
Efficient Exascale Discretizations:
High-Order Finite Element Methods

Tzanio Kolev1, Paul Fischer2,3,4, Misun Min2, Jack Dongarra5, Jed Brown6, Veselin
Dobrev1, Tim Warburton7, Stanimire Tomov5, Mark S. Shephard8, Ahmad
Abdelfattah5, Valeria Barra6, Natalie Beams5, Jean-Sylvain Camier1, Noel Chalmers9,
Yohann Dudouit1, Ali Karakus10, Ian Karlin1, Stefan Kerkemeier2, Yu-Hsiang Lan2,
David Medina11, Elia Merzari2,12, Aleksandr Obabko2, Will Pazner1, Thilina
Rathnayake3, Cameron W. Smith5, Lukas Spies3, Kasia Swirydowicz13, Jeremy
Thompson6, Ananias Tomboulides2,14, Vladimir Tomov1

Abstract
Efficient exploitation of exascale architectures requires rethinking of the numerical algorithms used in many
large-scale applications. These architectures favor algorithms that expose ultra fine-grain parallelism and
maximize the ratio of floating point operations to energy intensive data movement. One of the few viable
approaches to achieve high efficiency in the area of PDE discretizations on unstructured grids is to use
matrix-free / partially-assembled high-order finite element methods, since these methods can increase the
accuracy and/or lower the computational time due to reduced data motion. In this paper we provide an
overview of the research and development activities in the Center for Efficient Exascale Discretizations
(CEED), a co-design center in the Exascale Computing Project that is focused on the development of next-
generation discretization software and algorithms to enable a wide range of finite element applications to
run efficiently on future hardware. CEED is a research partnership involving more than 30 computational
scientists from two US national labs and five universities, including members of the Nek5000, MFEM, MAGMA
and PETSc projects. We discuss the CEED co-design activities based on targeted benchmarks, miniapps
and discretization libraries and our work on performance optimizations for large-scale GPU architectures. We
also provide a broad overview of research and development activities in areas such as unstructured adaptive
mesh refinement algorithms, matrix-free linear solvers, high-order data visualization, and list examples of
collaborations with several ECP and external applications.

Keywords
High-Performance Computing, Co-design, High-Order Discretizations, Unstructured Grids, PDEs

1 Introduction
Efficient exploitation of exascale architectures requires
rethinking of the numerical algorithms for solving
partial differential equations (PDEs) on general
unstructured grids. New architectures, such as general
purpose graphics processing units (GPUs) favor
algorithms that expose ultra fine-grain parallelism and
maximize the ratio of floating point operations to
energy intensive data movement.

Many large-scale PDE-based applications employ
unstructured finite element discretization methods,
where practical efficiency is measured by the accuracy
achieved per unit computational time. One of the few
viable approaches to achieve high performance in this
case is to use matrix-free high-order finite element
methods, since these methods can both increase the
accuracy and/or lower the computational time due to
reduced data motion. To achieve this efficiency, high-
order methods use mesh elements that are mapped

1Center for Applied Scientific Computing, Lawrence Livermore
National Laboratory, Livermore, CA 94550
2Mathematics and Computer Science, Argonne National Labora-
tory, Lemont, IL 60439
3Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, IL 61801
4Department of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, IL 61801
5Innovative Computing Laboratory, University of Tennessee,
Knoxville, TN 37996
6Department of Computer Science, University of Colorado, Boul-
der, CO 80309
8Scientific Computation Research Center, Rensselaer Polytechnic
Institute, Troy, NY 12180
7Department of Mathematics, Virginia Tech, Blacksburg, VA 24061
9AMD Research, Austin, TX 78735
10Mechanical Engineering Department, Middle East Technical
University, 06800, Ankara, Turkey
11Occalytics LLC, Weehawken, NJ 07086
12Department of Nuclear Engineering, Penn State, PA 16802
13Pacific Northwest National Laboratory, WA 99352

ar
X

iv
:2

10
9.

04
99

6v
1

 [
cs

.D
C

]
 1

0
Se

p
20

21

from canonical reference elements (hexahedra, wedges,
pyramids, tetrahedra) and exploit, where possible, the
tensor-product structure of the canonical mesh elements
and finite element spaces. Through matrix-free partial
assembly, the use of canonical reference elements
enables substantial cache efficiency and minimizes
extraneous data movement in comparison to traditional
low-order approaches.

The Center for Efficient Exascale Discretizations
(CEED) is a focused team effort within the U.S.
Department of Energy (DOE) Exascale Computing
Project (ECP) that aims to develop the next-generation
discretization software and algorithms to enable a
wide range of finite element applications to run
efficiently on future hardware. CEED is a research
partnership involving more than 30 computational
scientists from two DOE labs and five universities,
including members of the Nek5000, MFEM, MAGMA
and PETSc projects (Nek5000; Anderson et al.
2020; MFEM; MAGMA; Medina et al. 2014; Balay
et al. 2019). This article provides an overview of
the co-design research and development activities in
the CEED project based on targeted benchmarks,
miniapps and discretization libraries. We also discuss
several examples of collaborations with ECP, including
ExaSMR, MARBL, Urban, and ExaWind, as well as
external applications.

Following the ECP co-design philosophy, CEED is
positioned as a computational motif hub between appli-
cations, hardware vendors and software technologies
projects. As such, the main objectives of the project are
to:

1. Help applications leverage future architectures
by providing them with state-of-the-art dis-
cretization algorithms that better exploit the hard-
ware and deliver a significant performance gain
over conventional low-order methods.

2. Collaborate with hardware vendors and software
technologies projects to utilize and impact the
upcoming exascale hardware and its software
stack through CEED-developed proxies and
miniapps.

3. Provide an efficient and user-friendly unstruc-
tured PDE discretization component for the
upcoming exascale software ecosystem.

To address these objectives, the center’s co-
design efforts are organized in four interconnected
research and development thrusts, focused on the
following computational motifs and their performance
on exascale hardware:

PDE-based simulations on unstructured grids.
CEED is producing a range of software products sup-
porting general finite element algorithms on triangular,
quadrilateral, tetrahedral and hexahedral meshes. We
target the whole de Rham complex: H1, H(curl),

H(div) and L2/DG spaces and discretizations, includ-
ing conforming and non-conforming unstructured
adaptive mesh refinement (AMR).

High-order/spectral finite elements. Our algorithms
and software come with comprehensive high-order
support: we provide efficient matrix-free operator
evaluation for any order space on any order mesh,
including high-order curved meshes and all geometries
in the de Rham complex. The CEED software also
includes optimized assembly support for low-order
methods.

The rest of the paper is organized as follows.
In Section 2 we describe our co-design goals and
organization. The needs of a complete high-order
software ecosystem are then reviewed in Section 3.
The CEED high-order benchmarks designed to test
and compare the performance of high-order codes are
described in Section 4. CEED is developing a variety
of miniapps encapsulating key physics and numerical
kernels of high-order applications. These are described
in Section 5. We deliver performant algorithms to
applications via discretization libraries both at low-
level, see libCEED described in Section 6, and high-
level, see MFEM and Nek described in Section 7.
The impact of these CEED-developed technologies in
several applications is illustrated in Section 8, followed
by conclusions in Section 9.

2 Co-Design
CEED’s co-design activities are organized in four R&D
thrusts described below.
Applications Thrust. The goal of CEED’s Applica-
tions thrust is to impact a wide range of ECP application
teams through focused one-on-one interactions, facili-
tated by CEED application liaisons, as well as through
one-to-many interactions, based on the development of
easy-to-use discretization libraries for high-order finite
element methods.
Hardware Thrust. The goal of CEED’s Hardware
thrust is to build a two-way (pull-and-push) collabora-
tion with vendors, where the CEED team will develop
hardware-aware technologies (pull) to understand per-
formance bottlenecks and take advantage of inevitable
hardware trends, and vendor interactions to seek (push)
impact and improve hardware designs within the ECP
scope.
Software Thrust. The goal of CEED’s Software
thrust is to participate in the development of

14Department of Mechanical Engineering, Aristotle University of
Thessaloniki, Greece 54124

Corresponding author:
Tzanio Kolev, Center for Applied Scientific Computing, Lawrence
Livermore National Laboratory, Livermore, CA 94550
Email: tzanio@llnl.gov

3

Libraries	&	So,ware	
Technologies	

Vendors	&	Hardware	
Technologies	

Nek	

DOE	SC,	NNSA	&	Other	
Applica@ons	

Ap
pl
ic
a*

on
s	

PETSc	

RAJA	

MFEM	

Figure 1. CEED research and development thrusts

software libraries and frameworks of general interest
to the scientific computing community, facilitate
collaboration between CEED software packages,
enable integration into and/or interoperability with
overall ECP software technologies stack, streamline
developer and user workflows, maintain testing and
benchmarking infrastructure, and coordinate CEED
software releases.

Finite Elements Thrust. The goal of CEED’s Finite
Element thrust is to continue to improve the state-of-
the-art high-order finite element and spectral element
algorithms and kernels in the CEED software targeting
exascale architectures, connect and contribute to the
efforts of the other thrusts, and lead the development
of discretization libraries, benchmarks and miniapps.

The CEED co-design approach is driven by
applications, and is based on close collaboration
between the Applications, Hardware, and Software
thrusts, each of which has a two-way, push-and-pull
relation with the external application, hardware and
software technologies teams. CEED’s Finite Elements
thrust serves as a central hub that ties together,
coordinates and contributes to the efforts in all thrusts.
For example, the development of discretization libraries
in CEED is led by the Finite Elements thrust but
involves working closely with vendors (Hardware
thrust) and software technology efforts (Software
thrust) to take full advantage of exascale hardware.
Making sure that these libraries meet the needs of, and
are successfully incorporated in, ECP applications is
based on collaboration between the Applications and
Finite Elements thrusts.

To facilitate the co-design process, the CEED project
is developing a number of benchmarks, libraries of
highly performant kernels, and a set of miniapps that
are serving multiple roles. One of these roles is to
provide a mechanism to test and optimize across the
breadth of implementations already developed by team

members for a variety of platforms. The CEED bake-off
problems (BPs) described in Section 4 were specifically
designed for that purpose. They are simple enough to
be able to be run in a simulator, but include the key
local and global kernels in model problem settings.
CEED also provides well-documented miniapps that
are simple yet capture application-relevant physics to
work with vendors, be used in system procurement,
collaborate software technologies projects, and provide
test and demonstration cases for application scientists.
These miniapps, which are one step above the
benchmarks are described in Section 5. One of their
uses is to highlight performance critical paths (e.g. size
of on package memory, internode latency, hardware
collectives) with the goal to impact the design of
exascale architectures, and system and application
software, for improved portability and performance
of the high-order algorithms. All of the optimizations
and performance improvements resulting from the
benchmarks and miniapps work is made available
to applications via the CEED discretization libraries
described in Sections 6 and 7.

3 High-Order Software Ecosystem

While the main focus of the CEED effort is the
development and improvement of efficient discretiza-
tion algorithms, a full-fledged high-order application
software ecosystem requires many other components:
from meshing, to adaptivity, solvers, visualization and
more. Therefore, CEED is also engaged in improving
the additional components of the overall high-order
simulation pipeline. We describe some of these efforts
as well as some key enabling technologies in this
section to provide a background for the discretization
work discussed in the remainder of the paper. Note
that some of the components described below (e.g. the
MAGMA and OCCA projects) are generally applicable

and could be useful in applications that do not use finite
elements methods.

High-Order Meshing
When applying high-order discretization methods over
domains with curved boundaries and/or curved material
interfaces, the mesh must maintain a curved mesh
geometric approximation, whose order is dictated by
the order of the basis functions used to discretize the
PDEs to ensure convergence of the solution. In the case
when Lagrangian reference frame methods are applied
the mesh geometry will naturally become curved to
the same order as the elements discretizing the PDEs.
Thus, the application of high-order methods requires
the ability to generate curved initial meshes and to
support curved mesh adaptation whenever adaptive
mesh control is applied. To meet these needs the
CEED software supports curved mesh representations
and has developed tools for curved mesh adaptation
that include non-conforming mesh refinement/de-
refinement of quadrilateral and hexahedral meshes,
and conforming mesh adaptation of triangular and
tetrahedral meshes that can refine and coarsen the mesh
to match a given anisotropic mesh metric field.

DG	advection,	
	HR	transport	

HR	compressible	
ALE	flow		

HR	MHD,	
electromagnetics	

HR	flux-based	
radiation-diffusion	

Figure 2. By incorporating AMR at the library level, many
MFEM-based applications can take advantage of it with
minimal code changes. Examples from high-order (HR)
compressible flow, radiation diffusion/transport and
electromagnetics.

Tensor-product mesh elements (quadrilaterals in 2D
and hexahedra in 3D) are attractive in many high-order
applications, because their tensor product structure
enables efficient operator evaluation (see e.g. Section
4), as well as refinement flexibility (e.g. anisotropic
refinement). Unlike the conforming case however,
hanging nodes that occur after local refinement of
quadrilaterals and hexahedra are not easily avoided
by further refinement. Therefore, CEED researchers
are interested in non-conforming (irregular) meshes, in
which adjacent elements need not share a complete
face or edge and where some finite element degrees
of freedom (DOFs) need to be constrained to obtain a
conforming solution.

The MFEM finite element library provides general
support for such non-conforming adaptive mesh refine-
ment, including anisotropic refinement, derefinement
and parallel load balancing. In order to support the
entire de Rham sequence of finite element spaces, at
arbitrarily high-order, we use a variational restriction
approach to AMR described in (Cerveny et al. 2019).
This approach naturally supports high-order curved
meshes, as well as finite element techniques such as
hybridization and static condensation. It is also highly
scalable, easy to incorporate into existing codes, and
can be applied to complex (anisotropic, n-irregular) 3D
meshes, see Figure 2.

The CEED conforming mesh generation capability
builds on the PUMI/MeshAdapt (Ibanez et al. 2016)
libraries developed as part of the FASTMath SciDAC
applied math institute. Within PUMI the curved mesh
entities, edges, faces and regions, are represented
as Bezier polynomials (Farin 2014). The use of the
Bezier properties, curve containment in the convex
hull of control points, derivatives and products of
Bezier functions being Bezier functions, and the
existence of efficient degree elevation and subdivision
algorithms, simplify the definition of curved mesh
entity operations. One critical operation is the
conversion of curved mesh Bezier geometry into
interpolating geometry that is common input to analysis
codes. The MeshAdapt procedures employ cavity based
mesh modification operators that include optimization
based entity curving, mesh entity refinement, mesh
cavity coarsening, and mesh cavity swap operations (Lu
et al. 2014; Luo et al. 2004). The input to MeshAdapt
is an anisotropic mesh metric field defined over the
entities of the current mesh. The mesh metric field can
be defined as any combination of sizes as dictated by
error estimation/indication procedures, feature based
detection operators or other user defined size field
information. Given a mesh size field MeshAdapt carries
out a series of cavity based operations to modify the
local mesh topology and/or geometry to satisfy the
requested mesh size field. The current curved mesh
adaptation procedures operate on CPUs. Efforts have
been initiated to extend the GPU based Omega h
(Ibanez 2016b,a) straight edged mesh adaptation
procedures to support curved mesh entities and to
include additional mesh modification operators used in
curved mesh adaptation.

Controlling element shapes for evolving meshes
when curved elements are used introduces additional
complexity past those encountered when straight edge
elements are used. In particular, methods are needed
to effectively support the definition of well shaped
elements in the application of ALE methods in
Lagrangian reference frame simulations when meshes
become highly deformed, or in the application of cavity
based curved mesh modifications where new curved
mesh entities must be defined within a curved mesh
cavity. Methods that apply direct curved element shape

5

optimization are being used to address these needs
(Dobrev et al. 2019; Feuillet et al. 2018).

Performance Portability

AuroraFrontierSummit

Open
CL

NVIDIA
CUDA

Intel
DPC++

AMD
HIP

C++ C F90

OCCA API

Python

Figure 3. The OCCA portability layer provides a unified
API for offloading computation to multiple backends. The
Intel OneAPI backend is currently in progress.

The MFEM, libCEED, NekRS, and libParanumal
software packages developed as part of the CEED
project all include support for performance portability
achieved to varying degrees using the Open Concurrent
Compute Abstraction (OCCA) (Medina et al. 2014;
OCCA). As pictured in Figure 3 OCCA includes APIs
for C, C++, F90, and Python. It provides multiple
backends enabling portability to GPUs programmed
using CUDA, OpenCL, and HIP. A new DPC++
OCCA backend is in development to provide native
support for upcoming Intel discrete GPUs. Several of
these programming models also enable cross platform
portability providing additional options to achieve cross
platform efficiency.

OCCA exposes all performance critical features of
the support backends required for high-order finite
element calculations, enabling performance tuning
of kernels that can achieve performance similar to
kernels written to target the backends directly. We
take advantage of the OCCA capability to compile
compute kernels at run-time with just-in-time (JIT)
specialization and optimization, which is particularly
important for high-order methods where innermost
loops have bounds depending on the order.

Small Tensor Contractions
The numerical kernels of efficient high-order operator
evaluation reduce to many small dense tensor con-
tractions, one for each element of the computational
mesh. These contractions can be performed in parallel
over the elements and can be implemented as a batch
of small matrix-matrix multiplications (DGEMMs, see
Figure 4). Vendor-optimized BLAS routines have been
successfully used in many areas to provide performance

portability across architectures. Similarly, the availabil-
ity of highly optimized Batched BLAS for various
architectures can provide tensor contractions, and con-
sequently high-order applications, performance porta-
bility. Therefore, CEED scientists have been working
with vendors and the community on defining a Batched
BLAS API, and finalized a proposed API for Batched
BLAS (Dongarra et al. 2016, 2018).

The MAGMA library provides the most complete
set of highly optimized Batched BLAS, including
batched DGEMMs on GPUs. Very small batched
DGEMMs have been optimized to perform at their
theoretical performance upper bounds for a number of
architectures (Abdelfattah et al. 2016a; Masliah et al.
2016). Furthermore, the tensor contraction kernels in
CEED often require a sequence of batch DGEMMs. Such
calls can share the same execution context so that they
operate on the fast memory levels of the hardware,
thus maximizing the memory bandwidth (Tomov et al.
2019).

In addition, CEED has modes of operation where
the elementwise operator evaluation can be recast
as standard batch DGEMMs on medium-to-large-sized
matrices (Abdelfattah et al. 2016b); the MAGMA
backend for libCEED exploits this to improve
performance for non-tensor finite elements (Kolev et al.
2020). The use of the batch BLAS operations increases
the chances of performance portability, since BLAS
is often highly optimized by vendors and other open
source numerical software. This was recently illustrated
with the MAGMA port and CEED backend for AMD
GPUs (Brown et al. 2020a,b; Kolev et al. 2020).

Matrix-free Linear Solvers
In addition to efficient discretization and operator
evaluation, matrix-free preconditioning is essential in
order to obtain highly performant solvers at high
order. Solvers based on explicitly formed matrices
tend to have low arithmetic intensity, and the memory
requirements associated with the system matrices for
high-order discretizations are typically too large to be
practical on GPUs and accelerator-based architectures.
On the other hand, many standard preconditioning
techniques rely on the knowledge of the matrix entries.
For these reasons, matrix-free preconditioning is both
an important and challenging topic.

Multigrid methods provide one promising avenue
for the development of matrix free linear solvers
(Kronbichler and Ljungkvist 2019). These methods
have optimal complexity, and when combined with
effective matrix-free smoothers, have the potential to
achieve excellent performance (Lottes and Fischer
2005). Recent work has also studied the matrix-
free construction of fast diagonalization smoothers
for discontinuous Galerkin methods (Pazner and
Persson 2018). Both h-multigrid, where a sequence
of geometrically coarsened meshes is used, and p-
multigrid, in which a hierarchy of polynomial degrees

Figure 4. Standardizing a Batched BLAS API, an extension to the BLAS standard, enables users to perform thousands
of small BLAS operations in parallel while making efficient use of their hardware.

is constructed, can be used in conjunction to obtain an
efficient solver (Sundar et al. 2015). At the coarsest
level, algebraic multigrid (AMG) methods, such as
those from the hypre software library, are required in
order to obtain a truly scalable solver.

An additional technique used to precondition high-
order systems is to assemble a spectrally equivalent
sparsified system, to which standard matrix-based
preconditioning techniques may be applied. One
method of obtaining a spectrally equivalent sparse
matrix is using a low-order discretization on a
refined mesh, and making use of the so-called finite
element method–spectral element method (FEM–SEM)
equivalence for tensor-product elements (Orszag 1980;
Canuto 1994; Canuto et al. 2006). Recent work
has demonstrated that, when combined with efficient
solvers for the sparsified system, this approach can
result in highly efficient solvers (Bello-Maldonado and
Fischer 2019; Pazner 2020). One challenging property
of the resulting low-order refined system is that the
meshes resulting from the refinement procedure are not
shape regular with respect to the polynomial degree p:
the aspect ratio of the mesh elements increases with
increasing polynomial degree. As a result, algebraic
multigrid methods with pointwise smoothers such as
point Jacobi result in degraded convergence at high
orders. Consequently, the development of specialized
matrix-free smoothers for these anisotropic low-
order systems is also of interest. Additionally, the
extension of these low-order preconditioners to high-
order simplex elements is a topic of ongoing research
(Chalmers and Warburton 2018).

Also of interest is the development of efficient
matrix-free solvers for H(curl), H(div), and discon-
tinuous Galerkin finite element spaces. It is often the
case that efficient solvers for H1 discretizations can
be modified or supplemented to obtain good precon-
ditioners for these more challenging cases. For exam-
ple, multigrid solvers for diffusion problems can be
combined with a discrete gradient operator to obtain
uniform preconditioners for definite Maxwell problems

discretized using H(curl) finite elements (Kolev and
Vassilevski 2009). Although these solvers were origi-
nally developed in the context of matrix-based AMG,
the same ideas can be extended to the matrix-free
setting. Furthermore, uniform preconditioners for H1

conforming diffusion problems can be combined with a
simple diagonal scaling to obtain uniform precondition-
ers for DG diffusion problems (Antonietti et al. 2016;
Dobrev et al. 2006).

An additional method that is capable of using
fast diagonalization methods (for operators that
admit separable approximations) is Balancing Domain
Decomposition by Constraints (BDDC) (Dohrmann
2003; Zampini 2016), which offers more localized
smoother construction, faster convergence for additive
cycles, and more rapid coarsening than the fast
diagonalization technique discussed above. BDDC has
been used for high order elements applied to almost
incompressible elasticity (Pavarino et al. 2010), where
the condition number of the BDDC-preconditioned
operator for single-element smoothing and coarsening
was shown to scale as κ ≤ C

(
1 + log p2

)2
, where p

is the polynomial degree and C is robust to element
size/shape and the Poisson ratio. BDDC has also been
analyzed as a multigrid method (Brown et al. 2019), and
can be composed with other multigrid methods.

High-order Data Analysis and Visualization
Accurate visualization of general finite element meshes
and functions in the de Rham complex requires
finite element knowledge that may not be present
in visualization tools employed by applications. The
visualization needs to account for the orders of the mesh
and solution fields, as well as the type of finite element
basis used for each of them. Our work in this direction
is based on the current capabilities in MFEM, illustrated
in its native GLVis visualization tool (GLVis), as well as
in the VisIt visualization and data analysis application
(VisIt).

An additional challenge for high-order meshes and
functions is that there is no common community

7

standard for the description of high-order data at
arbitrary other. CEED is working with visualization and
application teams to develop a standard called Field
and Mesh Specification (FMS) that not only improves
visualization capabilities but also enables consistent
data transfer between high-order applications. See
(FMS) and (Brown et al. 2018).

4 Benchmarks
Application-relevant performance testing and analyses
are critical to effective HPC software deployment. One
of the foundational components of CEED is a sequence
of PDE-motivated bake-off problems (BPs) designed to
establish best practices for performant implementations
of high-order methods across a variety of platforms.
The idea is to pool the efforts of multiple high-
order development groups to identify effective code
optimization strategies for candidate architectures. In
an initial round of tests we compared performance from
four software development projects (Nek5000, MFEM,
deal.II, and libParanumal) on Mira, the BG/Q at ALCF,
and Summit, the NVIDIA V100-based platform at
ORNL. The results of this bake-off were documented
in (Fischer et al. 2020). We are interested in peak
performance (degrees of freedom per second, per node)
and in strong-scale performance at a significant fraction
of this peak (e.g., 80%), as this regime is frequently of
paramount concern to computational scientists. While
we consider matrix-free implementations of p-type
finite and spectral element methods as the principal
vehicle for our study, the performance results are
relevant to a broad spectrum of numerical PDE solvers,
including finite difference, finite volume, and h-type
finite elements, and thus are widely applicable.

The first suite of CEED bake-off problems, BP1–
BP6, is focused on simple solver kernels—conjugate
gradient (CG) iterations to solve systems of the
form (αA + βB)ui = Bf

i
, which are the discrete

equivalents of the constant-coefficient 3D positive-
definite Helmholtz problem,

−α∇2ui + βui = fi(x), x ∈ Ω ⊂ lR3,

for i = 1, . . . ,m, with homogeneous Dirichlet condi-
tions, ui = 0 on ∂Ω. The odd-numbered BPs corre-
spond to scalar problems (m = 1), whereas the even-
numbered cases correspond to (potentially more effi-
cient) vector problems (m = 3). An important aspect
of using CG is that it involves a mix of local work
with both nearest neighbor and global communication
(vector reductions), which provides at least moderate
stress on the system communication.

The BP discretizations are based on isoparametric
Qp finite elements (curvilinear bricks) on a tensor
product reference domain, r ∈ Ω̂ = [−1, 1]3, which is
mapped through a transformation xe(r) for each of E
elements, Ωe, e = 1, . . . , E. Denoting the underlying
C0-Lagrangian basis functions as φi(x), i = 1, . . . , n,

the respective stiffness and mass matrix entries are

Aij =

∫
Ω

∇φi · ∇φj dV, Bij =

∫
Ω

φiφj dV.

These matrices are never formed, but instead are
applied using fast, low-storage, tensor-product-sum
factorization that are at the heart of efficient high-order
methods (Deville et al. 2002; Orszag 1980).

Test problems BP1–BP2 correspond to solving
the mass matrix (α = 0, β = 1), while BP3–BP6
correspond to solving the Poisson problem (α = 1,
β = 0). For BP1–BP4, integration is performed over
each element using Gauss-Legendre quadrature with
q = p+ 2 nodes in each direction in Ω̂. BP5–BP6
correspond to the spectral element formulation, in
which integration is performed on the underlying
(p+ 1)3 Gauss-Lobatto-Legendre nodal points, thus
bypassing interpolation from nodes to quadrature
points.

An important question in the development of HPC
software is to ensure that testing reflects actual use
modalities. On large HPC platforms, users typically use
as many nodes as are effective, meaning that they run
at the strong-scale limit, rather than the work-saturated
limit. Figure 5 illustrates these limits for the case of BP5
on up to 16,384 MPI ranks on Mira. On the left we see
standard strong-scale plots for two different problem
sizes, n = 5.6 million points and n = 22 million points.
The smaller case exhibits perfect linear speed-up up to
Pc = 2048 MPI ranks whereas the larger case sustains
linear speed-up out toPc = 8192 ranks. For this class of
problems with a given code and platform the dominant
factor governing parallel efficiency is the number of
points per node (or core, or other independent compute
resource) (Fischer et al. 2015). Indeed, with this metric
we see a perfect data collapse in Figure 5 (center),
which shows the time as a function of the number of
points per rank, and (right), which shows the work-
rate (DOFS=degrees-of-freedom × number of iteration
per second per node) and the parallel efficiency, η =
T1/(PTP), where TP is the time when running on P
MPI ranks.

We make several observations about Figure 5 (right).
First, the strong-scale limit is at about 2700 points per
rank. Running with more points per rank keeps the
efficiency at unity but increases the runtime. Running
with fewer points per rank means increasing the total
number of cycles (core-hours) to complete the job. Very
often, users will trade some degree of inefficiency for
decreased runtime. If we choose, for example, 80%
efficiency, the value of n/P where this value is realized
is denoted by n0.8. Second, it is beneficial to increase
rate of work (DOFS) because fewer core-hours are then
required to complete the overall task. Wall-clock time,
however, may not be reduced if increasing the work-
rate implies an increase in n/P to stay above the token
(e.g., 80%) efficiency mark. For a problem of size n,
the time-to-solution will be tη = C n

η·P ·rmax
, where η

Figure 5. Strong-scaling analysis for BP5 in -c32 mode on Mira: (left) standard strong-scaling plots with increasing
number of MPI ranks, Pc for Poisson problems using n=5.6M and 22M grid points; (center) data collapse manifest when
independent variable is n/Pc; and (right) work-rate (left ordinate) and parallel efficiency (right ordinate) vs n/Pc.

103 104 105 106 107

DOFs per MPI task

0.0

0.5

1.0

1.5

2.0

2.5

[D
O

Fs
 x

 C
G

 it
er

at
io

ns
] /

 [M
PI

 ta
sk

s
x

se
co

nd
s]

1e9 MFEM: BP3 on Lassen, 1024 V100s

p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8

Figure 6. BP results: BP5 with Nek5000 on Mira; BP5 with libParanumal on Summit; BP3 with MFEM on Lassen

is the parallel efficiency, rmax is the saturated work rate
(e.g. per computational node), P is the number of nodes
used, and C is a constant that reflects the amount of
work per gridpoint. The choice η = 0.8 implies that
n/P = n0.8, such that the run time is t0.8 = C

0.8
n0.8

rmax
.

The problem size n and number of nodes drop out of the
run time formula—the only thing that influences time-
to-solution at the strong-scale limit is the ratio of the
local problem size to peak processing rate, n0.8/rmax.
Minimization of this ratio is of paramount importance
for reduced run time.

Motivated by the preceding analysis, we routinely
collect performance data for BP1–BP6 for varying
problem sizes n = Ep3 on a variety of platforms.
A comprehensive study entailing more than 2000
trials was reported in (Fischer et al. 2020), which
considered E = 214 to E = 221 and p = 1 to p = 16
using MFEM, Nek5000, and deal.ii on P = 512 nodes
on ALCF’s Mira (in -c32 mode) and the OCCA-based
libParanumal code with P = 4 (24 NVIDIA V100s)
on OLCF’s Summit. Typical BP results are shown in
Figure 6. The left panel shows BP5 results for Nek5000
on Mira. We see that higher polynomials generally
realize a higher DOFS rate and that n0.8 ≈ 50, 000,
with r0.8 ≈ 65 MDOFS. On Summit, libParanumal
realizes a peak of more than 10 GDOFS with n0.8 ≈
107. We also show recent results for BP3 using MFEM
on 256 nodes of the V100-based platform, Lassen.
Again, higher polynomial orders sustain higher DOFS,
peaking at ≈ 2 GDOFS per GPU (8 GDOFS/node)

with an n0.8 ≈ 3 million. The corresponding t0.8 for
these cases are approximately .0008s on Mira, .001s on
Summit, and .0015s on Lassen. We reiterate that the
strong-scale limit is the fastest point where users can
(and will) run while sustaining their desired efficiency.
Thus, performance at other points on Figures 5 and 6
are of far less importance. Performance tuning must
focus on moving up and to the left in these plots.

Future BPs will look at dealiased advection kernels,
which are compute and memory intensive, and optimal
preconditioning strategies for high-order discretizations
of elliptic problems that represent computational
bottlenecks in several of the ECP applications.

5 Miniapps
CEED is developing a variety of miniapps encapsulat-
ing key physics and numerical kernels of high-order
applications. The miniapps are designed to be used
in a variety of co-design activities with ECP vendors,
software technologies projects and external partners.
For example, several of the CEED miniapps (Nekbone
and Laghos) are used as vendor benchmarks in the
DOE’s CORAL-2 and LLNL’s CTS-2 procurements.

libParanumal
libParanumal (LIBrary of PARAllel NUMerical ALgo-
rithms) is an open source project (Chalmers et al.
2020) under development at Virginia Tech. It consists
of a collection of miniapps with high-performance

9

Incomp.
Navier-
Stokes

Boltzmann
dynamics

Compress. 
Navier-
Stokes

Fokker-
Planck

Time-steppers

ogsElliptic MultigridLinear-
solvers

gslibOCCA

Figure 7. The libParanumal library includes portable GPU
accelerated miniapps for solving the incompressible and
compressible Navier-Stokes, Fokker-Planck, and finite
moment Boltzmann gas dynamics equations among
others.

portable implementations of high-order finite-element
discretizations for a range of different fluid flow mod-
els. The miniapps embedded in libParanumal include
solvers for incompressible flows (Karakus et al. 2019b),
compressible flows, finite moment Boltzmann gas
dynamics models (Karakus et al. 2019a), and Fokker-
Planck models. All of these miniapps are accompanied
with highly performant GPU kernels for high-order
Galerkin (Swirydowicz et al. 2019) and/or discontin-
uous Galerkin spatial discretizations with a collection
of high-order time integrators. libParanumal is con-
structed as a set of core libraries as shown in Figure
7 including high-performance scalable preconditioned
iterative Krylov subspace solvers with optional multi-
grid preconditioning. All computationally intensive cal-
culations are implemented using kernels compatible
with the OCCA portability layer (Medina et al. 2014)
and have been analyzed and optimized to guarantee
that they achieve a high percentage of the attain-
able DEVICE memory bandwidth on NVIDIA P100
(Swirydowicz et al. 2019) and V100 GPUs (Fischer
et al. 2020). The libParanumal library provides core
GPU acceleration capabilities to NekRS and algorithms
developed for it have been deployed in the MFEM
cuda-gen backend.

NekBench and Nekbone
NekBench is a benchmark suite representing key
components of Nek5000/CEM/RS. This miniapp
supports a variety of benchmarks for fundamental
analysis in different architectures. It supports a single-
step driver that delivers timing measurements on
CPUs and GPUs for ping-pong (one-to-one and
bisection-bandwidth tests), gather-scatter, all-reduce,
dot-product, and device-to/from-host memcopy. It also

performs weak and strong scaling tests for BK5–
BK6* and BP5–BP6, as shown in Figure 8. The figure
demonstrates that n0.8 is reduced from 3M points to 2M
points per V100 when we switch from the scalar (BP5)
solver to the vector (BP6) variant of the solver.

Nekbone solves a standard Poisson equation using
conjugate gradient iteration with a simple diagonal
preconditioner on a block or linear geometry. It
encapsulates one of the principal computational kernels
pertinent to Nek5000, which includes a mixture of
local (near-neighbor) and nonlocal (vector reduction)
communication patterns that are central to efficient
multilevel solvers. Nekbone has been updated to
include vector solutions, which allows amortization
of message and memory latencies. Nekbone has been
used for assessment of advanced architectures and for
evaluation of light-weight MPI implementations on the
ALCF BG/Q, Cetus, in collaboration with Argonne’s
MPICH team (Raffenetti and et al. 2017).

Laghos and Remhos
Laghos (LAGrangian High-Order Solver) and Remhos
(REMap High-Order Solver) are MFEM-based
miniapps developed by the CEED team. The
objective of these miniapps is to provide open
source implementations of efficient discretizations for
Lagrangian shock hydrodynamics (Laghos) and field
remap (Remhos) based on high-order finite elements.

Laghos (Laghos) solves the time-dependent Euler
equations of compressible gas dynamics in a moving
Lagrangian frame. The miniapp is based on the
method described in (Dobrev et al. 2012). It
exposes the principal computational kernels of explicit
time-dependent shock-capturing compressible flow,
including the FLOP-intensive definition of artificial
viscosity at quadrature points.

Laghos supports two options for deriving and solving
its system of equations, namely, the full assembly and
the partial assembly methods. Full assembly relies on
global mass matrices in CSR format; this option is
appropriate for first or second order methods. Partial
assembly utilizes the tensor structure of the finite
element spaces, resulting in less data storage, memory
transfers and FLOPs; this option is of interest in
terms of efficiency for high-order discretizations. The
Laghos implementation includes support for hardware
devices, such as GPUs, and programming models,
such as CUDA, OCCA, RAJA and OpenMP, based
on MFEM 4.1 or later. These device backends are
selectable at runtime. Laghos also contains an AMR
version demonstrating the use of dynamic adaptive
mesh refinement for a moving mesh with MFEM.

∗The BKs are bake-off kernels that involve only the local,
elementwise, portion of the matrix-vector products, Au or Bu

associated with the corresponding BPs described in Section 4.

Figure 8. Strong and weak scaling studies of BP5 and BP6 using V100s on Lassen.

Large-scale GPU runs of Laghos were performed
on Lassen. All computations were kept on the device,
except for the result of the dot product which is brought
back on to the CPU during the iterations of the CG
solver. Initial results are presented in Figure 9, showing
both the weak (gray lines) and strong (colored lines)
scaling obtained on four to one thousands of GPUs
during the CG iterations of the velocity solver, which
corresponds to the BP2 CEED benchmark. Ideal strong
scaling is possible for problem size large enough, while
weak scaling is more easily reached through all the
range of the runs. The bottom panel of Figure 9 presents
the throughput in DOFs per second for the Laghos
force kernel, reaching more than 4 TDOF/s on the same
configuration.

Remhos solves the pure advection equations that
are used to perform conservative and monotonic DG
advection-based discontinuous field interpolation, or
“remap” (Remhos). Remhos combines discretization
methods described in the following articles: (Ander-
son et al. 2015, 2017, 2018; Hajduk et al. 2020a,b).
It exposes the principal computational kernels of
explicit time-dependent Discontinuous Galerkin advec-
tion methods, including monotonicity treatment com-
putations that are characteristic to FCT (Flux Corrected
Transport) methods.

Remhos supports two execution modes, namely,
transport and remap, which result in slightly different
algebraic operators. In the case of remap, the finite
element mass and advection matrices change in time,
while they are constant for the transport case. Just like
Laghos, Remhos supports full assembly and partial
assembly options for deriving and solving its linear
system. Support for different hardware devices in
Remhos is work in progress.

Other computational motifs supported by both
Laghos and Remhos include: domain-decomposed
MPI parallelism; support for unstructured 2D and 3D
meshes, with quadrilateral and hexahedral elements;
moving high-order curved meshes; explicit high-order
time integration methods; optional in-situ visualization
with GLVis and data output for visualization and data
analysis with VisIt.

6 libCEED
libCEED is CEED’s low-level API library that provides
portable and performant evaluation of high-order
operators (Abdelfattah et al. 2020). It is a C99 library
with no required dependencies, and with Fortran
and Python interfaces (see for details on the Python
interface (Barra et al. 2020)).

11

 1

 10

4 16 64 256 1024

C
G

 (
H

1
)

to
ta

l
ti

m
e
 [

se
co

n
d
s]

Number of GPUs

Ideal strong scaling
Weak scaling

8M
32M

128M
512M

2048M

102

103

104

4 16 64 256 1024

Fo
rc

e
s

ra
te

 (
g
ig

a
d
o
fs

 x
 t

im
e
st

e
p
s

/
se

co
n
d
)

Number of GPUs

8M
32M

128M
512M

2048M

Figure 9. Left: weak and strong scaling results with Laghos and MFEM-4.1: 2D problem on Lassen, using up to 1024
GPUs. Right: throughput for the Laghos force kernel in (GDOF x timesteps / second), reaching above 4 TDOF/s on 1024
GPUs.

One of the challenges with high-order methods
is that a global sparse matrix is no longer a good
representation of a high-order linear operator, both
with respect to the FLOPs needed for its evaluation,
as well as the memory transfer needed for a matvec.
Thus, high-order methods require a new “format” that
still represents a linear (or more generally non-linear)
operator, but not through a sparse matrix.

The goal of libCEED is to propose such a format, as
well as supporting implementations and data structures,
that enable efficient operator evaluation on a variety
of computational device types (CPUs, GPUs, etc.).
This new operator description, outlined below and in
(Abdelfattah et al. 2020), is based on algebraically
factored form, which is easy to incorporate in a wide
variety of applications, without significant refactoring
of their own discretization infrastructure.

Finite Element Operator Decomposition
Finite element operators are typically defined through
weak formulations of partial differential equations that
involve integration over a computational mesh. The
required integrals are computed by splitting them as a
sum over the mesh elements, mapping each element to
a simple reference element (e.g. the unit square) and
applying a quadrature rule in reference space.

This sequence of operations highlights an inherent
hierarchical structure present in all finite element
operators where the evaluation starts on global (trial)
degrees of freedom (DOFs) or nodes on the whole
mesh, restricts to DOFs on subdomains (groups of
elements), then moves to independent DOFs on each
element, transitions to independent quadrature points
in reference space, performs the integration, and then
goes back in reverse order to global (test) degrees of
freedom on the whole mesh.

This is illustrated below for the simple case of
symmetric linear operator on third order (Q3) scalar
continuous (H1) elements, where we use the notions T-
vector, L-vector, E-vector, and Q-vector to represent
the sets corresponding to the (true) degrees of freedom
on the global mesh, the split local degrees of freedom

on the subdomains, the split degrees of freedom on
the mesh elements, and the values at quadrature points,
respectively (see Figure 10). We refer to the operators
that connect the different types of vectors as:

• P : Subdomain restriction
• G: Element restriction
• B: Basis (DOFs-to-Qpts) evaluator
• D: Operator at quadrature points

More generally, when the test and trial space differ,
they have their own versions of P , G and B.

The libCEED API takes an algebraic approach,
where the user describes in the frontend the operators
G, B, and D and the library provides backend
implementations and coordinates their action to the
original operator on L-vector level (i.e. independently
on each device / MPI task). The subdomain restriction
operation, P is outside of the scope of the current
libCEED API.

One of the advantages of this purely algebraic
description is that it includes all the finite element
information, so the backends can operate on linear
algebra level without explicit finite element code. The
frontend description is general enough to support a
wide variety of finite element algorithms, as well as
some other types algorithms such as spectral finite
differences. The separation of the front and backends
enables applications to easily switch/try different
backends and enables backend developers to impact
many applications from a single implementation.

The mapping between the decomposition concepts
and the code implementation is as follows:

• L-, E-, and Q-vectors are represented by
CeedVector objects†

• G is represented as a CeedElemRestriction
• B is represented as a CeedBasis
• D is represented as a CeedQFunction

†A backend may choose to operate incrementally without forming
explicit E- or Q-vectors.

FEM operator decomposi0on

✔ algebraic operator decomposi0on ✔ applicable to many applica0ons ✔ device-level API

T-vector L-vector E-vector Q-vector

global domain
all (shared) dofs

sub-domains
device (local) dofs

elements
element dofs

quadrature
point values

P

PT

G

GT

B

BT

D

libCEED API

Mathematical Foundations

Figure 10. Finite element operator decomposition

• GTBTDBG the local action of the operator is
represented as a CeedOperator

Users can provide source code for pointwise
application of their weak form in a single source file
using mutually supported constructs from C99, C++11,
and CUDA.

CPU and GPU Performance
libCEED provides a unified interface for all types of
hardware, allowing users to write a single source code
and to select the desired backend at run time. Backends
differ in the hardware they target, but also in their
implementation and algorithmic choices.

libCEED provides backends for CPUs, NVIDIA
GPUs, and AMD GPUs implemented in C (with or
without AVX intrinsics), CUDA, and HIP respectively.
libCEED also provides backends taking advantage
of specialized libraries like libXSMM for CPUs, or
MAGMA for NVIDIA and AMD GPUs (see Figure
11). The OCCA backend is special in the sense that it
aims at supporting all possible hardware in a unified
backend.

Backends are interoperable, allowing to use different
backends together on heterogeneous architectures.
Moreover, each process or thread can instantiate an
arbitrary number of backends, this can be used to select
the backend with the highest performance for each
operator, or to run on mixed meshes.

Figure 11. The role of libCEED as a low-level API.

The best performing CPU backends use the
LIBXSMM library. In order to best use modern
CPU architectures, the basis application operations
are decomposed as small matrix multiplications, using
tensor contractions when on tensor product bases.
LIBXSMM provides efficient computation of these
small matrix-matrix products, vectorized across the
quadrature points for a single element or batches of
elements.

10−4 10−3 10−2

500

1,000

1,500

2,000

2,500

3,000

Time per CG iteration

M
D

oF
/s

pe
rC

G
ite

ra
tio

n

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7

Figure 12. Throughput vs latency for the libCEED
/cpu/self/xsmm/blocked backend solving BP3 on a
2-socket AMD EPYC 7452.

The best performing GPU backends on the CEED
benchmark problems are /gpu/cuda/gen for quadri-
lateral and hexahedral elements, and /gpu/magma for
simplex elements.

The /gpu/cuda/gen backend is using runtime code
generation and JIT compilation to generate a unique
optimized GPU kernel for each libCEED operator. The
gpu/magma backend is based on the MAGMA library.

In order to explore the weak and strong scaling of
these algorithms on CPU and GPU architectures, we
consider the throughput in terms of the latency. High
throughput for low latencies are good for architectures
and problems that need strong scalability. On the other
hand, high throughput for high latency corresponds
to architectures that weak-scale efficiently. Comparing
these measures for a 2-socket AMD EPYC 7452 CPU,

13

in Figure 12, with an NVIDIA V100 GPU in Figure 13,
using the best CPU and GPU backends of libCEED,
we observe a much better ability for the CPU to strong
scale over the GPU, but a better weak scalability for
the NVIDIA V100 over the AMD EPYC 7452 on the
benchmark problem BP3 (in both Figures, p is the
polynomial order).

For all GPU backends the weak and strong scalability
behave similarly. A constant GPU overhead limits
dramatically the strong scalability. Any kernel below
a million degrees of freedom is dominated by this
constant cost, therefore the computation time between
one and a million degrees of freedom is roughly the
same, which correspond to the clustering on the left
of Figure 13. However, above a million degrees of
freedom, we can observe a superlinear weak scalability:
a higher number of degrees of freedom results in higher
performance per degree of freedom. The CPU backends
have typical CPU performance profile, with decent
strong and weak scalability, and optimal performance
achieved in the middle for a number of degrees
of freedom that depends on the architecture cache
memories, see Figure 12.

10−4 10−3 10−2

500

1,000

1,500

2,000

2,500

3,000

Time per CG iteration

M
D

oF
/s

pe
rC

G
ite

ra
tio

n

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

Figure 13. Throughput vs latency for the libCEED
/gpu/cuda/gen backend solving BP3 on a NVIDIA
V100.

7 Nek and MFEM
At a higher level of abstraction, CEED provides a
“high-level API” to applications through the MFEM
and Nek discretization libraries. This API operates
with global discretization concepts, specifying a global
mesh, finite element spaces and PDE operators to be
discretized with the point-wise physics representing
the coefficients in these operators. Given such inputs,
CEED provides efficient discretization and evaluation
of the requested operators, without the need for
the application to be concerned with element-level
operations. Internally, the high-level API can make use
of CEED’s low-level APIs described in the previous
sections. The global perspective also allows CEED
packages to provide general unstructured adaptive
mesh refinement support, with minimal impact in the
application code.

Nek5000/CEM/RS
Nek5000 is a thermal-fluids code based on the spectral
element method (SEM) (Patera 1984) that is used
for a wide range of scientific applications, including
reactor thermal-hydraulics, thermal convection, ocean
modeling, combustion, vascular flows, and fundamental
studies of turbulence. NekCEM supports both an SEM
and an SE discontinuous-Galerkin (SEDG) formulation
for applications in electromagnetics, drift-diffusion,
and quantum-mechanical systems. These codes have
scaled to millions of MPI ranks using the Nek-
based gslib communication library to handle all near-
neighbor and other stencil type communications (e.g.,
for algebraic multigrid). Tensor contractions constitute
the principal computational kernel, which leads to high
CPU performance with a minor amount of tuning.

Initial GPU development and testing was done
with NekCEM using OpenACC (Otten et al. 2016).
For portability reasons, NekRS—the GPU variant
of Nek5000—was built on top of kernels from
libParanumal using OCCA. In both cases, node-level
parallelism requires kernels written at a higher level
than simple tensor contractions. For performance, full
operations (e.g., ∇u) are cast into a single kernel
call for the GPU. Significant effort has gone into
overlapping the gather-scatter operation that is central
to matrix-free SEM/FEM operator evaluation. On a
CPU platform, where there are only one or two spectral
elements per MPI rank, there is no opportunity for
communication overlap. However, GPUs such as the
NVIDIA V100 require about 2 million gridpoints
per V100 for reasonable efficiency, which means that
there is enough work on subdomain interior points
to cover some inter-node communication. Strong- and
weak-scaling performance for NekRS and Nek5000
on Summit are illustrated in Figure 14. The strong-
scaling plots reflect the most recent performance
enhancements in NekRS, including communication
overlap and improved preconditioners. Time-per-step in
this case is less than 0.1 seconds.

A major push for Nek5000/CEM/RS applications
is in the area of solvers. Effective preconditioners for
the Poisson problem are of primary importance for the
unsteady Navier-Stokes equations. Steady-state solvers
are important for the drift-diffusion equations and
for Reynolds-averaged Navier-Stokes (RANS) models
used in nuclear engineering. Jacobi-free Newton-
Krylov methods (Knoll and Keyes 2004) are under
development for these applications.

The MFEM Finite Element Library
MFEM is a free, lightweight, scalable C++ library
for finite element methods (Anderson et al. 2020;
MFEM). Its goal is to enable high-performance scalable
finite element discretization research and application
development on a wide variety of platforms, ranging
from laptops to exascale supercomputers. It also

Figure 14. NekRS GPU and Nek5000 CPU strong- and
weak-scaling performance on OLCF’s Summit. The plots
show the wall-time per step, averaged over 100 steps, for
turbulent flow in a 17×17 rod-bundle example coming
from ExaSMR (Figure 17a).

provides a range of features beyond finite elements
that allow for rapid prototyping and development
of scientific and engineering simulations. In CEED,
MFEM is a main component of the efforts in the
Applications and Finite Element thrusts.

MFEM includes capabilities for basic linear algebra:
vectors, dense and sparse matrices and operations
with them; iterative (Krylov) linear solvers; smoothers
and preconditioners, including multigrid; nonlinear
operators and solvers; and time stepping methods. The
library offers support for a wide variety of mesh types
and operations on them: arbitrary high-order curvilinear
meshes in 1D, 2D (triangles and quads), and 3D (tets,
hexes, prisms), including surface and periodic meshes;
mesh import from meshing tools such as Gmsh, Netgen,
CUBIT; adaptive conforming mesh refinement for
simplicial meshes; adaptive nonconforming refinement
and derefinement for all mesh types, including parallel
rebalancing; mesh optimization via node movement:
TMOP (Dobrev et al. 2019). The PDE discretization
features include: arbitrary order L2- (discontinuous),
H1- (continuous), H(div)-, and H(curl)-conforming
finite elements and discretization spaces; NURBS
meshes and discretization spaces (IGA); a large variety
of predefined linear, bilinear, and nonlinear forms;
support for many discretization approaches including
continuous, mixed, DG, DPG, IGA, etc. In terms
of parallel programming, MFEM supports MPI-based

distributed memory parallelism, OpenMP-based shared
memory parallelism on CPUs, and GPU-acceleration
through various backends (see below). Last but not
least, the source distribution includes many examples
and miniapps that can be used as an introduction to
the library and its capabilities, as well as templates for
developing more complex simulations.

In addition to its built-in capabilities, MFEM pro-
vides integration with many other scientific libraries,
including ECP software technologies projects such as
hypre, PETSc, SUNDIALS, PUMI, libCEED, OCCA,
etc. Support for the GPU capabilities in some of these
libraries is already available (e.g. OCCA, libCEED) and
for others it is currently under active development (e.g.
hypre, SUNDIALS).

Starting with version 4.0 (released in May 2019),
MFEM introduced initial support for GPU accelerators.
Since then these capabilities are being actively
developed to add support in more components of
the library while also improving the performance of
already existing kernels. The set of examples and
miniapps in MFEM that support GPUs is growing and
now includes a number of PDE problems: diffusion,
advection, definite Maxwell, grad–div, Darcy, etc.
Other algorithms like AMR, TMOP (Dobrev et al.
2019), and multigrid are also supported (at least
partially) on GPUs.

The support for different hardware (CPUs and
GPUs) and different programming models (such as
CUDA, OpenMP, HIP, RAJA (Beckingsale et al.
2019; RAJA), OCCA, libCEED) is facilitated by the
concept of backends, see Figure 15. The selection of
the backend happens at runtime at the start of the
program which allows code to be developed, tested,
and used without the need to recompile the library
or the application. The backends currently supported
(specified as strings) are: cpu, raja-cpu, occa-cpu,
ceed-cpu, omp, raja-omp, occa-omp, debug, hip,
cuda, raja-cuda, occa-cuda, and ceed-cuda.

To facilitate gradual transition to GPU architectures
for users and for the library itself, MFEM introduced
two features: a lightweight memory manager to
simplify the handling of separate host and device
memory spaces, and a set of MFEM FORALL macros for
writing portable kernels that can dispatch execution to
different backends.

These capabilities are illustrated in Figure 16,
where we present results for the BP3 benchmark
(implemented as a slightly modified version of
MFEM’s Example 1) on a single V100 GPU on LLNL’s
Lassen machine. These results show the performance
advantage of libCEED’s CUDA-gen backend (exposed
in MFEM as the ceed-cuda backend) over the cuda

MFEM backend. The main reason for this improvement
is the additional kernel fusion used by CUDA-gen: the
action of the operators GTBTDBG (see Section 6,
and Figure 10) is implemented as one kernel whereas
the cuda backend uses three separate kernels for

15
MFEM-4.0 adds initial GPU support in many linear algebra and finite element operations

Device support in MFEM-4.0

✔ Kernels can be specified via loop-body lambda-capture, or raw CUDA, OCCA; many have single source

✔ Backends are runtime selectable, can be mixed ✔ Recent additions: support for AMD/HIP

GPU

CPU

HardwareBackendsKernelsLibrary

Kernel

Memory

Execu+on

RWR Wlinalg

fem

mesh
OCCA

CUDA

RAJA

OMP

libCEED

HIP

Figure 15. Conceptual diagram of MFEM’s portability abstractions.

103 104 105 106 107

DOFs per MPI task

0.0

0.5

1.0

1.5

2.0

2.5

[D
O

Fs
 x

 C
G

 it
er

at
io

ns
] /

 [M
PI

 ta
sk

s
x

se
co

nd
s]

1e9

p=1
p=2
p=3
p=4
p=5
p=6
p=7

103 104 105 106 107

DOFs per MPI task

0.0

0.5

1.0

1.5

2.0

2.5

[D
O

Fs
 x

 C
G

 it
er

at
io

ns
] /

 [M
PI

 ta
sk

s
x

se
co

nd
s]

1e9

p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8

Figure 16. BP3 performance comparison of MFEM’s
cuda (left) and ceed-cuda (i.e. /gpu/cuda/gen from
libCEED, right) backends on a single V100 GPU (Lassen
machine at LLNL).

GT , BTDB, and G. Another MFEM result using the
ceed-cuda backend to solve BP3 on 1024 V100 GPUs
on Lassen was presented earlier in the right panel of
Figure 6.

8 Application Integration
The ultimate goal of CEED is to extend state-of-
the-art high-order algorithms to DOE ECP mission
applications. This section illustrates the use of CEED-
developed technologies for several ECP applications
including ExaSMR, MARBL, Urban, and ExaWind.
We also demonstrate impact over a range of other
important applications including work sponsored by
DOE’s Nuclear Energy Advanced Modeling and Sim-
ulation program, Vehicle Technologies Office, COVID-
19 research, and SciDAC. Applications in these areas
present significant challenges with respect to scale
resolution, multiphysics, and complex computational
domains. The CEED team has focused on develop-
ing algorithmic and scientific research at scale to
address these issues in collaboration with the appli-
cation teams. The outcomes of the CEED technolo-
gies have been integrated into the open source codes,
Nek5000/CEM/RS, MFEM, libCEED and libParanu-
mal. Their impact in various application problems have

been demonstrated in the CEED milestone reports (Min
et al. 2017; Brown et al. 2017; Tomov et al. 2018; Min
et al. 2019a; Shephard et al. 2019; Tomov et al. 2019;
Kolev et al. 2020) and other project reports (Merzari
et al. 2017; Min et al. 2019b; Ameen et al. 2020). Some
of the results are shown in Figures 17–18.

Small Modular Reactor Analysis: ExaSMR
The goal of the ExaSMR project is to combine
advanced thermal-hydraulics modeling with scalable
neutronics computations to allow reactor-scale model-
ing. For the thermal-hydraulics analysis, the reactor-
core comprises hundreds of thousands of channels
supporting turbulent flow with very fine solution scales.
The channels are typically hundreds of hydraulic
diameters in length. For full reactor-core simulations,
Reynolds-Averaged Navier Stokes (RANS) approach in
the majority of the core with more detailed large eddy
simulations (LES) is required in critical regions. In
addition, while the turbulence is challenging to resolve,
it tends to reach a statistically fully developed state
within just a few channel diameters, whereas thermal
variations take place over the full core size. This poses a
challenge for coupled calculations. It is too expensive to
consider performing full large-eddy simulations (LES).

To accelerate the time-to-solution, CEED developed
fully implicit and steady state solvers for spectral-
element-based thermal transport and RANS. For the
nonlinear Navier-Stokes and RANS transport, the
Jacobian-free Newton Krylov (JFNK) routines from
NekCEM’s drift-diffusion solver (Tsai et al. 2020) have
been imported to Nek5000 and tested on various flow
problems including vortex flow, Dean’s flow, lid-driven
cavity, flow past cylinder and flow around rods (Brown
et al. 2018). This new steady-state solver uses an
inexact (Jacobi-free) formulation based on a first-order
Taylor series expansion and converges to the steady
state solutions with a small number of pseudo-time
steps. Preconditioning the GMRES routine within the
Newton step remains as future work.

While the thermal development time is governed
by the long channel length, the velocity rapidly

Figure 17. ECP applications: (a) ExaSMR: 17× 17 rod-bundle turbulent flow simulation. (b) MARBL: 3D multi-material
ALE simulation that is used as a performance benchmark. (c) Urban: LES modeling for vortex flows around Lake Point
Tower and 20 buildings in Chicago downtown block. (d) ExaWind: GABLS benchmark studies with no-slip and traction
boundary conditions.

reaches a statistically steady state, proportional to
the hydraulic diameter. By freezing the expensive-to-
generate velocity field, one can accelerate equilibration
of the thermal field without having to laboriously
compute tens of thousands of transient turbulent
eddies. We have developed preconditioning strategies
for steady or implicit advection-diffusion and Navier-
Stokes equations using tensor-product-based spectral
element methods. For the advection-diffusion problem,
p-multigrid (PMG) is used directly as a preconditioner
within a Krylov subspace projection (KSP) method
such as GMRES (Tomov et al. 2018; Brubeck and
Fischer 2019; Pazner and Persson 2018). For Navier-
Stokes, PMG is part of a larger preconditioner that
includes restriction of velocity search directions to the
space of divergence-free fields through a projection
technique (Brubeck et al. 2020). These strategies have
been applied for turbulent thermal-stress models for rod
bundle simulations (Martinez et al. 2019).

For the unsteady ExaSMR simulations, the GPU-
based NekRS code has made significant advances
in development. For the 17× 17 rod-bundle in
Figure 17(a), we have demonstrated improved NekRS
simulation capabilities to extend to largest problem size
to date, with 175 million spectral elements (n = 61
billion grid points) using 3520 nodes (21120 V100s) on
Summit as well as strong and weak scaling performance
at large scale in (Tomov et al. 2019; Kolev et al. 2020).
(See Figure 14.)

Compressible Shock Hydrodynamics
MARBL is a next-gen multi-physics simulation
code being developed at LLNL. The code targets
multi-material hydrodynamics and radiation/magnetic
diffusion simulations, with applications in inertial
confined fusion, pulsed power experiments, and
equation of state/material strength analysis. The goal of
this application is to enhance LLNL’s modular physics
simulation capabilities, with increased performance
portability and flexibility. One of the central features of

MARBL is an ALE formulation based on the MFEM-
driven BLAST code (Anderson et al. 2018), which
solves the conservation laws of mass, momentum, and
energy. The BLAST code utilizes high-order finite
element discretizations of several physical processes
on a high-order (curved) moving mesh. The method
consists of (i) a Lagrangian phase, where the multi-
material compressible Euler equations are solved on a
moving mesh (Dobrev et al. 2012, 2016), (ii) a remesh
phase, which improves the mesh quality (Dobrev
et al. 2020), and a field remap phase that performs
a conservative and monotone advection between two
meshes (Anderson et al. 2015).

The first major step towards improved efficiency
in MARBL was the introduction of matrix-free /
partial-assembly based methods. The CEED-developed
Laghos miniapp played a critical role for that,
as it exposed the main computational kernels of
BLAST’s Lagrangian phase, without the additional
overhead of physics-specific code. Laghos introduced
partial assembly versions for many of BLAST’s
specific kernels, which were later directly used by
the application. For its more standard finite element
operations, BLAST utilized MFEM’s tensor-based
routines. These included partially assembled bilinear
forms for mass, diffusion and advection; tensor-
based evaluation of finite element functions and their
gradients; matrix-free diagonal preconditioning; and
other algorithms as well. These methods were used
extensively throughout the application’s Lagrangian
and remap phases. Furthermore, the CEED team
derived a matrix-free version of MFEM’s mesh
optimization miniapp, which could also be used directly
by the remesh phase of the application.

The GPU port of MARBL/BLAST is exclusively
based on the partial assembly technology from CEED
and the GPU support via the MFEM version 4.0 release.
The CEED team developed GPU versions of Laghos
and the MFEM’s mesh optimization miniapps. GPU
kernels from these miniapps, together with general
MFEM finite element operations as the ones mentioned

17

above, could be used directly by the MARBL code.
Application-specific operations, on the other hand, are
implemented in MARBL, making use of the RAJA
kernel abstractions and MFEM memory management,
GPU-friendly data structures, small dense matrix
kernels, use of shared memory, etc.

The current state of MARBL’s GPU capability
provides around 15× speedup on the main benchmark
problem, which is a multi-material ALE simulation
on a 3D unstructured mesh, see Figure 17(b). This
comparison uses 4 CPU nodes (144 cores) of LLNL’s
rzgenie machine versus 4 GPU nodes (16 GPUs)
of LLNL’s rzansel machine. Broken over the ALE
phases, the observed speedups are 16× in the Lagrange
phase, 15× in the remap phase, and 6× in the mesh
optimization phase.

Flow in Urban Environments
The urban challenge problem considers the assessment
of extreme heat events on buildings in dense urban
environments, with up to a few 1000 buildings being
modeled during an event. This challenge problem
involves coupling of WRF (to define initial weather
conditions), Nek5000 (to model heat transfer near
buildings), and EnergyPlus (to model heat emissions
and energy performance). In collaboration with the
ECP-Urban team, CEED team built spectral element
meshes and performed LES simulations of Lake Point
Tower and Chicago downtown block consisting of 20
buildings as shown in Figure 17(c) (Min et al. 2019a;
Shephard et al. 2019). The 20-building mesh comprises
E = 143340 spectral elements and its simulation with
N = 13 is performed using 1024 nodes of ALCF/Mira
(32768 MPI ranks). This effort has also generated
interest from other federal agencies outside of DOE.

Atmospheric Boundary Layer Flows
Efficient simulation of atmospheric boundary layer
flows (ABL) is important for the study of wind farms,
urban canyons, and basic weather modeling. In collab-
oration with the ExaWind team, we identified an atmo-
spheric boundary layer benchmark problem (Church-
field et al. 2000) to serve as a point of comparison
for code and modeling strategies. We have addressed
cross-verification and validation of our LES results and
corresponding wall models. We demonstrated the suit-
ability of high-order methods for a well-documented
stably stratified atmospheric boundary layer benchmark
problem, the Global Energy and Water Cycle Exper-
iment (GEWEX) Atmospheric Boundary Layer Study
(GABLS) as shown in Figure 17(d). This collaboration
will be extended to perform scaling studies to compare
the performance of several ABL codes on CPU and
GPU platforms.

As another component of the ExaWind collaboration
we performed RANS simulations to compute the drag
and lift forces of wind-turbine and NACA0012 airfoil

structures at Reynolds numbers up to Re=10 million
(Min et al. 2019a; Tomov et al. 2019). We investigated
several models for the boundary layer treatment in
the Nek5000 RANS solver including a wall-resolved
regularized approach where we have to use adequate
resolution inside the very thin log and viscous sub-
layers (Tomboulides et al. 2018) and a stability-
enhanced wall-resolved k-ω and k-τ models where we
do not need such high resolution.

Pebble-Bed Reactors
Flow through beds of randomly-packed spheres is
encountered in many science and engineering applica-
tions. The meshing challenge is to have a high quality
all-hex mesh with relatively few elements per sphere.
Working with the DOE NEAMS project, the CEED
team has developed novel scalable meshing strategies
for generating high-quality hexahedral element meshes
that ensure accurate representation of densely packed
spheres for complex pebble-bed reactor geometries.
Our target is to capture highly turbulent flow structures
in the solution at minimal cost by using relatively few
elements (≈300 per sphere) of high order (p = 7).
Algorithmic strategies including efficient edge collapse,
tessellation, smoothing, and projection, are presented in
(Kolev et al. 2020) along with quality measurements,
flow simulations, validation, and performance results
for pebble bed geometries ranging from hundreds to
thousands of pebbles. Figure 17(a) shows a case of
3344 pebbles in an annular domain using 1.1M spectral
elements.

Internal Combustion
Turbulence in IC engines presents a challenge for
computational fluid dynamics due primarily to the
broad range of length and time scales that need to be
resolved. Specifically, simulations need to predict the
evolution of a variety of flow structures in the vicinity
of complex domains that are moving. Executing these
simulations accurately and in a reasonable amount of
time can ultimately lead to engine design concepts with
improved efficiency.

The CEED team has been working with researchers
at ETH Zurich (Giannakopoulos et al. 2019) and
ANL’s Energy Systems Division (under support from
DOE’s Vehicle Technologies Office) on detailed studies
of turbulence in the IC engine cycle. We developed
a characteristic-based spectral element method for
moving-domain problems (Patel et al. 2019), and
demonstrated it for the TCC III engine model illustrated
in Figure 18(b). We also added a significantly enhanced
capability for handling complex moving geometries by
adding scalable support for overset grids, referred to
as NekNek, based on generalized Schwarz overlapping
methods (Mittal et al. 2019). The NekNek multimesh
coupling is based entirely on the kernels in Nek’s gslib
communication library, which has scaled to millions of

Figure 18. Other applications: (a) DOE NEAMS: Turbulent flows around 3344 pebbles with an all-hex mesh. (b) DOE
VTO: Exhaust stroke TCC engine modeling. (c) COVID19: LES Lagrangian particle tracking simulation for 500,000
aerosols. (d) SciDAC RF: EM analysis of the vacuum region from a RF antenna.

MPI ranks. A newly developed preconditioner based
on the SEM/FEM spectral equivalence was shown to
be effective for solving the pressure-Poisson systems
in these configurations (Bello-Maldonado and Fischer
2019).

Aerosol Transport Modeling
Related to the current COVID-19 pandemic, the
Nek5000 team, in collaboration with NVIDIA and
Utah State is researching aerosol transport analysis.
High-resolution LES coupled with Lagrangian particle
tracking is used for predicting the dynamics of virus-
laden aerosols in indoor classroom environments (Dutta
et al. 2020). Figure 18(c) demonstrates a recent
simulation, using 70 million grid points and 500,000
five-micron aerosols with a future target of 1 billion
polydisperse aerosols in a full classroom size.

This application uses efficient algorithms for point
containment and general interpolation in physical
space, findpts and findeval, which are available
on CPU platforms in CEED’s Nek5000 and MFEM
codes. Detailed discussion of these methods and their
porting to exascale machines is beyond the scope of this
paper. Future developments may include synchronous
utilization of the CPU or particle tracking on the device.

Magnetic Fusion
Accurate radio-frequency (RF) heating simulations of
fusion systems like the ITER tokamak require the
definition of analysis domains that include detailed
antenna, reactor wall and physics region geometric
representations. As is the case with other wave equation
simulations, the application of high-order methods,
with their higher rates of convergence and high flop rate
to memory access, is critical for the accurate simulation
of these classes of problems. The software components
being integrated to address this simulation workflow
as part of the DOE SciDAC Center for Integrated
Simulation of Fusion Relevant RF Actuators (Bonoli
2020) must support higher order geometry and high
order analysis methods.

These components include complete curved domain
definitions based on CAD system produced models
of RF antenna geometries and geometry construction
tools for the analysis domain that support defeaturing
the antenna CAD models as desired, and combining
the CAD geometry with the reactor wall geometry
and any other “physics”. Historically, ad-hoc methods
are employed to execute this time consuming step.
Recent efforts have focused on providing a graphical
construction tool for tokamak systems building on
general geometry manipulation capabilities (Simmetrix
2020). The user interface to the PetraM (Physics
EquationTranslator for MFEM) component (Shiraiwa
et al. 2017) supports the association of the RF
simulation material properties, loads and boundary
conditions (essential and natural) to the analysis
domain geometry. With these in place, fully automatic
mesh generation of an initial curved tetrahedral mesh
using either Gmsh (Geuzaine and Remacle 2013) or
MeshSim (Simmetrix 2020) is performed. If the curved
meshes are not of sufficiently high order for the basis
functions to be used, a tool has been developed to
increase the order of approximation of mesh edges
and faces on curved domain boundaries up to order
six. We then execute a high-order MFEM simulation
supplemented with PetraM routines to control needed
field information to perform the RF analysis. This is
followed by error estimation and mesh adaptation using
the conforming curved mesh adaptation procedure in
PUMI/MeshAdapt and return to the analysis step until
acceptable solution accuracy is obtained.

Figure 18(d) shows an example of the application of
the basic steps in the workflow of a tokamak geometry
with RF antenna geometry inserted. The result shown
is for a low order mesh. Recent results up to order five
are showing a clear advantage to use of higher order
elements.

9 Conclusion

In this paper we reviewed the co-design activities in
the Center for Efficient Exascale Discretizations of the

19

Exascale Computing Project, focused on the computa-
tional motif of PDE discretizations on general unstruc-
tured grids, with emphasis on high-order methods. We
described our co-design approach together with the
mathematical and algorithmic foundations for high-
order finite element discretizations. We also reviewed
other topics that are necessary for a complete high-
order ecosystem, such as matrix-free linear solvers and
high-order mesh adaptivity, which are still active areas
of research. A number of freely available software
products are being actively developed and supported by
the center, including benchmarks, miniapps and high-
and low-level library APIs. The CEED team is very
much interested in collaborations and feedback, please
visit our website ceed.exascaleproject.org
to get in touch.

Acknowledgments
This research is supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of two
U.S. Department of Energy organizations (Office of
Science and the National Nuclear Security Adminis-
tration) responsible for the planning and preparation
of a capable exascale ecosystem, including software,
applications, hardware, advanced system engineering
and early testbed platforms, in support of the nation’s
exascale computing imperative.

The research used resources of the Argonne
Leadership Computing Facility, which is supported by
the U.S. Department of Energy, Office of Science,
under Contract DE-AC02-06CH11357. This research
also used resources of the Oak Ridge Leadership
Computing Facility at Oak Ridge National Laboratory,
which is supported by the Office of Science of the
U.S. Department of Energy under Contract DE-AC05-
00OR22725. Work performed under the auspices of the
U.S. Department of Energy under Contract DE-AC52-
07NA27344 (LLNL-JRNL-814059).

Funding
This material is based upon work supported by
the U.S. Department of Energy, Office of Science,
under Contracts DE-AC02-06CH11357, DE-AC05-
00OR22725 and DE-AC52-07NA27344.

References

Abdelfattah A, Baboulin M, Dobrev V, Dongarra JJ, Earl
CW, Falcou J, Haidar A, Karlin I, Kolev TV, Masliah
I and Tomov S (2016a) High-Performance Tensor
Contractions for GPUs. In: International Conference on
Computational Science 2016, ICCS 2016, 6-8 June 2016,
San Diego, California, USA. pp. 108–118. DOI:10.1016/
j.procs.2016.05.302. URL https://doi.org/10.

1016/j.procs.2016.05.302.
Abdelfattah A, Barra V, Beams N, Brown J, Camier

JS, Dobrev V, Dudouit Y, Ghaffari L, Kolev T,

Medina D, Rathnayake T, Thompson JL and Tomov S
(2020) libCEED User Manual. DOI:10.5281/zenodo.
4302737. URL https://doi.org/10.5281/

zenodo.4302737.
Abdelfattah A, Haidar A, Tomov S and Dongarra JJ

(2016b) Performance, design, and autotuning of batched
GEMM for GPUs. In: High Performance Com-
puting - 31st International Conference, ISC High
Performance 2016, Frankfurt, Germany, June 19-
23, 2016, Proceedings. pp. 21–38. DOI:10.1007/
978-3-319-41321-1 2. URL https://doi.org/

10.1007/978-3-319-41321-1_2.
Ameen M, Patel S, Colmenares J and Chatterjee T (2020)

Direct Numerical Simulation (DNS) and High-Fidelity
Large-Eddy Simulations for Improved Prediction of In-
Cylinder Flow and Combustion Processes. Technical
report, DOE Vehicle Technologies Office Annual Merit
Review.

Anderson R, Andrej J, Barker A, Bramwell J, Camier JS,
Dobrev JCV, Dudouit Y, Fisher A, Kolev T, Pazner W,
Stowell M, Tomov V, Akkerman I, Dahm J, Medina D
and Zampini S (2020) MFEM: A modular finite element
library. Computers & Mathematics with Applications
DOI:10.1016/j.camwa.2020.06.009.

Anderson RW, Dobrev VA, Kolev TV, Kuzmin D, de Luna
MQ, Rieben RN and Tomov VZ (2017) High-order local
maximum principle preserving (MPP) discontinuous
Galerkin finite element method for the transport equation.
J. Comput. Phys. 334: 102–124.

Anderson RW, Dobrev VA, Kolev TV and Rieben RN (2015)
Monotonicity in high-order curvilinear finite element
arbitrary Lagrangian–Eulerian remap. Internat. J. Numer.
Methods Engrg. 77(5): 249–273.

Anderson RW, Dobrev VA, Kolev TV, Rieben RN and
Tomov VZ (2018) High-order multi-material ALE
hydrodynamics. SIAM J. Sci. Comp. 40(1): B32–B58.

Antonietti PF, Sarti M, Verani M and Zikatanov LT (2016)
A uniform additive Schwarz preconditioner for high-
order discontinuous Galerkin approximations of elliptic
problems. Journal of Scientific Computing 70(2): 608–
630. DOI:10.1007/s10915-016-0259-9.

Balay S, Abhyankar S, Adams MF, Brown J, Brune P,
Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp
WD, Karpeyev D, Kaushik D, Knepley MG, May DA,
McInnes LC, Mills RT, Munson T, Rupp K, Sanan
P, Smith BF, Zampini S, Zhang H and Zhang H
(2019) PETSc Web page. https://www.mcs.anl.
gov/petsc. URL https://www.mcs.anl.gov/

petsc.
Barra V, Brown J, Thompson J and Dudouit Y (2020)

High-performance operator evaluations with ease of
use: libCEED’s Python interface. In: Meghann
Agarwal, Chris Calloway, Dillon Niederhut and David
Shupe (eds.) Proceedings of the 19th Python in
Science Conference. pp. 85–90. DOI:10.25080/
Majora-342d178e-00c. URL https://doi.org/

10.25080/Majora-342d178e-00c.

ceed.exascaleproject.org
https://doi.org/10.1016/j.procs.2016.05.302
https://doi.org/10.1016/j.procs.2016.05.302
https://doi.org/10.5281/zenodo.4302737
https://doi.org/10.5281/zenodo.4302737
https://doi.org/10.1007/978-3-319-41321-1_2
https://doi.org/10.1007/978-3-319-41321-1_2
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://doi.org/10.25080/Majora-342d178e-00c
https://doi.org/10.25080/Majora-342d178e-00c

Beckingsale DA, Burmark J, Hornung R, Jones H, Killian
W, Kunen AJ, Pearce O, Robinson P, Ryujin BS
and Scogland TR (2019) RAJA: Portable performance
for large-scale scientific applications. In: IEEE/ACM
International Workshop on Performance, Portability and
Productivity in HPC (P3HPC).

Bello-Maldonado PD and Fischer PF (2019) Scalable low-
order finite element preconditioners for high-order
spectral element Poisson solvers. SIAM Journal on
Scientific Computing 41(5): S2–S18. DOI:10.1137/
18M1194997.

Bonoli P (2020) Center for integrated simulation of fusion
relevant RF actuators. https://www.rfscidac4.

org/home.
Brown C, Abdelfattah A, Tomov S and Dongarra J (2020a)

Design, optimization, and benchmarking of dense linear
algebra algorithms on AMD GPUs. Technical Report
ICL-UT-20-12, University of Tennessee.

Brown C, Abdelfattah A, Tomov S and Dongarra J
(2020b) hipMAGMA v2.0.0. DOI:10.5281/zenodo.
3928667. URL https://doi.org/10.5281/

zenodo.3928667.
Brown J, Dobrev V, Dutta S, Fischer P, Kazem K, Kolev T,

Medina D, Min M, Ratnayaka T, Shephard M, Cameron
S and Thompson J (2018) Propose high-order mesh/data
format. Technical Report CEED-MS18, Exascale
Computing Project. DOI:10.5281/zenodo.2542346.

Brown J, Dobrev V, Fischer P, Kolev T, Medina D, Merzari
E, Obabko A, Parker S, Rahaman R, Tomov S, Tomov
V and Warburton T (2017) Initial Integration of CEED
Software in ECP/CEED Applications. Technical Report
CEED-MS8, Exascale Computing Project. DOI:10.5281/
zenodo.2542338.

Brown J, He Y and MacLachlan S (2019) Local Fourier
analysis of BDDC-like algorithms. SIAM Journal on
Scientific Computing 41: S346–S369. DOI:10.1137/
18M1191373.

Brubeck P and Fischer P (2019) Fast diagonalization
preconditioning for nonsymmetric spectral element
problems. ANL/MCS-P9200-0719 .

Brubeck P, Kaneko K, Lan Y, Lu L, Fischer P and Min M
(2020) Schwarz preconditioned spectral element methods
for steady flow and heat transfer. ANL/MCS-P9199-0719
.

Canuto C (1994) Stabilization of spectral methods by finite
element bubble functions. Computer Methods in Applied
Mechanics and Engineering 116(1-4): 13–26. DOI:
10.1016/s0045-7825(94)80004-9.

Canuto C, Hussaini MY, Quarteroni A and Zang TA
(2006) Spectral methods: fundamentals in single
domains. Springer Berlin Heidelberg. DOI:
10.1007/978-3-540-30726-6.

Cerveny J, Dobrev V and Kolev T (2019) Non-conforming
mesh refinement for high-order finite elements. SIAM
Journal on Scientific Computing 41(4): C367–C392.

Chalmers N, Karakus A, Austin AP, Swirydowicz K and War-
burton T (2020) libParanumal: a performance portable

high-order finite element library [Software]. DOI:
10.5281/zenodo.4004744. URL https://github.

com/paranumal/libparanumal. Release 0.3.1.
Chalmers N and Warburton T (2018) Low-order precondi-

tioning of high-order triangular finite elements. SIAM
Journal on Scientific Computing 40(6): A4040–A4059.
DOI:10.1137/17m1149444.

Churchfield M, Lee S and Moriatry P (2000) Adding complex
terrain and stable atmospheric condition capability to
the OpenFOAM-based flow solver of the simulator for
on/offshore wind farm application (SOWFA). Technical
Report NREL/CP-5000-58539, NREL.

Deville M, Fischer P and Mund E (2002) High-order methods
for incompressible fluid flow. Cambridge University
Press.

Dobrev V, Knupp P, Kolev T, Mittal K and Tomov V (2019)
The Target-Matrix Optimization Paradigm for high-order
meshes. SIAM Journal on Scientific Computing 41(1):
B50–B68.

Dobrev VA, Knupp P, Kolev TV, Mittal K, Rieben RN
and Tomov VZ (2020) Simulation-driven optimization
of high-order meshes in ALE hydrodynamics. Comput.
Fluids .

Dobrev VA, Kolev TV and Rieben RN (2012) High-
order curvilinear finite element methods for Lagrangian
hydrodynamics. SIAM J. Sci. Comp. 34(5): B606–B641.

Dobrev VA, Kolev TV, Rieben RN and Tomov VZ
(2016) Multi-material closure model for high-order finite
element Lagrangian hydrodynamics. Internat. J. Numer.
Methods Engrg. 82(10): 689–706.

Dobrev VA, Lazarov RD, Vassilevski PS and Zikatanov
LT (2006) Two-level preconditioning of discontinuous
Galerkin approximations of second-order elliptic equa-
tions. Numerical Linear Algebra with Applications 13(9):
753–770. DOI:10.1002/nla.504.

Dohrmann C (2003) A preconditioner for substructuring
based on constrained energy minimization. SIAM Journal
on Scientific Computing 25: 246.

Dongarra J, Duff I, Gates M, Haidar A, Hammarling S,
Higham NJ, Hogg J, Valero-Lara P, Relton SD, Tomov S
and Zounon M (2016) A proposed API for Batched Basic
Linear Algebra Subprograms. MIMS EPrint 2016.25,
Manchester Institute for Mathematical Sciences, The
University of Manchester. URL http://eprints.

ma.man.ac.uk/2464/.
Dongarra J, Duff I, Gates M, Haidar A, n Hammarling S,

Higham NJ, Hogg J, and Piotr Luszczek PVL, Zounon
M, Relton SD, and Timothy Costa ST and Knepper S
(2018) Batched blas (basic linear algebra subprograms)
2018 specification .

Dutta S, Fischer P and et al (2020) On turbulence and particle
transport in closed rooms. American Physical Society,
Division of Fluid Dynamics Submitted.

Farin G (2014) Curves and surfaces for computer-aided
geometric design: a practical guide. Elsevier.

https://www.rfscidac4.org/home
https://www.rfscidac4.org/home
https://doi.org/10.5281/zenodo.3928667
https://doi.org/10.5281/zenodo.3928667
https://github.com/paranumal/libparanumal
https://github.com/paranumal/libparanumal
http://eprints.ma.man.ac.uk/2464/
http://eprints.ma.man.ac.uk/2464/

21

Feuillet R, Loseille A, Marcum D and Alauzet F (2018)
Connectivity-change moving mesh methods for high-
order meshes: Toward closed advancing-layer high-
order boundary layer mesh generation. In: 2018 Fluid
Dynamics Conference. p. 4167.

Fischer P, Heisey K and Min M (2015) Scaling limits
for PDE-based simulation (invited). In: 22nd AIAA
Computational Fluid Dynamics Conference, AIAA
Aviation. AIAA 2015-3049.

Fischer P, Min M, Rathnayake T, Dutta S, Kolev T, Dobrev V,
Camier JS, Kronbichler M, Warburton T, Swirydowicz K
and Brown J (2020) Scalability of high-performance PDE
solvers. The International Journal of High Performance
Computing Applications 34(5): 562–586. DOI:10.1177/
1094342020915762. URL https://doi.org/10.

1177/1094342020915762.
FMS (2020) FMS: High-order field and mesh specification

[Software]. https://github.com/CEED/FMS.
Geuzaine C and Remacle JF (2013) Gmsh: A three-

dimensional finite element mesh generator with built-in
pre- and post-processing facilities [Software]. http:

//gmsh.info/.
Giannakopoulos G, Frouzakis C, Fischer P, Tomboulides

A and Boulouchos K (2019) LES of the gas-exchange
process inside an internal combustion engine using a
high-order method. Flow, Turbulence and Combustion
.

GLVis (2020) GLVis: OpenGL finite element visualization
tool [Software]. https://glvis.org. DOI:10.
11578/dc.20171025.1249.

Hajduk H, Kuzmin D, Kolev TV and Abgrall R (2020a)
Matrix-free subcell residual distribution for Bernstein
finite element discretizations of linear advection equa-
tions. Comput. Methods Appl. Mech. Eng. .

Hajduk H, Kuzmin D, Kolev TV, Tomov VZ, Tomas I
and Shadid JN (2020b) Matrix-free subcell residual
distribution for Bernstein finite elements: Monolithic
limiting. Comput. Fluids .

Ibanez D (2016a) Omega h GitHub repository [Software].
https://github.com/ibaned/omega_h.

Ibanez D, Seol E, Smith C and Shephard M (2016)
Pumi: Parallel unstructured mesh infrastructure. ACM
Transactions on Mathematical Software (TOMS) 42(3):
17.

Ibanez DA (2016b) Conformal mesh adaptation on heteroge-
neous supercomputers. Rensselaer Polytechnic Institute,
Troy, NY.

Karakus A, Chalmers N, Hesthaven JS and Warburton
T (2019a) Discontinuous galerkin discretizations of
the boltzmann–bgk equations for nearly incompressible
flows: Semi-analytic time stepping and absorbing
boundary layers. Journal of Computational Physics 390:
175–202.

Karakus A, Chalmers N, Swirydowicz K and Warburton
T (2019b) A gpu accelerated discontinuous galerkin
incompressible flow solver. Journal of Computational
Physics 390: 380–404.

Knoll D and Keyes D (2004) Jacobian-free Newton-Krylov
methods: a survey of approaches and applications. J.
Comp. Phys. 193: 357–397.

Kolev T, Fischer P, Abdelfattah A, Ananthan S, Barra
V, Beams N, Bleile R, Brown J, Carson R, Camier
JS, Churchfield M, Dobrev V, Dongarra J, Dudouit Y,
Karakus A, Kerkemeier S, Lan Y, Medina D, Merzari
E, Min M, Parker S, Ratnayaka T, Smith C, Sprague
M, Stitt T, Thompson J, Tomboulides A, Tomov S,
Tomov V, Vargas A, Warburton T and Weiss K (2020)
Improve performance and capabilities of CEED-enabled
ECP applications on Summit/Sierra. Technical Report
CEED-MS34, Exascale Computing Project. DOI:10.
5281/zenodo.3860804.

Kolev TV and Vassilevski PS (2009) Parallel auxiliary space
AMG for h(curl) problems. Journal of Computational
Mathematics 27(5): 604–623. DOI:10.4208/jcm.2009.
27.5.013.

Kronbichler M and Ljungkvist K (2019) Multigrid for matrix-
free high-order finite element computations on graphics
processors. ACM Transactions on Parallel Computing
6(1): 1–32. DOI:10.1145/3322813.

Laghos (2020) Laghos: High-order Lagrangian hydrodynam-
ics miniapp [Software]. https://github.com/

ceed/Laghos.
Lottes JW and Fischer PF (2005) Hybrid multigrid/Schwarz

algorithms for the spectral element method. Journal
of Scientific Computing 24(1): 45–78. DOI:10.1007/
s10915-004-4787-3.

Lu Q, Shephard MS, Tendulkar S and Beall MW (2014)
Parallel mesh adaptation for high-order finite element
methods with curved element geometry. Engineering
with Computers 30(2): 271–286.

Luo XJ, Shephard MS, O’bara RM, Nastasia R and Beall MW
(2004) Automatic p-version mesh generation for curved
domains. Eng. with Computers 20(3): 273–285. DOI:
10.1007/s00366-004-0295-1.

MAGMA (2020) MAGMA: Matrix algebra on gpu and
multicore architectures [Software]. https://icl.

utk.edu/magma.
Martinez J, Lan YH, Merzari E and Min M (2019) On the

use of LES-based turbulent thermal-stress models for rod
bundle simulations. International Journal of Heat and
Mass Transfer 142: 118399.

Masliah I, Abdelfattah A, Haidar A, Tomov S, Baboulin
M, Falcou J and Dongarra JJ (2016) High-Performance
Matrix-Matrix Multiplications of Very Small Matri-
ces. In: Euro-Par 2016: Parallel Processing -
22nd International Conference on Parallel and Dis-
tributed Computing, Grenoble, France, August 24-
26, 2016, Proceedings. pp. 659–671. DOI:10.1007/
978-3-319-43659-3\ 48. URL https://doi.org/

10.1007/978-3-319-43659-3_48.
Medina DS, St-Cyr A and Warburton T (2014) OCCA: A

unified approach to multi-threading languages. arXiv
preprint arXiv:1403.0968 .

https://doi.org/10.1177/1094342020915762
https://doi.org/10.1177/1094342020915762
https://github.com/CEED/FMS
http://gmsh.info/
http://gmsh.info/
https://glvis.org
https://github.com/ibaned/omega_h
https://github.com/ceed/Laghos
https://github.com/ceed/Laghos
https://icl.utk.edu/magma
https://icl.utk.edu/magma
https://doi.org/10.1007/978-3-319-43659-3_48
https://doi.org/10.1007/978-3-319-43659-3_48

Merzari E, Rahaman R, Patel S and Min M (2017) Cfd
smr assembly performance baselines with nek5000.
Technical Report ECP-SE-08-47, DOE ECP ExaSMR
Milestone Report.

MFEM (2020) MFEM: Modular finite element methods
[Software]. https://mfem.org. DOI:10.11578/dc.
20171025.1248.

Min M, Camier JS, Fischer P, Karakus A, Kerkemeier S,
Kolev T, Lan Y, Medina D, Merzari E, Obabko A,
Ratnayaka T, Dillon S, Tomboulides A, Tomov V and
Warburton T (2019a) Engage second wave ECP/CEED
applications. Technical Report CEED-MS23, Exascale
Computing Project. DOI:10.5281/zenodo.2542359.

Min M, Fischer P, Tomov V, Rieben R and Kolev T (2017)
Engage First wave ECP/CEED Applications. Technical
Report CEED-MS1, Exascale Computing Project. DOI:
10.5281/zenodo.2542292.

Min M, Tomboulides A, Fischer P, Merzari E, Shaver
D, Martinez J, Yuan H and Lan Y (2019b) Nek5000
enhancements for faster running analysis. Technical
Report ANL.MCS-TM-384, ANL NEAMS Report.

Mittal K, Dutta S and Fischer P (2019) Nonconforming
Schwarz-spectral element methods for incompressible
flow. Computers and Fluids 191.

Nek5000 (2020) Nek: Open source, highly scalable and
portable spectral element code [Software]. https:

//nek5000.mcs.anl.gov.
OCCA (2020) OCCA: Lightweight performance portability

library [Software]. https://libocca.org/.
Orszag S (1980) Spectral methods for problems in complex

geometry. J. Comput. Phys. 37: 70–92.
Otten M, Gong J, Mametjanov A, Vose A, Levesque J, Fischer

P and Min M (2016) An MPI/OpenACC implementation
of a high order electromagnetics solver with GPUDirect
communication. Int. J. High Perf. Comput. Appl. .

Patel S, Fischer P, Min M and Tomboulides A (2019)
A characteristic-based, spectral element method for
moving-domain problems. J. Sci. Comp. 79: 564–592.

Patera A (1984) A spectral element method for fluid dynamics
: laminar flow in a channel expansion. J. Comp. Phys. 54:
468–488.

Pavarino L, Widlund O and Zampini S (2010) BDDC
preconditioners for spectral element discretizations of
almost incompressible elasticity in three dimensions.
SIAM Journal on Scientific Computing 32: 3604.

Pazner W (2020) Efficient low-order refined preconditioners
for high-order matrix-free continuous and discontinuous
Galerkin methods. SIAM Journal on Scientific
Computing (In Press) .

Pazner W and Persson PO (2018) Approximate tensor-
product preconditioners for very high order discontinu-
ous Galerkin methods. Journal of Computational Physics
354: 344–369. DOI:10.1016/j.jcp.2017.10.030.

Raffenetti K and et al (2017) Why is MPI so slow? In:
Proceedings of Supercomputing’17 (CD-ROM). ACM
SIGARCH and IEEE.

RAJA (2020) RAJA performance portability layer [Software].
https://github.com/LLNL/RAJA.

Remhos (2020) Remhos: High-order remap miniapp [Soft-
ware]. https://github.com/ceed/Remhos.

Shephard M, Barra V, Brown J, Camier JS, Dudouit Y, Fischer
P, Kolev T, Medina D, Min M, Smith C, Siboni MH,
Thompson J and Warburton T (2019) Improved Support
for Parallel Adaptive Simulation in CEED. Technical
Report CEED-MS29, Exascale Computing Project. DOI:
10.5281/zenodo.3336420.

Shiraiwa S, Wright J, Bonoli P, Kolev T and Stowell M (2017)
Rf wave simulation for cold edge plasmas using the mfem
library. In: EPJ Web of Conferences, volume 157. EDP
Sciences, p. 03048.

Simmetrix (2020) Simmetrix: Enabling simulation-based
design. http://www.simmetrix.com/.

Sundar H, Stadler G and Biros G (2015) Comparison of
multigrid algorithms for high-order continuous finite
element discretizations. Numerical Linear Algebra with
Applications 22(4): 664–680. DOI:10.1002/nla.1979.

Swirydowicz K, Chalmers N, Karakus A and Warburton
T (2019) Acceleration of tensor-product operations for
high-order finite element methods. The International
Journal of High Performance Computing Applications
33(4): 735–757.

Tomboulides A, Aithal M, Fischer P, Merzari E, Obabko A
and Shaver D (2018) A novel numerical treatment of the
near-wall regions in the k-ω class of the rans models.
International Journal of Heat and Fluid Flow 72: 186–
199.

Tomov S, Abdelfattah A, Barra V, Beams N, Brown J,
Camier JS, Dobrev V, Dongarra J, Dudouit Y, Fischer P,
Karakus A, Kerkemeier S, Kolev T, Lan Y, Merzari E,
Min M, Obabko A, Parker S, Ratnayaka T, Thompson
J, Tomboulides A, Tomov V and Warburton T (2019)
Performance tuning of CEED software and 1st and 2nd
wave apps. Technical Report CEED-MS32, Exascale
Computing Project. DOI:10.5281/zenodo.3477618.

Tomov S, Bello-Maldonado P, Brown J, Camier JS,
Dobrev V, Dongarra J, Fischer P, Haidar A, Kolev T,
Merzari E, Min M, Obabko A, Parker S, Ratnayaka T,
Thompson J, Abdelfattah A, Tomov V and Warburton T
(2018) Performance tuning of CEED software and first
wave apps. Technical Report CEED-MS20, Exascale
Computing Project. DOI:10.5281/zenodo.2542350.

Tsai PH, Lan YH, Fisher P and Min M (2020) Drift-Diffusion
Solvers Part II: Steady Problems. ANL/MCS-P9295-0420
.

VisIt (2020) VisIt: A distributed, parallel visualization and
analysis tool [Software]. https://visit.llnl.

gov. DOI:10.11578/dc.20171025.on.1019.
Zampini S (2016) PCBDDC: a class of robust dual-primal

methods in PETSc. SIAM Journal on Scientific
Computing 38(5): S282–S306.

https://mfem.org
https://nek5000.mcs.anl.gov
https://nek5000.mcs.anl.gov
https://libocca.org/
https://github.com/LLNL/RAJA
https://github.com/ceed/Remhos
http://www.simmetrix.com/
https://visit.llnl.gov
https://visit.llnl.gov

	1 Introduction
	2 Co-Design
	3 High-Order Software Ecosystem
	4 Benchmarks
	5 Miniapps
	6 libCEED
	7 Nek and MFEM
	8 Application Integration
	9 Conclusion

