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Fig. 1. We propose a method for high-quality novel view synthesis of expressive faces captured in-the-wild. From a casual capture with only three images, our
method synthesizes novel views at an unprecedented level of detail showing wrinkles, hair strands, skin pores, and eyelashes.

Volumetric modeling and neural radiance field representations have revolu-
tionized 3D face capture and photorealistic novel view synthesis. However,
these methods often require hundreds of multi-view input images and are
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thus inapplicable to cases with less than a handful of inputs. We present a
novel volumetric prior on human faces that allows for high-fidelity expres-
sive face modeling from as few as three input views captured in the wild.
Our key insight is that an implicit prior trained on synthetic data alone can
generalize to extremely challenging real-world identities and expressions
and render novel views with fine idiosyncratic details like wrinkles and
eyelashes. We leverage a 3D Morphable Face Model to synthesize a large
training set, rendering each identity with different expressions, hair, clothing,
and other assets. We then train a conditional Neural Radiance Field prior
on this synthetic dataset and, at inference time, fine-tune the model on a
very sparse set of real images of a single subject. On average, the fine-tuning

1

ar
X

iv
:2

41
0.

00
63

0v
1 

 [
cs

.C
V

] 
 1

 O
ct

 2
02

4

https://syntec-research.github.io/Cafca
HTTPS://ORCID.ORG/0000-0001-8104-9313
HTTPS://ORCID.ORG/0000-0002-1427-7612
HTTPS://ORCID.ORG/0009-0006-2033-4704
HTTPS://ORCID.ORG/0000-0001-8528-2059
HTTPS://ORCID.ORG/0000-0003-1715-2820
HTTPS://ORCID.ORG/0009-0007-6492-8413
HTTPS://ORCID.ORG/0000-0002-2879-6114
HTTPS://ORCID.ORG/0009-0000-5005-8110
HTTPS://ORCID.ORG/0000-0001-6817-6326
HTTPS://ORCID.ORG/0000-0002-5068-3474
HTTPS://ORCID.ORG/0009-0002-5077-3469
HTTPS://ORCID.ORG/0000-0002-5249-5135
HTTPS://ORCID.ORG/0000-0001-8217-5848
HTTPS://ORCID.ORG/0000-0002-8077-1205
HTTPS://ORCID.ORG/0000-0001-7906-4004
HTTPS://ORCID.ORG/0000-0002-0220-0853
https://doi.org/10.1145/3680528.3687580


SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Buehler, M. C. et al.

requires only three inputs to cross the synthetic-to-real domain gap. The
resulting personalized 3D model reconstructs strong idiosyncratic facial
expressions and outperforms the state-of-the-art in high-quality novel view
synthesis of faces from sparse inputs in terms of perceptual and photo-metric
quality.

CCS Concepts: • Computing methodologies → Reconstruction; Shape
representations; Appearance and texture representations; Neural networks;
Volumetric models.

Additional Key Words and Phrases: Neural rendering, face reconstruction,
novel view synthesis, sparse reconstruction, synthetic data
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1 INTRODUCTION
“Who sees the human face correctly: the photographer, the mirror, or
the painter?” - Pablo Picasso. Our visual acuity is remarkably hyper-
tuned to perceive the details of human faces due to evolutionary de-
sign [Pascalis and Kelly 2009]. Individual-specific expressions play a
particularly significant role in perception tasks such as identification
or estimation of emotion and intent [Kret 2015; Lee and Anderson
2017; Sinha et al. 2006]. Highly personalizable 3D representations
that model the idiosyncracies of face shape and deformation at high
quality are crucial to truly immersive and photorealistic 3D portrait
photography. Perhaps, if trained well, an AI could join Picasso’s list.

Wide-scale adoption and democratization of 3D portrait photog-
raphy demands casual captures in uncontrolled environments – i.e.,
only a few shots taken with a handheld camera. Volumetric rep-
resentations [Barron et al. 2022; Mildenhall et al. 2020; Park et al.
2021a,b], have demonstrated impressive quality and photorealism
in synthesizing novel views of a large variety of 3D scenes using
densely captured 2D images. Extended works relax the requirement
for dense capture through various forms of regularization – for
instance, entropy minimization [Rebain et al. 2022], spatial smooth-
ness [Niemeyer et al. 2022], depth regularization [Guangcong et al.
2023; Prinzler et al. 2023] and volume bounds [Sarkar et al. 2023].
These methods target general scenes and still require dozens of
views captured simultaneously. As such, they cannot be applied to
expressive 3D portrait photography in the wild, due to ambiguities
that arise from the limited input and uncontrolled conditions.
Lifting very sparse 2D views onto a 3D reconstruction requires

a strong face prior, crafted using diverse data captured across the
human population. However, large real datasets are expensive and
challenging to collect and typically suffer from low resolution, sam-
pling limitations, and biases in their coverage of diversity and detail
of facial geometry and appearance, under varied viewpoints and
lighting. Here, our key insight is that such prior can be built from
synthetic data alone and fine-tuned on a few real-world images
to bridge the synthetic-real domain gap, generalizing robustly to
challenging portraits captured in the wild, as shown in Figs. 1 and 9.

Input 3DMM Fit Reconstruction with Normals

Fig. 2. Our method reconstructs details that go far beyond the capabilities
of our synthetic dataset. We show a crop of one of the input views from the
teaser and its corresponding 3DMM fit. While the 3DMM lacks details, our
reconstruction models the wrinkles on the forehead.

Recent works have shown that well-curated, calibrated, and di-
verse datasets can be built from synthetic graphical renderings.
Such data has been successfully applied to various face perception
tasks, including sparse problems like landmark localization and seg-
mentation [Wood et al. 2021, 2022] and dense problems like view
synthesis [Sun et al. 2021] and relighting [Yeh et al. 2022]. However,
such synthetic data is unable to model the full light transport of
complex interactions like sub-surface scattering, specular polariza-
tion, and global illumination, thus presenting a significant domain
gap. Interestingly, sparse regression problems can robustly over-
come such gaps at inference time. In contrast, denser synthesis
problems cannot, requiring domain adaptation solutions that suffer
from quality losses that prevent their use in building a 3D face prior.

We propose a novel, volumetric facial prior that is learned from a
large dataset of synthetic images of different identities and expres-
sions, rendered with accessories like hair and beard styles, glasses,
clothing, and skin textures. At inference time, given a few input im-
ages at arbitrary resolutions, we fine-tune this prior to reconstruct a
high-quality, personalized volumetric model of the captured subject.
This new model then allows for 3D-consistent novel view synthesis
at high resolution, even when the original input shows exaggerated
facial expressions and challenging lighting conditions. We overcome
the domain gap between synthetic and real by using an MLP-based
generator for volumetric rendering. This MLP learns a strong prior
over geometry while generalizing to unseen appearance domains,
including colored lighting and shadows. We demonstrate the effi-
cacy of our method through extensive evaluation, ablations, and
comparison with the state of the art.

In summary, our key contributions are:
• We show that synthetic data alone can be successfully lever-
aged to learn a strong face prior for few-shot, personalized
3D face modeling in the wild.

• Our newmodel and few-shot fine-tuningmethod can robustly
reconstruct expressive faces under challenging in-the-wild
lighting and synthesize photorealistic novel views with un-
precedented quality and fine-scale idiosyncratic details.

Our synthetic dataset is available for research purposes at
https://syntec-research.github.io/Cafca.

2 RELATED WORK
Multiple works have explored ways to mitigate the data-intensive
nature of volumetric reconstruction, where some main themes have
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Fig. 3. Method Overview. We train an implicit prior model on renderings of a 3DMM combined with assets like hair, beard, clothing, and more (Sec. 3.2). For
inference, we first estimate the camera, identity, and expression parameters (Sec. 3.3.1) and then fine-tune the implicit model (Sec. 3.3.2). The implicit prior
trained on synthetic data alone can generalize to extremely difficult real-world expressions and render fine details like wrinkles and eyelashes (Figs. 1, 9).
While we show three input views for the average case, our method can also work with one (Fig. 10) or more input views (supplementary material).

emerged: regularization schemes [Jain et al. 2021; Niemeyer et al.
2022; Rebain et al. 2022; Truong et al. 2023; Yang et al. 2023], carefully
crafted initialization of model parameters [Kundu et al. 2022; Tancik
et al. 2021; Vora et al. 2021], depth signals or feature embeddings
[Guangcong et al. 2023; Jain et al. 2021; Truong et al. 2023], and
data-driven, pre-trained priors [Buehler et al. 2023; Chan et al. 2022;
Chen et al. 2021; Gu et al. 2021; Jain et al. 2021; Mihajlovic et al.
2022; Or-El et al. 2022; Prinzler et al. 2023; Ramon et al. 2021; Rebain
et al. 2022; Tan et al. 2022; Truong et al. 2023; Wang et al. 2021; Yu
et al. 2021; Zhang et al. 2022].

Regularization. RegNeRF [Niemeyer et al. 2022] employs a smooth-
ness regularization term on the expected depth derived from the
predicted density, in conjunction with a patch-based regularizer
on appearance which together bias the model towards a 3D con-
sistent solution. FreeNeRF [Yang et al. 2023] proposes a gradual,
coarse-to-fine training scheme to prevent overfitting caused by high-
frequency, position encoding components early in the fit. Despite
their promising results on in-the-wild images, these methods cannot
yet provide high-quality reconstructions from few-shot inputs, as
we show in Fig. 7.

Initialization. A common strategy is to learn initial model param-
eters [Finn et al. 2017; Nichol et al. 2018; Sitzmann et al. 2020; Tancik
et al. 2021; Zakharov et al. 2019] from a large collection of images.
While this strategy has been shown to offer faster convergence, its
applicability to high-resolution settings remains challenging due to
computational requirements of large neural networks.

Data-driven Priors. With the advent of large datasets of particular
domains [Choi et al. 2020; Karras et al. 2019; Liu et al. 2018], recent
works have explored data-driven priors trained on a corpus of data
specific to the reconstruction task at hand. Generative neural field
models in particular [Chan et al. 2022, 2021; Deng et al. 2022a,b;
Gu et al. 2021; Niemeyer and Geiger 2021; Rao et al. 2022; Rebain
et al. 2022; Schwarz et al. 2020; Tan et al. 2022; Wang et al. 2022;
Zhou et al. 2021] have shown promising results. To tackle the heavy
computational and memory requirement of volumetric rendering,
EG3D [Chan et al. 2022] proposes to use a lightweight tri-plane
feature representation. Most of these models further rely on an
extra 2D super-resolution step [Chan et al. 2022, 2021; Gu et al.

2021; Hong et al. 2022; Tan et al. 2022; Wang et al. 2023] as they can
only be trained at low resolutions due to high memory footprint
requirements.
Recent works [Buehler et al. 2023; Cao et al. 2022; Wang et al.

2022] have overcome the need for 2D super-resolution. MoRF [Wang
et al. 2022] learns a conditional neural reflectance field of faces from
a small training dataset comprising of 12 views of 15 real subjects
making neutral expressions, further augmented with synthetic ren-
derings. [Cao et al. 2022] trains an avatar prior with a Mixture
of Volumetric Primitives (MVP) [Lombardi et al. 2021] from data
captured in a controlled environment. They leverage their model
to fine-tune to a specific target subject’s identity based on a short
sequence of a casually captured RGB-D video. Another line of work
leverages 2D generative priors [Liu et al. 2023; Massague et al. 2024;
Melas-Kyriazi et al. 2023; Tang et al. 2023; Wu et al. 2024; Zeng et al.
2023]. These methods typically employ score distillation sampling
[Poole et al. 2022; Wang et al. 2024] for injecting signals from unseen
views given text prompts or sparse input images.

Multiple recent works have leveraged 3D Morphable Face Models
(3DMM) [Blanz and Vetter 1999] as strong priors. This has led to
the development of avatars that can be driven by 3DMM expression
coefficients [Buehler et al. 2021; Duan et al. 2023; Li et al. 2024;
Niemeyer et al. 2022; Xu et al. 2023; Zhao et al. 2023; Zheng et al.
2022, 2023]. Such avatars are typically trained on a sequence of
monocular video frames showing various head poses and facial
expressions. Other works have explored the reconstruction of faces
and textures from a single input image [Gao et al. 2020; Papantoniou
et al. 2023; Vinod et al. 2024]. Another body of work has explored
novel view synthesis from sparse inputs by training their model
as an auto-encoder, coupled with image-based rendering. These
methods [Chen et al. 2021; Mihajlovic et al. 2022;Wang et al. 2021; Yu
et al. 2021] typically train a convolutional encoder that maps input
images to 2D feature maps in images-space to condition the scene’s
volume. This approach can typically be extended with additional
priors such as keypoints [Mihajlovic et al. 2022], depth [Guangcong
et al. 2023; Prinzler et al. 2023; Xu et al. 2022] or pixel-matches
across input views [Truong et al. 2023].
Preface [Buehler et al. 2023] is a method for high-quality face

avatar creation in which they train a low-resolution, generative
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prior on a dataset of facial identities captured in-studio. They could
not reconstruct strong expressions due to the domain limitation of
their prior model trained only on neutral faces. Our method tackles
this challenging problem and we demonstrate compelling examples
of novel view synthesis of expressive faces from sparse inputs.

3 METHOD
We present a method that takes as input as few as three images
of a person’s face – of arbitrary identity, expression, and lighting
condition – and reconstructs a personalized 3D face model that
can render high-quality, photorealistic novel views of that person,
including fine details like freckles, wrinkles, eyelashes, and teeth.

To overcome reconstruction ambiguities, our method uses a pre-
trained volumetric face model as prior, trained on a large dataset of
synthetic faces with a variety of identities, expressions, and view-
points rendered in a single environment. At inference time, our
method first fits the coefficients of our prior model to a small set of
real input images. It then further fine-tunes the model weights and
effectively performs domain adaptation during the few-shot recon-
struction process, see Fig. 3. While the prior model is trained only
once on a large collection of synthetic face images, the inference-
time optimization is performed on a per-subject basis from as few
as three (e.g., smartphone) images captured in-the-wild (see Fig. 9).

This section starts with background information (Sec. 3.1), details
the training of synthetic prior (Sec. 3.2) and then finetuning from
three input views (Sec. 3.3).

3.1 Background: NeRF and Preface
NeRF. Our prior face model is built upon Neural Radiance Fields

(NeRF) [Mildenhall et al. 2020]. NeRFs represent 3D objects as den-
sity and (emissive) radiance fields parameterized by neural networks.
Given a camera ray r, a NeRF samples 3D points x along the ray that
are fed together with the view direction d into an MLP. The output
is the corresponding density 𝜎 and color value c at x. A NeRF is
rendered into any view via volumetric rendering. The color c(p) of
a pixel p is determined by compositing the density and color along
the camera ray r within an interval between a near and a far camera
plane [𝑡𝑛, 𝑡𝑓 ]:

c(p) = F𝜃 (r) =
∫ 𝑡𝑓

𝑡𝑛

𝑇 (𝑡)𝜎 (r(𝑡))c(r(𝑡), d)𝑑𝑡 , (1)

where 𝑇 (𝑡) = exp
(
−
∫ 𝑡

𝑡𝑛

𝜎 (r(𝑠))𝑑𝑠
)
. (2)

The variable 𝜃 denotes the model parameters that are fit to the input
data.

Preface. Our method also extends Preface [Buehler et al. 2023],
a method for novel view synthesis of neutral faces given sparse
inputs. Besides the position x and view direction d, Preface also
takes a learned latent code w as input. The latent code represents
the identity and is optimized while training the model as an auto-
decoder [Bojanowski et al. 2018]. During inference, Preface first
projects the sparse input images into its latent space, by optimiz-
ing one identity code w. Then, it fine-tunes all model parameters
under regularization constraints on the predicted normals and the

Fig. 4. We implement our prior model as a conditional NeRF [Barron et al.
2022; Mildenhall et al. 2020]. We condition by concatenating ( | |) three codes:
a 3DMM identity code 𝜷 , a 3DMM expression code 𝝍 , and a learned latent
codew representing out-of-model characteristics like hair, clothing, etc. The
outputs include the color 𝒄̂ , the density 𝜎 , and a normal vector ®n. Please
see Sec. 2 in the supp. PDF for details.

view weights. While Preface excels at high-resolution novel view
synthesis of neutral faces, it struggles in the presence of strong,
idiosyncratic expressions (Fig. 7). In the following, we address this
limitation while building an improved prior from synthetic images
alone.

3.2 Pretraining an Expressive Prior Model
We train a prior model to capture the distribution of human heads
with arbitrary facial expressions. As Preface [Buehler et al. 2023],
our prior model is implemented as a conditional Neural Radiance
Field (NeRF) [Mildenhall et al. 2020; Rebain et al. 2022] with a Mip-
NeRF 360 backbone [Barron et al. 2022], Fig. 4. Yet, we observe that
the simple Preface auto-decoder [Bojanowski et al. 2018; Rebain et al.
2022] cannot achieve high-quality fitting results on expressive faces
(see the ablation in Sec. 4.3). We hypothesize that the distribution
of expressive faces is much more difficult to model and disentangle
than the distribution of neutral faces. To address this limitation,
we decompose the latent space of our prior model into three latent
spaces: a predefined identity space B, a predefined expression space
Ψ, and a learned latent spaceW. The identity and expression spaces
come from a linear 3D Morphable Model (3DMM) in the style of
[Wood et al. 2021]. The latent codes in these two spaces are known
a priori and represent the face shape for the arbitrary identity and
expression in each synthetic training image. These codes are also
frozen and do not change during training. The latent space W rep-
resents characteristics that are not modeled by the 3DMM like hair,
beard, clothing, glasses, appearance, lighting, etc., and is learned
while training the auto-decoder as in Preface [Buehler et al. 2023].
Considering this model, we adapt Eq. 1 to obtain:

F𝜃p (r, 𝜷, 𝝍,w) =
∫ 𝑡𝑓

𝑡𝑛

𝑇 (𝑡)𝜎 (r(𝑡), 𝜷, 𝝍,w)c(r(𝑡), d, 𝜷, 𝝍,w)𝑑𝑡 ,

(3)

where 𝑇 (𝑡) = exp
(
−
∫ 𝑡

𝑡𝑛

𝜎 (r(𝑠), 𝜷, 𝝍,w)𝑑𝑠
)
,

(4)
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Fig. 5. Our synthetic faces exhibit a wide range of geometric and expression
diversity and can be rendered from any viewpoint.

where 𝜷 ∈ B ⊂ R48 and 𝝍 ∈ Ψ ⊂ R157 are the 3DMM identity and
expression parameters, and w ∈ W ⊂ R64 is a learned parameter
encoding additional characteristics.
We train this prior on synthetic data alone – it never sees a

real face. While it would be feasible to train a prior model on real
data (see our ablation in Tbl. 2), we chose synthetic over real for
multiple reasons. Real datasets exhibit limited diversity. Most face
datasets feature monocular frontal views only, with few expressions
other than smiles. Some multi-view, multi-expression datasets exist
[Kirschstein et al. 2023; Wuu et al. 2022; Zhu et al. 2023], but consist
of relatively few individuals due to the complexity and expense of
running a capture studio. Further, subjects must adhere to wardrobe
restrictions: glasses are forbidden and hair must be tucked away.
A prior trained on such data will not generalize well to expressive
faces captured in the wild. Besides, the logistics of capturing large-
scale real data is extremely expensive, time and energy-consuming,
and cumbersome. Instead, synthetics guarantee us a wide range of
identity, expression, and appearance diversity, at orders of magni-
tude lower cost and effort. In addition, synthetics provide perfect
ground truth annotations: each render is accompanied by 3DMM
latent codes 𝜷, 𝝍.
We synthesize facial training data as in Wood et al. [2021]. We

first generate the 3D face geometry by sampling the identity and
expression spaces of the 3DMM. We then make these faces look
realistic by applying physically based skin materials, attaching
strand-based hairstyles, and dressing them up with clothes and
glasses from our digital wardrobe. The scene is rendered with
environment lighting using Cycles, a physically-based ray tracer
(www.cycles-renderer.org). Examples are shown in Fig. 5 and on
the supplementary HTML page. To help disentangle identity from
expression, we sample 13 different random expressions for each
random identity. Each expression is then rendered from 30 random
viewpoints around the head. All faces are rendered under the same
lighting condition, which was chosen to minimize shadows on the
face.

Each training iteration randomly samples rays r from a subset of
all identities and expressions. A ray is rendered into a pixel color
as given by Eq. 3. We optimize the network parameters 𝜃p and N

Fig. 6. For inference, we first recover the 3DMM and camera parameters
through model-fitting to probabilistic 2D landmarks (Sec. 3.3.1).

per-identity latent codesw1..N while keeping the 3DMM expression
and identity codes 𝜷 and 𝝍 frozen:

𝜃p,w1..N = argmin
𝜃,w1..N

Lprior , Lprior = Lrecon + 𝜆propLprop . (5)

Here Lrecon is the mean-absolute error between the predicted and
ground-truth colors, and Lprop is the weight distribution matching
loss from Mip-NeRF [Barron et al. 2021]. Please see Sec. 2 in the
supp. PDF for the spelled-out loss terms.
We find that, when training from scratch, the model quickly

collapses and outputs zero densities everywhere. We solve this
by first training on images with background for 50,000 steps and
continuing without background.

3.3 Inference from Sparse Views
We use our low-resolution synthetic prior model to enable high-
resolution novel view synthesis of real expressive faces from few
input images. We first describe howwe obtain the conditional inputs
and camera parameters in Sec. 3.3.1 and the subsequent fine-tuning
of our model in Sec. 3.3.2.

3.3.1 3DMM Fitting and Camera Estimation. Figure 3 gives an
overview of the 3DMM fitting. During inference, the first step is to
recover camera and 3DMM parameters from un-calibrated input
images. We follow the approach of previous work [Wood et al. 2022]
and fit to dense 2D landmarks (see Fig. 6). We first predict 599 2D
probabilistic landmarks. Each landmark corresponds to a vertex in
our 3DMM and is predicted as a 2D isotropic Gaussian with ex-
pected 2D location 𝜇 and scalar uncertainty 𝜎 . Next, we minimize
an energy 𝐸 (𝚽;𝐿), where 𝐿 denotes the landmarks and 𝚽 all the
optimized 3DMM parameters including identity, expressions, joint
rotations, and global translation, and intrinsic and extrinsic camera
parameters, if unknown.
Minimizing 𝐸 encourages the 3DMM to explain the observed

landmarks with a probabilistic 2D landmark energy, and discourages
unlikely faces using regularizers on 3DMM parameters and mesh
self-intersection (additional detail is given in [Wood et al. 2022] and
in Sec. 2 of the supp. mat.).

The benefit of the 3DMM fitting is two-fold. First, we get a good
estimate of the world position of the camera and the head, so that
later during inversion and finetuning of the model, camera parame-
ters can be frozen. Second, thanks to the alignment of the 3DMM
latent space and our prior model’s latent space, we directly feed the
3DMM parameters into the model, which serves as a good initial-
ization during the subsequent inversion stage.

The outputs of this step are the camera parameters (shared intrin-
sics K and per-camera extrinsics [R𝑖 |t𝑖 ]), a shared identity code 𝜷 ,
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and per-image expression codes 𝝍𝑖 . For casual in-the-wild captures,
it can be challenging to hold the same expression while the data is
being captured. Therefore, we allow expression code to vary slightly
between images to make the inversion robust to small, involuntary
micro-changes in expression. In the studio setting, however, the
cameras are synchronized and hence it is sufficient to optimize for
a single, shared expression code.

3.3.2 Fine-tuning on Sparse Views. This section describes how to
fine-tune the low-resolution synthetic prior model to sparse, high-
resolution real input images. Fine-tuning requires a short warm-up
phase where only the latent code for the target wtarget is optimized.
After that, fine-tuning optimizes all model parameters under ad-
ditional constraints on the geometry and the appearance weights.
We randomly sample rays from all available inputs, typically three
images, and mask them to the foreground by multiplying them by
an estimated foreground mask [Pandey et al. 2021].

Warm-up by Latent Code Inversion. While the 3DMM fitting pro-
vides the identity and expression codes 𝜷, 𝝍i, ourmodel also requires
the conditional input w, which models out-of-model characteris-
tics like hair, clothing, and appearance. We follow [Buehler et al.
2023] and search the learned latent space W of the prior model for
a latent code that roughly matches the geometry and appearance
of the input images. We downscale the three input images to the
resolution of the prior model, sample random patches, and optimize

wtarget = argmin
w

Lrecon + 𝜆LPIPSLLPIPS . (6)

The photo-metric reconstruction termLrecon is themean absolute
error between the rendered and the ground-truth patch and LPIPS is
a perceptual loss in the feature space of a pre-trained image classifier
[Simonyan and Zisserman 2015; Zhang et al. 2018]. Note that the
LPIPS loss is only employed during inversion, not during model
fitting. The camera, 3DMM identity, and expression parameters are
frozen during inversion.

Model Fitting. The output of the warm-up is a rough approxima-
tion of the input images in a low-resolution, synthetic space. In model
fitting, we cross the domain gap to enable detailed novel view syn-
thesis at high resolution for realistic faces. The model fitting needs
to cross a substantial domain gap so that the output can contain
details that have never been seen during prior model training.
Model fitting optimizes all model parameters on sparse, usually

two or three, input images. In a randomly initialized NeRF [Milden-
hall et al. 2020], this optimization would overfit and would fail
to produce correct novel views [Buehler et al. 2023; Truong et al.
2023; Yang et al. 2023]. Thanks to our pretrained prior model, we
can employ both implicit and explicit regularization, which yields
high-quality results even in such sparse settings.

Implicit regularization comes from the fact that our prior model
is trained on an aligned dataset of human faces. Initializing the
weights of a NeRF with the correct latent code and weights of a
prior model avoids total collapse. However, the optimization can
still produce strong artifacts like duplicate ears and view-dependent
color distortions. We follow [Buehler et al. 2023] and add explicit
regularization on the consistency of predicted vs. analytical normals

Table 1. Quantitative evaluation on the Multiface dataset [Wuu et al. 2022].

Method PSNR ↑ SSIM ↑ LPIPS ↓
Sparse NeRF [Guangcong et al. 2023] 16.29 0.6470 0.4024
Diner [Prinzler et al. 2023] 17.08 0.6608 0.3123
SPARF [Truong et al. 2023] 18.38 0.6401 0.4032
FreeNeRF [Yang et al. 2023] 21.42 0.7093 0.3612
Preface [Buehler et al. 2023] 25.02 0.7539 0.3129
Ours 26.49 0.7721 0.2970

and an L2 regularization on the weight of the view branch to avoid
view-dependent flickering. In addition, we add a distortion loss term
[Barron et al. 2022] Ldist for a more compact geometry:

𝜃t,wtarget = argmin
𝜃,w

Lfit = Lrecon + 𝜆propLprop (7)

+ 𝜆normalLnormal + 𝜆𝑑L𝑑 + 𝜆distLdist

where Lnormal and L𝑑 are the regularizers on predicted normals
and view weights from Preface. We list and explain all loss terms in
more detail in Sec. 2 of the supp. PDF.

Inference In-the-wild. For in-the-wild (ITW) images, we capture
three images sequentially with a hand-held camera. The captured
face might inhibit small movements during the capture, called mi-
cromotions. To mitigate these micromotions, we fine-tune with
individual expression code for every input image. The 3DMM fit-
ting yields a per-image expression code 𝝍̂𝑖 . During inference, we
interpolate these expression codes based on their distance to the
target camera. The weight is computed as the inverse squared dis-
tance between the target and all training cameras. The interpolated
expression code 𝝍̃𝑡 for a target camera is computed as

𝝍̃𝑡 =
∑︁
𝑖

𝑍

𝜖 + ||𝒍𝑡 − 𝒍𝑖 | |22︸            ︷︷            ︸
weight

𝝍̂𝑖︸︷︷︸
training expression

, (8)

where 𝝍̂𝑖 are the expression codes of the training frames, 𝒍𝒕 is the
position of the target camera, 𝒍𝑖 are the positions of the training
cameras, 𝜖 is a small constant, and 𝑍 is a normalization factor to
ensure that the weights sum up to 1.

4 EXPERIMENTS
This section presents an extensive evaluation of our proposedmethod
with both quantitative and qualitative comparisons to related work
and additional ablations. For comparisons, we run publicly available
code for SparseNeRF [Guangcong et al. 2023], Sparf [Truong et al.
2023], and Diner [Prinzler et al. 2023]. For FreeNeRF [Yang et al.
2023] and Preface [Buehler et al. 2023], we use our own implemen-
tation. We compare renders at the resolution 1334 × 2048 pixels,
except for Diner, where we render at a lower resolution (160 × 256
pixels) due to its architecture and memory constraints. Please refer
to the supplementary video and HTML page for more results.
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Table 2. We ablate the performance for different variants of the prior model.
We pre-train a) on a smaller training set with fewer subjects, b) for a shorter
number of steps, c) with different configurations of our synthetic rendering
pipeline, and d) include real data. The full prior model is trained on 1,500
subjects with 13 expressions each for 1 Mio. steps on synthetic renderings
with all available accessories in a single environment map. Please see the
supp. mat. for details of the rendering pipeline.

Pre-training Variant PSNR ↑ SSIM ↑ LPIPS ↓
a.i) No Pre-training 10.21 0.3448 0.4256
a.ii) On 1 subject 24.00 0.7512 0.3358
a.iii) On 15 subjects 25.47 0.7668 0.3248
a.iv) On 1,500 subjects 26.54 0.7750 0.3144
b.i) For 105K steps 26.64 0.7752 0.3208
b.ii) For 500K steps 26.54 0.7750 0.3144
b.iii) For 1 Mio. steps 26.49 0.7721 0.2970
c.i) On gray-scale renderings 26.44 0.7740 0.3242
c.ii) On low-quality renderings 26.53 0.7727 0.3401
c.iii) In diverse environments 26.58 0.7727 0.3415
c.iv) Without makeup 26.72 0.7755 0.3210
c.v) Without accessories 26.00 0.7731 0.3484
c.vi) Without hair 26.14 0.7727 0.3303
c.vii) With all accessories 26.54 0.7750 0.3144
d.i) On real images 26.14 0.7708 0.3237
d.ii) On real and synthetic images 26.41 0.7726 0.3227
d.iii) On synthetic images 26.54 0.7750 0.3144
e) Full 26.49 0.7721 0.2970

4.1 Quantitative Evaluation
Performance on casual in-the-wild captures is inherently difficult to
evaluate quantitatively due to the lack of proper validation views.
Often, the captured subject can hardly remain completely still. There-
fore, we quantitatively evaluate on the Multiface [Wuu et al. 2022]
studio dataset on nine scenes by randomly selecting three subjects
with three expressions per subject. For each test subject, we use one
frontal and two side views as input for training, as shown in Fig. 7.
We remove the background bymultiplying a foreground alpha matte
estimated by [Pandey et al. 2021]. We hold out from 26 to 29 vali-
dation images per subject, where the camera viewing direction is
located in the frontal hemisphere (see details in the supplementary
material). As evaluation metrics, we measure photo-metric distance
and image similarity via PSNR, SSIM, and LPIPS [Zhang et al. 2018],
as summarized in Tbl. 1. Note that photometric reconstruction met-
rics like PSNR and SSIM and perceptual metrics like LPIPS are at
odds with each other [Blau and Michaeli 2018]. We handle this
tradeoff by optimizing perceptual quality in the warm-up (Eq. 6)
and reconstruction quality in the fine-tuning (Eq. 7).
As shown in Tbl. 1, our new method provides better modeling

fidelity across all three metrics over the set of validation views. In
particular, compared to the state-of-the-art Preface [Buehler et al.
2023], we achieve the following improvement on the computed
metrics: 6% PSNR, 2.4% SSIM, and 5% LPIPS. Visually, Fig. 7 shows
that the novel views generated by our fine-tuned model more closely
resemble the facial shape and appearance, including eye and mouth
details, of the example (ground-truth) validation view.

4.2 Qualitative Results in the Wild
To demonstrate the robustness of our method in the wild, we cap-
tured subjects with a handheld DSLR camera (Canon EOS 4000D)
and mobile phones (Pixel 7 and Pixel 8 Pro). We capture between
one and three images per subject in various outdoor and indoor en-
vironments, including very challenging lighting conditions. These
diverse in-the-wild results are shown in Fig. 1, Fig. 8, Fig. 9, and in
the supplementary video and HTML page. The inlays in Fig. 1 show
the high level of modeled detail on the lips and on the individual
hair strands and eyelashes. Fig. 8 compares with the best performing
related work [Buehler et al. 2023], which struggles with the mouth
region. Of particular note is also the “tongue-out” expression in the
third row of Fig. 9. Note that our synthetic training data contains
tongues but the tongues never stick out of the mouth.
We also consider the more challenging single input image sce-

nario, see Fig. 10. Our method achieves high-fidelity synthesis of the
frontal face even for stylized and painted faces (right) but quickly
degrades for side views. This behavior is expected, as our model is
only trained on low-resolution synthetic images and has never seen
high-resolution views from the side of a face. Please see the supp.
HTML page for more examples.
Additional qualitative comparisons to previous work are shown

in Fig. 7. Our method outperforms the other baseline methods in two
main ways. First, our approach captures fine identity-specific details
like teeth outlines (middle row) and stubble (bottom row), while
previous methods degenerate into blur or noise. Second, the overall
face shape is more accurate, as evidenced by the eyeball in the top
row and the cheek silhouette in the middle row. Our synthetic face
prior encourages the reconstruction to remain faithful to its learned
understanding of faces, e.g., that corneas should bulge outwards,
not be flat. These results and the metrics in Tbl. 1 demonstrate that
our new model and fine-tuning method outperforms previous work
both qualitatively and quantitatively.

4.3 Ablation Study
We conduct extensive ablation studies of the prior model. Table 2
lists metrics after fine-tuning to three inputs at 2K resolution. Please
see the supp. PDF for more ablations and the HTML page for visuals.

Dataset Size. We compare prior models without any pre-training
(a.i) with models pre-trained on a single subject (a.ii), on 15 subjects
(a.iii), and on 1,500 subjects (a.iv). Note that each subject is rendered
with 13 expressions and 30 views per expression (as described in
Sec. 3.2). Hence, the model trained on 1 subject (a.ii) sees 1 · 13 · 30 =
390 images in total. Without pre-training (a.i), the reconstruction
completely fails. Pre-training on a single subject (a.ii) leads to a
noisy face geometry (see the surface normals in the supp. HTML
page). The performance improves when more subjects are added
(a.iii and a.iv). We conclude that pre-training is necessary and more
data improves the reconstruction quality.

Number of Pre-training Steps. We ablate the performance when
pre-training for a fewer number of steps. We observe that pre-
training for one day only (105K steps, b.i) already achieves very
high photo-metric reconstruction quality (PSNR and SSIM). This
shorter training duration offers a more accessible alternative while
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still delivering high-quality outcomes. While short pre-training al-
ready yields good results, longer training is required for the best
perceptual quality (LPIPS) (b.ii and b.iii).

Synthetic Data Quality. We investigate the effects of synthetic
data quality in terms of appearance and texture (c.i - c.iv) and geo-
metric diversity (c.v - c.vii). We find that the appearance and texture
of the prior model have very little impact on the fine-tuning re-
sult but a higher geometry diversity achieves the best results. Prior
models trained on gray-scale and low-quality renderings (c.i and
c.ii) perform similarly as training in diverse environments (c.iii)
[Gardner et al. 2017; Hold-Geoffroy et al. 2019]. Similarly, exclud-
ing details like makeup (c.iv) does not deteriorate the performance.
However, the diversity in terms of geometry is important for the
prior model. When removing hair (c.vi) and other accessories like
beards, glasses, and clothing (c.v) from the prior model, the recon-
struction still yields a valid face but it may contain some artifacts in
non-surface regions like hair. This is notable as a drop in PSNR from
26.54 with all accessories (c.vii) to 26.00 without any accessories (c.v)
(please see the supp. mat. for a list of the number of accessories). In
summary, we find that the prior acts as a geometric regularization.
Including all accessories yields a geometrically diverse prior model
with the best results. Rendering even more assets is likely to im-
prove the results for accessories like glasses, earrings, and clothing
even further.

Including Real Data. We study the synthetic vs. real domain gap
by pre-training the prior model on real multi-view images (d.i), a
mixed dataset with real and synthetic images (d.ii), and synthetic
images alone (d.iii). Priors trained on a real and a mixed dataset
perform well but synthetic data alone performs best on all metrics.
This behavior might seem non-intuitive. While it is very difficult
to precisely determine why synthetic data outperforms real data,
we are not the first to find that synthetic data can outperform real
data [Sun et al. 2021; Trevithick et al. 2023; Wood et al. 2021, 2022;
Yeh et al. 2022]. In our experience, real data capture and processing
is imperfect compared with synthetic data. Even under controlled
conditions, there may be issues like motion blur and imperfect
foreground matting.

4.4 Limitations
While our method can reconstruct 3D faces from even just one view,
we notice that the quality degrades at side views in this extremely
challenging case (see Fig. 10) due to the lack of observation. Acces-
sories like glasses frames and earrings may not be reconstructed
perfectly and for extreme expressions, the mouth interior might not
be fully consistent across all viewpoints (see the supp. HTML page).
Furthermore, our method assumes that faces are non-occluded in
the input images. This can cause the camera estimation during the
3DMM fitting (Sec. 3.3.1) to fail. These limitations could be poten-
tially addressed by leveraging large generative models to hallucinate
unobserved regions, which is an interesting future direction to ex-
plore. Another direction of future work could explore more efficient
backbones to increase pre-training and fine-tuning efficiency, and
potentially enable facial animation.

5 CONCLUSION
We present a method for high-fidelity expressive face modeling
from as few as three input views captured in the wild. This chal-
lenging goal is achieved by leveraging a volumetric face prior and
fine-tuning the prior model to sparse observations. Our key insight
is that a prior model trained on synthetic data alone can general-
ize to diverse real-world identities and expressions, bypassing the
expensive process of capturing large-scale real-world 3D facial ap-
pearances. We experimentally demonstrate that our method can
robustly reconstruct expressive faces from sparse or even single-
view images with unprecedented fine-scale idiosyncratic details,
and achieve superior quality compared to previous state-of-the-art
methods for few-shot reconstruction and novel view synthesis.
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Input SparseNeRF SPARF Diner∗ FreeNeRF Preface Ours GT

Fig. 7. We compare our method with previous work on the Multiface dataset [Wuu et al. 2022]. For each expression, we show the novel-view results with
three input views. The symbol ∗ indicates results at a lower resolution. Both visually and quantitatively, our method significantly outperforms SparseNeRF
[Guangcong et al. 2023], SPARF [Truong et al. 2023], Diner [Prinzler et al. 2023], and FreeNeRF [Yang et al. 2023]. Compared to the state-of-the-art
Preface [Buehler et al. 2023], we see a clear improvement in areas like eye, chin, and face contours, as shown in the zoom-in. For example, our method better
reconstructs the teeth on row 2. We also compare with Preface on in-the-wild captures, please see Fig. 8.

Input Preface Ours

Fig. 8. We highlight a typical failure case for the best-performing related work. Preface struggles [Buehler et al. 2023] with strong facial expressions, in
particular in the mouth and chin region. Please see the supplementary HTML page for video results.
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Input Novel views with world-space normals (top) and depth (bottom)

Fig. 9. In-the-wild results. Given three in-the-wild images of a subject, our method reconstructs the subject and renders novel views with high resolution. The
figure shows the input images (which can be taken sequentially), high-resolution rendering results in novel view, and also the reconstructed normal and depth
maps. Our model generalizes to different challenging in-the-wild lighting. These results include indoor, outdoor, and dim scenes. Our method also captures
strong idiosyncratic facial expressions such as the tongue-out case in row 3. This is an expression not included in the synthetic training data.

Input Novel Views Input Novel Views

Fig. 10. Single Image Results. We push the limits of our method by reconstructing the face with only a single input image. The top left image is a smartphone
image, the bottom left an Image from Wang et al. (2023) [Wang et al. 2023], and the right two examples are stylized images from [Trevithick et al. 2023].
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A SUPPLEMENTARY
This supplementary document provides more details about the syn-
thetic dataset (Sec. A.1), the models and method (Sec. A.2), experi-
ments (Sec. A.4), and supplementary results (Sec. A.5).

A.1 Dataset Details
Our synthetic dataset is generated in a similar fashion to previous
work [Wood et al. 2021]. We use Blender to both generate and render
realistic and diverse 3D scenes containing a face. We sample faces
from a large dataset of 50, 000 3D scans that have been registered
with a common template mesh [Bednarik et al. 2024]. Then, wemake
each face mesh look realistic by applying a physically-based skin
material from a high-resolution skin texture collection. Next, we
“dress up” our face by procedurally attaching traditional CG assets1.
Our total asset library contains the following items: 23 upper-body
garments (jackets, sweaters, suits, uniforms, coats, t-shirts, scarfs),

1https://www.3dscanstore.com/

8 types of eye-glasses, 157 eyebrows, 6 types of makeup, 2 sets
of eyelashes (with and without mascara), 1, 679 head textures, 2
headwear items, 125 strand-based hair / beard styles, and 6 eye
textures. Each asset is authored as a rig using Blender Geometry
Nodes, and each class of item executes class-specific rig logic to
robustly attach itself to arbitrary 3D face meshes, regardless of
identity or expression. For example, upper-body clothing items non-
rigidly deform themselves to fit around the neck of a target face,
but eyeglasses are posed using inverse kinematics to rest on the
nose-bridge and ears.
Finally, we render the scenes with Cycles: a physically-based

ray-tracing renderer. We render all faces in the same environment:
a uniform well-lit environment. Each face is rendered from 30 dis-
tinct viewpoints, generated by placing the camera at random points
around the head and pointing it at the face. We choose random cam-
era positions by sampling spherical coordinates: azimuthal angle,
elevation angle, and radius. We avoid overly similar viewpoints by
discarding those with viewing directions closer than 25 degrees to a
previous one and re-sampling.We found it helpful to sample random
viewpoints for each subject and expression rather than sampling
the same viewpoints across the entire dataset. The latter led to more
floaters when training the prior model.
For the ablation with diverse environments, we sample random

environment maps from the Laval indoor dataset [Gardner et al.
2017; Hold-Geoffroy et al. 2019].

A.2 Method Details
A.2.1 Prior Model Details.

Architecture. The prior model architecture largely follows Preface
[Buehler et al. 2023]. The prior model has a proposal MLP predicting
density and normals, and a NeRF MLP predicting density and color
[Barron et al. 2022]. The proposal MLP has depth 4 and layers width
(256 + |𝜷 | + |𝝍 | + |𝒘 |) × 256 parameters, where the 𝜷 ∈ R48 are the
3DMM identity coefficients, 𝝍 ∈ R157 are the 3DMM expression
coefficients, and 𝒘 ∈ R64 is the optimizable latent identity code.
The NeRF MLP trunk has depth 8 and layers width (1024 + |𝜷 | +
|𝝍 | + |𝒘 |) × 1024. The NeRF MLP trunk features are projected to 3
dimensions and normalized to predict negative normals. The color
is predicted from the NeRF MLP trunk features after a bottleneck
with width 256 and a single view-conditioned layer with width 128.
We optimize one 𝒘 code per identity, which yields a codebook of
size 1500× 64. The total parameter count is 32 Mio. The weights are
initialized with He Uniform Variance Scaling [He et al. 2015].

Training. We train the prior model on images of 1,500 synthetic
identities, rendering each with 13 expressions and 30 views. In total,
we train the full prior model for 1 Mio. steps on 64 TPUs with a batch
size of 131, 072 rays per step (256 identities × 8 view × 64 pixels),
which takes about 10 days. However, we observe that the model
already reaches near convergence after 105,000 steps. In particular,
fine-tuning that uses the model trained for 105,000 steps achieves
very similar photo-metric quality as fine-tuning the model trained
for 1 Mio. steps, please see our ablation study in Sec. 4.3 and the
supp. HTML page for visuals.
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We train our model with 128 samples for the proposal and 128
samples for the NeRF MLP. The proposal MLP is sampled twice and
the NeRF MLP is sampled once. Both the proposal and NeRF MLP
use the same positional encoding for the inputs. The xyz inputs use
twelve levels; the view direction four levels and appends the view
direction without positional encoding.

Losses. The terms in the loss functionLprior = Lrecon+𝜆propLprop
are a combination of the mean absolute photo-metric error of the
ground truth color 𝒄 versus the predicted color 𝒄 : Lrecon = ∥𝒄 − 𝒄 ∥1,
and the MipNeRF360 proposal loss Lprop =

∑
𝑖

1
𝑤𝑖

max(0,𝑤𝑖 −
bound(𝑡, 𝒘̂,𝑇𝑖 ))2. Please see Eq. 13 in the original paper for more
details [Barron et al. 2022]).
The optimization employs Adam [Kingma and Ba 2015] with

𝛽1 = 0.9, 𝛽2 = 0.999. The learning rate decays exponentially from
0.002 to 0.00002. We clip gradients with norms larger than 0.001.

We also experimented with the supervision of accumulation and
depth but didn’t find an improvement.

A.3 Inference Details
3DMM Fitting. We fit the 3DMM [Blanz and Vetter 1999] from 599

2D probabilistic landmarks, where each landmark is the projection of
one vertex of the 3DMMmesh with an uncertainty 𝜎 . The landmark
fitting follows [Wood et al. 2022] and minimizes the energy function

𝐸 (𝚽;𝐿) = 𝐸landmarks + 𝐸identity + 𝐸expression + 𝐸joints + 𝐸intersect,

where 𝐿 denotes the 599 probabilistic landmarks and 𝚽 all the op-
timized 3DMM parameters including identity, expressions, joint
rotations, and global translation, and intrinsic and extrinsic camera
parameters, if unknown. The landmark term

𝐸landmarks =
𝐶, |𝐿 |∑︁
𝑗,𝑘

∥𝒙 𝑗𝑘 − 𝝁 𝑗𝑘 ∥2

2𝜎2
𝑗𝑘

minimizes the distance between the projected landmarks from the
3DMM 𝒙 𝑗𝑘 and the estimated probabilistic landmarks with mean
𝝁 𝑗𝑘 and variance 𝜎2

𝑗𝑘
for all available camera views 𝐶 . The identity

𝐸identity = − log(𝑝 (𝜷)) is a regularizer that encourages plausible
face shapes. It is computed as the negative log-likelihood given a
fitted Gaussian Mixture Model of 3D head scans [Wood et al. 2021].
The expression and joints terms 𝐸expression = ∥𝝍∥2 and 𝐸joints =

∥𝑱 𝑖 ∥2 are regularization terms to encourage small values in the
expression code 𝝍 and joint rotations 𝑱 𝑖 for the neck and the two
eyeball joints. Note that the regularization does not apply to the
global (head) joint. 𝐸intersect discourages intersecting vertices. Please
see [Wood et al. 2022] for more details.

Warm-up by Inversion. We sample random patches of size 32× 32.
Our batch size is 4096 rays so we use 4 patches in each batch. We
run 1,500 inversion steps, which takes about 10 minutes on four
TPUs.

Optimization. The model fitting uses the same sampling strategy
as prior model training (2x proposal and 1x NeRF sampling) and
employs the Adam optimizer with the same parameters. We sample
4096 random rays across all available views in each step.We optimize
for 50,000 steps, which takes about 3.5 hours.

Losses. The loss terms follow related works. In the following,
the variable𝑤 corresponds to the NeRF sample weight defined in
Eq. 5 of the original NeRF paper [Mildenhall et al. 2020]. The nor-
mal consistency loss is defined as Lnormal =

∑
𝑖 𝑤𝑖 · (1 − n⊤n̂),

where n are the analytical normals and n̂ are the predicted nor-
mals. The regularization of the view direction weights is defined as
L𝑑 = ∥𝜃𝑣 ∥2, where 𝜃𝑑 are the model parameters that process the po-
sitionally encoded view directions. The distortion loss is defined as
Ldist =

∑
𝑖, 𝑗 𝑤𝑖𝑤 𝑗 ∥ 𝑠𝑖+𝑠𝑖+12 − 𝑠 𝑗+𝑠 𝑗+1

2 ∥ + 1
3
∑
𝑖 𝑤

2
𝑖
(𝑠𝑖+1 − 𝑠𝑖 ), where 𝑠 is

the normalized ray distance. For details about the LPIPS loss LLPIPS,
please refer to Eq. 1 in [Zhang et al. 2018]. We find that sampling
individual random rays during model fitting yields better results
than sampling patches. Hence, we only employ the perceptual loss
LLPIPS during warm-up but not during fine-tuning.

Rendering Time. We render on 4 TPUs, where rendering takes
about 20.5 seconds per 1024 × 1024 frame.

A.4 Experimental Details
A.4.1 Multiface Dataset. We quantitatively compare and ablate
on a subset of the Multiface dataset [Wuu et al. 2022]. Metrics are
computed on three expressions from three identities—nine scenes
in total. For each scene, we select three views for training: One
frontal and two side views. For evaluation, we compute metrics on
all holdout views where the cameras are not located on the back of
the head. Please see Fig. 11 for a visualization.

Fig. 11. Multiface cameras used for evaluation are highlighted in red. Blue
cameras are discarded. The face (green) is looking along the z axis.

A.4.2 Preface Dataset. Our ablation study that trains on real data
uses the Preface dataset [Buehler et al. 2023]. It contains multi-view
captures of 1,500 identities. Each identity is captured for 13 facial
expressions and from 12 views. Please see [Buehler et al. 2023] for
more details and a breakdown of demographics.
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# Views PSNR ↑ SSIM ↑ LPIPS ↓
1 23.79 0.7323 0.3139
2 24.29 0.7409 0.3184
3 26.54 0.7750 0.3144

Table 3. Number of Input Views. Our method can produce good-quality
frontal views from a single frontal image. However, the quality suffers from
side views, where the input image doesn’t provide any information. Please
see the supplementary HTML page for visuals.

A.5 Supplementary Results
A.5.1 In-the-wild Results. We provide extensive results for high-
resolution in-the-wild captures on the supplementary HTML page
and video.

Table 4. Additional ablations. Training a prior model with a background
leads to more floating artifacts during fine-tuning.

Variant PSNR ↑ SSIM ↑ LPIPS ↓
Prior with background 24.51 0.7313 0.3244
Prior without background 26.54 0.7750 0.3144

A.5.2 Supplementary Ablations and Comparisons. We extend our
ablations from the main paper with metrics computed on different
variants of our prior model in Tables 3 and 4. The metrics are com-
puted on the Multiface dataset [Wuu et al. 2022], as described in the
main paper.
We ablate fine-tuning results when a different number of views

are available in Tbl. 3. We find that our method produces pleas-
ing front-view faces even for a single input view. However, the
quality quickly degrades for side views, where the input views do
not provide any signal. Table 4 ablates a prior model trained with-
out background removal. Keeping the background (i) yields more
floaters during model fitting.

For visuals and additional results for single image inputs, please
see the main paper and the supplementary HTML page.

A.6 Ethics
The content of this paper follows the SIGGRAPH Asia policies for
data privacy. In particular, all in-the-wild subjects have signed an
agreement to be captured and reconstructed for research purposes.
This approach inhibits the same risks and dangers as other face
reconstruction methods.
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