
The Design of the Fixed Point Unit for the z990
Microprocessor

Fadi Busaba

Timothy Slegel

Steven Carlough

IBM
2455 South Road
Poughkeepsie, NY

12601
(845)435-8697

busaba@us.ibm.com

Christopher Krygowski John G Rell

ABSTRACT
The paper presents the design of the Fixed Point Unit (FXU) for
the IBM eServer z990 microprocessor (announced in 2Q ‘03) that
runs at 1.2 GHz [2]. The FXU is capable of executing two
Register-Memory instructions including arithmetic instructions
and a branch instruction in a single cycle. The FXU executes a
total of 369 instructions that operate on variable size operands (1
to 256 bytes). The instruction set include decimal arithmetic with
multiplies and divides, binary arithmetic, shifts and rotates,
loads/stores, branches, long moves, logical operations, convert
instructions, and other special instructions. The FXU consists of
64-bit dataflow stack that is custom designed and a control stack
that is synthesized. The current FXU is the first superscalar design
for the CMOS z-series machines, has a new improved decimal
unit, and has for the first time a 16x64 bit binary multiplier.

Categories and Subject Descriptors
C.5.3 [Computer System Organization]: Computer System
Implementation - microprocessors. Fixed Point Unit.

General Terms
Performance, Design.

Keywords
Superscalar FXU. Microprocessor.

1. INTRODUCTION
High end microprocessor (CP) development teams use custom
circuits for both the dataflow and control logic, and dynamic logic
to achieve high Giga-Hertz frequencies (GHz). However, a
custom designed macro requires stable logic and is difficult to
modify if a late logic bug is found in the design. On the other
hand, synthesized macros using parameterized standard cells tend
to be slower and larger than custom designed macros. Using
custom logic for the dataflow and synthesized macros for the
control macros, the FXU design was able to reach the desired
frequency while maintaining design flexibility in the control stack
for late logic adjustments that results in a shorter turn-around time
between development and RITs (Release Interface Tape).

High speed synthesized macros are achieved by a “low-level”
VHDL coding style and special tweaking of the synthesis and
placement tools. These include macro decomposition, VHDL
tuning for critical cones, logic restructuring, placement driven
synthesis, dedicated wide wires, usage of tapered gates, and low
Vt are all applied to our control macros to have the design meet
its set objectives. The main objectives of the z990 FXU is to
improve the execution cycles (or CPI) relative to previous FXU
designs while meeting cycle time, area and power requirements.
Other processor such as the Pentium 4 processor has an FXU
design that targets high frequencies by concentrating on a subset
of the instruction set and “critical” loops that are important for
their workloads, but hurting the performance of other instructions
[1]. For example, a small execution core with simple instructions
within the FXU runs at double speed while a slower execution
part of FXU runs at single speed and with higher execution
latencies such as integer shift and rotate instructions which
require up to 4 cycles of execution. The presented FXU design
has a 64-bit dataflow stack that allows a 64-bit addition with sign
extension, rotation, and shifting along with condition code setting
to be performed in a just single cycle. This is chosen because of
the commercial work-loads that the z990 processor targets.

This FXU design is the first superscalar processor for the CMOS
z-series servers [2] [and has many other enhanced features over
preceding designs [3-5]. These features include operand
forwarding, condition code forwarding, muti-port instruction
dispatch, enhanced decimal performance and a binary multiplier.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI’04, April 26-28, 2004, Boston, Massachusetts, USA
Copyright 2004 ACM 1-58113-853-9/04/0004...$5.00.

364

2. PIPELINE DESCRIPTION
Table 1 shows the six pipeline stages for the processor. These
stages do not include instruction fetch cycles (before Dcd stage)
and check point cycles (after PA cycle). Dcd is the decode cycle
when two instructions can be decoded in parallel. Stage C0 is the
address generation cycle (address = base register + index register
+ 20-bit signed displacement).

Table 1. Pipeline stages related to the FXU

DcD C0 C1 (E-
1)

C2
(E0)

E1 PA

Cycles C1 and C2 are the memory cache access cycle and E1
stage is the execution stage. PA stage is the put-away stage when
the GPR and cache write buffer are updated. The execution stage
of z990 processor is placed a cycle after the data cache return.
This was necessary since the z990 processor executes register-
Memory and memory-memory instructions where one or both of
the operands are from storage, and thus the instruction cannot be
executed until the data is returned from the cache. The instruction
dispatch occurs on the C1 (or E-1) stage which coincides with the
D-cache access. During the E-1 cycle, the FXU controls receives
the instruction text and any previously decoded bits and starts its
own decoding to set the controls of the dataflow. During the E0
stage the operands are read from the GPR or they are returned
from storage and all data dependencies are resolved. During cycle
E1, instructions are executed and the condition code is set. Also,
branch resolution, and the final exception determination and
exception type are decided in E1 stage. An instruction stays in E1
stage as many cycles as is needed to finish its execution. Also, in
the case of a D1-cache or translation miss, an instruction is held in
the E1 stage until its data becomes available. If the instruction
with a cache miss is the oldest instruction in a group, all
instructions in that group are held in E1 stage. However, if the
instruction with a miss is not the oldest, older instructions are
allowed to complete and update architected facilities. Each one of
stages E-1, E0, E1 and PA can be held without the need of
instruction recycle or re-dispatch in order to achieve the best CPI.
The FXU dataflow and control wraps the FXU results directly
into the next executing group of instructions without any stalls or
stages.

3. FXU DATAFLOW
The FXU consists of 4 execution pipes labeled R, X, Y and Z,
where pipe R is a control pipe used for executing conditional
branches. The dataflow stack, as shown in Figure 1, consists of
three execution pipes (X, Y and Z), a General Purpose Register
(GPR 32x64 bits), an Address Register File (AR 32x32 bits), and
an operand buffer to hold data cache returns. The GPR has four
64-bits read ports and two 64-bits write ports. The GPR updates
occur on either a word boundary (32-bits) or double word
boundary (64-bits). A write port can be used to update bits 0:31,
bits 32:63, or bits 0:63 of the same GR. The same write port can
also be used to update a pair of even-odd register with write port
bits 0:31 updating even-GR bits 32:63 and write port bits 32:63
updating odd-GR bits 32:63. The special write ports for the GPR
are used to execute many architected instructions that operate on
32-bits of a GR, 64-bits or a GR, or on 32-bits of even-odd GR
pair. The FXU also has 2 64-bits reads from the cache allowing
two Register-Memory operations or single Memory-Memory
instruction to be executed in any specific cycle. Fetches from the
cache can be made ahead of execution and the data returns are
saved in the operand buffer until they are used by the instructions.
The FXU dataflow also receives two inputs from the address
generation in the dispatch unit (Addr. Gen. Outputs). Address
generation is used for memory address calculation, load address
calculations and branch target address calculations. Finally, the
FXU has one 64-bit read port from architected control registers
(RUbus). Figure 2 shows a layout for the entire FXU.
Pipes X and Y, which are almost identical, are used to execute
most of the superscalar single cycle instructions. Each of these
pipes consist of a 64-bit binary adder/subtractor (Bin) with a built
in byte sign extension, a 64-bit rotator (Rot), a 64-bit bit-logical-
and-insert-under-mask (Blu) and a 64-bit mask generator used for
shifts and merge instructions. The binary adder performs addition,
subtraction as well as byte-size sign extension. For example, a 16
or 32-bits signed number can be added/subtracted to/from a 64-
bits signed number in just a single execution cycle. Pipe Z
consists of a decimal arithmetic support unit, 16x64 bit binary
multiplier and other miscellaneous logic.

4. FXU EXECUTION
The current FXU is the first superscalar design for the new
CMOS generations of z990 processor, offers better performance

F ro m cache

A reg B reg

D ec B in

R ot

A reg

B lu

B reg

C 1reg

B in

R ot

A reg

B lu

B reg

C 2reg

R egister
F ile

O perand
B uffer

X -p ipe Y -p ipe Z -p ipe

E reg

R ot

C 2bu s

 C 1bu s

C 2bu s

C 1bu s

M ult

A d d r. G en . O u tp uts R U b u s F X U C n tls

Figure 1. Block Diagram for the FXU dataflow stack.

365

for decimal arithmetic, better performance for various critical
complex instructions with execution algorithms that target multi-
execution pipes, includes capabilities to alter execution behavior
to alleviate logic bugs during processor testing in the lab as well
as problems that may be encountered at the customer sites.

The FXU executes a total of 369 instructions. The instruction set
the FXU executes include load/stores, decimal arithmetic
including multiply and divide, binary arithmetic, shifts and
rotates, standard and multi-register loads/stores, branches,
complex memory addressing, long moves, logical operations,
convert instructions, and other special instructions necessary to
support hardware virtualization and tightly coupled parallel
processing. Most of the instructions executed in the FXU require
one cycle of execution.
The FXU design allows flexibility on grouping and dispatching of
multi-cycle and/or complex instructions. It allows a multi-cycle
execution instruction to be dispatched to one execution port but
executed in multiple execution pipes without cracking the
instruction and without limiting it to a single execution pipe. The
dispatch unit dispatches the instruction to one of the FXU pipes,
but replicates the instruction text information such as opcode to
all of the execution pipes in parallel. Few control signals are
generated to control which pipes will be used for execution of the
instruction. The FXU then decides how the instruction is to be
executed in the available FXU pipes. This provides the FXU with
ability to utilize all the hardware resources, in all of the FXU
execution pipes, for the execution of this instruction. This method
results in optimum performance and little or no complication to
the exception logic, error detection or recovery logic. It also
places the flexibility of how these instructions will be executed in
the FXU, where the actual execution takes place, instead of in the
instruction dispatch unit (or compiler in the case of VLIW).

Figure 2. Layout for the entire FXU.

As mentioned earlier, the FXU has many capabilities that enhance
the overall performance of the processor CPI. Operand
forwarding and result forwarding, for example, allow the

grouping and dispatching of two dependent instructions together
by forwarding the operand or result of the older instruction
executing on pipe X to the younger instruction executing on pipe
Y. The following are examples of the description and
implementation of operand forwarding and result forwarding.
Example 1: Cache data forwarding: This type of forwarding is
used when the older instruction is a Load instruction to a GR-R1
and the GR-R1 is needed by younger instruction.
Instr. A (X-pipe) : Load R1, R3 (R1 cache data)
Instr. B (Y-pipe) : Add R1, R2 (R1 R1 + R2)
In this case, the instruction B gets the value of GR-R1 from the
cache return data for instruction A instead of the GPR read data
port. The dataflow of the FXU is modified so that the cache return
for X-pipe is also an input to Y-pipe registers.
Example 2: GR data forwarding: This type of forwarding is used
when the older instruction is a Load register instruction to a GR-
R1 and the GR-R1 is needed in younger instruction as follows:
Instr. A (X-pipe) : Load R1, R3 (R1 R3)
Instr. B (Y-pipe) : Add R1, R2 (R1 R1 + R2)
Instruction B is dependent on Instruction A. To solve dependency
and group instructions together, the GR-read port for Instruction
B is set to R3 instead of R1.
Example 3: condition code forwarding:
Instr. A (Y-pipe) : Add R1, R2 (R1 R1 + R2, sets CC)
Instr. B (Y-pipe) : LTR R1, R1 (R1 R1, sets CC)
Instructions A and B are dependent but are grouped together. To
solve the dependency, instruction A is allowed to update the GR
while instruction B update to the GR is suppressed. However,
instruction B uses the result of instruction A to update the
condition code.

4.1 Decimal Assist Unit
The decimal unit has many enhancements over the last generation
unit [6]. The current decimal unit includes a 16 digit BCD
adder/subtractor with sign insertion, conversion tables to convert
between binary and BCD arithmetic formats and other support
logic to perform packing and unpacking between BCD, ASCII
and Unicode formats. The current decimal unit can execute the
add-instruction, subtract-instruction or compare-instruction in just
3 cycles. It is also capable of performing decimal division and
multiplication with variable size operands (size = 1 to 15 bytes).
For decimal multiplication, leading zero count is performed on
both operands, and the one with least number of non-zero digits is
iterated upon. After initialization (4-6 cycles), each iteration in
multiplication algorithm requires an average of 1.8 cycles The
number of cycles required for the decimal division is dependent
on the number of significant quotient digits with an average of 4.4
cycles for each quotient digit.

4.2 Binary Multiplication
The current FXU has a binary multiplier than be configured to
either perform a 16x32 signed multiplication or a 16x64 unsigned
multiplication. The multiplier is pipelined with two stages. During
the 1st stage, all partial products are generated and added to form
two final products, and in the second stage the two products are
added together to form the final result. The output of the
multiplier feeds the output register and also wraps back to the
input registers of pipes X, Y and Z. The wrapping paths are added
to perform a quick and efficient implementation of long multiples.
Table 2 shows the typical execution cycles for various multiply

D
at

af
lo

w

F in ish
L o g ic

R eg ister
F ile

T race &
In stru m en ta tio n

O perand
B uffe rs

C

on
tr

ol
L

og
ic

366

instructions. A leading zero count is performed on both operands
for long multiplies to potentially shorten the execution cycles.

Table 2. Execution cycles for various multiply instructions.

Instruction Result operand size cycles

MH, MHI, 32 16 x 32 2

MGHI 64 16 x 64 2

ML, MLR 64 32 x 32 (logical) 4

M, MR 64 32 x 32 (signed) 4

MLG, MLGR 128 64 x 64 (logical) 17

5. FXU CONTROL STACK
There are 12 unique custom macros and 19 control macros in a
design area dimension of 8.6 mm by 11.5 mm. A summary of the
control macros are shown in Table 3. For typical control macros,
the number of latches per unit area or area per k-cells is supposed
to be the same. For decode macros, there tend to be more logic
work (k-cells) done per latch. These numbers will be used to size
future generation of the FXU and to perform power estimates
based on area and latch count. The control is decomposed into 19
interacting macros (or state machines). The decomposition
minimizes the overall macro crossing, eliminates macro crossing
for timing critical logic cones, reduces the overall area, and
allows multiple designers to work simultaneously on
implementing different instructions. Control macros are not
logically stable until very late in the design phase since additional
functions and logic fixes are expected even days before sending
the processor for manufacturing. A substantial effort is placed on
structuring the control and altering the micro-architecture of some
FXU states to meet cycle time.

Table 3. Statistic on FXU control macros.

Number of macros 19

Total number of latches 3984

Total number of k-cells 488k

Area per latch (mm^2 per 1000 latch) 11.3

k-cells per latch 0.15

6. FXU VERIFICATION
Verification of the FXU in the z990 microprocessor proceeds at
four basic levels defined by the breadth of logic being tested. The
lowest level, designer macro verification, contains a single
designer’s hardware description language (in VHDL). The usage
of formal verification is incorporated in the macro level
verification [7]. The second level is the unit-level verification,
where the entire unit (many dataflow and control macros) is
verified. The third level of verification is done at the

microprocessor level. A strong architectural-level instruction
stream test-case generator, AVPGEN is used for the unit level as
well as for the CP level [8]. Finally, system level verification is
performed on symmetric multiprocessor (SMP) configurations. A
substantial time and effort is placed on unit-level simulation
development and usage.

7. CONCLUSION
This paper presents the design challenges for the FXU in the z990
enterprise microprocessor. The FXU dataflow supports executing
two Register-memory instructions and a branch in a single cycle
or a single memory-memory instruction with variable operand
length. The FXU is also capable of executing decimal arithmetic
instructions including multiplies and divides as well as binary
multiples. The FXU in z990 processor improved the performance
of decimal arithmetic, binary multiplies and other critical
instructions. The FXU design includes advanced features such as
operand forwarding that allows dependent instructions to be
grouped and dispatched simultaneously. Finally, verification of
the FXU is quite challenging that required multiple levels of
verification by using random-based and formal verification.

8. ACKNOWLEDGMENTS
Our thanks are to the rest of the z990 microprocessor design and
management teams.

9. REFERENCES
[1] Glenn Hinton et. al, “A 0.18-um CMOS IA-32 Processor

With a 4-GHz Integer Execution Unit,” IEEE Journal of
Solid State Circuits, Vol. 36, No. 11, Nov. 2001.

[2] T. J. Slegel, E. Pfeffer, J. A. Magee, "The IBM eServer z990
microprocessor," IBM Journal of Research and
Development, vol. 48, no. 3/4 (accepted for publication in
the May/July 2004 issue)

[3] T. McPherson and et al. “760 MHz G6 S/390 Microprocessor
Exploiting Multiple Vt and Copper Interconnects”, Solid-
State Circuits Conference, Feb. 2000.

[4] G. Northrop and et. Al “600 MHz G5 S/390
Microprocessor”, 1999 International Solid-State Circuits
Conference, Feb. 1999, pp. 88-89.

[5] Timothy . Slegel and et al. “IBM S/390 G5 Microprocessor”,
1998 Hot Chips Symposium, Stanford. Aug., 1998.

[6] F. Busaba, et. al, “The IBM z900 Decimal Arithmetic Unit, “
35th Asilomar Conference on Signals, Systems and
Computers, Nov. 2001.

[7] F. Busaba, and et. al, “Designer-Level Logic Verification
Using RuleBase, “ 4th International Workshop of Testing
Embedded Core-based System-Chips, Montreal, May 2000.

[8] A Chandra, V. Avenger, D.. Gist and Y. Wolfs Hal,
“AVPGEN-A Test Generator for Architecture Verification,”
IEEE Trans. Very Large Scale Integration (VLSI) sys. Vol.
3, No. 2, pp. 188-200, June 1985.

367

	Main Page
	GLSVLSI'04
	Front Matter
	Table of Contents
	Author Index

