one-month period. For each of these days, the exchange 
provided an audit trail of posted quotations for the specialist's option. The two sources of 
data were combined and sorted into time sequence by clay. Programs compared AESOP'S 
recornnlendations with the actual price posted by the specialist. It was assumed that the 
AESOP recommendations were valid for 30 minutes; changes within 30 minutes of an AESOP 
run were considered to be influenced by the system. Changes past 30 minutes beyond an 
AESOP run were assumed to come from trades or marliet conclitions. (It is fairly common 
to change quoted prices immediately after a trade.) 

Figure 3 compares AESOP'S recommendations with the actual quotes posted by the 
specialist for calls with an ask price in eighths. The graph presents the number of times the 
specialist posted what AESOP recommended (the "=" column in Figure 3) and a distribution 
for the number of increments by which the specialist's and AESOP'S quotes differed. As 
an example, Figure 3 shows that 269 times the specialist posted the asli price in eighths 
recommended by AESOP; 151 times the specialist raised the recommended bid by 1/Sth 
and 256 times he lowered it by l/8th. Figure 4 provides a similar graph for put bid prices 
in eighths. 

The same analysis was perfornled for both puts and calls with prices in eighths and 
sixteenths. Table 7 summarizes the results showing when AESOP either equalled or was 
within one increment of the price eventually posted by the specialist (within 30 minutes 
of an AESOP run). It appears froill Table 7 that AESOP performs best on calls: there is 
more trading activity in calls than in puts. AESOP also performs better on eighths than 
sixteenths which seems reasonable as it is more diEcult to select the "right price" out of 16 
increments than out of 8. 

Looking over all of the data and graphs, it was clear that AESOP tended to recommend 
a call price that was too high and a put price that was too low. These biases are consistent 
with the known biases of the Black-Scholes pricing model. In the case of puts, especially 
those out of the money and in a far out month, the specialist posted high prices to discourage 
trading. Observations on the floor of the Eschange also suggested that the specialist generally 
changed prices with each transaction without referring to any pricing model; in this case the 
"market" was determining the price. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-90-20 



All of the evidence indicates that AESOP represents an improvement over the regular 
Black-Scholes model. With the exception of puts priced in sixteenths, almost half the time 
the AESOP recommendation was equal to  or within one increment of what the specialist 
actually posted. 

The American Stock Exchange is installing a touch-screen system for posting special- 
ist quotations; it is connected directly to  the official price displays (unlike AESOP). The 
specialist who has used both AESOP and the AMEX system has indicated that AESOP'S 
pricing rules come closer to what he posts than the exchange system, despite the fact that 
the AMEX system allows the user to choose different options pricing models and different 
parameters for each series. Discussions are currently underway with the Exchange to transfer 
the AESOP knowledge base to the touch-screen system. 

Given all of the arguments above, it seems safe to conclude that this research was success- 
ful in building an integrated mathematical and symbolic model. The system did recommend 
prices that were much closer to the specialist's final quotations than the mathernatical model 
alone. In addition, the system functioned successfully in the demanding environment of a 
stock exchange trading floor. 

7. Conclusions 

The purpose of this research was 1) to develop a system t.i-hich integrated ~nathematical and 
symbolic models to support a particulav clecision-malier's pricing strategy and 2) to show 
that such a system could function in a difficult, real-time environment. The success of the 
syste~n suggests that integrating symbolic and ma thematical ~noclels is an excellent way to 
support decision-makers. Each model makes a unique contribution to the recommendations 
made to the user. For this type I1 integration, the strength of the mathematical model is its 
ability to optimize. The symbolic model makes it possible to acljust an optimal solution to 
the domain of a decision maker. 

In the case of AESOP a number of rules exist in the problem clomain; some come from 
the stock exchange while others are decision rules used by the specialist. The mathematical 
model provides a theoretical point estimate while the symbolic moclel recommends bid and 
ask prices for posting in the marketplace. The AESOP experience provicles evidence that the 
integration of symbolic and mathematical models offers great promise for matching models 
to specific problem domains. 
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XYZ Calls 
Stock Price $42.000 

Table I: A11 Example of a Call Optioii 

hllay 
June 

reflect limit-orders t- 
determineactivelimit-orders 
AND reflect-activelimi t-orders 

Table 2a: Example Rule Without Variables 

lirnitarder-is-active(Option,buy,Price List )  +- 

currentsecommendation(0ption,QuoteJ3id) 
AND maximum(PriceList H i g h e s ~ d e r )  
AND Highest-Order > Quote-Bid 

Bid 
3^5 
4*1 

Table 2b: Example Rule With Variables 

Table 2: Exaniple Rules 

Ask 
3^7 
4 3  
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Bid 
0*05 
0A13 

Bid 
OAO 
O A O  

Ask 
0-4 
l A O  

Ask 
0-1 
O A 1  



Variable 
ActualDividend 

Ask 

AskReasons 

Bid 

Bidxeasons 

Buy-OrSell 

Carry 

Curr-Spread 

Daily Jnterest  

Dividend 

Highest -Order 

Lowest -Order 

Max 

Min 

Month 

NewAsk 

NewBid 

NumDays 

Option 

Percent age 

PriceList 

Problem 

Quote-Ask 

Quote-Bid 

Spread 

S tockprice 

S trikelncrement 

Units 

Which 

Explaiiatioii 
The actual dividend of the unclerlying stock 

The Ask price for a particular option in a series 

The (coded) explanation behind the recommended Ask price 

The Bid price for a particular option in a series 

The (coded) explanation behind the recommended Bid price 

Whether the price is the buy or sell price 

The cost of carrying a position 

The current difference between Bid and Asli prices 

The daily interest rate 

The dividend of the stocky underlying the option 

The highest limit order bid for a series (in limit order book) 

The lowest limit orcler asking price for a series (in limit orcler 
book) 

i?lPlEX maximum a l lo~~ab le  spread for rnont1-i and bid 

AhfEX minimum allowable spread for month and bid 

The month the option espires 

A computed asking price 

A computed bid price 

The number of days to expiration of an option 

Either to buy or sell, with a month and a strike price 

A "fudge" factor on how much of the Carry cost to consider 

A list of limit orders and their prices 

Represents the type of .4hlEX rule violation 

Tl-le currently quoted Asking price 

The currently quoted Bid price 

The difference between the Bid and Asli prices 

The current price of the stock underlying the option 

The difference between two strike prices 

The appropriate unit of a Bid or Ask, i.e. eights or sixteenths 

Represents whether to adjust the Bid or the Asli price (or nei- 
ther) to  rectify an AMEX rule violation 

Number of days remaining until the underlying stock goes ex- 
dividend 
Table 3: Variables Used in the  Mo'del 
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Table 4: Linlit Order Rules 

reflect l imi t  -orders t- 

determineactivelimit-orders 
A N D  reflect -activelimit-orders 

determine~ctivelimit  -orders t- 

lirnit~order(Option,Buy~Or~Sell,PriceList ,inactive) 
A N D  limit~orderis~a~ctive(Option,Bu~~~OrI'Sell~PriceList) 

limit-orderis-active(Option,buy,PriceList) +- 

c~~rrentrecommendation(Option,QuoteBid) 
A N D  maximum(PriceList,Highest-Order) 
A N D  Highest-Order > QuoteBid 

limit-orderisactive(Option,sell,PriceList) t- 
current ~ecommendation(Option,QuoteAsk) 
A N D  minimum(PriceList ,Lo\~vest-Order) 
A N D  Lowest-Order < Quote-Ask 

r e f l e c t_ac t i ve l i~n i t _o rde r s (Op t ion , l suy  i t )  t 
activelimit-order(Option,sell) 
A N D  currentrecommendation(0ption,QuoteBid,Q~~oteer\sIi) 
A N D  maximurn(PriceList ,Highest-Order) 
A N D  post (current recornmendation(Option,Highest~Orc1er7.4sk)) 

reflect -activelimit -orc lers (Opt ion ,buy,Pr i i s t  ) t- 

currentsecommendation(0ption,QuoteBid,Q11ote~4sli) 
A N D  maximum(PriceList ,Highest-Order) 
A N D  spread-to-applyis(Option,buy,Highest-Order,Spread) 
A N D  n e w _ a s k i s ( O p t i o n , H i g h e s t - O r d e r h e a d , )  
A N D  post (currentsecom~nendation(Optian,Highest~Order,NewAsli)) 

reflect_activelimit_orders(0ption,sell ,P~ist)  t 
activelimit ~ rder (0p t ion ;buy)  
A N D  cur ren t secommenda t ion(Opt ion ,QuoteBid ,Q)  
A N D  minimum(PriceList,Lowest-Order) 
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AND post.(currentsecommelldation(Option.QuoteBic1,Lo~vest -Order)) 

reflect ~activelimit~orders(Option,sell,Price-List) t- 
currentrecommendation(Option,QuoteJ3id,QuoteAsk) 
AND rninirnum(Pricelist ,Lowest-Order) 
AND spread~to~applyis(Option,sell,Lowest~Order,Spread) 
AND new-bidis(Option,Lowest-Order,Spread,NewBid) 
AND post(current~ecommendation(Option,Ne~~~Bid,Lowest~Order)) 
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Table 5: AMEX Rules 

checkamexrules(0ption) +- 
current r e c o m m e n d a t i o n ( O p t i o n 7 Q u o t e _ B i 7  Bicl-Reasons , Asklleasons) 
AND maxspread(Quote-Bicl,h/Ionth,Max) 
AND minspread(Quote-Bid7&1in) 
AND Curr-Spread = Quote-Ask - Quote-Bid 
AND checkamex_rulesl(Option7Quote~Bid,QuoteAsk7Bidl2easons7Ask~easonsl 

Max,Min,CurrSpread) 

checkamexrulesl (Option,Quote_Bid,Quote,4slBidReasons,Asl~~Reaso~~s7 
klax,Min,CurrSpread) +- 

Curr-Spread > Max 
AND ~vhichis~adjustable(Bid_Reasons,Ask_Reasons,I;lThich) 
AND makeamex~adjustment(Option,QuoteBid,QrroteAsl;,~Ias,hlin,toobig,\Vhich) 

checkamexrulesl ( O p t i o n , Q u o t e - B i d , Q ~ ~ o t e ~ e a s o n s ,  
A/Iax,Min,CurrSpread) +- 

Curr-Spread < Min 
AND whichisadjustable(Bid_Reasons,Ask~Reasons,Which) 
AND makeamexadjustment(Option,Quote-E3id,Quote~lsli,hlas,hlin,toosmall,Which) 

whichis~adjustable(BidReasons,Ask_Reasons,neither) +- 

member(Ask_Reasons,limit -order) 
AND member(BidReasons,lin~it -order) 

whichis~adjustable(BidReaso~~s,Ask~Reasons,bid) +- 

(member( AskReasons,limit-order) 
AND NOT (rnernber(Bicl-Reasons,limit -order))) 

OR (~ne~riber(AskReasolls,override) 
AND NOT (member(BidReasons,override))) 

OR (member(AskReasons,position-adjustment) 
AND NOT (member(Bid_Reasons,position~adjustment))) 
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whichis-adjustable(Bid_Reasons,Ask_Reasons,ask) t 
(member (BidReasons ,limi t -order) 

AND NOT (member(AskReasons,lin~it-order))) 
OR (member(Bid3easons ,override) 

AND NOT (member(AskR,easons,override))) 
OR (member(BidReasons,position-adjustment ) 

AND NOT (member( Asklteasons,position_adjustrnent 1)) 

makeamexadjustment(Optio1~,QuoteBid,Quote~.4sli.R/Ias,Mi1i.toosmall,bid) t- 

Xew-Bid = Ask - Min 
AND NewBid >= 0 
AND post ( c u r r e n t s e c o m m e n c l a t i o n ( O p t i o n , N e ) )  

makeamexadjustment(Option,QuoteBi~1~Q11ote4sk,R1ax,R~Sin,too~mal1,bi~1) +- 

AND NewAsk = Min 
AND post(currentsecommendation(Option,0,New44sk)) 

makeamexadjustment(Option,Quote_Bid,QuoteAsk,hiSax,n/Ii~~,toosmallask) +- 

NewAsk = Bid + Min 
AND post(current~econ~mendation(Option,QuoteBid,Ne~~~~4sk)) 

makeamexadjustment(Option,QuoteBid,Quoted4sk,R2a~.kIi~~,too1~ig,1~id) t- 

NewBid = Ask - Mas 
AND NewBid >= 0 
AND post(currentseco1nmendation(0ption.NewBic1,Quote~A~1i)) 

makeamexadjustment(Option,Quote_Bid,QuoteAsl,Sax,in,toobigbid) c- 
NewAsk = Max 
AND post (current secommendation(Option,0,New4sk)) 

makeamexadjustment(Option,QuoteJ3id,Quote44sk,a,in,toobiask) t- 
NewAsk = Bid + Max 
AND post (currentsecommendation(0ption,QuoteBidJwAk)) 
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makeamexadjustmentjOption,Quote_Bid,Q~1ot,e~4sk,r\lax,hlin,toosmall,both) t- 

NewAsk = Bid + klin 
AND pos t (cur ren t secommenda t ion(Opt ion ,Quote id ,e~vs l ) )  

makeamexadjustment(Option,Quotel3id,QuoteAsk,ax,hin,toobig,both) +- 

NewAsk = Bid + M a x  
AND post(currentsecommendation(Option,Quote_Bid,Ne~vA4sk)) 
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Table 6: Arbitrage Rules 

checkjor-arbitrage t 
box-arbitrage-check 
A N D  conversion~rbitrage-check 
A N D  dividend~rbitrage-check 
AND discount-arbi trage-check 

box-arbitrage-check t 
quote(put,Month,Strikel ,PutBidl,PutAskl) 
A N D  quote(call,Month,Strikel,CallBidl,CallAskl) 
AND next_higher-quote(put,Month,Strikel,Strike2,Putl3id2,Putd4sk2) 
A N D  quote(call,Montlr,Strike2,CallBid2,CallAsl;2) 
AND Strikelncrevnent = Strike2 - Strike1 
AND box~arbitrage~~~otentiall(~fonth,Strikel,Call~4slil.Call~Bicl% 
AND Put-Ask2,Put_Bidl,Strikelncrement) 
AND box-arbitrage-potential2jMont11,Strikel .CallBidl ,Call-4~1<2 
Put-Bid2,Put44sk1 ,Strike Jncrement) 

box-arbitrage-potentiall(h/lonth,Strikel ,CallAskl,Call-l3id2 
Put-Ask2,PutBidl,StrikeJncrement) t- 

(Call-Ask1 - CallBid2) $- (Put-Ask2 - Put-Bidl) < Strike-Increment 

box-arbitrage_potentia12(Month,Strikel ,CallBidl ,Call-Aslif! 
Put-Bid2,Put,4skl,StrikeJncrement) t 

(CallBidl - CaIlAsk2) + (Put-Bid2 - Put-Askl) > Strikelncrement 

conversionarbitrage-check t 
global~acts(Stockprice,Dividend,XdivDays,Daily Jnterest,Percentage)) 
AND quote(put,Tvfonth,Strike,PutBid,PutAsk) 
AND quote(call,i\ilonth,Strike,CallBid,CallAsk) 
AND days-to-expiration(NurnBays) 
AND dividend(NumDay~,XdivDa~s,Dividend,XctualDivide~ld) 
AND Carry1 = Strike * Daily-Interest * XumDays 
AND conversionarbitrage~potential(Month,Strike,CallBid,P~~tdAsli 
ActualDividend,Stockprice,Carryl) 

AND Carry2 = Carry1 * Percentage 
AND reversalarbitrage~potential(Month,Strike,P~~tBid,CallAsk 

ActualDividend,Stockprice,Carry2) 
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conversion~arbitrage~potential(Month,Strike,CallBid,PutAsk,Dividend,Stockprice,Carry) 
t 

Strike + CallBid + Dividend - Stockprice - Put-Ask - Carry > 0 

reversal~arbitrage~check(Month,Strike,Putid,CallAsk,Dividend,Stockprice,Carry) t- 

Stockprice + Put-Bid - Strike - Call-Ask - Dividend + Carry > 0 

dividendarbitrage-check t 
global_facts(Stockprice,Dividend,Xdiv_Daailydnterest) 
quote(put ,Month,Strike,QuoteAsk) 
AND Carry = (Ask + Stockprice) * Dailydnterest * XdivBays 
AND dividend~arbitrage~potential(Month,Strike,QuoteAskStockprice,Carry,Dividend) 

dividend~arbitrage~potential(Month,Strike,QuoteAsk,Stockprice,Carry,Dividend) t 
Ask + Stockprice + Carry < Strike + Dividend 

discountarbi trage-check t 
globalSacts(Stockprice,Dividend,XdivDays,Dailydnterest) 
AND quote(put,Month,Strike,,Put-Ask) 
AND quote(call,Month,Strike,,Call_Ask) 
AND discarb~put~potentia1(hIonth,Strike,PutAsk,Stockprice) 
AND disc-arb~call~potential(Month,Strike,CallAsk,Stockprice) 

disc~arb~put~potential(Month,Strike,PutAsk,Stockprice) t- 

Put-Ask + Stockprice < Strike 

disc-arb~call~potential(Month,Strike,CallAsk,Sto~k~rice) t 

CallAsk + Strike < Stockprice 
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Table 7: Percentage of AESOP Quotatiolls Equal t o  or Witltin One Iiicren~ent 
of Quotation posted by the  Specialist 

Eighths Sixteenths 
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44% 
45% 
27% 
37% 

CALLS Rid 
Ask 

PUTS Bid 
Ask 

52% 
48% 
50% 
47% 



AESOP Control 

Mat hematical Spreads 

Model Rounding 

->Theoretical Posit ion Recommended 
Prices 

L imi t  Quotes 
Orders and 
AMEX Rules Theoretical 

Prices 
Arbi t rage 

Always invoked 

- Condi t iona l l y  
Invoked 

The AESOP Model 
Figure 1 
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iESOP - AN EXPERT SYSTEM FOR OPTIONS PRICING 

)NTH STRIKE TH.VA LIMTT.EOOX 
BID ASK 

RECCO.QUOTE 
BID AS I< 
3"5 3 ^ 7  
OAO5 0 A 4  
OA0 O A 1  
4  A 3- 4"3 
0 A 1 3  l A 0  
OA0 O A 1  
9"O 9^3 
4"3 4"6 
lA1 l A 3  
0 A 2  OAO5 
5"4 5"7 
2"03 2 A 0 9  
0 A 1 3  I A O  

ACCT: RIC OPTION: TANCALLS 

CURR . 
BID 
3  A 6 
0 A 3  
OA0 
4"2 
0 A 7  
OA01. 
9 " l  
4,'4 
l A 2  
0 A 2  
5 -4  
2"3 
0 - 7  

BOARD 
ASK 
4"O 
0 A 0 9  
O A 1  
4 A 4  
1"1 
0 A 0 3  
9 * 5  
4 ^ 7  
l A d  
0 A 3  
6"0 
2"5 
l " 0 1  

STOCK 
4 3 . 5 0 0  

XDIV 
06 /25 /89  

INT . RATE 
1 0 . 2 5  

v1 
22 

v2 
2 1  

v 3  
2 0  

v 4  
2 0  

FN-KEYS . 
A F 1  DEL. L O  
AF3 CEG. PR 
A F 5  DL. OTJR 

F i g u r e  2 
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Calls Ask Price in E 
Figure 3 
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Puts Bid Price 
Figure 4 
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