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Dynamic Polyethism and Competition for Tasks in 

Threshold Reinforcement Models of Social Insects

Daniel Merkle, Martin Middendorf
Parallel Computing and Complex Systems Group,  Department of Computer Science, University 
of Leipzig

In this paper we study the dynamics of task division in threshold reinforcement models of social insect
societies. Our work extends other models in order to include several factors that influence the behav-

ior of real insect colonies. Main extensions of our model are variable demands for work, age-depend-

ent thresholds and finite life span of the individuals. It is shown how these factors influence the degree
of task specialization of the individuals in a colony. Moreover, we show that the introduction of a

threshold-dependent competition process between the individuals during task selection leads to the

occurrence of specialists and differentiation between individuals as an emergent phenomenon that
depends on the colony size. This result can help to explain the proximate mechanisms that lead to

specialization in large insect colonies. Our results have implications for the fields of multi-agent sys-

tems, robotics, and nature inspired scheduling where threshold response models are used for control
and regulation tasks.
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1 Introduction

Division of labor and specialization of individuals to
different tasks are complex phenomena that occur in
many social insect societies. Possible benefits of task
division and specialization for insect colonies and the
ultimate reason why specialization occurs predomi-
nantly in larger colonies have been studied extensively
by biologists (e.g., Jeanne & Nordheim 1996; Karsai
& Wenzel, 1998; Seely, 1982). However, not so well
understood are the proximate mechanisms that lead to
colony size-dependent specialization.

Threshold models have been used successfully to
explain and study different phenomena of social behav-

ior (e.g., Bonabeau, Théraulaz, Schatz, & Deneubourg,
1998b; Robinson, 1992). Division of labor can be
explained with stimulus–response threshold models
where each individual has an internal threshold for
every task (e.g., see Bonabeau, Théraulaz, & Deneu-
bourg, 1996, 1998a). If an individual encounters a task
with a stimulus that is higher than the threshold of the
individual it starts working on the task with high prob-
ability. Recently, threshold reinforcement models have
been proposed which allow to model learning and for-
getting effects (see the interesting paper of Gautrais,
Théraulaz, Deneubourg, & Anderson, 2002) for an
overview). Learning/forgetting is modeled by decreas-
ing/increasing threshold values.
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In this paper we use threshold reinforcement mod-
els of social insect societies to study the dynamics of
labor division. We first re-examine the model that was
introduced in Gautrais et al. (2002) and give a different
explanation why specialization occurs in this model.
Then we extend the model to include some aspects
that are important for the behavior of real insect colo-
nies. In particular, we study the effects of differing
demands for work, the introduction of a finite life span
for the individuals, and the influence of age-dependent
maximal threshold values. Finally, we introduce com-
petition for work between the individuals. This is
done through a threshold-dependent selection process
between the individuals during task selection. It is
shown that this can lead to the occurrence of special-
ists as an emergent phenomenon that depends on the
colony size. For finite time or finite age models this
leads also to colony size-dependent differentiation
between the individuals with respect to their degree of
specialization.

Since the emergence of colony size specialization
in insect colonies is not well understood it is an inter-
esting research problem to find out where in social
insect societies a competition for work mechanism
occurs in connection with a learning/forgetting behav-
ior and whether this leads as predicted by the model to
the emergence of colony size-dependent specialization
and differentiation. Other interesting applications of
our results are expected in the areas of multi-agent sys-
tems, robotics, and nature-inspired scheduling. In these
areas threshold models are used to implement cooper-
ation and tasks specialization between agents or robots.
For instance, Agassounon and Martinoli (2002) use
fixed and variable response threshold models for the
worker allocation of robots to work for a puck cluster-
ing problem. Krieger and Billeter (2000) use a response
threshold model for a group of robots where the task of
the robots is to search and collect food items in a for-
aging area and bring them back to their nest. The robots
have different personal activation thresholds for differ-
ent subtasks. An example for the use of threshold mod-
els for scheduling is the work of Cicirello and Smith
(2004). Each machine has a wasp-like agent that is in
charge of choosing which jobs to bid for possible
assignment to the associated queue of waiting tasks for
that machine. A threshold model for real wasps behav-
ior by Théraulaz, Goss, Gervet, & Deneubourg (1991)
is the foundation for the distributed task allocation
scheme that is used by the agents.

In the next section we describe the threshold rein-
forcement model. The re-examination of colony size-
dependent specialization is presented in Section 3.
Section 4 discusses the influence of finite life span
and maximal thresholds. Age-dependent thresholds are
introduced in Section 5. In Section 6 we discuss the
influence of competition to colony size-dependent spe-
cialization and differentiation. Conclusions are given
in Section 7.

2 The Threshold Reinforcement Model

In this section we describe the threshold reinforce-
ment model that has been introduced in Gautrais et al.
(2002). It is assumed that there are N individuals and
m tasks T1, …, Tm. Each task Tj has an associated
stimulus value Sj 0. Each individual i has an associ-
ated threshold value Θi,j for each task Tj such that
0 Θi,j Θ  for a given maximal value Θ 0.

In each time step an individual is idle or actively
engaged in exactly one task for which it will do α
units of work during the time step for a given α > 0.
An active individual becomes idle with given proba-
bility p 0. When it becomes idle it is idle for at least
one time step. An individual i that was idle starts to
work on task Tj with probability (1/m)(S /(S + Θ )).
Observe that the maximal amount of work that the
colony can perform in one time step on average per
task is Wmax = (N/m) · (α/(1 + p)).

In each time step the threshold values are changed
for each task Tj and each individual i according to the
following rules: (i) if i is engaged in Tj then Θi,j =
max{Θi,j – ξ,0}, (ii) otherwise, Θi,j = min{Θi,j + φ,Θ }.
ξ is called learning parameter and φ is the forgetting
parameter.

In each time step the stimulus values are changed
for each task Tj according to Sj = Sj + σj – Ej · α where
σj = D · Wmax, 0 < D 1 is the demand parameter, and
Ej denotes the number of individuals that are currently
engaged in task Tj. Note that parameter D allows to
model situations with different demands for work:
e.g., for D = 1 the colony must work at full capacity in
order to hold the stimulus values at the same level.

In order to study the specialization of an individ-
ual the following measure was introduced by Gautrais
et al. (2002) for a system with 2 tasks. A period of
work of an individual is defined as the time from the
start of working at some task until the next idle time. If
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the task an individual has worked on during a period of
work differs from the task of the next period of work
this is called a transition. For some time period let Ci

be the number of transitions divided by the total num-
ber of periods of work minus 1 for individual i. The
degree of specialization Fi of individual i is measured
by Fi = 1 – 2Ci. Then –1 Fi 1 holds. Observe that
Fi = 1 when an individual has not switched between
tasks (high specialization), Fi = 0 when an individual
has switched randomly between two tasks (no special-
ization), and Fi = –1 when an individual has switched
alternately between the tasks. The activity of an indi-
vidual over a time period is measured as the proportion
of time steps it was working at a task.

3 Re-examination of Colony Size 
Dependent Specialization

Gautrais et al. (2002) have investigated the degree of
specialization (measured over all simulation steps) of
the individuals for a 2-task model for different colony
sizes and different demands. It was shown that for
medium (D = 0.5) or high (D = 0.8) demands special-
ists occur but only for colonies that are not too small
(N 20). It was argued that the magnitude and time
scale of fluctuations of the difference between the stim-
ulus values (S1 – S2) is the crucial factor because in
small colonies large absolute differences are sustained
for longer periods than in large colonies. The interpre-
tation was that a high stimulus difference S1 – S2 will
break down any specialization that individuals may
have for task 2 because they are more likely to tackle
task 1 (and so learn) while forgetting task 2 (and vice
versa for high S2 – S1). In large colonies where the
fluctuations were less longer sustained the individuals
have sufficient time working on the same task for the
positive feedback of learning to take effect. The con-
clusion was that differentiation in activity levels and
specialization only occurs when colony size exceeds
some critical value.

In our simulation we obtained the same results
but cannot agree with the given interpretation of the
results. In the following we give a different explana-
tion and show that the reason why there are no spe-
cialists in the small colonies has only to do with the
specific colony size-dependent situation during the
first steps after the chosen initialization of the simula-

tion model. Recall that for initialization the thresholds
and the stimuli are set to zero (or nearly zero) and
the maximal threshold values are presumably equal
(Θmax := Θ = Θ ).

Given this initialization during the first time steps
in small colonies the stimuli will grow much more
slowly than in large colonies because the value of σj,
j [1 : 2] is proportional to colony size. The threshold
values grow independently of the colony size. Hence,
the chance for an individual to start working and
therefore the activity level are much smaller when col-
ony size is small. The effect is that for each individual
in a small colony both threshold values will grow until
they reach the maximum values Θ . But such indi-
viduals are not specialists and all have a similar activ-
ity. The stimuli will continue to grow until the chances
to start working become so high for an idle individual
(even with threshold values that are maximal) that the
demand for work can be satisfied by the colony. In
later phases of the simulation an individual with thresh-
olds values that nearly equal are the maximum thresh-
old values has nearly no chance to become a specialist
(especially when the maximal thresholds values are
high).

In contrast, in a large colony the stimulus values
grow fast during the first steps after initialization. The
effect is that the activity of the individuals strongly
increases during the first time steps. But when an indi-
vidual has started to work early at say task T1 then the
chances are high that it will work again at task T1 in
the following period because its threshold values for
task T1 and T2 are quite different. The reason is that
the threshold for the task the individual is working on
remains to be nearly zero and the other threshold
increases each time step by φ.

See Figure 1 for an illustration of the evolution of
threshold and stimulus values in small and large colo-
nies. The figure shows the stimulus values and thresh-
old values for a typical individual of a small (N = 10)
and a large (N = 1000) colony. The individual in the
small colony starts to work randomly for 6 steps on
task T1. But then it never works again during the first
30 steps because the stimulus values for both tasks
grow slowly whereas the threshold values for both
tasks grow much faster. The individual in the large
colony starts to work randomly for task T2. But the
stimulus values grow relative to the threshold values
much faster compared to the small colony. Since the
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threshold for task T2 remains at a low level for some
iterations the individual starts again several times to
work for task T2 during the first 30 iterations. There-
fore, it keeps its threshold for task T2 low (while the
threshold for task T1 has become high) and thus spe-
cializes in task T2.

Hence, we conclude that the observed difference
in specialization between small and large colonies is
not an emergent phenomenon because it is the conse-
quence of the colony size-dependent growth of stimu-
lus values during the initial phase of the simulation
model (for the chosen initial parameter values). We
made several experiments in order to back our expla-
nation. One experiment was to reset explicitly the
threshold values of some individuals in the small col-
ony when it has reached a stable state to Θ1 = Θmax and
Θ2 = 0. The result was that these individuals become

specialists (with respect to the Fi measure) and remained
to be specialists (over the observed simulation steps).
Thus, specialization does not break down over the sim-
ulation time in the small colony.

In order to remove the effect of the initialization
phase to some extent we studied a system where after
initialization the demand for work was changed between
longer periods of very high demand and longer periods
of very small demand. After this demand variation
phase the system is no longer dependent on the initial
conditions (more exactly, the values of the initial stim-
ulus and threshold values). No significant differences
between small and large colonies occur in such sys-
tems with respect to activity levels or specialization.
This is illustrated in Figure 2 which shows the differ-
ent behaviors of the system with and without demand
variation phase for a (constant) demand D = 0.8 (after

Figure 1 Stimulus values and threshold values of typical individual for a small colony with N = 10 (left) and a large col-
ony with N = 1000 (right) over the first 30 iterations: D = 0.8, Θmax = 1000.

Figure 2 Specialization for different colony sizes N [5 : 2000] for D = 0.8, Θmax = 2000, with (right) and without (left)
demand variation phase; the darker the color the larger is the fraction of individuals that have the corresponding special-
ization level.
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the demand variation phase). When thresholds and
stimuli are initialized (close) to zero specialization
occurs only for larger colony sizes. But after a demand
variation phase nearly all individuals have a speciali-
zation very close to 0.0 no matter what the colony size
is. If not stated otherwise, we apply a demand variation
phase to every test run and the standard colony size
that is used is N = 100.

Another aspect of the threshold reinforcement
model of Gautrais et al. (2002) that we should point
out is that differentiation between individuals with
respect to activity level or specialization is a phenom-
enon that can exist only when measured over finite
time periods. Recall that individuals differ in the model
only by their actual threshold values and whether they
are engaged in some task or not. Since each individual
has a nonzero probability to change from its current
state to every other possible state (this might take sev-
eral iterations) there is no difference in the behavior of
individuals over infinite time. Thus, all observed dif-
ferentiation between individuals depends fundamen-
tally on the simulation time because in the limit over
infinite time all individuals in a colony have exactly
the same degree of specialization and activity. This is
different for the variant of the model that is intro-
duced in the next section where individuals have a
finite time life span and where differentiation can
occur independently from simulation time (see also
Section 6).

4 Finite Life Span and Maximal 
Thresholds

In this section we introduce individuals with a finite
life span to the threshold reinforcement model. One
reason is that individuals in natural systems have a
finite life span. Since new individuals might be differ-
ent from older individuals it can be expected that the
introduction of finite life span can possibly change the
behavior of the model significantly. The other reason
is to avoid the fundamental problem of the infinite
lifetime model that specialization and differentiation
can only be a phenomenon over a finite time as
explained in Section 3. For simplicity we assume here
that each individual has the same maximal age amax. In
order to make the interpretation of our results easily
comparable with the infinite life time model it is
assumed that the colony size remains always fixed.

This implies that there is a constant inflow of new
individuals, that is when an individual has left the sys-
tem because its lifetime ended it is replaced by a new
individual. The initialization is done with individuals
that have a random age which is uniformly chosen
from [0, amax]. In the following we study a system that
is in a stable state after a demand variation phase. The
specialization for a system with individuals of finite
life span is measured as the average specialization
over all individuals that left the system.

In this section we study also the influence of the
size of the maximal threshold value Θmax. As has been
argued in Section 3 large maximal threshold values
make it unlikely that an individual with threshold val-
ues that are nearly maximal will ever become a spe-
cialist. This might be different in a system with small
maximal threshold values. In Gautrais et al. (2002)
maximal threshold values of 1000 have been used for
the simulations. Here we consider also systems with
much smaller such maximal threshold values. This is
important because for some natural systems small val-
ues are more realistic. A large threshold of size 1000 in
combination with learning parameter ξ = 4 (forgetting
parameter φ = 3.5) implies that an individual has to
improve its skills by 250 learning steps (respectively

285 forgetting steps) until threshold 0 is reached
when starting with threshold 1000 (respectively vice
versa). Hence large maximal threshold values are real-
istic in situations where learning/forgetting is a slow
process that leads over many different levels of skills.
But for insects many learning processes are fast and
improve only over a few steps until the individual
reaches its final level of skill (analogously for forget-
ting processes). As an example consider experiments
that have been done by Scheiner, Erber, and Page
(1999) with honey bees to study the learning of tactile
patterns. Another example is odor learning of honey
bees that was investigated by Ben-Shahar, Thompson,
Hartz, Smith, and Robinson (2000). In these works it
was shown that the maximal response of a bee to a
learned pattern or odor (measured by the proboscis
extension response, PER) was reached after only about
5–6 learning steps. A pattern or odor has been forgot-
ten after about 5 contacts with a different pattern or
odor. For this example of bee learning it means that for
ξ = 4 and φ = 3.5 the maximal threshold value in the
model should be set to about Θmax = 20.

We compared the threshold response model with
infinite life span to the model with individuals of finite

≈
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life span. The results are shown in Figures 3 and 4.
Only the results for colony size 100 are given since for
other tested colony sizes from 5 to 2000 the results are
very similar. For infinite life span and extreme demand
values (D 0.0 or D 1.0) no specialization occurs. If
D is very small (D 0.0), both thresholds values of the
individuals usually grow to the maximal value. If D is
very large (D 1.0) the work load is so high that both
threshold values of the individuals stay close to zero.
However, specialization does not occur for very high
demand because a high threshold value of a specialist
for one task would decrease its overall probability to
work. As a consequence, the demand could then not be
satisfied and the stimulus values would increase fur-
ther until all individuals start to work for both tasks
and their threshold values decrease. For larger Θmax

values and medium to high demand (e.g., Θmax = 1000,
D = 0.8, N = 1000) some individuals specialize to some

extent (because they have one threshold value near
zero and the other is larger). But there are also individ-
uals that have both threshold values high. This is dif-
ferent for smaller Θmax values. The reason is that here
the individuals usually specialize to one task for some
time, but as Θmax is small, the probability of switch-
ing and specializing to the other task for some time is
high. Overall, this results in a medium level of special-
ization.

For a system with individuals that have a finite
life span the results show that for small values of Θmax

the specialization level is very similar to the equiva-
lent system with individuals of infinite lifespan. How-
ever, this is different for large values of Θmax. In this
case there are no specialized individuals in the infinite
life span model. But in the finite life span model
highly specialized individuals occur, as they decide in
the first steps in which task they specialize. As Θmax is

Figure 3 Infinite life span model: specialization level for different demands D; Θmax {20, 500, 1000, 2000} (from top
left to bottom right); N = 100; the darker the color the larger is the fraction of individuals have the corresponding special-
ization level.
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very large, they will not switch back again to another
task during their life time.

5 Age-Dependent Maximal Thresholds

In this section we introduce a mechanism for age-
dependent development of individuals into the thresh-
old reinforcement model. Then we study its influence
on task division over individuals of different ages.
Age-dependent task division is interesting because it
occurs in many social insect societies. Examples are
honey bees where young workers work mostly within
the hive while older workers become foragers and work
outside of the hive (e.g., Seeley, 1995). Age-dependent
behavior is a complex phenomenon that is influenced
by social, environmental, and genetic factors (Ben-
Shahar, Robichon, Sokolowski, & Robinson, 2002;

Wakano Nakata & Yamamura, 1998). Age-dependent
task division in social insects has been explained by
activator-inhibitor models where activation occurs
through an internal age-dependent development of
behavior and inhibition works through social interac-
tions (see Naug and Gadagkar (1999) for a correspond-
ing model for a eusocial wasp and Beshers, Huang,
Oono, and Robinson (2001) for the honey bee). Some
forms of emergent task succession have been explained
with non-age-dependent threshold models (e.g. Bona-
beau et al., 1999a) or by models of task competition (see
Sendova-Franks, Franks, & Britton, 2002). A model for
age-neutral transition from hive-bee to forager which
assumes an internal and an external repressor of the
allatoregulatory central nervous system was investi-
gated by Amdam and Omholt (2003).

Age dependence is introduced to our model by
assuming that the maximum threshold values differ

Figure 4 Finite life span model with a max = 10000: Specialization level for different demands D; Θmax {20, 100,
500, 1000} (from top left to bottom right); N = 100, the darker the color the larger is the fraction of individuals have the
corresponding specialization level.
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between the individuals depend on their age. A moti-
vation for this assumption is that the maximum thresh-
olds values reflect the personal minimum likelihoods
of an individual to perform different tasks. Hence,
they describe more the role that an individual has and
not its actual tasks (an overview on the differences
between the task of an individual and its role and on
the factors that determine the role of individuals in
insect societies is given in Blanchard, Orledge, Rey-
nolds, and Franks (2000)). It has been shown that the
temporal changes of the roles of an individual can
depend on its physiological development (Huang &
Robinson, 1999).

In the model we assume that the age-dependent
maximum thresholds of an individual might increase
or decrease exponentially with its relative age (relative
with respect to the maximum age amax). It is also
assumed that there exist a minimum value for each
maximum threshold. For the test we assume the age-

dependent maximum thresholds Θ  and Θ  for
task T1, respectively T2, for an individual of age a are
defined by (see also left part of Figure 5) Θ (a) =
Θ + Θbase, Θ (a) = Θ + Θbase where
Θbase is the minimal maximum threshold value. We
study a system with maximal age amax = 1000.

Figure 6 shows the distribution of specialization
levels for different values of Θbase. A high degree of
specialization occurs even for small demands. Young
individuals have a high (resp. small) maximal thresh-
old for task T1 (resp. task T2). Note that, in contrast
to individuals without age dependent thresholds, the
threshold for task T1 was initialized to the maximal
value when the individual is born. Therefore it is very
unlikely that an individual will work on task T1, when
it is young. This can clearly be seen in the right part of
Figure 5. For every individual in the colony the differ-
ence between the number of time steps the individual
has worked for a task and its expected number assum-

max
1

max
2

Figure 5 Age-dependent maximal thresholds Θ  and Θ  (left); difference between expected number of worksteps
and performed number of worksteps for each individual and both tasks for D = 0.8, N = 500 (right); Θbase = 20,
a max = 1000.

max
1

max
2

max
1

base
2*a( ) amax⁄

max
2

base
2 2*a( )– amax⁄

Figure 6 Age-dependent thresholds: Specialization level for different demands D; Θbase {20, 100, 1000} (from left to
right), N = 100, a max = 10,000; the darker the color the larger is the fraction of individuals have the corresponding spe-
cialization level.
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ing that there is no age-dependent influence is shown.
The expected number E(a) of worksteps that an indi-
vidual should have worked at a specific task at age a is
defined as E(a) = (D · a)/(m · (1 + p)). Only for high
demands can the individuals not specialize (to the dif-
ferent tasks during different age) because otherwise
the high demand cannot be satisfied by the colony (see
Figure 5). This shows that the colony can react flexibly
to high demands even in the presence of age-depend-
ent maximum thresholds in that individuals of all ages
work on both tasks. Hence, the threshold reinforce-
ment model with age-dependent maximum thresholds
shows that the combination of age-dependent speciali-
zation and flexibility to switch between different tasks
is possible (compare the discussion in Johnson (2003)
which concludes that the organizational structure of
honey bees colonies retains the advantages of age-
dependent roles and behavioral flexibility).

6 Competition for Tasks and Colony 
Size Dependence

In this section we introduce an extended threshold
reinforcement model that shows emergent colony size-
dependent polyethism. In natural systems not all indi-
viduals that have decided to work for a task will actu-
ally be able to do so. A simple reason can be that there
is not enough work for all. A simple example from
honey bees can be observed in the hive section where
foraging bees unload their collected nectar to food
storer bees (e.g., Seeley, 1995). When there are too
many food storer bees not all of them receive nectar
from the incoming foraging bees. With competition for
tasks we denote a situation where not all individuals
that decide to work for a task can actually work for it.
In social insect colonies there exist fascinating mecha-
nisms that regulate the number of individuals that want
to work for different types of tasks. For example, the
numbers of foraging bees and food storer bees in a
honey bee colony can be adapted very fast to the actual
needs (see e.g., Seeley, 1995). But even when such regu-
lation mechanisms can reduce the strength of competi-
tion for work (defined as the relative rate of individuals
that actually can work for the task with respect to all
individuals that want to work for task) it still exists.

In order to reflect such competition for task situa-
tions in the model we introduce a selection process
between individuals that want to work for the same

task. We assume that success in such a competition
between individuals depends on the individual thresh-
olds for the corresponding task. An individual with a
low threshold can be viewed as a highly motivated indi-
vidual that has therefore better chances to be success-
ful in the competition for a task (compare the related
discussion in Bonabeau, Théraulaz, and Deneubourg
(1999b) about motivation of individuals, changes of
interaction rates between individuals and the establish-
ment of dominance hierarchies in a colony). In the
model we assume simply that from all individuals that
have decided to work for a task at a time step only a
fraction of 1 – ρ individuals with the lowest thresholds
for the corresponding task are successful where param-
eter ρ 0 defines the selection pressure. The non-suc-
cessful individuals become idle for that time step. Note
that on average fewer individuals will work per time
step compared to the model without selection. Since
we want to compare colonies with different selection
pressures (i.e., different degree of competition for
tasks) but where the average rate of working individu-
als is the same we decrease the parameter σ that deter-
mines the increase of the stimulus values and the
forgetting parameter φ by multiplication with the fac-
tor (1 – ρ) compared to the model without selection.

Figure 7 shows the observed degree of specializa-
tion for different selection pressures for individuals
with infinite lifetime. It can be seen that similar as for
the model without specialization there is no significant
difference between the degree of specialization for dif-
ferent colony sizes when the selection pressure is low
(ρ = 0.5). But for larger selection pressure there is a
clear colony size-dependent degree of specialization.
For ρ = 0.9 the small colonies with 10 individuals
have a low specialization level of 0.5 whereas the large
colonies with more than 500 individuals have a spe-
cialization level of about 0.9.

A reason why no strong specialists occur in small
colonies (for suitable parameter values) is the larger
variance in the decisions of the individuals. It happens
with high probability that individuals which start to
specialize slightly for one task are selected to work for
the other task (because individuals with relatively low
thresholds accidentally might have decided not to try
to work for this other task). Hence the emerging spe-
cialization breaks down. For large colonies it is more
unlikely that an individual which has a relatively low
threshold for one task due to random effects is
selected to work for this task. But this means that

≥
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small specialization that happens due to random
effects is enforced by the selection mechanism.

For the finite age model a differentiation between
the individuals can be observed. See Figure 8 for
results. For small colonies with at most 50 members
the specialization level of the individuals varies
between 0.0 and 1.0. The number of individuals with
specialization level 0.99 is not much higher than for
the other levels of specialization (less than 6% of the
individuals have specialization level 0.98). This is
different for the larger colonies with 1000 members
where most individuals (between 50% and 60%) have
specialization level 0.98.

Since our results have shown that colony size-
dependent specialization and differentiation occurs in
the threshold reinforcement model as an emergent
phenomenon only when a selection process due to

competition for task occurs it will be interesting to
study whether such competition processes can also be
found in natural systems. Particularly interesting is the
relation between the occurrence of specialization and
differentiation to colony size and strength of compe-
tition for tasks. Moreover, the results suggest that
emergent specialization and differentiation can be imple-
mented for response threshold controlled multi-agent
system and groups of robots through the introduction
of a suitable competition for task mechanism.

7 Conclusion

In this paper we have simulated task division in the
threshold reinforcement model of Gautrais et al.
(2002). We re-examined the emergence of colony size-
dependent specialization and have shown that colony-
dependent specialization in this model is due to a col-
ony size-dependent stimulus increase during the initial-
ization phase and that differentiation is a (simulation)
time-dependent phenomenon. To make our results more
independent from some unwanted initialization effects
we introduced an initialization phase for the simula-
tions with varying demands. We have studied colonies
of individuals with threshold reinforcement models
where individuals have a finite life span, different max-
imum threshold values, and age-dependent maximal
threshold values. It was argued that small (compared to
the learning and forgetting rates) maximum threshold
values are relevant for modeling natural systems
because several learning/forgetting processes in insects
are fast and show only few levels of skill. It was shown
that smaller maximal threshold values change the
behavior of the system because individuals can change
more easily between specialization for different tasks.

Figure 7 Influence of competition for tasks with selection parameter ρ {0.5, 0.7, 0.9} (from left to right): Specializa-
tion level for different colony sizes; infinite age, Θmax = 20, D = 0.5; the darker the color the larger is the fraction of indi-
viduals have the corresponding specialization level.

∈

Figure 8 Influence of competition for tasks with selection
parameter ρ = 0.5: For different colony sizes the figure
shows the relative amount of individuals for the different
specialization levels; finite age a max = 500, Θbase = 100,
D = 0.8, N = 100.

≥

≥
≥
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We have also proposed an extension of the thresh-
old reinforcement model with threshold-dependent
competition for tasks between the individuals during
task selection. It was observed for this model that the
occurrence of specialists is an emergent phenomenon
that depends on colony size and on the strength of
competition for tasks. It will be interesting to study
whether colony size-dependent phenomena of task divi-
sion in nature can be explained with the help of thresh-
old-dependent competition processes. For the design
of multi-agent systems and bio-inspired robotic sys-
tems our results might be helpful in order to obtain
emergent specialization and differentiation for response
threshold regulated systems.
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