
Architectural Primitives for Distribution and Mobility
Antónia Lopes1

1Dept. Informatics
FCUL, Campo Grande

1749-016 Lisboa, Portugal
+351-217500604

mal@di.fc.ul.pt

José Luiz Fiadeiro1,2

2ATX Software SA
Al. António Sérgio 7, 1-C

2795-023 Linda-a-Velha, Portugal
+351-210120500

jose@fiadeiro.org

Michel W ermelinger2,3

3Dep. Informática
Univ.Nova Lisboa,

2829-516 Caparica, Portugal
+351-212948536

mw@di.fct.unl.pt

ABSTRACT
In this paper, we address the integration of a distribution
dimension in an architectural approach to system development
and evolution based on the separation between coordination
and computation. This third dimension allows us to separate
key concerns raised by mobility, thus contributing to our
ability to handle the complexity that is inherent to systems
required to operate in “Internet time and space”.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Sofware Architectures –
Languages (description, interconnection, definition) D.3.2
[Programming Languages]: Language Classifications –
Concurrent, distributed, and parallel languages.

General Terms
Design, Languages, Theory.

Keywords
Software Architectures, Coordination, Mobility.

1. INTRODUCTION
Architecture-based approaches have been promoted as a means
of controlling the complexity of system construction and
evolution. Recently, a number of approaches show that, by
adopting architectural principles based on the separation
between computation and coordination, we can achieve higher
levels of agility in systems that are required to operate in
environments that are “business time critical”, which includes
those that make use of Web Services, B2B, P2P, or otherwise
operate in what is known as “internet-time” [3]. Indeed, on the
one hand, the clean separation that can be achieved between
individual software components performing local computa-
tions that ensure basic services, and the connectors through
which they are interconnected to make global properties of the
system emerge from their interaction, allows systems to be
evolved through the addition, deletion or substitution of
connectors without interfering with the computations that are
performed locally [17]. On the other hand, the same separation

of concerns allows for components to be replaced, upgraded,
monitored or regulated without interfering with the “logic”
that dictates how their behaviour needs to be coordinated.

Recently, mobility has become an additional factor of
complexity (see [20],[21] for surveys of this topic). In a
mobile computing system, components may move across a
network of locations, thus changing the environment in which
computations need to be performed, which may require their
adaptation or replacement. On the other hand, the properties of
the network itself may change, which can make the connectors
in place ineffective and require them to be replaced with ones
that are compatible with the new topology of distribution, or
give the opportunity for new coordination mechanisms to be
introduced in order to optimise performance. That is to say,
besides “time”, “space” is an additional factor of complexity
that needs to be addressed.

Our aim in this paper is to present the strategy that we are
taking in order to add a “space”-dimension to our architectural
approach. More precisely, our aim is to address distribution
and mobility in the context of the separation between
computation and coordination that we already mentioned, and
provide semantic principles that support the externalisation of
the mechanisms that are responsible for managing the
distribution topology of systems. In particular, we aim to
provide the definition and semantics of a primitive –
distribution connector – that can fulfill a role similar to the
one played by coordination connectors in externalising
interconnections between components.

Having this goal in mind, the paper develops an extension to a
program design language – CommUnity – that we proposed as
a framework in which the principles underlying our
architectural approach can be formalised and illustrated [7]. In
section 2, we relate our approach to other work that can be
found in the literature in order to further motivate and make
clear our standpoint in what concerns “mobility”. In section 3,
we review the computational aspects of CommUnity and the
model of interaction on which coordination mechanisms can
be established. In section 4, we present the extensions that we
propose for handling distribution and mobility. Finally, in
section 5, we discuss the avenues that we are planning to
follow to further develop our model in the scope of AGILE, a
FET/IST funded project on “Architecture for Mobility”.

2. RELATED WORK
Several different perspectives on mobile computing have been
explored, giving rise to different ways of modelling
distribution and mobility. A large number of models are
process calculi, e.g. the Ambient Calculus [5] and different
extensions of π-calculus [2][12][15]. There are also various

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
SIGSOFT 2002/FSE-10, Nov. 18-22, 2002, Charleston, SC, USA.
Copyright 2002 ACM 1-58113-514-9/02/0011…$5.00.

41

proposals of coordination languages and models that address
distribution and mobility, for instance LLinda [16], Lime [19]
and Mobis [14].

In this section we will focus our attention on formalisms that
entail an explicit notion of space and adopt the same
computational model as CommUnity. That is to say,
formalisms where the functionalities provided by a component
are described in terms of guarded multiple assignments. To the
best of our knowledge, the only formalisms in this situation
are Mobile Unity and Topological Actions Systems.

Although there is a large number of similarities between
CommUnity and these two formalisms, even in the extensions
we shall propose for CommUnity, they have perspectives on
mobility that are very different from our own. Neither of them
constitute a solution that addresses distribution and mobility
in architectures that are structured according to the
coordinating connectors.

Mobile Unity

This is an extension of Unity proposed in [21] that adopts
programs as units of mobility. In Mobile Unity each program
and its variables are co-located and move as a single unit. A
program’s location is represented by a special variable that can
be effected as the other variables, possibly causing its
movement. In contrast with Unity, in Mobile Unity the
interactions between programs are described explicitly,
decoupled from the description of the computational aspects.
These interactions however are not used to describe purely the
logical interactions between components (as in architectural
connectors): they are rather a model of physical reality or a
specification for services to be provided by the operating
system or the middleware. For instance, it can be specified that
the interactions between two components are the sharing of
some variables limited, in a certain way, by the distance
between them (transient sharing). This is, for instance, the way
that wireless communication is modelled.

In the past, we have also carried through a similar extension to
CommUnity [23]. However, this experience has shown that
adding locations to programs in an ad-hoc way does not
provide structural solutions to the main problem, which is the
interference between computation, coordination and
distribution.

Topological Actions Systems (TAS)

These are an extension of Action Systems [4][18] that address
fine-grained mobility explicitly. Variables and actions
(guarded commands) are regarded as resources, respectively
data and code resources, and adopted as units of mobility. The
space of mobility is assumed to be discrete (a set of positions)
and its properties are modelled explicitly through a relation
cell on positions s.t. cell(p) establishes the set of positions
accessible from p. The execution of an action is then
considered to be possible only if all the data resources
accessed by the action are accessible from its location. In TAS,
the interactions between the components of a system, that are
achieved through sharing of memory, are described implicitly,
relying on the use of the same names in different components.

This combination of implicit interactions with distributed
resources gives rise to an approach oriented to context
dependent services/resources. If an action a accesses a variable
named v, it is necessary to make sure that v is available, i.e.,

there is at least a variable named v located at a position in the
cell of a.

3. ARCHITECTURES IN COMMUNITY
CommUnity, introduced in [9], is a prototype parallel program
design language that is similar to Unity [6] in its
computational model but adopts a different coordination
model. More concretely, whereas, in Unity, the interaction
between a program and its environment relies on the sharing of
memory, CommUnity relies on the sharing (synchronisation)
of actions and exchange of data through input and output
channels. Furthermore, CommUnity requires interactions
between components to be made explicit whereas, in Unity,
these are defined implicitly by relying on the use of the same
variables names in different programs. As a consequence,
CommUnity takes to an extreme the separation between
“computation” and “coordination” in the sense that the
definition of the individual components of a system i s
completely separated from the interconnections through which
these components interact, making it an ideal vehicle for
illustrating and formalising the approach that we wish to put
forward.

3.1 The computational model
CommUnity is independent of the actual data types that can be
used for modelling the exchange of data and, hence, we take
them in the general form of a first-order algebraic
specification. We assume a data signature <S,Ω>, where S is a

set (of sorts) and Ω is a S*×S-indexed family of sets (of

operations), to be given together with a collection Φ of first-
order sentences specifying the functionality of the operations.

A CommUnity design is of the following form.

design P is
out O
in I
prv V
do []

g∈ sh(Γ)
g[D(g)]: L(g), U(g) → R(g)

[]
g∈ prv(Γ)

prv g[D(g)]: L(g), U(g) → R(g)

I and O are the sets of input and output channels of design P,
respectively, and V is the set of channels that model internal
communication. Input channels are used for reading data from
the environment of the component. The component has no
control on the values that are made available in such channels.
Moreover, reading a value from an input channel does not
“consume” it: the value remains available until the
environment decides to replace it.

Output and private channels are controlled locally by the
component, i.e. the values that, at any given moment, are
available on these channels cannot be modified by the
environment. Output channels allow the environment to read
data produced by the component. Private channels support
internal activity that does not involve the environment in any
way. We use X to denote the union I∪ O∪ V and local(X) to

denote the union V∪ O of local channels. Each channel v i s

typed with a sort sort(v)∈ S.

Γ is the set of action names. The named actions can be declared
either as private or shared. Private actions represent internal
computations in the sense that their execution is uniquely

42

under the control of the component. Shared actions represent
possible interactions between the component and the en-
vironment, meaning that their execution is also under the
control of the environment. The significance of naming
actions will become obvious below; the idea is to provide
points of rendez-vous at which components can synchronise.

For every action name g:

• D(g) is a subset of local(X) consisting of the local
channels into which executions of the action can place
values. This is what is sometimes called the write frame of g.
For simplicity, we will omit the explicit reference to the
write frame when R(g) is a conditional multiple assignment
(see below), in which case D(g) can be inferred from the
assignments. Given a private or output channel v, we will
also denote by D(v) the set of actions g such that v∈ D(g). We
denote by F(g) the frame of g, i.e., the channels that are in
D(g) or used in L(g), U(g) or R(g).

• L(g) and U(g) are two conditions such that U(g)⊃ L(g).
These conditions establish an interval in which the enabling
condition of any guarded command that implements g must
lie. The condition L(g) is a lower bound in the sense that it i s
implied by the enabling condition. Therefore, its negation
establishes a blocking condition. On the other hand, U(g) i s
an upper bound in the sense that it implies the enabling
condition, therefore establishing a progress condition.
Hence, the enabling condition is fully determined only if
L(g) and U(g) are equivalent, in which case we write only one
condition.

• R(g) is a condition on X and D(g)' where by D(g)' we
denote the set of primed local channels from the write frame
of g. As usual, these primed names account for references to
the values that the channels take after the execution of the
action. When R(g) is such that the primed version of each
local channel in the write frame of g is fully determined, we
obtain a conditional multiple assignment, in which case we
use the notation that is normally found in programming
languages. When the write frame D(g) is empty, R(g) i s
tautological, which we denote by skip.

Channels and action names of a design P, together with the
function that establishes the write frame of each action,
constitute the signature of P, designated by sig(P).

We present below an example of a CommUnity design.

design user is
out p:ps+pdf
prv s:0..2, w:Lowtex
do work[w,s]: s=0,false → s'=1
[] pr_ps: s=1,false → p:=ps(w) || s:=2
[] pr_pdf: s=1,false → p:=pdf(w) || s:=2
[] print: s=2 → s:=0

This design models a user that produces files in “Lowtex”
format that it makes available, internally, in the private
channel w. It can then convert them either to postscript or pdf
formats, after which it makes them available (for printing) in
the output channel p.

CommUnity supports higher-level component design. See for
example the design sender[t] of a typical sender of messages.
In this design, we are primarily concerned with the interaction
between the sender and its environment, ignoring details of
internal computations such as the production of messages. We

only require that the component sender cannot produce
another message before the previous one has been processed.
After producing a message, the sender expects an
acknowledgment to produce a new message. Such
acknowledgment is modelled through the execution of action
send.

design sender[t] is
out o:t
prv rd:bool
do prod[o,rd]: ¬rd,false → rd'
[] send[rd]: rd,false → ¬rd'

When, for every g∈Γ , L(g) and U(g) coincide, and the relation
R(g) defines a conditional multiple assignment, the design i s
called a program. Notice that a program with a non-empty set
of input channels is open in the sense that its execution i s
only meaningful in a configuration in which these inputs have
been instantiated with output channels of other components.
The behaviour of a closed program is as follows. At each
execution step, one of the actions whose enabling condition
holds of the current state is selected, and its assignments are
executed atomically as a transaction. Furthermore, it i s
guaranteed that private actions that are infinitely often
enabled are selected infinitely often (see [13] for a model-
theoretic semantics of CommUnity).

As an example of a program, consider the following design.

design printer is
in rf:ps+pdf
prv busy:bool, pf:ps+pdf
do rec: ¬busy→pf:=rf || busy:=true
[] prv prt:busy→busy:=false

This program models a printer that makes the files i t
downloads from the input channel rf available internally, after
which it prints them. Weak fairness in the execution of private
actions ensures that if there is a file to print, eventually it i s
printed.

3.2 The Coordination Model
As mentioned before, the model of interaction adopted in
CommUnity is based on action synchronisation and the
interconnection of input channels of a component with output
channels of other components. These are standard means of
interconnecting software components. What distinguishes
CommUnity from other parallel program design languages that
adopt this discipline is the fact that such interactions between
components have to be made explicit and external to the
components by providing the corresponding name bindings
in well identified connectors: names are local to designs, the
use of the same name in different designs is treated as being
purely accidental.

This externalisation of interactions is well supported by a
mathematical semantics based on Goguen’s categorical view of
General Systems Theory [11]. According to that view,
interconnections are expressed via the morphisms of a
category of designs:

A morphism of designs σ: P1→P2 consists of a total function

σx: X1→X2 and a partial mapping σac: Γ2→Γ1 s.t.:

1. for every x∈ X1, i∈ I1, o∈ O1, v∈ V1

43

sort2(σx(x))=sort1(x)

σx(o)∈ O2

σx(i)∈ O2∪ I2

σx(v)∈ V2

2. for every g∈Γ 2 s.t. σac(g) is defined

i f g∈ sh(Γ2) then σac(g)∈ sh(Γ1)

i f g∈ prv(Γ2) then σac(g)∈ prv(Γ1)

3. for every g∈Γ 2 s.t. σac(g) is defined

σx(D1(σac(g)))⊆ D2(g)

σac(D2(σx(x)))⊆ D1(x) for every x∈ local(X1)

Φ ‚ (R2(g)⊃ σ (R1(σac(g))))

Φ‚ (L2(g) ⊃ σ (L1(σac(g))))

Φ‚ (U2(g) ⊃ σ (U1(σac(g))))

A pair <σx,σac> that satisfies 1 and 2 is called a signature
morphism.

This notion of morphism captures what in the literature on
parallel program design is known as superposition [6],[10]. A
morphism σ: P1→P2 identifies a way in which P1 i s
“augmented” to become P2 so that it can be considered as
having been obtained from P1 through the superposition of
additional behaviour, namely the interconnection of one or
more components. In other words, σ identifies P1 as a
component of P2.

The map σx identifies for every channel of the component the
corresponding channel of the system. The first group of
constraints also establish that sorts of channels have to be
preserved. Notice, however, that input channels of a
component may become output channels of the system. This
is because the result of interconnecting an input channel of a
component with an output channel of another component in
the system is an output channel of the system. Mechanisms for
hiding communication, i.e. making it private, can be applied,
but they are not the default in a configuration. In our opinion,
hiding communication should result from an explicit design
decision because it limits the ability of the system to
accommodate new interactions.

The partial mapping σac identifies the action of the component
that is involved in each action of the system, if ever. The
second group of constraints states that the type of actions i s
preserved. The last group of conditions on actions requires
that change within a component is completely encapsulated in
the structure of actions defined for the component and that the
computations performed by the system reflect the
interconnections established between its components. The two
conditions on write frames imply that actions of the system in
which a component is not involved cannot have local channels
of the component in their write frame. The third condition
reflects the fact that the effects of the actions of the
components can only be preserved or made more deterministic
in the system. The last two conditions allow the bounds that
the design specifies for the enabling of the action to be

strengthened but not weakened. Strengthening of these
bounds reflects the fact that all the components that
participate in the execution of a joint action have to give their
permission for the action to occur.

design comm is
in i:ps+pdf
do ac: true→skip

 user printer

In order to illustrate the way morphisms can be used for
establishing interconnections, consider the diagram above. It
defines a configuration in which files from a user component
are sent to a printer component through synchronous
communication. This form of communication is achieved by
using a third design comm that, essentially, consists of an
input channel to model the medium through which data is to
be transmitted between the user and the printer (i/o
interconnection of p and rf), and a shared action for the two
components to synchronise in order to transmit the data
(synchronisation of print and rec).

The connecting design – comm – just provides the required
name bindings and has no computational contents. In fact, as
we have shown in [7], in the configuration diagram of a
system, only the signatures of the corresponding components
need to be involved. CommUnity is what we have called a
coordinated formalism, because it provides a complete
separation between the computational and the coordination
aspects of systems. Hence, in the rest of the paper
configuration diagrams are defined at the level of signatures.

The semantics of configurations is given by a categorical
construction: the colimit of the underlying diagrams. Taking
the colimit of a diagram collapses the configuration into an
object by internalising all the interconnections, thus
delivering a design for the system as a whole. Colimits in
CommUnity capture a generalised notion of parallel
composition in which the designer makes explicit what
interconnections are used between components:

• channels involved in each i/o-communication established
by the configuration are amalgamated;

• every set {g1,…,gn} of actions that are synchronised
through the interconnections is represented by a single
action g1||…||gn whose occurrence captures the joint
execution of the actions in the set.

• the transformations performed by the joint action are
specified by the conjunction of the specifications of the
local effects of each of the synchronised actions, and the
bounds on the enabling condition of joint actions are also
obtained through the conjunction of the bounds specified
by the components.

For instance, the colimit of the previous diagram collapses the
configuration into the following design.

design user-printer is
out p:ps+pdf
prv s:0..2, w:Lowtex, busy:bool, pf:ps+pdf
do work[w,s]: s=0,false → s'=1
[] pr_ps: s=1,false → p:=ps(w) || s:=2
[] pr_pdf: s=1,false → p:=pdf(w) || s:=2
[] print|rec: s=2∧¬ busy → s:=0 || busy:=true || pf:=p
[] prv prt: busy → busy:=false

p←i→rf

print→ac←rec

44

When the colimit of a configuration returns a closed program,
it can also be used for providing an operational semantics for
the system thus configured. The colimit can be seen as an
abstraction of the actual distributed execution that is obtained
by coordinating local executions according to the
interconnections, rather than the program that is going to be
executed as a monolithic unit. This point of view is specially
important because it gives clues for the extension of
CommUnity to location-aware systems.

As we have already mentioned, at each execution step one of
the actions is chosen and executed if its guard is true, with the
guarantee that private actions that are infinitely often enabled
are selected infinitely often. Because actions of the system are
synchronisation sets of actions of its components, the
evaluation of the enabling condition of the chosen action can
be performed in a distributed way by evaluating the enabling
conditions of the component actions in the synchronisation
set. According to the semantics that we have just given, the
joint action will be executed iff all the local enabling
conditions evaluate to true. The execution of the multiple
assignment associated with the joint action can also be
performed in a distributed way by executing each of the local
assignments. What is important is that the atomicity of the
execution is guaranteed, i.e. the next system step should only
start when all local executions have completed, and the i/o-
communications should be implemented so that every local
input channel is instantiated with the correct value – that
which holds of the local state before any execution starts
(synchronicity). Finally notice that because, so far, we have
been considering solely location-transparent systems, this
distributed execution coincides with the execution of the
program returned by the colimit as a monolithic unit.

We end this section by showing that using the mechanisms
that we have just described for configuration design in
CommUnity, it is possible to treat component interactions as
first-class entities, namely by adopting architectural
connectors [1] to support their design. According to [1], an
architectural connector can be defined by a set of roles, that
can be instantiated with specific components of the system
under construction, and a glue specification that describes
how the activities of the role instances are to be coordinated.
For instance, asynchronous communication through a
bounded channel can be represented by a connector Async with
two roles – sender and receiver – and a glue that models a
buffer with FIFO discipline. Their designs are given below.

design buffer[t]is design receiver[t] is
in i:t in i: t
out o:t do rec: true,false→skip
prv rd: bool, b: list(t)
do put:|b|<bound → b:=b.i
[] prv next:|b|>0∧¬ rd → o:=head(b)||b:=tail(b)||rd:=true
[] get:rd → rd:=false

The glue and roles of async are interconnected as follows.

 in x:t in x:t
 do ac[] do ac[]

sig(sender[t]) sig(buffer[t]) sig(receiver[t])

The buffer prevents the sender from sending a new message
when there is no space and prevents the receiver from reading a
new message when there are no messages. The two roles –

sender and receiver – define the behaviour required of the
components to which the connector can be applied. For the
sender, we require that no message be produced before the
previous one has been processed. For the receiver, we simply
require that it has an action that models the reception of a
message.

The use of a connector in the construction of a particular
system consists in the instantiation of its roles with specific
designs. The instantiation of a role with a component i s
possible iff the component fulfils the requirements the role
determines. Therefore, instantiation corresponds to a form of
refinement that can also be captured by a notion of morphism
(see [7] for details).

We will use async(f:sender→A,g:receiver→B) to denote the
system that consists of components A and B communicating
asynchronously, where f and g are signature morphisms that
bind the actual parameters to the formal ones. In the case at
hand, they identify, for instance, the output channel of A where
the messages to be transmitted through the buffer are placed.

4. DISTRIBUTION AND MOBILITY
This architectural approach does not take into account the
properties of the “physical” distribution topology of
locations and communication links. It relies on the fact that

• the individual components can perform the computations
that are required to ensure the functionalities specified for
their services at the locations in which they are placed;

• the coordination mechanisms put in place through
connectors can be made effective across the “wires” that link
locations in the underlying communication network.

Hence, so far, we have been describing systems that are
location-transparent or location-unaware. Our aim is to extend
CommUnity in order to reflect distribution and mobility,
namely we want to be able to describe systems with
components that have a location-dependent behaviour and are
able to move, and systems with location-dependent
coordination patterns.

4.1 Syntax
We adopt an explicit representation of the space within which
movement takes place, but we do not assume any specific
notion of space. This is achieved by considering that “space”
is constituted by the set of possible values of a special data
type included in the fixed data type specification over which
components are designed (see section 3.1). The corresponding
data sort, named loc, models the positions of the space in a
way that is considered to be adequate for the situation at hand.
The only requirement that we make is a special location –⊥ – be
distinguished: its role will be discussed further below. In this
way, CommUnity can remain independent of any specific
notion of space and, hence, be used for designing systems with
different kinds of mobility. For instance, in physical mobility,
the space is, typically, the surface of the earth, represented
through a set of GPS coordinates. In some kinds of logical
mobility, space is formed by IP addresses. Other notions of
space can be modelled, namely multidimensional spaces,
allowing us to accommodate richer perspectives on mobility
such as the ones that result from combinations of logical and
physical mobility, or logical mobility with security concerns.

 o←x→i

get→ac←rec

 o←x→i

send→ac←out

move

45

In order to model systems that are location-aware, we make
explicit how system “constituents” are mapped to the
positions of the fixed space. Mobility is then associated to
the change of positions. By constituents we mean output and
private channels, actions, or any group of these. This means
that the unit of mobility (the smallest constituent of a system
that is allowed to move) is fine-grained and different from the
unit of execution.

More concretely, CommUnity designs are extended with
“locations”, and each of their constituents is assigned a
location. On the one hand, each output and private channel x
of a design is associated with a location l. We make this
assignment explicit by writing x@l. At every given state, the
value of l indicates the position of the space where the values
of x are made available. Each location l may assume different
values at different times, making x a potentially mobile entity.
On the other hand, each action name g is associated with a set
Λ(g) of locations. This means that the execution of action g i s

distributed over the locations in Λ(g) in the sense that its
execution involves the synchronous execution of a guarded
command in each of these locations. Hence, guarded
commands are not anymore associated with actions but with
located actions, i.e. pairs g@l, for l∈Λ (g).

Locations in a component design can be declared as input or
output in the same way as channels. Input locations are read
from the environment and cannot be modified by the
component. Hence, if l is an input location, the movement of
any constituent located at l is under the control of the
environment. Output locations can only be modified locally
but can be read by the environment. Hence, if l is an output
location, the movement of any constituent located at l is under
the control of the component.

As an example, consider the design mobuser, a location-aware
version of the user presented before.

design mobuser is
inloc l
out p@l:ps+pdf
prv s@l:0..2, w@l:Lowtex
do work@l[w,s]: s=0,false → s'=1
[] pr_ps@l: s=1,false → p:=ps(w) || s:=2
[] pr_pdf@l: s=1,false → p:=pdf(w) || s:=2
[] print@l: s=2 → s:=0

This design models a centralised system, in the sense that all
its constituents are located at the same position, that does not
control its own movement. This is captured by the fact that
every action and local channel is assigned the same input
location l. For instance, the value of l can be determined by a
human that carries a laptop where Lowtex is running.

A different example is followme, the design of a system that
partially controls its own movement but that is still
centralised.

design followme is
inloc lf
outloc l
do action@l[]: l=lf→ skip
[] prv move@l[l]: ¬(l=lf) → l’=lf

The system decides itself when to move but the choice of the
destination is still made by the environment (through the
input location lf). The design also includes an action that i s

enabled for execution only when the component is in the
location provided by the environment.

design mobuser-fprinter is
inloc lu
outloc lp
out p@lu:ps+pdf
prv s@lu:0..2,w@lu:Lowtex,busy@lp:bool,pf@lp:ps+pdf
do work[w,s]@lu: s=0,false → s'=1
[] pr_ps@lu: s=1,false → p:=ps(w) || s:=2
[] pr_pdf@lu: s=1,false → p:=pdf(w) || s:=2
[] print|rec @lu: s=2 → s:=0
 @lp: ¬busy → pf:=p || busy:=true
[] prv prt@lp: busy → busy:=false

Finally we present an example of a design distributed over
two, potentially different, locations. The design mobuser-
fprinter is also a location-aware version of a design presented
before –user-printer. It models a system in which the mobile
user communicates synchronously with a printer located
potentially at a different location. Notice that, whereas the
location of the mobile user is under the control of the
environment, the location of the printer is locally controlled.
More precisely, because none of the actions of mobuser-
fprinter changes the values of lp (D(lp)=∅) we may conclude
that the location of the printer, once it is set at configuration
time, will remain unchanged. That is to say, the printer is a
non-mobile component of this system.

In order to keep the possibility of designing location-unaware
systems, the set of the locations L of a design P includes by
default a special element designated by λL. It is an output
location that, however, cannot be modified by P. This i s
enforced by the condition D(λL)=∅ . By default, every action

and channel is considered to be located at λL. Trivially, every
standard CommUnity design defines a canonical distributed
design: the one that has all its constituents located at λL.

In order not to overload designs, we omit g@λL whenever it i s
an empty action, i.e. when

D(g@λL)=∅ and L(g@λL)= U(g@λL)=R(g@λL)=true.

We will see that any action located uniquely at λL can access
any required entity in a location-transparent manner.

4.2 Semantics
Before proceeding towards more complex examples that
illustrate the expressive power of our approach, it is essential
to identify what is the semantical counterpart of the proposed
syntatic extension of CommUnity designs.

Let us analyse the mobuser-printer example a little further.
Recalling the colimit semantics given in section 3.2, the joint
action print|rec will be executed iff its two local guards
evaluate to true. The distribution dimension added to user-
printer in order to obtain mobuser-printer determines that the
expression s=2 is evaluated at the location given by lu and
¬ busy is evaluated at the location given by lp. The execution
of the multiple assignment associated with print|rec is also
performed in a distributed way by executing each of the local
assignments. The next system step should only start when the
two local executions have completed. Given that the locations
variables lu and lp may have different values, the question of
knowing whether this synchronisation is possible arises.

46

As explained before, in what concerns space, we have only
assumed that it is constituted by the set of possible values of
the data type loc. For the purpose of this example, we might
have decided, for instance, to consider loc as being an interval
in nat×nat modelling some contiguous space in a building.
Notice, however, that this does not give us any information
about the structure of the space (whether it is an open space or
there are walls). It also does not express in which conditions
the communication is viable. Those conditions typically
depend on the communication medium. For instance, the
conditions for a viable communication are not the same for
infrared communication and radio links.

We consider that, once we fix an algebra U for the data types,
namely a domain Uloc for loc, the relevant properties of the
mobility space are captured by two binary relations over Uloc:

• A relation bt s.t. n bt m means that n and m are positions in
the space “in touch” with each other. Coordination among
components takes place only when they are “in touch”
with each other.

• A relation reach s.t. n reach m means that position n i s
reachable from m. Movement of a component to a new
position is possible only when this position “is
reachable” from the current one.

Because the special location variable λ intends to be a
position to locate entities that can communicate with any
other entity in a location-transparent manner, we require that
the value of λ is always set at configuration time as being⊥ U

and, furthermore, ⊥ U bt m, for every m∈ Uloc. Moreover, in our
setting, it seems reasonable to require that bt be symmetric and
reflexive, and that reach be reflexive. In this way, components
can always communicate when they are co-located (at the same
location/position). Notice that, when we say communication,
we mean the primitive forms of communication between
components in CommUnity – action synchronisation and i/o-
communications through channels. Because we are
considering that bt captures the conditions under which these
two forms of communication are viable and action
synchronisation is intrinsically symmetric, we have required
that bt be symmetric. A more fined-grained model could be
obtained by modelling separately, with two different relations,
the conditions under which action synchronisation and i/o
communication are possible.

To make things harder, the relations bt and reach may also
vary over time. For instance, in the case of infrared
communication, an obstacle may appear at any time between
the communicating entities making the communication
impossible.

The operational semantics for an extended (distributed)
CommUnity program can only be given in terms of a infinite
sequence of relations (bti,reachi)i∈ N. At each execution step,
one of the actions that can be executed is chosen and executed.
The conditions under which a distributed action g can be
executed at time i are the following, where [e]i denotes the
value of the expression e at time i.

1. for every l1,l2∈Λ (g), [l1]i bti [l2]i

the execution of g involves the synchronisation of their
local actions and, hence, their locations have to be in
touch

2. for every l∈Λ (g), g@l can be executed, i.e.,

a. for every x∈ F(g@l), [l]i bti [Λ(x)]i

the execution of g@l requires that every channel in the
frame of g@l can be read or written and, hence, l has to
be in touch with the locations of these channels

b. for every l1∈ D(g@l)∩L and m∈ [R(g)]i(l1),
m reachi [l1]i

if a location l1 can be effected by the execution of g@l,
then every possible new value of l1 must be a position
reachable from the current one

c. the local guard L(g@l), which is equal to U(g@l) in a
program, evaluates to true

In light of these conditions, it is interesting to analyse again
some of the previous examples. For instance, in the example of
mobuser-fprinter, after a file has been put in p for being
printed, the communication of this file to the printer has to
wait until the mobile user is located at a position that is in
touch with the printer’s. Hence, the job may be pending for
ever. In the example of followme, it is interesting to notice that
the action move, that moves the entities located at l to a new
position given by lf, can only be executed if the current value
of l is a position in touch with the value of lf and, furthermore,
lf is reachable from l.

4.3 Coordination
The generalisation of the notion of morphism presented in
section 3.2 to distributed designs is straightforward.
Essentially, we have to extend signature morphisms with a
mapping between the sets of locations and transpose the
conditions over the actions to located actions. More precisely,

A morphism σ: P1→P 2 consists of a signature morphism σ:

sig(P1)→ sig(P2) and a total function σl: L1→L2 that

preserves the pointed element (λ), satisfying:

1. for every l∈ outloc(L1), σl(l)∈ outloc(L2)

2. for every x∈ local(X1) and g∈Γ 2 s.t. σac(g) i s defined,

σl(Λ1(x))⊆Λ 2(σl(x))

σl(Λ1(σac(g)))⊆Λ 2(g)

3. for every g∈Γ 2 s.t. σac(g) i s def. and l∈σ l
−1(Λ(g))

σvar(D1(σac(g)@l))⊆ D2(g@σl(l))

σac(D2(σx(x)@σl(l)))⊆ D1(x@l)for x∈ local(X1)

Φ‚ (R2(g@σl(l))⊃ σ (R1(σac(g)@l)))

Φ‚ (L2(g@σl(l)) ⊃ σ (L1(σac(g)@l))

Φ‚ (U2(g@σl(l)) ⊃ σ (U1(σac(g)@l))))

For instance, the diagram below, similar to the one presented
in section 3.2, establishes the synchronous communication of
files from the mobile user to the fixed printer. Notice that the
design comm used in this diagram is the canonical distributed
design defined by the standard one. Given that comm models
the medium through which data is to be transmitted, it i s
obviously location-unaware. Using the analogy with hardware,
comm together with the two morphisms act as an

47

interconnection “cable” between the two components, and
cables are, in fact, location-unaware (wireless connections have
this property as well).

design comm is
in i:ps+pdf
do ac: true→ skip

 mobuser fprinter

Not surprinsingly, the design mobuser-fprinter already
presented is a colimit of this diagram. More interesting is the
fact that the distribution dimension added to this system – the
fact that the user is a mobile entity that does not control its
own movement whereas the printer is fixed – can be described
separately from the two other dimensions: computation and
coordination. The diagram above

design dist is
inloc x

 user@l printer@l fixed
where
• fixed is a design that consists of an output location

named lf;
• P@l denotes the distributed design we obtain by adding

an input location variable l to P and by locating every
constituent of P in l;

specifies that the components are located in independent
locations (recall that the use of l twice is treated as being
purely accidental) and the user is mobile and does not control
its movement (l is an input location). Moreover, the binding of
location l of the printer with the location of fixed – a location
with a constant value – defines that the printer is fixed in a
certain position.

It is important to notice that interconnections between
distributed designs can also be established at the level of their
signatures, which were extended accordingly. Signatures are
extended in order to include the locations of the component
and of its channels and actions.

4.4 Externalisation of Distribution
As mentioned in the introduction, our aim is to provide an
externalisation of the mechanisms that are responsible for
managing the distribution topology of systems, in particular,
to provide semantic primitives through which the
distribution/mobility dimension can be explicitly represented
in system architectures.

In this section, we will proceed with the use of CommUnity
distributed designs to model location-aware systems but now
focusing on the externalisation of their distribution
dimension. The approach we will adopt is to describe
separately what, in the definition of a system, is responsible
for its computational aspects, what is concerned with
coordinating the interaction between its different components,
and what is concerned with the distribution of its constituents.

The first example, introduced in [21], consists of a system of
two components – a sender and a receiver of bits. The sender
exists at some fixed location in space and is neither aware of
nor in control of its own location. It produces, in one go,
words of bits that are then transmitted one by one. In contrast
to the sender, the receiver is mobile and controls its own

location. Upon receipt of a word which is a location, it may
choose to move to that location. The communication between
the two components is synchronous.

Computation
design bsender is
out bit:bool
prv word:array(N,bool), k:nat, rd:bool
do new-w[word,k]: k=N → k’=0
[] new-b: ¬rd∧ k<N→ rd:=true||bit:=word[k]||k:=k+1
[] send: rd → rd:=false

design breceiver is
in bit:bool
out w:array(N,bool), k:nat
prv rd:bool, word:array(N,bool)
do rec: k<N → word[k]:=bit||k:=k+1
[] new-w: rd∧ k=N → rd:=false||k:=0
[] prv prod: ¬rd∧ k=N → rd:=true||w:=word

Coordination
 in i:bool
 do ac[]

 sig(bsender) sig(breceiver)

Distribution/Mobility

inloc x
in w:array(N,bool)
do ac[] dist

sig(driver) sig(breceiver@l) sig(bsender@l) sig(fixed)

where
design driver is
outloc l
in w@l:array(N,bool)
prv b@l:bool
do move@l: loc(w) → l:=location(w)
[] stay@l: true → skip

We assume that loc(_) is an operation on bit arrays that
indicates whether the corresponding word, given by
location(_), is a location.

In the interconnection of bsender with the driver, both actions
move and stay are synchronised with the action new-w of
bsender. This gives rise to a design with the action rec as
defined in breceiver and the action new-w split in two:

new-w|move@l: k=N∧ loc(w) → k:=0||l:=location(w)
[] new-w|stay@l: k=N → k:=0

In this way, once the last bit of a word has been received, the
receiver may chose to move or not to that location. The choice
of moving is only available if the transmitted word is a
location that is reachable from the current location.

In order to define the synchronous communication between
the bsender and breceiver in our system, we opt to present
explicitly a configuration diagram. An alternative would have
been to define it implicitly by using the connector sync[bool].
This is possible because its roles – sender and receiver – are
refined by bsender and breceiver, respectively.

Given the structural similarity of the coordination and
distribution descriptions – configuration diagrams involving
the signatures of the components of the system – it is evident
that it is also possible and desirable to give to the patterns of

p←i→rf

 print→ac←rec

 l←x→lf

l←x→lf

 l←x→l
 w←w→w

 move
stay

→ac←new-w

 bit←i→bit

 send→ac←rec

48

distribution/mobility of components a first-class status and
provide primitives for the description of these patterns. Our
proposal is that these patterns be defined, like interactions, by
a set of roles and a glue specification. Each role describes what
is expected of each involved part, i.e., it determines the
obligations that they have to fulfil to become instances of the
roles. The glue describes the pattern of mobility and
distribution the role instances experience. These primitives are
called distribution connectors.

In this example, we can easily identify two patterns, both with
one unique role. On the one hand, we have a pattern of non-
mobility of a given component. This pattern can be captured
by a distribution connector with role comp, a design
consisting of an input location, which describes that the
pattern is only applicable to components that do not control
their own movement. The glue is the design fixed, which
defines the non-mobility property.

On the other hand, we have the following pattern of mobility:
whenever the value of the input variable w defines a possible
location reachable from the current one, a non-deterministic
choice exists between to move to that location or to remain
still. This pattern can be captured by a distribution connector
also with the role comp but with a different glue – the design
drive.

Another very simple pattern is the one that establishes that
two components are always co-located. This pattern is captured
by a distribution connector co-loc with two roles and a glue,
all modelled by the design comp that consists simply on an
input location l.

 inloc x inloc x

sig(comp) sig(comp) sig(comp)

A more complex and interesting pattern is given by the
distribution connector fm, defining a pattern of mobility
involving two components that have to be instances of,
respectively, chased and chase:

design chased is design chase is
outloc l inloc l

do ac@l: true,false → skip

The glue of fm is the design followme presented previously
and is interconnected to the roles as follows.

 inloc x
 inloc x do ac[]

sig(chased) sig(followme) sig(chase)

In the mobility pattern thus defined, the instance of chase i s
moved to the location of the instance of chased whenever they
are not co-located. Furthermore, in this situation chase’s
action ac is prevented from occurring. We may use this
pattern, for instance, to describe yet another variant of a
sender-receiver system. This time, the sender and the receiver
communicate asynchronously. The sender does not control its
own location, whereas the receiver, whenever it is not co-
located with the sender, interrupts the reception of messages
and tries to move to the sender’s position.

Computation

sender, receiver
Coordination

async(id:sender→sender,id:receiver→receiver)
Distribution/Mobility

fm(incl:chased→sender@l, ηs:chase→receiver@l)
co-loc(incl:comp→buffer@l,incl:comp→sender@l)

where incl denotes the inclusion and ηs identifies that
action ac of chase is rec of receiver.

This example raises an interesting question: should the glues
of coordination connectors be location-transparent? In the
case at hand, it was specified that the glue of async is co-
located with the sender.

In contrast with the coordination connector sync, the glue of
async has a computational part, namely it mantains a buffer
with pending messages, and hence should be a location-aware
design. In situations in which the glue, although it is defined
as a design, does not perform any computation, but simply
provides a pure coordination function just like an ideal,
neutral “cable”, the glue will be typically location-transparent.

5. CONCLUSIONS
In this paper, we extended the architectural approach that we
developed around the separation between computation and
coordination with a third dimension: distribution. This
extended approach will allow us to address the complexity of
systems that are required to operate not only in environments
that are “business-time” critical, i.e. are able to reconfigure
themselves dynamically very quickly, but also “space” critical
in the sense that they need to be able to address mobility of
components across locations and react to changes in the
communication networks.

For that purpose, we introduced a notion of “distribution
connector” that, together with the more standard
“coordination connectors” will enforce a strict separation of
concerns that

• ensures that the configuration of the system as a whole
can evolve in a compositional, non-intrusive way.

• means that all the mechanisms that are needed to ensure
the levels of coordination required for global system
properties to emerge from individual computations, even
simple message calling, have to be superposed through
explicit coordination connectors.

• makes sure that all the mechanisms that are needed to
ensure the levels of distribution and mobility required for
global system properties to emerge from the individual
components, even simple permanent co-location, have to be
superposed through explicit distribution connectors.

A mathematical semantics based on categories of CommUnity
designs was proposed for this extension. We would now like
to use this semantics to explore more complex topological
properties of location spaces – the ones we used in the paper
were very naive, just enough to illustrate the intended
approach.

Other avenues that we intend to explore immediately are
related to reconfiguration and verification. This is an effort
that we are pursuing within a research consortium –AGILE –
funded by the EU under the FET/IST Global Computing
initiative, that also involves the Universities of Munich
(LMU), Pisa and Florence, and the CNR-IEI of Pisa.

l←x→l
 action→ac←ac

l←x→lf

l←x→ll←x→l

49

6. ACKNOWLEDGMENTS
This work is supported by EU under the consortium AGILE,
IST-2001-32747 Global Computing Initiative and Fundação
para a Ciência e Tecnologia and FEDER through project
POSI/32717/00 (FAST-Formal Approaches to Software
Architecture).

7. REFERENCE
[1] R.Allen and D.Garlan, "A Formal Basis for Architectural

Connectors", ACM TOSEM, 6(3), 213-249, 1997.

[2] R.Amadio,”An asynchronous model of locality, failure,
and process mobility”, in D.Garlan and D.Métayer (eds),
Coordination’97:Coordination Languages and Models,
LNCS 1282, Springer-Verlag, 1997.

[3] L.Andrade and J.Fiadeiro, “Coordination Technologies for
Managing Information System Evolution", in K.Dittrich,
A.Geppert and M.Norrie (eds), CAiSE'01, LNCS 2068, 374-
387, Springer-Verlag 2001.

[4] R.Back and R.Kurki-Suonio, "Distributed Co-operation
with Action Systems", in ACM Transactions on
Programming Languages and Systems, 10(4), 513-554,
1988.

[5] L.Cardelli and A.Gordon, “Mobile Ambients”, in Nivat
(ed), FoSSACs’98, LNCS 1378, 140-155, Springer-Verlag,
1998.

[6] K.Chandy and J.Misra, Parallel Program Design - A
Foundation, Addison-Wesley 1988.

[7] J.L.Fiadeiro, A.Lopes and M.Wermelinger, "A
Mathematical Semantics for Architectural Connectors",
submitted, available at www.fiadeiro.org/jose/papers.

[8] J.L.Fiadeiro and A.Lopes, "Semantics of Architectural
Connectors", in TAPSOFT'97, LNCS 1214, Springer-
Verlag 1997, 505-519.

[9] J.L.Fiadeiro and T.Maibaum, "Categorical Semantics of
Parallel Program Design", Science of Computer
Programming 28, 1997, 111-138.

[10] N.Francez and I.Forman, Interacting Processes, Addison-
Wesley 1996.

[11] J.Goguen, "Categorical Foundations for General Systems
Theory", in F.Pichler and R.Trappl (eds), Advances in
Cybernetics and Systems Research, Transcripta Books
1973, 121-130.

[12] M.Hennessy and J.Riely,”A typed language for
distributed mobile processes”, in Proc. ACM Principles o f
Prog. Lang. ACM, 1998.

[13] A.Lopes and J. L. Fiadeiro, "Using explicit state to
describe architectures", in E. Astesiano (ed), FASE'99,
LNCS 1577, 144–160, Springer-Verlag, 1999.

[14] C.Mascolo, “MobiS: A specification language for mobile
systems”, Coordination’99: Coordination Languages and
Models, LNCS 1594, 37–52, Springer-Verlag 1999.

[15] R.Nicola, G.L.Ferrari and R.Pugliese, “Klaim: a Kernel
Language for Agents Interaction and Mobility”, IEEE
Trans. on Software Engineering, 24 (5), 315-330, 1998

[16] R.Nicola, G.L.Ferrari and R.Pugliese, “Coordinating
Mobile Agents via Blackboards Acess Rights”, in
D.Garlan and D.Métayer (eds), Coordination’97:
Coordination Languages and Models, LNCS 1282, 220-
237, Springer-Verlag, 1997.

[17] P.Oreizy and R.N.Taylor, “On the Role of Software
Architectures in Runtime System Reconfiguration", IEE
Proceedings-Software, 145 (5), 137-145, 1998

[18] L.Petre, K.Sere and M.Waldén, “A Topological Approach
to Distributed Computing”, in Proc. of WDS’99 Workshop
on Distributed Systems, Electronical Notes in Theoretical
Computer Science, 8, Elsevier, 1999.

[19] G.P.Picco, A.L.Murphy and G.-C.Roman, "Lime: Linda
meets Mobility", in Proceedings of the 21st International
Conference on Software Engineering, May 1999, 368-
377.

[20] G.-C.Roman, G.P.Picco, A.L.Murphy, "Software
Engineering for Mobility: A Roadmap," in A. Finkelstein
(ed), Future of Software Engineering, 22nd International
Conference on Software Engineering, 241-258, June
2000

[21] G.-C.Roman, G.P.Picco, A.L.Murphy, "Coordination and
Mobility," in A. Omicini et al (eds), Coordination o f
Internet Agents: Models, Techniques, and Applications,
253-273, Springer-Verlag, 2001.

[22] G.-C.Roman, P.J.McCann and J.Y.Plun, “Mobile UNITY:
reasoning and specification in mobile computing”, ACM
TOSEM, 6(3),250-282, 1997.

[23] M.Wermelinger and J.Fiadeiro, “Connectors for Mobile
Programs”, IEEE Transactions on Software Engineering
24(5), 331-341, 1998

50

