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ABSTRACT

Modern software heavily relies on the use of components. Those components are usually pub-
lished in central repositories, and managed by build systems via dependencies. Due to issues around
vulnerabilities, licenses and the propagation of bugs, the study of those dependencies is of utmost
importance, and numerous software composition analysis tools have emerged for this purpose. A
particular challenge are hidden dependencies that are the result of cloning or shading where code
from a component is ”inlined”, and, in the case of shading, moved to different namespaces.

We present a novel approach to detect vulnerable clones in the Maven repository. Our approach
is lightweight in that it does not require the creation and maintenance of a custom index. Starting
with 29 vulnerabilities with assigned CVEs and proof-of-vulnerability projects, we retrieve over 53k
potential vulnerable clones from Maven Central. After running our analysis on this set, we detect
727 confirmed vulnerable clones (86 if versions are aggregated) and synthesize a testable proof-of-
vulnerability project for each of those. We demonstrate that existing SCA tools often miss those
exposures. At the time of submission those results have led to changes to the entries for six CVEs
in the GitHub Security Advisory Database (GHSA) via accepted pull requests, with more pending.

Keywords vulnerability detection, clone detection, shading, sofwtare composition analysis, Java, Maven

1 Introduction and Background

Modern software systems often use components in order to achieve economy of scale. The process is recursive —
components also use other components, resulting in deep and complex component ecosystems [49, 27, [16]. This
has in turn created new challenges. The prime example is vulnerability propagation, infamous examples include the
equifax [45,130] and log4shell [46| 24] incidents, with vulnerable and outdated components now being acknowledged
as being a major security risk [7]. Other related issues include license compliance [39], typo-squatting [44]], and
lifecycle issues of components as demonstrated by the leftpad incident [12].

In response to those challenges, software composition analysis (SCA) tools have emerged that scan the dependency
networks, and cross-reference them with known vulnerabilities catalogued in databases such as the National Vulner-
ability Database (NVD) [4] and the GitHub Advisory Database [3]. If a vulnerable dependency is found, developers
are notified and can upgrade dependencies to a newer version. Examples of such tools include GitHub’s depend-
abot [2l], snyk [6], OWASP dependency check [3l], tooling integrated into development environments such as IntelliJ’s
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dependency analysis backed by checkmarx, and features or plugins of build tools like npm audit (for JavaScript) and
Sonatype’s oss index Maven plugin [[1]].

At a high-level an SCA tool combines two components, a scanning component to find dependencies, and a vulnerabil-
ity database (vulnerability DB) to decide whether a dependency has a known vulnerability or not. To combine the two,
some matching logic is required, which provides a bridge between the low-level packages used by build systems (e.g.,
Maven artifacts in the Java/Maven ecosystem) and a more coarse-grained software identifier at the product-level, like
the CPE (Common Platform Enumeration) standard used by NVD. This matching is not always straight-forward, it
varies across tools, and can introduce inaccuracies. Versions are another source of inaccuracy for SCA tools, often due
to the fact that it is hard to pinpoint when a vulnerability was introduced, in which case (conservative) assumptions
have to be made.

With the exception of Eclipse Steady, which uses program analysis to determine reachability of vulnerable code,
SCA tools generally do not assert whether a vulnerable dependency makes an application unsafe (e.g. because it is
exploitable by an attacker) or safe (e.g. because the dependency is unused).

Open source SCA tools rely on public information for their vulnerability DBs and depend on wider community efforts
to update and correct this information. Commercial tools (e.g. snyk) may provide their own vulnerability DB, which
may refine or extend the information that is available in public. Mismatch between information in vulnerability DBs
is possible, often due to timing issues where one DB is updated sooner than another. It is however in the interest of
commercial vendors to eventually have their DBs aligned with public knowledge to avoid confusion among customers.

Like all program analyses, SCA tools suffer from precision problems, i.e. false positives. They may for instance detect
dependencies to vulnerable code in a library that is not actually reachable [31]]. This could in principle be tackled by
employing more fine-grained analyses like call graph construction, although the price (in terms of computational
resources needed) could be significant, and those analyses themselves have to deal with precision issues.

But SCA analyses are not sound either, i.e. they miss dependencies and therefore problems such as vulnerabilities
associated with those dependencies [14].

The first source of unsoundness is late binding, i.e. applications that “discover” capabilities at runtime, leading to
dependencies that are not visible in the build configurations or code SCA tools analyse. This is outside the scope of
our study.

A second cause of unsoundness is cloning. With cloning, code is copied into the project, and these copies can carry
vulnerabilities which are then hidden by the process. This can take place when an application directly clones code, or
cloning is used by libraries which are then used as dependencies by downstream clients. Cloning can take place on
multiple levels, from code snippets, functions, classes to entire components. Code sharing, discussion and tutorial web
sites like stack overflow [36} 9] and more lately Al-based tools like Copilot promote cloning [33]]. With cloning, basic
engineering principles like DRY (do not repeat yourself) are violated, and in the long term the (lack of) maintenance
of cloned code is highly problematic. For vulnerability detection, a particular problem is that many clones are not
perfect, i.e. they are often somehow transformed, and generally lack provenance. L.e., the original source of the clone
is often opaque, and tools cannot reason about it. Copilot is an extreme example where abstraction and aggregation is
used to produce code from potentially large amounts of input sources.

However, there are also advantages to cloning, and cloning may even be used in order to make code more secure
and reliable. For instance, if a dependency is only used for the purpose of using a rather small and trivial piece of
functionality from an otherwise large component, then cloning can be a sensible strategy as it may reduce the size of
a product to be deployed, and may also reduce its attack surface by removing now redundant functionalities.

In the case of Java, there is an additional problem, a relative of the infamous dll hell problem [17]. Large dependency
networks may lead to conflicts between different versions of the same class added via multiple dependency paths [47]].
Often, the problems resulting from this only manifest at runtime when classes are loaded and linkage related errors
caused by binary incompatibility occur. API changes causing this problem are common [35 26], poorly understood
by developers [18]], and therefore expensive for projects.

A common solution for this problem is shading — a variant of cloning where entire packages are cloned and re-
named. Even the Java standard library employs shading, for instance, the OpenJDK version 16 contains shaded
versions of sax (an XML parser library) and asm (a bytecode engineering library) in packages with names starting
with jdk.internal.org.xml.sax and jdk.internal.org.objectweb.asm, respectively

"https://github.com/AdoptOpenIDK/openjdk-jdk16/tree/master/src/java.base/share/classes/jdk/
internal/org/
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The Java / Maven community acknowledges this issue by providing tools like the Maven shade plugin|’| Here, shading
is automated and performed during the build. A dependency to be shaded and the packages to be renamed are declared
in the build file (pom.xml), and therefore remain visible to SCA tools. We refer to this as build time shading (b-shading
for short).

There are cases where other approaches to shading are used - we will provide plenty of examples later in the evaluation
section. Here, shading is done by means of refactoring and code organisation tools like IDEs, we therefore refer to this
as designtime shading (d-shading). One reason might be a misunderstanding of dependency mechanisms by engineers.
However, there might also be more sophisticated reasons to use d-shading. Tools like the shade plugin are static
analysis tools, and as such can at best be expected to be soundy [29]. The prevalence of dynamic language features
in Java is a known challenge for static analysis tools, and leads to a considerable amount of false negatives [43]. In
particular, tools like the shade plugin have to rewrite the bytecode of the code to be shaded, and change references
(supertypes, method and field descriptors, etc) to the new package names. If such references are missed due to
reflective references being present, builds will fail or programs may exhibit unexpected runtime behaviour. In this
case, using d-shading might be a sensible choice.

However, d-shading results in blind spots for tools that rely on declared dependencies to infer the presence of vulner-
abilities. The question arises whether this is common, and in particular, whether this poses a security risk. This is the
question we set out to study.

The rest of this paper is organised as follows. We start with a discussion of related work. In order to gauge how
common shading is, we then report on a modest experiment on the use of the shade plugins in poms found on GitHub.
In Sectiond] we describe the tool pipeline we have developed in order to detect design time shading of Maven artifacts
with a focus on detecting vulnerabilities in the shaded components which are missed by SCA tools. The evaluation
is split into two parts - we first describe the methodology used, and then discuss results. We discuss the disclosure
procedure we followed in Section |8} and finish with a short conclusion.

2 Related Work

2.1 Detecting and Managing Vulnerable Dependencies

A study by Contrast Security investigated vulnerabilities in Java applications and found that “custom Java applications
contain from 5 to 10 security vulnerabilities per 10,000 lines of code.” [48]. They point out that it generally has to
be assumed that vulnerabilities are present in all applications, but on the other hand, that this does not always render
applications unsafe.

Mir et al [31] point out that “less than 1% of packages have a reachable call path to vulnerable code in their depen-
dencies”, alerting to precision problems of dependency-based SCA. However, those results have to be interpreted with
caution. The underlying call graph analysis is based on Opal [20], configured to run the rather inaccurate (but fast)
class hierarchy analysis (CHA, [22]). This is likely to miss many dynamic call graph edges [43] which are exploited
in vulnerabilities. As an example, consider CVE-2015-6420. This vulnerability can be exploited by deserializing ob-
jects from an incoming stream, and therefore the call graph path from application classes to vulnerable classes in this
library is highly obfuscated, and unlikely to be detected by CHA-based (or any other scalable) call graph construction
method. The work by Wu et al [50] is related, with similar limitations.

Kula et al [28]] studied how developers respond to vulnerabilities being detected in dependencies they rely on. They
found that most of the time outdated dependencies are kept, and developers are unlikely to respond to security advi-
sories [28]. Similar results, reporting significant delays to upgrade vulnerable dependencies, were also observed for
other ecosystems, for instance by Decan et al for NPM [15]] and Alfadel et al for Python [S]].

Mirhosseini and Parnin studied whether automated pull requests (PRs) are effective to speed up upgrades [32]. This
mechanism is often deployed by composition analysis tools like dependabot. In general, they found that PRs do speed
up upgrades, although the merge rate is still surprisingly low at around a third of all PRs. Alfadel et al studied particular
PRs made by a popular SCA tool, GitHub’s dependabot, and found a significantly higher acceptance (merge) rate of
about two thirds. This study considered only NPM projects.

Dann et al [14] studied several OSS vulnerability scanners (OWASP dependency check, Eclipse steady, snyk, black
duck, WhiteSource) and evaluated their performance on a set of 7,024 projects collected by SAP. They found limitations
of the tools to deal with several modifications (re-compilation, re-bundling, metadata-removal and re-packaging) of

’https://maven.apache.org/plugins/maven-shade-plugin/
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the original vulnerable projects. Their observations are consistent with ours, and the respective modifications roughly
correspond to our notions of cloning and shading.

Bui et al developed vul4j [11]], a dataset consisting of 79 reproducible vulnerabilities from 51 open-source projects.
Reproducibility is achieved via proof-of-vulnerability (POV) tests. This is the same approach we are using to confirm
the presence of a vulnerability. We use some suitable parts of this dataset for our evaluation, details will be discussed
in Section[3.1]

Ponta et al [34] propose a hybrid code-centric vulnerability detection that overcomes the limitations (here mainly seen
as the low precision) of meta-data based SCA approaches. Their analysis uses code changes introduced by security
fixes. The tool resulting from this is vulas, later renamed to steady. We used steady in the evaluation (Section[5.2)) and
our results suggest that it is complementary to our approach.

Our approach depends on the existence of proof-of-vulnerability (POV) projects, and would therefore benefit from the
automated generation of exploits. Initial work in this area, based on test case generation using genetic algorithms, has
been proposed by Iannone et al [25]].

2.2 Clone Detection

Research into code clone detection has established a classification for levels of clone similarity: type-1 clones are iden-
tical except for layout (whitespace) and comments; type-2 clones are syntactically equivalent, allowing for renaming
of variables, functions, types, etc.; type-3 clones are syntactically similar, additionally allowing for some statements
to be added or removed.

Clone detection is used to improve or enforce software development quality standards by detecting unwanted copies
of code leading to maintainability or licensing issues, and, in academic settings to detect plagiarism. There is a vast
amount of research in this field, covered in surveys such as [40,37].

We use type-2 clone detection as a proxy to detect compositional clones, i.e. the practice of copying (parts of) existing
software libraries into projects.

Binary code similarity [23]] can be seen as an instance of clone detection and related to our work. Comparing code at
the binary (or bytecode) level comes with the challenge of variations introduced by different (versions of) compilers,
different compile-time transformations, and different compile environments.

In particular for Java, clone detection in bytecode has been studied by Dann et al [[13]. They address the problem
by translating bytecode into an intermediate, soot-based format that can abstract from the particularities of different
compilers to some extent. We did consider using a similar approach, however, as source code is readily available in
Maven, a traditional AST-based clone detection appears to be the better choice as those problems can be avoided.

Closely related to it, and also targeting the Java open-source ecosystem is SCA-related research focusing on libraries
included in released Android applications under the term third-party library detection [52]. Note that in this context,
research tries to solve the harder problem of creating an analysis that is resilient to hiding and obfuscation of libraries.
It does this using similarity search techniques based on features (e.g. class dependency structure, method signatures,
control-flow graphs) extracted from bytecode.

3 Prevalence of Buildtime Shading

To gauge how widespread the practice of shading is, we first focus on b-shading, shading performed at build time.
If Maven is used as a build system, this can be achieved by using the Maven shade plugin. To study the prevalence
of b-shading, we used a dataset consisting of Maven build files (poms, i.e., pom.xml) collected as follows: (1) As a
starting point, the library.io dataset E] released on 12 January 2020 was used. (2) The projects were then filtered for
projects using Maven / Java, and having a GitHub repository. (3) pom.xml files were extracted from the respective
repositories. This produced an initial set of 103,358 poms. We selected poms using the shade plugin with the following
XPath query:

//plugin/artifactId[text() = ’maven-shade-plugin’]

This query yields 3,693 poms (3.57%). We then analysed how often classes are relocated into different packages, by
querying those poms with the following XPath query:

*https://libraries.io/
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//plugin/artifactId[text() = ’maven-shade-plugin’]/parent::node()//relocations

We found 808 poms (0.78% of all poms) using relocations. The results indicate that build time shading is commonly
used, supporting the claim that there are valid use cases for shading in general, and for package renaming in particular.

This raises the questions of how common shading is that does not use plugins (and therefore does not state the depen-
dency), how it can be detected, and what the security implications of this are.

4 Blindspot Detection

4.1 Overview

We describe the processing pipeline we have developed and used to detect clones and shaded artifacts with known
vulnerabilities here. It takes an artifact and a vulnerability as input, and produces a list of artifacts and projects
demonstrating the presence of the provided vulnerability in those artifacts. The focus of the tool design is on precision
(avoiding false positivesﬂ and being lightweight. In particular, it does not require the acquisition, construction and
maintenance of a separate index. Instead, it can work with an existing index as long as it makes the information
required (source code, poms, artifacts searchable by class names) available through an API. Our aim is to demonstrate
that with some fairly simple tooling that goes beyond the metadata-centric approach used by most SCA tools, more
vulnerable artifacts can be detected. We do not aim at detecting all those artifacts, and as with all program analyses,
precision, recall and performance have to be balanced, as perfect non-trivial analyses are not feasible [38} 121].

The key ideas our tooling is based on are:

1. We do not depend on indexing the Maven repository, instead, we work with the existing repository via the Maven
Central REST API[

2. We extract a signature of components to be used to identify potential clones using a lightweight method based on
unqualified, characteristic class names. This can then be directly used in repository queries.

3. We use a custom AST-based clone detection to identify clones, including those that may have repackaged classes.

4. We use tests to verify the presence of vulnerabilities in clones, and automate the adaptation of those tests for clones,
and the evaluation of test results. This leads to a high precision of the vulnerability detection.

4.2 Inputs
Our analysis requires the following inputs:

1. An artifact artg identified by its group-artifact-version (GAV) coordinates gavy within the Maven repository
2. A known vulnerability vul identified by a CVE

3. A proof-of-vulnerability (POV) Maven project pov that has a direct dependency on arty and one or many tests
demonstrating the presence of vul. Those tests demonstrate the presence of the respective vulnerability, their evalua-
tion leads to an expected test signal (usually success or failure).

The project pov is optional in the sense that the tool chain can be run without it. Its purpose is to make the analysis
results precise.

4.3 Pipeline
Our analysis pipeline consists of the following steps, fetch steps imply interaction with the Maven REST API:

1. Fetch binaries — Fetch the binary (jar) arty.bin of arty.
2. Fetch sources — Fetch the source code artgy.src of arty.

3. Select classes — Extract a set of classes cl.query from the arty.bin and/or cl.vul to be used in queries. Those are
non-qualified class names (i.e., package names are omitted).

*Precision here is defined with respect to the presence of vulnerable code, not taking into account whether it is actually ex-
ploitable in the context of a particular application. I.e. we want to find clones which are as vulnerable as the original component
for the respective CVE.

https://central.sonatype.org/search/rest-api-guide/
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4. Fetch class matches — For each class in ¢l € cl.query, fetch a set of artifact coordinates (GAVs) match.; of
artifacts containing a class with this (unqualified) name.

5. Consolidate matches — Consolidate all sets match,; into a single set match .
6. Fetch match poms — For each artifact art € match, fetch the pom art.pom .

7. Remove dependents of original artifact — For each artifact art € match, analyse the pom art.pom, and if it
contains reference to artgy, remove it.

8. Fetch match sources — For each artifact art € match, fetch the source code art.src.

9. Run clone analysis — For each artifact art € match, run a clone analysis comparing artg.src and art.src, and if
the result is negative, remove art from match

10. Instantiate POV - For each artifact art € match, instantiate pov by cloning the project and replacing the depen-
dency to artg by a dependency to art, resulting in a project pov(art).

11. Verifying the Vulnerability — For each artifact art € match, ran mvn test on pov(art). If this succeeds, the
presence of the vulnerability is confirmed, and art is added to the result.

We describe the more interesting steps briefly in the rest of this section, and state the settings we used in the evaluation
section for the steps that are configurable. We do not claim that those settings are optimal, but that they produce a
reasonable yield in terms of artifacts with vulnerabilities discovered with modest computational resources.

4.4 Class Selection

We use unqualified class names as fingerprints to identify potential clones. There are two reasons for this: (1) the
Maven REST API supports queries by unqualified class names (2) unqualified class names are not changed when
relocating code during shading.

When working with a remote index, using all classes is not a good strategy as each class name is then used in a query,
as each class may result in multiple network calls. We have used a simple approach to look for signature classes with
names likely to be unique. For instance, a short name like Utils is likely to be used by many components. However,
something like JSONDriverManagerFactory (hypothetical) is more likely to be unique. The heuristic used is to
count camel case tokens in class names, and look for classes with a high count. In the example above, the count for
JSONDriverManagerFactory is 4, whereas the count for Utils is 1.

The default strategy we have employed is to sort class names by token length, and to use the top 10 class names.

4.5 Fetch Class Matches

For each class name identified in step [3] an API query is used to fetch artifacts containing one or more classes with
this name. The API uses paging, and limits the number of results returned by each query to 200. We use 5 pages of
200 results each, i.e. a maximum of 1,000 artifacts per class is analysed.

4.6 Query Consolidation

The process described above results in 10 query result sets with up to 1,000 artifacts in each. A consolidation strategy
identifies the artifacts likely to represent clones. Strategies like intersection or union of result sets are possible, the
union is likely to contain many accidental matches that contain only a single matching class. The other extreme, the
intersection, may exclude many artifacts that only partially clone the original artifact, but could still contain all classes
necessary to exploit a vulnerability. The strategy we have used is that an artifact must occur in at least two result sets,
i.e. it must contain at least two classes with names matching classes in the original artifact selected for querying.

4.7 Remove Dependents of Original Artifact

This step is performed in order to remove artifacts that declare a dependency to the original artifact. Those are
less interesting and may even be considered as effective false positives by engineers [41] as SCA tools usually detect
vulnerabilities propagated through such dependencies. For this purpose we acquire and analyse the pom of the artifact.
The pom analysis is looking for three patterns: (1) There is no reference in the dependency section to the original
artifact. (2) There is no reference to the original artifact within the shade plugin. (3)The group id and artifact id of the
clone candidate are different from the group and artifact ids of the original artifact.

The last rule ensures that the tool does not produce results representing different versions of the original artifact. Our
analysis also includes references in parent poms for artifacts generated by multi-module projects.
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4.8 Clone Analysis

The clone analysis used is AST-based. I.e., candidates classes are parsed and the two ASTs are simultaneously tra-
versed. Our method is a type-2 clone detection [40], i.e., we are looking for isomorphic structures but allow some
variations in types and comments.

Nodes corresponding to comments are ignored as authors may change comments (for instance, to alter copyright or
authorship notices, or to add comments about the origin of the code). For nodes corresponding to type names, the
scopes (package names) are ignored.

4.9 Instantiating the POV Project

For each artifact art € match, we instantiate the POV project pov by cloning it, replacing the dependency in the
pom to arty by a dependency to art, and replacing references to fully qualified class names in classes defined in
pov (in particular, tests) if classes are re-packaged by the clone. The mapping of classes from old to new packages,
representing their relocation, is provided by the clone analysis and is used here to update class references, e.g. in
import statements.

Consider for instance the test used to demonstrate the presence of CVE-2022-38751, a DOS vulnerability in snakeyaml,
shown in Listing ﬁ The structure of the test is straight-forward — parse a malicious payload (CVE-2022-38751.yml),
and check that this leads to a stack overflow error. If this leads to some other error or exception (such as an lllegalArgu-
mentException), the test fails, indicating that the vulnerability is not present.

import org.yaml.snakeyaml.Yaml;

// more imports ommitted
public class ConfirmVulnerabilitiesTests {
@Test public void confirmCVE202238751 () {
assertThrows (
StackOverflowError.class ,
() —> parse (”CVE-2022-38751.yml”)
)
}
static void parse (String input) throws IOException {
FileReader reader = new FileReader(new File (input));
new Yaml().compose(reader);
}

Listing 1: Testing CVE-2022-38751 (snakeyaml)

Also note the import statement in line 1. If we find a clone, the original test can be copied, and instantiating the
POV project is merely a matter of replacing the dependency on snakeyaml by a dependency on the respective clone.
If during the clone detection phase clones are detected in different packages, then the import statement needs to be
changed as well. This is done by manipulating the ASTs of the respective source files.

The signal for this particular POV test is success, i.e. the test succeeding indicates that the vulnerability is present.
This is often an intuitive approach to write POV tests as the effect of the vulnerability is used directly as a test oracle.
However, often POV projects can be sourced from vulnerability patches. In this case, tests are often designed as
regression tests, failing to indicate the vulnerability is present and a patch is required. In this case, the expected signal
is failure. To support this test signal abstraction, the test signal is documented in POV projects.

A list of POV projects used in our validation can be found here: https://github.com/jensdietrich/xshadyl

4.10 Verifying The Presence of a Vulnerability

For each artifact, art € match, we run mvn test on pov(art). If the test signals recorded are identical to the signals
of the original POV project, the presence of the vulnerability is confirmed. This is done by analysing generated surefire
reports. Since the success of mvn compile is a prerequisite for testing, we run this phase first to filter out projects
that cannot be build first, avoiding the more expensive test runs. This step has the sole purpose of optimising pipeline
performance.

A particular issue that needs to be taken into account is that tests may result in four states — success, failure, error and
skip. Builds with tests succeed if all tests are in a success or skip state. This is an optimistic “did not fail assumption”.
However, we found that it is often practical or even necessary to use assumptions in tests confirming vulnerabilities.

%The code listings are shortened for brevity
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For instance, consider the test confirming CVE-2022-25845 in fastjson, shown in Listing@ The test confirms the exe-
cution of an OS command triggered by parsing a document, the command used here is “touch foo”. This command
is defined in the JSON document to be parsed (CVE-2022-25845.json), the @ BeforeEach fixture is used to erase the
file if present. This OS command is only available on unix-like operating systems, and the vulnerability can only be
exploited for certain JRE versions. This is encoded using JUnit precondition (assumption) annotations (lines 10-11),
and tests are skipped (instead of failed) if those conditions are not satisfied. Therefore, the analysis needs to confirm
that all tests have succeeded, which is a stricter requirement (i.e. stricter than the default surefire behaviour).

import com.alibaba.fastjson .JSON;
// more imports ommitted
public class ConfirmVulnerabilitiesTests {
@BeforeEach public void clearGeneratedFile () {
File file = new File(”fo0”);
if (file.exists()) {
Assumptions . assumeTrue (file . delete ());
}

}
@Test @EnabledOnOs ({0S.MAC,OS.LINUX})
@EnabledForJreRange (min=JRE.JAVA_8,max=JRE.JAVA_I1)
public void confirmCVE202225845 () throws Exception {
Path generatedFile = Path.of(”fo0”);
Assumptions . assumeFalse (Files.exists (generatedFile));
Path payload = Path.of(”CVE-2022-25845.json”);
Assumptions.assumeTrue (Files.exists (payload));
String json = Files.readString (payload);
JSON. parse (json);
Thread.sleep (1000);
assertTrue (Files.exists(generatedFile));

Listing 2: Testing CVE-2022-25845 (fastjson)

5 Evaluation Methodology

5.1 Dataset

The selection of a set of CVEs used for evaluation was driven by the following considerations: (1) to select widely
used artifacts, as determined by the number of downstream clients reported by Maven (2) to select CVEs of different
types, namely vulnerabilities exploitable for remote code execution (RCE) and denial of service (DOS) attacks (3) to
include some high-impact vulnerabilities that have been exploited in the wild such as log4shell (4) to select libraries
from different domains (5) to select CVEs in libraries we considered as good candidates for cloning. We argue that
single-purpose libraries that do not have significant further upstream dependencies and do not use dynamic program-
ming features are better candidates for cloning as cloning as this caps the complexity of the process of integration.
In particular, we expect that complex application frameworks such as spring and struts are not good candidates for
cloning. Since our aim was to make CVEs testable in order to design a precise analysis, we furthermore gave pref-
erence to CVEs with available proof-of-vulnerability projects we could then reuse (usually with some modifications).
In particular for vulnerabilities that have a high severity, such projects often exist. Sometimes projects covering entire
classes of vulnerabilities can be used for this purpose, a good example is ysoserial E] that also contains a POV for
CVE-2015-6420 which we used in a slightly modified, testable form.

We selected 9 CVEs manually to fit those criteria. We then complemented this dataset with CVEs from vul4;j [11], an
independent dataset consisting of vulnerabilities, artifacts and vulnerability patches including regression tests. Vul4j
consists of 79 CVEs. We found that most are not suitable for our purpose for different reasons: many CVEs in vul4j
are related to application frameworks, 27 alone are from 3 frameworks (spring, struts and jenkins). Some do not have
tests (e.g. CVE-2016-3720 and CVE-2017-5662), the vulnerability cannot be reproduced with the provided test(s)
(e.g., CVE-2019-10173, CVE-2018-1000850) or the component flagged as vulnerable is not in Maven central (e.g.,
CVE-2018-17202, CVE-2018-17201). In the end we added 20 additional CVEs from vul4j. The total dataset of 29 is
depicted in Table[I] The table shows the wide coverage of our dataset with respect to vulnerability types, years when
the CVE was assigned, and vulnerable components.

"https://github.com/frohoff/ysoserial
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severity RCE, XSS DOS Other

critical 2022-25845 (fastjson), 2022-42889 (c-text), 2021-44228 2016-6798 (sling)

(log4j), 2015-6420 (c-collections), 2020-1953 (c-config),

2017-18349 (fastjson), 2016-0779 (tomee), 2015-7501 (c-

collections)

high 2016-2510 (beanshell) 2022-45688 (json.org) 2019-12402 (c-compress), 2019-0225
(jspwiki), 2016-6802 (shiro), 2016-
7051 (jackson)

medium 2017-15717 (sling), 2016-5394 (sling), 2015-6748 (jsoup) 2022-38749 (snakeyaml) , 2022-38751 2021-29425 (c-io), 2018-1002201 (zt-
(snakeyaml), 2018-10237 (guava), zip)

2018-11771 (c-compress), 2018-1324

(c-compress), 2018-8017 (tika)

n/a 2014-0050 (c-fileupload) 2013-2186 (c-fileupload), 2013-5960
(esapi)

Table 1: Dataset used in the evaluation, organised by severity (NVD base score as of 20 Sept 2023) and type. c- stands
for “apache commons”. Vulnerabilities not sourced from vul4j are highlighted italic. CVE- prefixes are omitted for
brevity.

tool mode databases (java)
OWASP Dependency Check (owasp)  plugin ~ NVD, OSS Index
snyk cli proprietary

grype cli NVD, GHSA
Eclipse Steady (steady) plugin  Project KB

Table 2: SCA Tools used

5.2 SCA Tool Selection

There are numerous tools available to detect the presence of vulnerable dependencies in software projects. During
evaluation we used a curated set of SCA tools to do the following:

1. To confirm that the tool(s) can detect the vulnerability in the original artifacts.
2. To confirm that some / all tools fail to detect the vulnerability in some / all clones.

The SCA tools used are listed in Table[2] We selected them in order to provide a variety of detection implementations,
while aiming to increase the coverage of vulnerability DBs and keeping the effort of running multiple tools manage-
able. Some tools have the option of either invoking them from the command line (cli) or integrating scanning with the
build process (plugin), thus we perform evaluation with tools in both categories. We expect both, the functionality of
these SCA tools, and contents of their DBs to overlap, but not to be equivalent either. Reasons for this are discussed
in Section 1] As an example, adding GitHub’s dependabot would not have increased DB coverage of our evaluation
because its vulnerability DB, GHSA, is already covered by our selection.

6 Evaluation Results

6.1 Pipeline Performance

As described earlier in Section [4.5] we start with fetching 1,000 potentially matching artifacts for each class name,
up to 10,000 artifacts in total (for 10 classes). We record the number of artifacts after each step of processing and
filtering. We report a summary of the results in Table |3} both for artifacts, and for artifacts aggregated by ignoring
versions. This indicates that we find vulnerable clones for 18 / 29 components (column 10). Interestingly, there is one
vulnerability where we do not find any matching artifact using any of the initial queries. This is for CVE-2016-6802 ,
a vulnerability in org.apache.shiro:shiro-all:1.3.1. This artifact does not define classes itself, but bundles classes from
other shiro modules. Our algorithm is currently not able to extract classes to be used as queries here. The last column
shows the number of vulnerable clones where shading was applied and packages have been renamed.

Figure [I] depicts the pipeline throughput for each stage of processing — scaled to 100% — the initial set of artifacts
acquired via the Maven API. For almost all artifacts consolidated (i.e. being the the result set for more than one queries)
poms can be acquired. At the no dependency stage, artifacts with dependency on the original vulnerable artifacts are
filtered out as they are likely to represent effective false positives. Our mechanism to acquire sources generally works
well, but there are cases where sources cannot be located using the REST API, and may just be missing. We also
observed a very few cases where we were able to acquire sources, but not able to unpack the respective (potentially
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120.00%
—m— CVE-20132186  —#— CVE-2013-5960
100.00% Be CVE-2014-0050  —a— CVE-2015-6420
NN —»— CVE-2015-6748 CVE-2015-7501
—+— CVE-2016-0779 CVE-2016-2510
80.00% —8— CVE-2016-5394 CVE-2016-6798
—— CVE-2016-6802  —+— CVE-2016-7051
60.00% —#— CVE-2017-15717  ——— CVE-2017-18349
CVE-2018-1002201 —®— CVE-2018-10237
10,000 —+— CVE-2018-11771 CVE-2018-1324
: —a— CVE-2018-8017 CVE-2019-0225
—— CVE-2019-12402 CVE-2020-1953

20.00% —¥— CVE-2021-29425  —e— CVE-2021-44228
—+— CVE-2022-25845  —<— CVE-2022-38749

CVE-2022-38751  —s— CVE-2022-42889

0.00% 1 X )
query consolidated valid  no dependency sources clones pov pov vulnerability CVE-2022-45688
results pom acquired detected  compilable testable confirmed

Figure 1: Pipeline throughput relative to the number of artifacts initially fetched

query consol- valid no depend-  sources clones pov pov vulnerability shaded
results idated pom ency acquired  detected compilable testable  confirmed
min 0 0 0 0 0 0 0 0 0 0
max 4,675 2,666 2,664 1,367 1,267 669 574 483 419 190
>0 28 27 27 27 27 24 23 23 18 8
avg 1,840.34  1,029.10  1,025.83  548.14 527.97 171.72 163.07 61.07 25.07 12.72
sum 53,370 29,844 29,749 15,896 15,311 4,980 4,729 1,771 727 369
versions ignored
max 410 294 293 171 165 44 34 26 26 13
avg 153.86 81.62 81.03 53.24 50.41 11.10 10.17 6.38 2.97 1.00
sum 4,462 2,367 2,350 1,544 1,462 322 295 185 86 29

Table 3: Pipeline throughput statistics — artifacts (GAV) in top half and components (GA — versions aggregated) in
lower half, counts after each stage of processing

corrupted) archives. In the actual clone detection step, a significant number of artifacts is removed. Note that that this
is a simple, very fast static analysis. The last stages to establish whether the instantiated POV project can be built and
tested successfully (i.e., the POV signal being confirmed) is a significantly more expensive analysis as this requires
a build and multiple interactions with the Maven repository to resolve and fetch the dependencies of the instantiated
POV project.

6.2 Vulnerable Artifacts Found

We find vulnerable clones for 18 of the 29 CVEs studied, details are shown in Table[3} The total number of vulnerable
artifacts found is 727 across all CVEs. Often those are different versions of the same artifact, after deduplicating
those and ignoring versions ( “aggregated’), the number drops to 86. The highest number of vulnerable components is
detected for CVE-2022-45688, a DOS vulnerability in org.json:json:20230227, with 419 vulnerable clones detected
(26 aggregated). JSON parsing and encoding is a popular requirement for data persistence and exchange, and the
compact, self-contained nature of json.org make it a good candidate for cloning.

The last column in Table 3| reports the vulnerable clones where shading with renaming of packages has been applied.
This is the case for 45.35% of the detected artifacts. This number is high and particularly significant as the embedded
code is now less likely to be spotted by developers or tools.

For the infamous CVE-2021-44228 log4j vulnerability we detected 15 clones (3 when versions are ignored), none of
them using shading with package renaming.

Note that some artifact names are masked due to the disclosure process we follow, this will be described in detail in
Section[§]

6.3 SCA Results

We have set out to investigate whether existing SCA tools and analyses find vulnerabilities in clones. To set
a baseline, we first had to established whether the selected SCA tools (see Section [5.2) can detect the vulnera-
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cve
CVE-2013-2186
CVE-2013-5960
CVE-2014-0050
CVE-2015-6420
CVE-2015-6748
CVE-2015-7501
CVE-2016-0779
CVE-2016-2510
CVE-2016-5394
CVE-2016-6798
CVE-2016-6802
CVE-2016-7051
CVE-2017-15717
CVE-2017-18349
CVE-2018-1002201
CVE-2018-10237
CVE-2018-11771
CVE-2018-1324
CVE-2018-8017
CVE-2019-0225
CVE-2019-12402
CVE-2020-1953
CVE-2021-29425
CVE-2021-44228
CVE-2022-25845
CVE-2022-38749
CVE-2022-38751
CVE-2022-42889
CVE-2022-45688
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Table 4: CVEs detected by various SCA tools in the original artifact associated with the CVE

bility in the original artifact [ﬂ The respective SCA tool reports can be found in the POV repository (https:
//github.com/jensdietrich/xshady), Table[d]summarises the results from those reports.

This shows that snyk, owasp and grype can detect most vulnerabilities, with minor variations between them. Steady
performs worse, likely caused by the fact that it uses a separate knowledge base that is incomplete and not up-to-date.

We then used the same tools to check the clones detected by our analysis. The results are shown in Table[5] Since
we detect vulnerable clones in only 18/29 vulnerabilities, this table has only 18 rows. The any column indicates the
number of clones that are detected by all four tools. This is the number of vulnerabilities projects using any of those
four tools would already be able to detect. This is only 20.50% (149/727). However, this is still a very conservative
estimate, and the effective detection rate from a practical point of view is much lower as projects would typically only
use one, not multiple or even all of those SCA tools.

For 8 CVEs, there is at least one clone none of the standard SCA tools detects.

6.4 Scalability

Experiments were conducted on a server running Linux 6.3.8-archl-1 with 8 Intel(R) Xeon(R) CPU E5-2637 v4 @
3.50GHz CPUs, and 64GB RAM. The serial run of the analyses for all 29 CVEs took 12 hours 15 minutes. We have
invested significant effort on caching to improve the scalability of re-running experiments. This includes the caching
of both REST query results as well as build results. This has resulted in re-runs to be faster by order of a magnitude
(50 minutes when running the experiments using 4 parallel tasks).

7 Limitations and Threats to Validity

7.1 Precision

The analysis presented here is designed to be precise. This is ensured by making vulnerabilities testable through POVs.
However, there is a possibility that those tests do not correctly reflect the vulnerability. Sometimes vulnerabilities are
reported in great detail. An example are parser vulnerabilities discovered by fuzzers like oss-fuzz [42], which discovers

80ften, vulnerabilities are reported to entire version ranges. The artifact we consider in this case is the latest within the range.
The precise coordinates can be found in the POV repository (https://github.com/jensdietrich/xshady), in the pom.xml
dependency settings in POV project for the respective CVE.

11


https://github.com/jensdietrich/xshady
https://github.com/jensdietrich/xshady
https://github.com/jensdietrich/xshady

On the Security Blind Spots of Software Composition Analysis A PREPRINT

CVE total  grype owasp snyk steady any
CVE-2015-6420 3 0 0 0 0 0
CVE-2015-7501 3 0 0 0 0 0
CVE-2016-2510 3 0 1 1 3 3
CVE-2016-5394 1 1 1 0 0 1
CVE-2016-6798 1 1 0 0 0 1
CVE-2016-7051 7 0 7 0 1 7
CVE-2018-10237 31 8 21 0 17 26
CVE-2018-11771 92 0 3 0 1 3
CVE-2018-1324 2 0 2 0 0 2
CVE-2018-8017 17 0 0 0 3 3
CVE-2019-12402 1 0 1 0 0 1
CVE-2021-29425 56 0 5 1 1 5
CVE-2021-44228 15 0 14 0 15 15
CVE-2022-25845 30 0 2 0 0 2
CVE-2022-38749 21 0 21 1 0 21
CVE-2022-38751 21 0 21 1 0 21
CVE-2022-42889 4 0 4 0 0 4
CVE-2022-45688 419 0 34 1 0 34
all 727 10 137 5 41 149

Table 5: CVEs detected by various SCA tools in clones found by our approach

and reports payloadsﬂ Sometimes, reports are vague (and sometimes this is on purpose as part of the disclosure pro-
cess), and POVs are constructed from the understanding of an individual programmer of the vulnerability. Sometimes,
those tests may miss some additional security measures clones may introduce - for instance, the tests for CVE-2022-
42889 in commons-text:1.9 check whether interpolator lookup provides entries for the script, dns and url prefixes,
and test the execution of an OS command using the script prefix. But the Tests do not check whether actual network
lookups happen for those prefixes. This is an engineering compromise — additional network connectivity makes tests
flaky , and slows down the pipeline, and we deem the overall risk that this introduces false positives very low.

7.2 Soundness

Our analysis is unsound. As with all program analysis, we have to strike a reasonable balance between precision,
scalability and recall, with theoretical and practical limitations implying that a non-trivial analysis that is precise,
sound and fast is not possible. Priority was given to precision in line with industry best practices, driven by developer
acceptance [10, 41 [19]]. Scalability considerations had to be taken into account as repositories are very large and
evolving, and maintaining a copy is not feasible for economic reasons. Therefore, we have made decisions to limit
interactions with the Maven repositories via the REST API by limiting the number of queries. While some of this can
be achieved by engineering (in particular, our tool extensively uses caching, similar to what other Maven clients do),
sometimes those restrictions (number of classes used to detect clone candidates, number of results and pages fetched
for each query) imply that results are missed.

Our analysis will also miss clones that are on the subclass level (e.g., single functions), or clones that have custom
modifications of source code beyond package renaming and altering or removing comments. Lowering the threshold
for clone detection would be interesting, the question being whether this still would lead to the detection of vulnerable
artifacts. This is an area for future research. We expect that the law of diminishing returns will apply here.

We think that the proposed simple analysis is still useful as its purpose is not to measure the number of artifacts
associated with vulnerabilities, but to demonstrate that this is a significant problem that deserves attention.

Another limitation of our analysis is that it relies on source code. This means that components written in other
languages that can be compiled into Java bytecode and deployed in the Maven repository are not covered, and this
decreases the detection rate of our tool. The pipeline analysis (Table [3) suggests that for the particular analysis
discussed here, this is not a big problem. This problem can be addressed in future work by writing a source-code based
clone analysis for alternative languages like Kotlin, or by switching to a bytecode-based method that can abstract from
compiler specifics [13] and deal with the effects of non-determinic compilation [S1].

We make no claim that the various parameters used in our analysis are optimal. The most obvious way to improve
recall is to fetch more data. We had to use paging (page size 200) for queries, and there is some evidence that returns
are diminishing in later batches as shown in Figure[2] The choice of 1000 as initial query size was selected as a good
trade-off between performance and recall.

For instance, see https://www.cvedetails.com/cve/CVE-2022-38750/, https://bitbucket.org/snakeyaml/
snakeyaml/issues/526/stackoverflow-oss-fuzz-47027 for a CVE reported by oss-fuzz
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Figure 2: New vulnerable clones retrieved by batch, aggregated (versions ignored)

7.3 Reproducibility

By design, there are certain limitations on reproducibility. Both the repository and the vulnerability database (and
therefore the SCA tools) permanently evolve and we expect that many of the vulnerable components we detect will be
marked as such eventually as we release results as described in Section

We report the results of running the SCA tools at the time when the experiments were conducted on the artifacts in a
release repository (https://github.com/jensdietrich/xshady-release). The code containing the actual tool
will be released following the disclosure to vendor delay.

8 Disclosure

8.1 Disclosure Process

We describe the process we are using to disclose our findings. This is not straight-forward as we are not finding new
vulnerabilities, so the standard vulnerability disclosure process does not necessarily apply. Instead, we detect new
propagation pathways along which vulnerabilities spread, i.e. hidden dependencies not being detected by existing
SCA tools due to their current limitations.

However, there is a grey zone between cloning or shading a library, and inlining some code that becomes part of a
unique new product, with its own unique vulnerabilities. To decide how to disclose the presence of a vulnerability
detected, we took the following criteria into account:

1. Whether the project is designed to be a full clone of the original artifact. This is determined by the artifact name
being the same or very similar to the name of the original artifact. This can still be the case if the artifact uses shading.

2. Whether the project is critical. This is defined by having a low number of contributors to the associated repository,
and no external dependents on Maven central outside the group of the artifact.

3. Whether the project has been remediated, interpreted as whether there was a newer version available in the reposi-
tory at the time of the analysis, and the analysis did not detect the vulnerability in this version.
Based on this we used a disclosure procedure that has two possible outcomes: database disclosure, or disclosure to

vendor.

For database disclosure, we use a release repository on GitHub|"*|where we release the instantiated POV projects, and
publish results by modifying the entries in the GitHub advisory database via pull requests.

Our disclosure process is depicted in Figure[3]
8.2 Accepted Disclosures
At the time of submission, our work had resulted in 6 changes to the GitHub security advisory via accepted pull

requests [T} CVE-2022-38749 (PR: 2258), CVE-2022-42889 (PR: 2273), CVE-2015-6420 (PR: 2326), CVE-2016-
2510 (PR: 2327), CVE-2018-10237 (PR: 2444), CVE-2021-44228 (PR: 2445).

'9The release repository is https://github. com/jensdietrich/xshady-release, the original POV projects used as input
can be found in https://github.com/jensdietrich/xshady
""The URL pattern for the respective pull request is https: //github. com/github/advisory-database/pull/<id>
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Figure 3: Disclosure procedure

We found CVE-2022-45688 in a shaded version of json.org in several components in the org.graalvm.tools group.
Those were disclosed to the vendor, and a patch was announced in the Oracle Critical Patch Update Advisory July
2023 [ﬂ Those vulnerabilities were classified as non-exploitable.

Future / open GHSA pull requests can be found using the following URL: https://bit.ly/xshady-ghsa-pr.

9 Conclusion

We have presented a novel lightweight approach to detect the presence of vulnerabilities in components that use
cloning and shading. We demonstrated that this reveals blind spots in vulnerability databases and tools relying on
those. This is a common problem — we detected vulnerable clones for more than half of the vulnerabilities studied,
including vulnerabilities that are critical, and have been known for years.

Our results indicate that we need to design software composition analysis tools that perform deeper analyses that do
not only rely on project meta-data. Several accepted GHSA pull requests emphasise the practical relevance of our
findings.
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