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Distributed generation and remotely controlled switches have emerged as important technologies to improve

the resiliency of distribution grids against extreme weather-related disturbances. Therefore it becomes impor-

tant to study how best to place them on the grid in order to meet a resiliency criteria, while minimizing costs

and capturing their dependencies on the associated communication systems that sustains their distributed

operations. This paper introduces the Optimal Resilient Design Problem for Distribution and Communi-

cation Systems (ORDPDC) to address this need. The ORDPDC is formulated as a two-stage stochastic

mixed-integer program that captures the physical laws of distribution systems, the communication connec-

tivity of the smart grid components, and a set of scenarios which specifies which components are affected

by potential disasters. The paper proposes an exact branch-and-price algorithm for the ORDPDC which

features a strong lower bound and a variety of acceleration schemes to address degeneracy. The ORDPDC

model and branch-and-price algorithm were evaluated on a variety of test cases with varying disaster inten-

sities and network topologies. The results demonstrate the significant impact of the network topologies on

the expansion plans and costs, as well as the computational benefits of the proposed approach.

Key words : Planning for Resiliency, Power Systems, Branch and Price

1. Introduction

The last decades have highlighted the vulnerability of the current electric power system

to weather-related extreme events. Between 2007 and 2016, outages caused by natural

hazards, such as thunderstorms, tornadoes, and hurricanes, amounted to 90 percent of

major electric disturbances, each affecting at least 50,000 customers (derived from Form

OE-417 of U.S. DOE). It is also estimated that 90 percent of all outages occur along

distribution systems (Executive Office of the President 2013). Moreover, the number of

weather-related outages is expected to rise as climate change increases the frequency and

intensity of extreme weather events (Executive Office of the President 2013). Accordingly,

it is critical to understand how to harden and modernize distribution grids to prepare for

potential natural disasters.
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Distributed Generation (DG) is one of the advanced technologies that can be utilized

to enhance grid resilience. DG refers to electric power generation and storage performed

by a collection of distributed energy resources (DER). DG decentralizes the electric power

distribution by supplying power to the loads closer to where it is located. The poten-

tial of DGs is realized via a system approach that views DGs and associated loads as a

microgrid (Lasseter et al. 2002). A microgrid is often defined as a small-scale power sys-

tem on medium- or low- voltage distribution feeder that includes loads and DG units,

together with an appropriate management and control scheme supported by a communi-

cation infrastructure (Resende et al. 2011). When faults occur in the main grid, microgrids

can be detached from the main grid and act in island mode to serve critical loads by

utilizing local DGs or work in the grid-connected mode to provide ancillary services for

the bulk system restoration (Wang et al. 2016a). Remotely controlled switches (RCS),

another advanced technology, can be used to increase the grid flexibility by controlling

the grid topology through a communication network and facilitate microgrid formations

in emergencies. Other than the aforementioned operational enhancement measures, a grid

can also be hardened physically by installing underground cables and/or upgrading the

overhead lines with stronger materials, which reduces the physical impact of catastrophic

events (Panteli et al. 2017).

A critical issue in building resilient distribution grids is to determine where to place such

advanced devices (i.e., DGs, RCSs, and underground cables) and which existing lines to

harden. It is also important to understand the dependency between the distribution grid

and its associated communication network, which is critical to the effective operation of

a modernized grid during emergency situations and is also vulnerable to extreme events

(Falahati et al. 2012, Gholami et al. 2016, Martins et al. 2017, Li et al. 2017).

To address this pivotal and pressing issue, this paper introduces the Optimal Resilient

Design Problem for Distribution and Communication Systems (ORPDDC). The ORDPDC

determines how to harden and modernize an interdependent network to ensure its resilience

against extreme weather events. Like recent papers (e.g., Yamangil et al. (2015), Barnes

et al. (2017), the ORDPDC takes into account a set of disaster scenarios, each defining

a set of power system components that are damaged during an extreme event. These

scenarios are generated from historical data or probabilistic models of how power system

components respond to hazard-specific stress (e.g., wind speed and flood depth). The
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ORDPDC considers the following upgrade options: a set of hardening options on existing

power lines and communication links and a set of new components that can be added to

the system—new lines, new communication pathways, remotely controlled switches, and

distributed generation. The objective of the ORDPDC is to find the cheapest set of upgrade

options that can be placed on the grid in order to guarantee that a minimal amount of

critical and non-critical load be served in each scenario. These guarantees are called the

reslience criteria.

The ORDPDC is modeled with a two-stage stochastic mixed integer program. The first

stage decides an upgrade profile and the second stage decides how to utilize the DGs, RCSs,

and power lines/communication links, whose availability is decided in the first-stage, to

restore critical loads up to resiliency criteria (e.g., 98 %) in each disaster scenario. For each

scenario, the second stage is viewed as a restoration model that identifies how to reconfigure

the grid. Within this second stage problem, the physics of power flows is modeled with the

steady-state, unbalanced three phase AC power equations and constraints that ensure that

the radial structure of distribution grids is maintained. When the grid is reconfigured due

to some disturbances, each island or microgrid must be connected to at least one control

center that coordinates its DGs and loads and operates its RCSs. This communication

requirement is modeled with a single-commodity flow model.

Several solution methods can be used to solve the ORDPDC, taking advantage of its

block diagonal structure. Yamangil et al. (2015) proposed a Scenario-Based Decomposition

(SBD) that restricts attention to a smaller set of scenarios and adds new ones on an

as needed basis (see Section 5). However, in the worst case, SBD must solve the large-

scale ORDPDC as a whole. Branch and Price (B&P), which combines column generation

and branch-and-bound, is another solution method for approaching large-scale mixed-

integer programming (Lübbecke and Desrosiers 2005). Although widely successful on many

applications, it may suffer from degeneracy and long-tail effects as problems become larger.

To address these difficulties, several stabilization techniques have been proposed and proven

to be effective in many applications (e.g., (Du Merle et al. 1999, Oukil et al. 2007, Amor

et al. 2009)). Nevertheless, the high degree of degeneracy and the significant scale of the

ORDPDC create significant challenges for dual stabilization techniques.

To address these computational challenges, this paper proposes a B&P algorithm that

systematically exploits the structure of the ORDPDC. The algorithm starts with a compact
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reformulation that results in strong lower bounds on the test cases and pricing subproblems

that are naturally solved in parallel. Moreover, the B&P algorithm tackles the degener-

acy inherent in the ORDPDC through a variety of acceleration schemes for the pricing

subproblems: A pessimistic reduced cost, an optimality cut, and a lexicographic objective.

The resulting B&P algorithm produces significant computational improvements compared

to existing approaches.

The key contributions of this paper can be summarized as follows:

• The paper proposes the first planning model for resilient distribution networks that

combines the use of advanced technologies (e.g., DGs, RCSs, and undergrounding) with

traditional hardening options and captures the dependencies between the distribution grid

and its associated communication system.

• The paper proposes an exact B&P algorithm for solving the ORDPDC problem, which

systematically exploits the ORDPDC structure to obtain strong lower bounds and address

its significant degeneracy issues.

• The paper evaluates the impact of grid and communication system topologies on

potential expansion plans. It also reports extensive computational results demonstrating

the benefits of the proposed B&P algorithm on the test cases.

The remainder of this paper is organized as follows. Section 2 reviews related work on

the ORDPDC. Section 3 formalizes the ORDPDC and Section 4 presents a tight linear

approximation. Section 5 briefly reviews the SBD algorithm. Section 6 presents the new

B&P algorithm. Section 7 describes the test cases. Lastly, Section 8 analyzes the behavior

of the model on the case studies and Section 9 reports on the computational performance

of the proposed algorithm. Section 10 concludes the paper.

2. Literature Review

There has been a considerable progress in advancing methods that address weather-related

issues at distribution level (Wang et al. 2016a). Many studies develop post-fault distribution

system restoration (DSR) models to bring power back as soon as possible and restore

critical loads after a severe outage. Recently, DGs, RCSs, and redundant lines were utilized

to leverage microgrids in load restoration. Most of the studies assume the existence of those

devices beforehand (Chen et al. 2016, Ding et al. 2017, Gao et al. 2016, Yuan et al. 2017).

Wang et al. (2016b) proposed a DSR model that utilizes the placement of dispatchable
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DGs. The above-mentioned studies however propose post-contingency models. To facilitate

these novel restoration methods, the devices should be placed in suitable places in advance.

This paper focuses on the optimal placement of those devices so that the grid survives

potential weather-related events.

Only a limited number of studies have discussed how to optimally add resilience to

distribution networks. Most relevant is the work by Barnes et al. (2017) and Yamangil et al.

(2015) who propose multi-scenario models for making a distribution grid resilient with

respect to a set of potential disaster scenarios. They propose decomposition-based exact

and heuristic solution approaches. However, theses studies do not consider some of the

upgrade options discussed in this paper, and communication networks are not taken into

account. Yuan et al. (2016) proposed a two-stage robust optimization model by utilizing a

bi-level network interdiction model that identifies the critical components to upgrade for

the resilience against the N −K contingency criterion. However, as pointed out in Barnes

et al. (2017), in practice, the computational complexity of this approach grows quickly with

the number of allowable faults. The study also did not explicitly consider the dependency

on the communication network: A DG can supply power to the node it is placed on and

its children if they are not damaged by the attack. Carvalho et al. (2005) and Xu et al.

(2016) discuss how to place RCSs in distribution systems, but only single fault scenarios

are assumed, which is not suitable for capturing weather-related extreme events.

As the instrumentation of the grid increases, frameworks for modeling its dependence

on communication networks from a resilience viewpoint have been studied (Martins et al.

2017, Parhizi et al. 2015). Resende et al. (2011) proposed a hierarchical control system,

which assumes the existence of a controller in each microgrid to allow for the coordina-

tion among distributed generation units in the microgrid, while multiple microgrids are

organized by a central management controller. On the other hand, distributed control sys-

tems are applied to microgrids where there are many devices with their own controllers.

Accordingly, Chen et al. (2016) assumed that RCSs have local communication capabilities

to exchange information with neighboring switches over short-range low-cost wireless net-

works and proposed a global information discovery scheme to get the input parameters for

a DSR model. However, the assumption that RCSs are installed in all lines is premature for

current distribution systems. Wang et al. (2016b) proposed a two-layered communication

framework where the lower-layer cyber network supports microgrids where local control
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systems are installed, while the upper-layer network is composed of multiple local control

systems that only communicate with their neighboring counterparts. The study can be

viewed as a hybrid of centralized and decentralized framework: At a microgrid level, it is

operated in a centralized fashion, while the upper-level network is operated in a decen-

tralized manner. However, it did not consider fault scenarios in communication networks.

This paper only assumes the lower-layer cyber network proposed in Wang et al. (2016b)

by dynamically allocating a local control system to each microgrid in islanding mode.

Moreover, this paper also considers potential faults in the communication system.

To the best of our knowledge, this paper proposes, for the first time, an exact optimiza-

tion algorithm for expanding an integrated distribution grid and communication network

through the placement of new DGs and RCSs and the hardening of existing lines in order

to ensure resilience against a collection of disaster scenarios.

3. The ORDPDC

The ORDPDC considers an unbalanced three-phase distribution grid coupled with a com-

munication network, as illustrated in Figure 1. In the figure, blue- and red-colored arrows

represent regular and critical loads. Nodes in the communication networks may control a

generator or a switch in the distribution network, as indicated by dotted lines. The figure

also highlights how the line phases are interconnected at the buses and the communication

centers that will send instructions to generators and switches remotely.

LetG= (V,E) be an undirected graph that represents a distribution grid and its available

upgrade options: V and E denote the set of buses and the set of distribution lines. The

communication network, along with its potential upgrade options, is represented by a

undirected graph G̃= (Ñ , Ẽ), where Ñ and Ẽ are the set of communication nodes and a set

of communication links. A communication node is either a control point or an intermediate

point. Each control point is associated with some device in G and some nodes in Ñ are

designated as control centers.

The power grid G depends on its communication network G̃ in the following way: A

device in G (e.g., a generator or a RCSs) is operable only when its associated control point

can receive a signal from some control center in G̃. This modeling enables islands to form

and to be operated independently only when at least one control center can communicate

to the island and, in particular, its generator(s).
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Figure 1 The Cyber-Physical Network for Electricity Distribution. Solid lines represent power lines and dotted

lines represent communication links.

Let G = (N ,E) be the integrated system of G and G̃ with N =N ∪ Ñ and E =E ∪ Ẽ.

Let D be a set of damage scenarios for G indexed with S := {1, · · · , |D|}. Each scenario

s∈ S is a set of edges of E that are damaged under s. The goal of the ORDPDC is to find

an optimal upgrade profile for the cyber-physical system G that is resilient with respect to

the damage scenarios in D. The upgrade options include a) the building of new edges in

E (i.e., distribution lines or communication links); b) the building of RCSs on some lines

in E to provide operational flexibility; c) the hardening of existing edges in E to lower the

probability of damage, and d) the building of DGs at some buses of the grid.

The ORDPDC is a two-stage mixed integer stochastic program. The first-stage variables

represent potential infrastructure enhancements for the coupled network G and the second-

stage variables capture how upgrades serve the loads in each disaster scenario.

3.1. Mathematical Formulation

Table 1 specifies the input data for the ORDPDC problem, while Table 2 describes the

model variables. The formulation assumes that all new lines come with switches (i.e.,

Enx ⊆E0t ) which reflects current industry practice. Throughout this paper, an edge e∈ E is

represented as an ordered pair (eh, et) for some eh, et ∈N and δ(e) = {eh, et}. The set of all

edges incident to a node i∈N is denoted by δ(i). The notation xA represents the projection

of a vector x to the space of some index set A, i.e., (xa)a∈A: For instance, xsEx = (xse)e∈Ex.
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Table 1 The Parameters of the ORDPDC.

G= (N,E) an undirected extended distribution grid with available upgrade options
U := U0 ∪Un a set of generators, indexed with l
U0 a set of existing generators
Un a set of generators that can be installed

i(l)∈N the bus in which the generator l ∈ U is located
Ui ⊆U the set of generators connected to bus i∈N
EV ⊆E a set of transformers
βe maximum flow variation allowed between different phases on line e∈EV

C ⊆ 2|E| a collection of a set of edges which forms a cycle with a distinct node set
Pe,Pi,Pl a set of phases on line e∈E, bus i∈N , and generator l ∈ U , respectively
T k
e a thermal limit on line e∈E for phase k ∈Pe

V k
i , V

k

i lower and upper bound on voltage magnitude at bus i∈N on phase k ∈Pi

Ze =Re + i Xe phase impedance matrix of line e∈E
L⊆N a set of buses with critical loads
Dk

i,p + i Dk
i,q complex power demand at bus i∈N on phase k ∈Pi

ηc, ηt resiliency criteria in percentage for critical and total loads respectively
gkl,p + i gkl,q complex power generation capacity of generator l ∈ U on phase k ∈Pl

G̃= (Ñ , Ẽ) an extended associated communication network with potential upgrade options

Ñc := Ñt ∪ Ñu

Ñt ⊆ Ñ a set of control points for switches

Ñu ⊆ Ñ a set of control points for generators

ĩ(e)∈ Ñt, ĩ(l)∈ Ñu the control point in G̃ of a switch e∈ Et and a generator l ∈ U , respectively

ĩd ∈ Ñ an artificial dummy node in G̃

G = (N ,E) the integrated system of G and G̃
Ex := E0x ∪Enx

E0x ⊆E a set of existing lines and links
Enx ⊆E a set of lines and links that can be installed

Et := E0t ∪Ent
E0t ⊆E a set of lines in which a switch is installed
Ent ⊆E a set of lines in which a switch can be installed

Eh ⊆E a set of lines or links that can be hardened
cxe installation cost of e∈ Enx
cte installation cost of switch on e∈ Ent
che line hardening cost of e∈ Eh
cul installation cost of l ∈ Un on the corresponding bus
D a collection of sets of damaged lines for each scenario, indexed with S := {1, · · · , |D|}

The presentation uses w = (xEnx , tEnt , hEh, uUn) to denote upgrade profiles, m the dimen-

sion of w, c= (cxEnx , c
t
Ent , c

h
Eh, c

u
Un) ∈Rm the cost vector, and ws = (xsEnx , t

s
Ent , h

s
Eh , u

s
Un) feasible

upgrade profiles for each scenario s ∈ S. For each s ∈ S, Q(s) denotes the set of upgrade

profiles that enable the grid to maintain the predetermined load satisfaction (resiliency)

level ηc, ηt (e.g., ηc = 0.98 and ηt = 0.5) under disaster scenario s.

With these notations, the ORDPDC is formulated as follows:

(P ) min cTw (1a)

s.t. w≥ws, ∀s∈ S, (1b)
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Table 2 The Variables of the ORDPDC.

Binary variables

xe 1 if e∈ Enx is built
te 1 if a switch is built on e∈ Ent
he 1 if e∈ Eh is hardened
ul 1 if a generator l ∈ Un is built.

For each disaster scenario s∈ S,
zse 1 if e∈ E is active during s
xs
e 1 if e∈ Ex exists during s
tse 1 if a switch on e is used or not during s
hs
e 1 if e∈ Eh is hardened during s
us
l 1 if a generator l ∈ Un is available during s
yse 1 if i, j ∈N can be disconnected, for e= (i, j)∈C, C ∈ C, during s
be 1 if the real power on line e= (i, j)∈E flows from j to i during s
b′e 1 if the reactive power on line e= (i, j)∈E flows from j to i during s

Continuous variables

For each disaster scenario s∈ S,
ds,ki = ds,ki,p + i ds,ki,q amount of power delivered at bus i∈N on phase k ∈Pi during s
gs,kl = gs,kl,p + i gs,kl,q amount of power generation of l ∈ U on phase k ∈Pl during s
ss,ke,i = ps,ke,i + i qs,ke,i power flow on i-end of line e∈E, where i∈ δ(e), on phase k ∈Pe during s
V s,k
i complex voltage at bus i∈N on phase k ∈Pi during s
Is,ke complex current on line e∈E on phase k ∈Pe during s
vs,ki squared voltage magnitude at bus i∈N on phase k ∈Pi during s

f s
e the amount of artificial flow on e∈ Ẽ during s

γs
ĩ

indicator of connectivity of control point ĩ∈ Ñ to some control center during s

ws ∈Q(s), ∀s∈ S, (1c)

w ∈ {0,1}m.

Problem (P ) tries to find the optimal upgrade profile w∗ = (x∗Enx , t
∗
Ent , h

∗
Eh , u

∗
Un) that ensures

resilient operations for each disaster scenario. Equation (1b) ensures that an upgrade profile

is feasible if it dominates a feasible solution ws ∈Q(s) for each scenario s, i.e., if the grid

survives each of the extreme events in S.

The set Q(s) is specified by resiliency constraints that are expressed in terms of the AC

power flow equations, load satisfaction requirements, the communication network, and the

grid topology:

Q(s) = {ws ∈ {0,1}m : (2), (3), (4), (5), and (6)}

where Constraints (2), (3), (4), (5), and (6) are stated in detail in the following. The

variables in each Q(s) are indexed by s. For simplicity, this section omits index s.

3.1.1. Power Flow Constraints Figure 2 specifies the power flow equations and sum-

marizes some of the notations. Let P = {a, b, c} denote the three phases of the network.
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Figure 2 Notations for the Power Flow Equations.

For each bus i ∈N , define Vi = (V k
i )k∈Pi

and, for each line e ∈E, define Ie = (Ike )k∈Pe and

se,i = (ske,i)k∈Pe. The notations also use a superscript P ′ ⊆P to represent the projection or

the extension of a vector to the space of P ′. For example, if Pi = {a, b, c} and P ′ = {a, b},
then V P

′
i =

(
V a
i , V

b
i

)T
. If Pi = {a, c} and P ′ = {a, b, c}, then V P

′
i = (V a

i ,0, V
c
i )T .

For each line e = (i, j) ∈ E, Ohm’s law for 3-phase lines states the relationship V Pe
j =

V Pe
i −ZeIe between Ie, Vi, and Vj. For each line e∈E and bus i∈ δ(e), the electric power

flow equation se,i = diag(V Pe
i IHe ) describes the relationship between se,i, V

Pe
i , and Ie, where

superscript H indicates the conjugate transpose. In Figure 2, the big-M method is used

in Equations (2a) to apply Ohm’s law only for available lines; the big-M can be set as

maxj′∈{i,j},k∈Pe V
k

j′ −minj′∈{i,j},k∈Pe V
k
j′. Equations (2c) is the balance equation for power

flow at each bus i∈N , i.e., the sum of incoming flows equals the sum of the outgoing flows.

Let pe,i + iqe,i be the rectangular representation of se,i, where pe,i = (pke,i)k∈Pi
and qe,i =

(qke,i)k∈Pi
denote the real and reactive power at the i-end of line e. Equations (2d) and (2e)

specify the thermal limits on lines and the voltage bounds on buses.

In some disaster scenarios when some of the lines are broken, power flows of different

phases on the same line can have opposite directions, which is a very undesirable opera-

tionally. Equations (2f) and (2g) prevent this behavior from happening.

The real and reactive power on different phase must stay within a certain limit. Let

p̂e,i =
∑

k̃∈Pe
pk̃e,i and q̂e,i =

∑
k̃∈Pe

qk̃e,i. Then, these limits are formulated as follows:(
β
e
(1− be) +βebe

) p̂e,i
|Pe|
≤ pke,i ≤

(
β
e
be +βe(1− be)

) p̂e,i
|Pe|

, ∀e∈EV , k ∈Pe, (3a)(
β
e
(1− b′e) +βeb

′
e

) q̂e,i
|Pe|
≤ qke,i ≤

(
β
e
b′e +βe(1− b′e)

) q̂e,i
|Pe|

, ∀e∈EV , k ∈Pe, (3b)

where β
e

= 1−βe and βe = 1 +β2.
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Figure 3 The Single-Commodity Flow Model for G̃ (red-colored squares denote control centers).

3.1.2. Generator/resiliency Constraints Moreover, each generator l ∈ U has its own

capacity and at least some percentage of critical and total loads must be satisfied as

specified by the resiliency criteria ηc and ηt.

0≤ gkl,p ≤ gkl,pul, gkl,q ≤ gkl,qul, ∀l ∈ U , k ∈Pl, (4a)

0≤ dki,p ≤Dk
i,p, 0≤ dki,q ≤Dk

i,q, ∀i∈N,k ∈Pi (4b)∑
i∈L

dki,p ≥ ηc
∑
i∈L

Dk
i,p,

∑
i∈L

dki,q ≥ ηc
∑
i∈L

Dk
i,q, ∀k ∈P, (4c)∑

i∈N

dki,p ≥ ηt
∑
i∈N

Dk
i,p,

∑
i∈N

dki,q ≥ ηt
∑
i∈N

Dk
i,q, ∀k ∈P. (4d)

Equation (4a) captures the power generation capacity constraints. Equation (4b) states

that the delivered power at each bus i should not exceed the load. Equations (4c)-(4d)

enforce the resiliency constraints.

3.1.3. Communication Constraints The operation of generators and RCSs depend on

the communication network: A generator l ∈ U and a RCS on line e∈ Et is operable only if

their associated control points ĩ(l)∈ Ñ and ĩ(e)∈ Ñ can receive a control signal from some

control centers through G̃. To capture the connectivity of a vertex to some control centers,

the formulation uses a single-commodity flow model summarized in Equations (5) in Figure

3. The formulation uses a dummy node ĩd to Ñ and connect ĩd to all control centers with

additional links. The flow f ∈R|Ẽ| originating from the dummy node ĩd then is used to check

the connectivity of every node. By Equation (5c), the flow passes only through available

links during disaster s (the big-M value is set to |Ñc| in the implementation). If a control

point i∈ Ñc is connected with some control center through some path, it can borrow a unit
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of flow from f to make γi 1, as specified in Equations (5a) and (5b). In other words, γi

indicates whether control point i∈ Ñc can receive a control signal. If γi is 1, the associated

device in G is operable by Equations (5d) and (5e).

Some communication network may be affected by a failure in distribution grid, e.g.,

when the grid fails to supply power to communication centers. This kind of dependencies

is not considered in this paper but it can be easily captured if needed. Indeed, first assign

a small critical load to each communication center and add constraints that restrict the

auxiliary arcs between the dummy node and each communication center to have positive

flow only when the associated communication center has a positive power supply. The

constraints can be expressed in terms of an extra binary variable for each bus at which a

communication center is located. The extra binary variable determines if there is a positive

power supply to the communication center.

3.1.4. Topological constraints. The final set of constraints captures the topology

restrictions in distribution systems:

xe ≥ te, ∀e∈ E , (6a)

ze = xe− te, ∀e∈ E , (6b)

xe = he, ∀e∈Ds, (6c)∑
e∈C

ye ≤ |C| − 1, ∀C ∈ C, (6d)

zê ≤ ye, ∀ê∈E : δ(ê) = δ(e), e∈C, C ∈ C. (6e)

Constraint (6a) restrict switches to be operable only on existing lines. In Equation (6b),

ze represents whether line e ∈ E is active under scenario s. A line is active when it exists

and its switch is off. Equation (6c) states that a damaged line during scenario s ∈ S is

inoperable unless it is hardened. Constraints (6d) and (6e) ensures that the distribution

grid should operate in a radial manner. Accordingly, Constraint (6d) eliminates the sub-

tours within C. Since G is usually sparse, the implementation enumerates all the sub-tours

C and variable ye indicates whether i, j ∈ δ(e) are disconnected. If they are disconnected,

then all the lines between i and j are inactive by Constraint (6e).

Note also that, for existing lines not damaged under scenario s, xe is fixed as one. For

each line e ∈ E \ Et, te is set to zero. Finally, for each line e ∈ E \ Eh, he is fixed as 0
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and all the existing generators have ul = 1. This paper assumes perfect hardening, i.e., a

hardened line survives all disaster scenarios. This assumption can be naturally generalized

to imperfect hardening (Yamangil et al. 2015).

4. Linearization of the ORDPDC

The formulation of the ORDPDC is nonlinear. This section discusses how to obtain an

accurate linearization.

4.1. Linear Approximation of the AC Power Flow Equations for Radial Networks

The main difficulty lies in linearizing constraints (2a–2b) for which the formulation uses

the tight linearization from Gan and Low (2014). The linearization is based on two assump-

tions: (A1) line losses are small, i.e., ZeIeI
H
e ≈ 0 for e = (i, j) ∈ E and (A2) voltages are

nearly balanced, i.e., if Pi = {a, b, c}, then V a
i /V

b
i ≈ V b

i /V
c
i ≈ V c

i /V
a
i ≈ ei2π/3. Informally

speaking, the approximation generalizes the distflow equations to 3 phases, drops the

quadratic terms, and eliminates the current variables using the balance assumption. The

derivation assumes that all phases are well-defined for simplicity. Moreover, if A is an n×n

matrix, then diag(A) denotes the n-dimensional vector that represents its diagonal entries.

If a is an n-dimensional vector, then diag(a) denotes the n×n matrix with a in its diagonal

entries and zero for the off-diagonal entries.

Let si =
∑

l∈Ui gl − di denote the power injection at bus i. By (A1), se,i = se,j for all

e∈ (i, j)∈E and therefore, given si, se,i (i∈ δ(e)) is uniquely determined by Equation (2c).

Now define Se,i := ViI
H
e , whose diagonal entries are se,i. Multipling both sides of Vj =

Vi−ZeIe with their conjugate transposes gives

VjV
H
j = ViV

H
i −Se,iZH

e −ZeSHe,i +ZeIeI
H
e Z

H
e . (7)

By assumption (A1), this becomes

VjV
H
j = ViV

H
i −Se,iZH

e −ZeSHe,i (8)

and, by restricting attention to diagonal elements only,

vj = vi−diag(Se,iZ
H
e −ZeSHe,i). (9)

where (vki )k∈Pi
= diag(ViV

H
i ) represents the squared voltage magnitude at bus i∈N .
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Figure 4 The Piecewise-Linear Inner Approximation of a Circle.

By (A2), we have Se,i ≈ γPediag(se,i), where

γ =


1 α2 α

α 1 α2

α2 α 1

 and α= e−i2π/3.

As a result, Equation (9) can now be simplified as follows: for each line e = (i, j) ∈ E

and k ∈Pe,

vki = vkj −
∑
k′∈Pe

2
[
(αnk−nk′Re)

kk′pk
′

e,i + (αnk−nk′Xe)
kk′qk

′

e,i

]
, (10)

where na = 2, nb = 1, nc = 0, Re + iXe = Ze, and superscript kk′ of a matrix denotes its

(k, k′)-entry.

In summary, Ohm’s law and the power flow equation in Constraints (2a) and (2b)

are approximated by Eq. (10) for all e = (i, j) ∈ E and k ∈ Pe and the big-M is set to

maxj′=i,j(V j′,k)
2−minj′=i,j(V j′,k)

2, along with Equation (2c). Accordingly, Constraint (2e)

is replaced by the following constraint:

(V k
i )

2 ≤ vki ≤ (V
k

i )
2, ∀i∈N,k ∈Pi.

4.2. Linearization of (3a)-(3b)

Constraints (3a) and (3b) contain products of a binary variable and a bounded real variable.

These constraints are linearized without loss of accuracy using McCormick inequalities

McCormick (1976).
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4.3. Piecewise-Linear Inner Approximation of Thermal Limits

The quadratic thermal limit constraints (Constraint (2d)) can be approximated with K

linear inequalities as shown in Figure 4. The resulting inequalities are as follows: for all

e∈E, i∈ δ(e), k ∈Pe:(
sin

(
2nπ

K

)
− sin

(
2(n− 1)π

K

))
pke,i

−
(

cos

(
2nπ

K

)
− cos

(
2(n− 1)π

K

))
qke,i ≤ sin

(
2π

K

)
Te,k, ∀n= 1, · · · ,K, (11a)

−Mzse ≤ pke,i ≤Mzse , −Mzse ≤ qke,i ≤Mzse , ∀e∈E,k ∈Pe. (11b)

where the big-M is set to
∑

i∈N D
p
i,k. Our implementation uses K = 28.

5. Scenario-Based Decomposition

In Section 9, the branch and price algorithm presented in the next section is compared to

the Scenario-Based Decomposition (SBD) algorithm proposed by Nagarajan et al. (2016).

SBD iteratively solves a master problem P (S ′) which only includes the constraints of a

subset of scenarios S ′ ⊆ S. The algorithm terminates when the optimal solution to P (S ′)

is feasible (and hence optimal) for the remaining scenarios S \ S ′. Otherwise, at least one

scenario s∈ S \S ′ is infeasible. Scenario s is added to S ′ and the process is repeated.

6. The Branch-and-Price Algorithm

This paper proposes a branch-and-price (B&P) algorithm for the ORDPDC. The B&P

exploits the special structure of the ORDPDC in several ways. First, it uses a compact

reformulation that yields a better lower bound than the LP relaxation. The reformulation

also makes it possible to use column generation and solve independent pricing problems

associated with each scenario in parallel. Finally, several additional techniques are used to

accelarate the column generation significantly. Section 6.1 presents the problem reformu-

lation and Section 6.2 briefly reviews the basic column generation of the B&P algorithm.

Section 6.3 introduces several acceleration schemes. The implementation of the B&P algo-

rithm is presented in Section 6.4.

6.1. The Problem Reformulation

Letting Q̃(s) be the linearization of Q(s), the problem (P ) is rewritten as

(P ) min cTw
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s.t. w−ws ≥ 0, ∀s∈ S, (12a)

ws ∈ Q̃(s), ∀s∈ S, (12b)

ws ∈ {0,1}m, ∀s∈ S. (12c)

Without the linking constraint (12a), (P ) can be decomposed into |S| independent prob-

lems, each of which has a feasible region defined by

Ps = {ws ∈Rm : (12b) and (12c)} , ∀s∈ S.

Observe that Ps is bounded and let J s = {ŵs
j ∈Rm : ŵs

j is a vertex of conv(Ps)} be the set

of all vertices of conv(Ps). Letting J =∪sJs, consider the following problem:

(P̃ ) min cTw

s.t. w −
∑
j∈J s

λsjŵ
s
j ≥ 0, ∀s∈ S, (13a)

∑
j∈J s

λsj = 1, ∀s∈ S, (13b)

w ∈ {0,1}m, (13c)

λsj ≥ 0, ∀j ∈J s, s∈ S. (13d)

Theorem 1. (P ) and (P̃ ) are equivalent.

Proof. Since (P ) and (P̃ ) have the same objective function, it suffices to show that (P )

has an optimal solution that is feasible to (P̃ ) and vice versa. Let (w̄,{w̄s}s∈S) be the

optimal solution of (P ). By the Farkas-Minkowski-Weyl theorem (Schrijver 1998), w̄s can

be expressed as a convex combination of some extreme points in J s, for each s∈ S. Hence,

we can construct a feasible solution of (P̃ ) from (w̄,{w̄s}s∈S).
Consider now an optimal solution of (P̃ ), (w̄′,{λ̄s′j }j∈J s for s ∈ S). By (13a), if λ̄s′j > 0

for j ∈ J s, ŵs
j is dominated by w̄′. Therefore, it is possible to construct another optimal

solution to (P̃ ) by choosing a single j∗ for which λ̄s′j∗ > 0 for each s∈ S, setting λ̄s′j∗ to one

and setting the other λ̄s′j to zero. By definition of Js, the constructed optimal solution is

feasible for (P ). �
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This paper uses a branch-and-price algorithm to solve (P̃ ). Let LPP̃ denote the LP relax-

ation of (P̃ ). Since the feasible region of (P̃ ) is the intersection of the convex hulls of each

subproblem, LPP̃ yields a stronger lower bound than the LP relaxation of (P ).

6.2. The Basic Branch and Price

The B&P algorithm uses a restricted master problem (M) with a subset of columns of (P̃ )

and |S| independent subproblems (Ps) for s ∈ S, instead of handling LPP̃ globally. The

column generation starts with an initial basis that consists of the first-stage variables w, a

column associated with a feasible solution for each subproblem, and some slack variables.

Let J̃ s be the corresponding subset of J s. The restricted mater problem (M) is as follows:

(M) min cTw

s.t. w−
∑
j∈J̃ s

λsjŵ
s
j ≥ 0, ∀s∈ S, (14a)

∑
j∈J̃ s

λsj = 1, ∀s∈ S, (14b)

w≥ 0, (14c)

λsj ≥ 0, ∀j ∈ J̃ s, ∀s∈ S. (14d)

and the pricing problem for scenario s is specified as follows:

(Ps) min −σ̄s + ȳsT ws

s.t. ws ∈ Q̃(s),

ws ∈ {0,1}m,

where, for a scenario s, ȳs is the dual solution for constraints (14a) and σ̄s is the dual

solution of the convexity constraint (14b).

6.3. Acceleration Schemes

The performance of column generation deteriorates when the master problem exhibits

degeneracy, leading to multiple dual solutions which may significantly influence the qual-

ity of columns generated by the pricing problem. The master problem (M) suffers from

degeneracy, especially early in the column-generation process. Initially, (M) has (m+1)|S|
constraints, m columns corresponding to the first-stage variables w, and |S| columns for the

second-stage variables {λs}s∈S . Therefore, in early iterations, linear solvers have a natural
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tendency to select m(|S| − 1) columns from the slack variables in Constraints (14a). For

example, assume that the slack variable is in basis for the constraint involving a non-basic

first-stage variable wk and a scenario s in Constraints (14a). By complementary slack-

ness, this implies that the dual variable is zero. Consider a vertex ŵs whose k-th entry is

non-zero. The value ȳskw
s
k is zero in the pricing problem. However, for this vertex to enter

the basis, it must incur the cost ck of wk, which is ignored in the pricing subproblem. As

a result, subproblem (Ps) prices many columns too optimistically and generates columns

that do not improve the current objective value, resulting in a large number of iterations.

6.3.1. Pessimistic Reduced Cost In order to overcome the poor pricing of columns,

this section first proposes a pessimistic pricing scheme that selects more meaningful

columns in early iterations. Consider a solution ws to the pricing problem. If ws
k = 1 but

the first-stage variable wk is not in basis, then by the relevant constraint from (14a), the

variable λsj corresponding to ws can only enter in the basis at 1 if wk is also in the basis

at 1. As a result, the pessimistic pricing scheme adds the reduced cost ck−
∑

s∈S ȳ
s
k to the

pricing objective, which becomes

−σ̄s + (ȳs)Tws +
∑
k∈η

(ck−
∑
s∈S

ȳsk)w
s
k

where η is the set of non-basic first-stage variables, i.e., η = {k | wk is non-basic}. Note

that column generation with this pessimistic pricing subproblem is not guaranteed to con-

verge to the optimal linear relaxation. Hence, the implementation switches to the standard

pricing problem in later iterations.

6.3.2. Optimality Cut A solution to the master problem (M) where the first-stage

variables take integer value gives an upper bound to the optimal solution. The B&P algo-

rithm periodically solves the integer version of (M) to obtain its objective value v̄(M).

The constraint

cTws ≤ v̄(M)

can then be added to the pricing subproblem for scenario s since any solution violating

this constraint is necessarily suboptimal. As shown later on, this optimal cut is critical to

link the two phases of the column generation, preventing many potential columns to be

generated in the second phase.
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6.3.3. A Lexicographic Objective for Pricing Subproblems In general, sparse

columns are more likely to enter the basis in the master problem (M). As a result, the B&P

algorithm uses a lexicographic objective in the pricing subproblem. First, it minimizes the

(pessimistic or standard) reduced cost. Then it maximizes sparsity by minimizing 1Tws

subject to the constraint that the reduced cost must be equal to the optimal objective

value of the first stage.

6.4. The Final Branch and Price Implementation

6.4.1. Column Generation The column generation starts with an initial basis built

from the optimal solutions of each subproblems under the objective function of cTws. It

then proceeds with two phases of column generation, first using the pessimistic reduced

cost and then switching to the standard one.

The second phase terminates when the optimality gap becomes lower than the predeter-

mined tolerance, e.g., 0.1%. The lower bound is based on Lagrangian relaxation. Given a

pair w̄ and (ȳ, σ̄) of optimal primal and dual solutions for (M), the Lagrangian relaxation

is given by

L(w̄, ȳ, σ̄) = cT w̄+
∑
s∈S

Os(ȳ, σ̄)

where Os(ȳ, σ̄) is the optimal solution of the pricing problem for scenario s under dual

variables (ȳ, σ̄). The first phase uses the same technique for termination, although the

resulting formula is no longer guaranteed to be a lower bound. Once the gap between the

upper bound and the “approximate” lower bound is smaller than the tolerance, the column

generation process moves to the second phase.

The column generation also avoids generating dominated columns. Assume that [ws
1 =

1,ws
2 = 1] is a feasible solution of (Ps) and the corresponding column has been added to the

master problem (M). Then, there is no need to consider a solution [ws
1 = 1,ws

2 = 1,ws
3 = 1].

The column generation adds the constraint of ws
1 +ws

2 ≤ 1 to (Ps) when such a dominated

solution is produced and does not include it in the master problem.

6.4.2. The Branch and Bound After convergence of the column generation to LPP̃ ,

the branch and bound algorithm solves the restricted master problem (M) with the integral

condition w ∈ {0,1}m to obtain a strong primal bound. In general, this incumbent solution

is of very high quality and the average optimality gap is 0.19%. Therefore, the branch and

price algorithm uses a depth-first branch and bound. Moreover, at each branching node,

it selects the variable that minimizes the optimality gap.
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7. Description of the Data Sets

This section describes the distribution test systems. The data set is available from

https://github.com/lanl-ansi/micot/ in the application_data/lpnorm directory.

Details of the data format are available from https://github.com/lanl-ansi/micot/

wiki/Resilient-Design-Executable.

The first two sets, the Rural and Urban systems, is from Yamangil et al. (2015). They are

based on the IEEE 34 bus system (Kersting 1991) (see Figure 5) and replicate the 34-bus

distribution feeder three times. All three feeders are connected to a single transmission bus

and candidate new lines were added to the network to allow back-feeds. In the rural model,

the distribution feeder was geolocated to model feeders with long distances between nodes.

Similarly, the urban network was geolocated to model compact feeders typical of urban

environments. Geolocation of these networks has the net effect of adjusting the lengths

of the power lines and their associated impedance values. Spreading the network out also

increases the hardening and new line costs. As a result, the rural system is expected to

favor solutions with distributed generation and the urban system solutions with new lines

and switches (in addition to hardening lines). The fixed cost of installing a new distributed

generator is set at $500k. The cost of a distributed generator is set at $1,500k per MW

based on the 2025 projections from U.S. Energy Information Administration (2014). The

cost of installing new switches for 3-phase lines is set between 10k and 50k (Bialek 2014).

The cost of new underground 3-phase lines is set at about $500k per mile and the cost

of new underground single phase lines is set at about $100k per mile. The hardening cost

was set at roughly $50k and $10k per mile for multi-phase and single-phase lines (State

of Virginia Corporation Commission 2005). The third network, network123, is based on

the 123-node network of Kersting (1991). This network was unaltered except for adding

new line candidates and labeling large loads as critical.

The communication network G̃ is built to conform to G. Let G′ = (N ′,E′) be the dupli-

cate of G. For each generator l ∈ U , its duplicate i(l) represents its control point. Consider

E ′t ⊆ E ′, the duplicate of Et. To represent the control point for a switch, e ∈ E ′t is divided

in the middle and a new vertex ve is added to represent the control point for the switch.

In other words, the edge e= (eh, et)∈ E ′t is replaced by a new vertex ve and two new edges

e1 = (eh, ve), e2 = (ve, et). The test cases assume that the damage, installation, and hard-

ening of a line in G are also incurred for the corresponding line in G̃. These assumptions

can be easily generalized without changing the nature of the model.

https://github.com/lanl-ansi/micot/
application_data/lpnorm
https://github.com/lanl-ansi/micot/wiki/Resilient-Design-Executable
https://github.com/lanl-ansi/micot/wiki/Resilient-Design-Executable
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(a) Urban (b) Rural

Figure 5 The urban and rural distribution systems which contain three copies of the IEEE 34 system to mimic

situations where there are three normally independent distribution circuits that support each other

during extreme events. These test cases include 109 nodes, 118 generators, 204 loads, and 148 edges.

The experimental evaluation considers 100 scenarios per damage intensity for all three

networks and the damage intensities are taken in the set {1%, 2%, 3%, 4%, 5%, 10%, 15%,

20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%,

100%}. The scenario generation procedure is based on damage caused by ice storms. The

intensity tends to be homogeneous on the scale of distribution systems (Sa 2002). Ice storm

intensity is modeled as a per-mile damage probability, i.e. the probability at least one pole

fails in a one mile segment of power line. Each line is segmented into 1-mile segments and a

scenario is generated by randomly failing each segment with the specified probability. This

probability is normalized for any line segment shorter than 1 mile. A line is “damaged” if

any segment fails.

8. Case Study

This section analyzes the behavior of the optimization model on a variety of test cases. In

particular, it studies how the topology of the distribution grid and the dispersion level of its

communication network affect the optimal design. For each network described in Section

7, this section analyzes the optimal design under different settings of damage probability,

the resiliency level, and the number of communication centers. The default value of ηc and

ηt are 98% and 50% respectively, the default number of communication centers is 4, and

the phase variation parameter β is set to 15% for EV and ∞ otherwise. Unless specified

otherwise, the comparisons are based on these default values.
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(a) Rural network (b) Urban network

(c) Network123

Figure 6 Statistics on the Optimal Grid Designs.

8.1. Impact of grid topology

Let nh, nx, nt, and nu be the number of hardened lines, new lines, new switches, and new

generators in the optimal design. Figure 6 reports these values for various damage levels

and the three networks. The red line indicates the optimal upgrade costs, and the counts

of the upgrade options are represented as a bar. The results show that hardening lines is

the major component of each optimal design and that its share increases with the disaster

intensity. The results also show that DGs are used in significant numbers in the rural

network, while new lines and switches complement hardening in the urban model. This

was expected given the length of the lines in these two networks. The third network only

needs line hardenings.

8.2. Impact of the Communication Network

First note that ignoring the communication network is equivalent to assuming that every

bus has its own communication center. In the following, G̃(k) denotes a communication

network with k centers and G̃(∞) the case where each bus has a center.

Figure 9 and Table 3 report the impact of the communication system: They report

optimal objective values and solution statistics under various numbers of communication

centers. Fewer communication centers lead to significant cost increases in the rural network,
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(a) Rural network (b) Urban network

Figure 7 Optimal Designs of the Rural and Urban Networks (3% damage level).

Figure 8 Optimal Design of Network network123 (20% damage level).

but have limited effect on the urban network and network123. In the rural network,

resiliency comes from forming microgrids with DGs, which require their own communica-

tion centers. When these are not available, optimal designs harden existing lines and build

new lines and switches, which are more costly as substantiated in Table 3.

Figure 10 illustrates the resulting designs on the rural network for scenarios with a dam-

age level of 3%. The top row depicts some of the scenarios and shows the affected lines. The

bottom row depicts the optimal designs for various configurations of the communication

network. For G̃(∞), the optimal design features three new DGs in the west-, north-, and

east-end of the network to meet the critical loads of each region. These regions are then

islanded under various scenarios. For G̃(4), the optimal design installs a new line linking

critical loads in the north side to the west side of the network, instead of using DG in
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(a) Rural network (b) Urban network (c) Network123

Figure 9 Cost Analysis For the Number of Communication Centers

Table 3 Impact of the Communication Network on Optimal
Grid Designs.

Comm. Network Obj. nh nx nt nu

Rural,
3%
damage

G̃(1) 2095.74 12 3 1 0

G̃(4) 1948.09 6 2 1 2

G̃(8) 1948.09 6 2 1 2

G̃(∞) 1914.99 5 1 0 3

the north side. This stems from Scenario 100 where a DG in the bus with critical loads

cannot be operated since it has no communication center. For G̃(1), scenario 1 prevents the

operation of an east-end DG and scenario 100 the operation of a west-end DG. Hence, the

optimal design only considers hardening and new lines and switches. On the other hand,

the urban network and Network123 achieve resiliency by increasing grid connectivity

for all communication networks.

9. Performance Analysis of the Branch and Price Algorithm

This section studies the performance of the B&P algorithm. All computations were imple-

mented with the C++/Gurobi 6.5.2 interface. They use a Haswell architecture compute

node configured with 24 cores (two twelve-core 2.5 GHz Intel Xeon E5-2680v3 processors)

and 128 GB RAM.

9.1. Computational Performance

Figure 11a reports the computation time of the B&P and SBD algorithms for all the

instances described in Section 7, where the reference line (in red) serves to delineate when

an algorithm is faster than the other. Their statistics are displayed in Figure 11b. In

average, the B&P algorithm is faster than the SBD algorithm by a factor of 3.25. These

figures also indicate that the SBD algorithm has a high degree of performance variance.
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(a) damage scenarios

(b) Optimal grid design

Figure 10 Optimal Designs of the Rural Network under 3% Damage and Various Communication Network

Configurations.

This comes from the nature of the scenario set S. If S contains a dominating scenario

and the scenario has low index in S, then the SBD algorithm solves the problem quickly.

Otherwise, the SBD may need a large number of iterations and the MIP model keeps

growing in size with each iteration. For 2 out of 1120 instances, the SBD algorithm times

out (wallclock time limit of 4 hours). On the other hand, the B&P algorithm is stable

across all instances. The B&P algorithm also has the additional benefit that it produces

improving feasible solutions continuously. In contrast, the SBD algorithm only produces a

feasible solution at optimality. Finally, the B&P algorithm appears more stable numerically

than the SBD algorithm. For 5 out of 1120 instances, the B&P algorithm yields a better

optimal solution than the SBD algorithm as shown in Table 4. Each such solution was

validated for feasibility.

9.2. Solution Quality at the Root Node.

The problem reformulation produces a strong lower bound and the majority of the instances

are proven optimal at the root node. Table 5 summarizes the average number of branching

nodes and the average optimality gap at the root node.
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(a) Computation Times (b) Average Computation Times and 95% Confi-

dence Intervals

Figure 11 Comparison of Computation Times: SBD versus B&P.

Table 4 Numerical Stability of the B&P Algorithm.

Instance
Opt. obj.val

SBD B&P Gap

Rural, 30% damage, ηt = 0.5, G̃(4) 2458.49 2453.79 -0.19 %

Rural, 30% damage, ηt = 0.6, G̃(4) 2458.49 2453.79 -0.19 %

Rural, 30% damage, ηt = 0.7, G̃(4) 2524.68 2519.98 -0.19 %

Rural, 30% damage, ηt = 0.8, G̃(4) 2572.31 2567.60 -0.19 %

Network123, 55% damage, ηt = 0.8, G̃(8) 232.48 227.27 -2.24 %

Table 5 Branching Tree Statistics.

Avg. # of branching nodes Avg. opt. gap at the root node

1.8 0.19 %

9.3. Benefits of the Accelerating Schemes

To highlight its design choices, the B&P algorithm is compared to a column generation

with dual stabilization (Du Merle et al. 1999). In addition, the benefit of each of the

accelerating schemes is investigated independently by running the B&P algorithm without

the considered extension. We sample 90 instances by setting ηt = 0.5 and 0.8, and the

damage level to 5%, 30%, 65%, 85%, 100% for the three networks G̃(0), G̃(1), and G̃(4).

Dual stabilization prevents dual variables from fluctuating too much, which is often the

case in column generation. It tries to confine dual variables in a box that contains the

current best estimate of the optimal dual solution and penalizes solutions that deviate

from the box. See, for instance, Du Merle et al. (1999), Lübbecke and Desrosiers (2005) for

details about stabilized column generation. Our implementation updates the box whenever

the Lagrangian lower bound is updated.
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Table 6 Comparison to a Column Generation with Dual Stabilization.

Avg. computation time (sec) Avg. number of iterations

B&PB 12857.97† 3122.57†

B&PS 11563.44† 1514.58†

B&P 488.03 96.12

Table 6 summarizes the computational performance of the stabilized column generation

in comparison with the B&P algorithm. B&PB denotes the branch-and-price algorithm

with the basic scheme only (Section 6.2) and B&PS stands for the branch and price algo-

rithm with dual stabilization. The symbol † is used to denote that the algorithm reaches the

wallclock time limit for some instances. For more than one third of the sampled instances,

B&PB and B&PS exceed the wallclock time limit. For instances where both algorithms ter-

minate within the time limit, B&PS is faster than B&PB by a factor of around 4. Although

the dual stabilization does improve the computation time of the basic algorithm, it is still

not adequate to solve the ORDPDC practically. The B&P algorithm, on the other hand,

shortens computation times by a factor of 26.35.

The next results investigate the performance gain of each accelerating scheme by remov-

ing them one at a time from the B&P algorithm. Table 7 describes the computational

performance and Figure 12 illustrates the impact of each accelerating schemes on the con-

vergence rate of the rural network under 6% damage level. In the table and figure, R

denotes the revised reduced cost, C the optimality cut, O the lexicographic objective pric-

ing problem, B&P\k the B&P algorithm without scheme k, with k ∈ {R,C,O}, and CG\k

the column generation of B&P without scheme k.

The results in Table 7 indicate that all the accelerating schemes contribute to the com-

putational performance of the B&P algorithm. Figure 12a illustrates the key role of the

optimality cut. Without this cut, the second stage of the column generation which uses the

traditional pricing objective does not take advantage of the columns generated in the first

stage and its lower bound drastically drops. Figure 12b compares the convergence behavior

of CG and CG\R, showing that CG reaches the optimal objective value faster than CG\R.

Figure 12c highlights the impact of the lexicographic objective function and shows that it

significantly contributes to the fast convergence of the algorithm.

10. Conclusions

This paper proposed an expansion planning model to improve the resiliency of distribution

systems facing natural disasters. The planning model considers the hardening of existing
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Table 7 Benefits of the Accelerating Schemes.

Avg. computation time (sec) Avg. number of iterations

B&P 488.03 96.12
B&P\R 844.24 96.39
B&P\C 2589.55† 215.94†

B&P\O 2979.84† 544.65†

(a) Optimality cut (b) Revised reduced cost (c) lexicographic objective function

Figure 12 Comparison of Convergence Rates (rural network, 6% level of damage).

lines and the addition of new lines, switches, and distributed generators that would allow a

subpart of the system to operate as a microgrid. The expansion model uses a 3-phase model

of the distribution system. In addition, it also considers damages to the communication

system which may prevent generators and switches to be controlled remotely. The input

of the expansion model contains a set of damage scenarios, each of which specifying how

the disaster affects the distribution system.

The paper proposed a branch and price algorithm for this model where the pricing

subproblem generates new expansions for each damage scenario. The branch and price

uses a number of acceleration schemes to address significant degeneracy in the model.

They include a new pricing objective, an optimality cut, and a multi-objective function to

encourage sparsity in the generated expansions. The resulting branch and price algorithm

significantly improves the performance of a scenario-based decomposition algorithm and a

branch and price with a stabilized column generation. The case studies show that optimal

solutions strongly depend on the grid topology and the sophistication of the communication

network. In particular, the results highlight the importance of distributed generation for

rural networks, which necessitates a resilient communication system.
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The acceleration techniques presented in this paper are not limited to the electricity

distribution grid planning problem; They can be used on problems with similar structure,

i.e, two-stage stochastic problems with feasibility recourse.

Future work will be devoted to applying and scaling these techniques to instances with

thousands of components.
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