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Figure 1: We introduce SOEBench, a standardized benchmark for quantitatively evaluating text-based small object editing.
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Abstract
A plethora of text-guided image editing methods has recently been
developed by leveraging the impressive capabilities of large-scale
diffusion-based generative models especially Stable Diffusion. De-
spite the success of diffusion models in producing high-quality
images, their application to small object generation has been lim-
ited due to difficulties in aligning cross-modal attention maps be-
tween text and these objects. Our approach offers a training-free
method that significantly mitigates this alignment issue with local
and global attention guidance , enhancing the model’s ability to
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accurately render small objects in accordance with textual descrip-
tions. We detail the methodology in our approach, emphasizing
its divergence from traditional generation techniques and high-
lighting its advantages. What’s more important is that we also pro-
vide SOEBench (Small Object Editing), a standardized benchmark
for quantitatively evaluating text-based small object generation
collected from MSCOCO[22] and OpenImage[18]. Preliminary re-
sults demonstrate the effectiveness of our method, showing marked
improvements in the fidelity and accuracy of small object gener-
ation compared to existing models. This advancement not only
contributes to the field of AI and computer vision but also opens
up new possibilities for applications in various industries where
precise image generation is critical. We will release our dataset on
our project page: https://soebench.github.io/
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1 Introduction
The realm of text-to-image generation has witnessed tremendous
advancements with the advent of recent diffusion models[12, 25,
27, 29, 34], which have successfully revolutionized various tasks,
including photo editing[15, 36], and inpainting[2, 30]. These mod-
els have demonstrated remarkable capabilities in producing and
manipulating salient objects within a picture, like the main subject
of a picture, under the description guidance. The success of such
models can be attributed to the effective cross-modal feature align-
ment between textual descriptions and the corresponding visual
objects during the synthesis process. Such alignment facilitates a
coherent and accurate translation of textual descriptions into visual
representations, resulting in impressive outcomes in both image
editing and in-painting tasks.

However, a severe issue arises when the pending object is small.
As shown in Fig. 2 (b), using small masks to guide the target object
editing can lead to problems such as attribute leakage, poor quality,
and missing entities. This issue is primarily due to the model’s
inability to focus on such a small region of interest in the description,
which can result in the model’s inability to generate objects that
align well with the textual descriptions. For example, consider an
image with a size of 512 × 512 and a small object whose bounding
box typically occupies only 64 × 64 pixels. When performing multi-
level cross-modal feature alignment, with U-Net as the backbone,
the cross-attention map is progressively down-sampled to a small
resolution of 8 × 8 as the network deepens. At the same time, our
target region may encompass within only a 1 × 1 grid, which is too
small for the model to effectively focus on. Consequently, the model

Figure 2: Comparison between our multi-scale joint atten-
tion guidance method and traditional text-based image in-
painting methods. Traditional text-based image in-painting
methods can only edit objects with a large scale. The first
column: The input image with mask condition. The second
column: Small mask condition is more likely leads to wrong
attention map. The third column: Our method multi-scale
joint attention guidance method can obtain the refined cross-
attention map for accurate small object editing. The last col-
umn: The output image generated by refined cross-attention
map.

may struggle to generate objects that align well with the textual
descriptions within such a small area, leading to poor quality and
even missing entities.

Facing the abovementioned limitations, we introduce a new task
called Small Object Editing (SOE) in this work. Specifically, the SOE
task requires the model to perform editing that is consistent with
the given textual descriptions, seamlessly integrates with the sur-
rounding context of the original image, and is precise in the desired
small region. The key to this task is to prevent mismatches between
the desired masked region and the intended textual description,
ensuring that the model generates accurate and high-quality small
objects. To evaluate the performance of models on this SOE task, we
construct a comprehensive benchmark dataset, i.e., SOEBench. This
benchmark allows us to evaluate the effectiveness of small object
editing on various models and includes 4000 objects from two es-
tablished datasets, MSCOCO [22] and OpenImages [18]. SOEBench
holds two sets, SOE-2k and SOG-4k, where SOE-2k contains 2000
objects from OpenImages for editing and SOE-4k contains an addi-
tional 2000 objects fromMSCOCO for editing. For each small object
editing prompt, we provide both label-only and label-with-color

https://soebench.github.io/
https://doi.org/10.1145/3664647.3680896
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templates in the description. This allows us to evaluate the mod-
els’ ability to generate small objects that align with both textual
descriptions and color specifications.

Building upon the constructed SOEBench, we further provide
a strong baseline method for small object editing. As discussed
above, the quality of the cross-attention map is crucial in small
object editing. To this end, we propose a new joint attention guid-
ance method to enhance the accuracy of the cross-attention map
alignment from both local and global perspectives. In particular,
we first develop a local attention guidance strategy to enhance
the foreground cross-attention map alignment and then introduce
a global attention guidance strategy to enhance the background
cross-attention map alignment. Our proposed baseline method is
training-free but highly effective in addressing the SOE problem.

The contributions of our work are summarized as below:
• By recognizing the limitations of current research, we define
a new task of small object editing and come up with a new
benchmark dataset SOEBench to evaluate the model’s ability
on small object editing.
• We introduce a novel training-free baseline approach to ad-
dress the small object editing challenge by considering both
global and local perspectives.
• The proposedmethod is evaluated on the proposed SOEBench
dataset and achieves the state-of-the-art results.

2 Related Work

2.1 Diffusion Models
Denoising diffusion based models (DMs)[12, 25, 27, 29, 31] and
score-matching-based model[32–34] have become the de facto stan-
dard for image generation, surpassing Generative Adversarial Net-
works (GANs)[9, 35, 38, 39, 41] in performance and training stability.
Denoising Diffusion Probabilistic Models (DDPM)[12] and Noise
Conditional Score Networks (NCSN)[34] are the pioneer to em-
ploy denoising neural networks to reverse a predefined Markovian
noising process on raw images.

Latent Diffusion Models (LDM)[29] intuitively disentangle im-
age synthesis into two stages: semantic reconstruction through a
denoising process in latent space, and perceptual reconstruction
with VAE[17], such a strategy significantly enhances visual fidelity.
Currently, the success of DMs has greatly driven a series of image
generation and editing tasks.

2.2 Text-based Image Editing
Image editing has become a popular domain, enabling personalized
and customized image generation. Text prompts are predominantly
employed as input conditions due to their flexibility. These methods
can generally be classified into two categories: training-based and
training-free. Training-based methods typically involve fine-tuning
the entire denoising model or adapters. For example, Diffusion-
CLIP [16] and InstructPix2Pix [4] fine-tune the entire diffusion
model using collected text-image datasets. In contrast, Asyrp [19]
and GLIGEN [21] introduce adapters into publicly available diffu-
sion models and only tune the adapter parameters for rapid adapta-
tion. T2I-Adapter [24] and ControlNet [40] further extend control

capabilities by introducing tailored adapter architectures such as
zero convolution.

For training-free methods, manipulating cross-attention maps
and fine-tuning text embeddings aremainstream techniques. Prompt-
to-prompt [10] edits images solely through text prompts, injecting
attention maps of the original image throughout the diffusion pro-
cess. Attend-and-Excite [5] introduces GSN to intervene in the
diffusion process to enhance subject tokens for generating multiple
objects. DDIM Inversion [31] presents a deterministic process to
invert images to noises. Inspired by DDIM Inversion, Null-Text
Inversion [23] pioneers fine-tuning null-text embeddings to reduce
the distance between the sampling trajectory and the inversion tra-
jectory. Prompt Tuning Inversion [8] follows a two-stage pipeline,
first encoding the image into a learnable embedding and then sam-
pling the edited image by interpolating the target embedding and
the learnable embedding. PnP Inversion [14] enhances the inversion
process by disentangling source and target branches for content
preservation and edit fidelity, respectively. Imagic [15] incorporates
text embedding optimization and model fine-tuning for image edit-
ing. BlendedDiffusion [1, 2] explore the method of using a mask to
edit the specific region and add a new object to the image while leav-
ing the rest unchanged. Some layout2image methods[6, 7, 26, 37]
operated constraints on cross-attention to control the synthetic
contents.

Most text-based image editing methods are based on DMs, while
a U-Net architecture is widely adopted. However, as the U-Net
deepens, the cross-attention map becomes extremely small, thus
some small objects may only take a small region on the attention
map, leading to the model hardly focusing on such small objects
for editing.

2.3 Benchmarks for Image Editing
Although image editing has been widely explored in recent years[3,
13–15, 36], benchmarks for this task remain limited. EditBench [36]
primarily presents a systematic benchmark comprising 240 images
for image inpainting based on masks and text prompts, evaluated
using CLIP-Score[11, 28] and CLIP-R-Precision metrics. Concur-
rently, Kawar et al. introduce TedBench [15] to evaluate non-rigid
text-based image editing, providing 100 pairs of input images and
target texts, with CLIP-Score and 1-LPIPS adopted as metrics. Edit-
Val [3] introduces a standardized evaluation protocol for assessing
multiple edit types using a curated image dataset. Additionally, Ju et
al. present PIE-Bench [14], comprising 700 images showcasing di-
verse scenarios and editing types. Aside from automatic evaluation
via benchmarks, human evaluation (a.k.a. user study) is a more
reliable method for assessing the quality of generated images. Text
Alignment and Image Quality are two main metrics used in these
studies. Text Alignment focuses on the consistency between the
text prompt and the edited image, while Image Quality evaluates
the visual fidelity of the generated image.

However, to the best of our knowledge, there is no benchmark so
far focusing on small object editing, which is a critical issue failed
by most of the current research. Therefore, in this work, we focus
on small object editing and propose a new small object editing
benchmark, i.e., SOEBench.
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3 Preliminaries
3.1 Latent Diffusion Models
Latent diffusion models are a subclass of generative models that
adopt a diffusion and a denoising process to synthesize new data.
First, a VAE encoder is adopted to encode the imageI into the latent
space, denoted as 𝑧. Then the forward diffusion process gradually
introduces noise to the latent representation 𝑧 to the complete
Gaussian noise 𝑧𝑇 , where𝑇 represents the total number of timesteps.
For each timestep t, the noisy latent code 𝑧𝑡 can be represented as:

𝑧𝑡 ∼ N(𝛼 (𝑡)𝑧;𝜎2 (𝑡)I), (1)

where 𝛼 (𝑡) and 𝜎 (𝑡) control the mean and covariance of the noise.
Then, the diffusion models aim to reverse this diffusion process
by sampling random Gaussian noise 𝑧𝑇 and gradually denoising
such latent code to generate the initial latent code 𝑧0. In practice,
the denoising model targets at predicting the sampled noise 𝜖𝜃
at each timestep 𝑡 given the condition 𝑐 by optimizing the Mean
Square Error between the predicted sampled noise 𝜖𝜃 (𝑧𝑡 , 𝑐, 𝑡) and
the sampled noise 𝜖 , which can be formulated as:

L = ∇𝜃 ∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑐, 𝑡)∥2 . (2)

Finally, a VAE decoder is adopted to generate the image using the
denoised latent code.

3.2 Cross-Attention Guidance
The Latent Stable Diffusion models perform conditional generation
utilizing a cross-modal attention module between the given con-
ditioning 𝑐 and the latent representations 𝑧𝑡 , where the condition
embedding 𝑐 and the latent representations 𝑧𝑡 are mapped to the
query Qwith a dimension of𝑀 ×𝑑 and the key Kwith a dimension
of 𝑁 × 𝑑 , and the cross-attention map A𝑙 in the 𝑙-th layer of the
U-Net can be derived as:

A𝑙 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
QKT
√
𝑑

)
∈ [0, 1]𝑀×𝑁 . (3)

Attention control is widely used in image editing, notably in tech-
niques such as Prompt-to-Prompt(P2P). P2P replaces the current
attention map with one corresponding to the target text, thereby
facilitating the editing of objects within the image.

4 The SOEBench Dataset
SOEBench is selectively extracted from MSCOCO[22] and Open-
Image[18] databases, the selection rule of which follows a set of
precise criteria to aptly serve the needs of small object generation
experiments. The selection process primarily focuses on ensuring
that the chosen objects are not obstructed by other elements within
the image, allowing for a clear target for the small object generation
task. Additionally, the object size was a critical consideration. We
specifically selected objects that occupy a size smaller than 1/6 but
larger than 1/8 of the overall image. This size constraint is pivotal
because objects smaller than 1/8 would yield a representation on
the deepest U-Net’s feature map that is smaller than one pixel,
rendering them practically unfeasible for effective generation, as
shown in Fig. 4.

The category of the data contained in the dataset can be referred
to in the word cloud in Fig 1. Our dataset comprises about 300

types of objects that are frequently encountered, aligning the ex-
perimental setup with real-world object recognition scenarios. We
then crop the images to extract the portions within the masked
areas, and then use the BLIP-VQA [20] model to query, ’What is
the primary color of the object in this area?’ This approach effi-
ciently identifies the main color of the objects within the masks as
the color attribute. Importantly, the dataset has been segmented
into two subsets based on the quantity of images they contain:
SOE-2k and SOE-4k, where SOE-2k contains 2000 objects from the
OpenImage dataset and SOE-4k contains 2000 more objects from
the MSCOCO dataset. Such an operation enables a thorough and
diverse assessment, ensuring that our methodology is tested under
different scales of data availability, further reinforcing the validity
and robustness of our research findings.

Table 1: Comparing our benchmark with existed works from
different aspects, such as object category, benchmark size
and mask size.

Benchmarks Benchmark Info
categoty num dataset size mask size

TedBench <50 100 >0.5
EditBench <50 240 0.08∼0.9
EditVal <50 648 -

SOE(Ours) 300 2K/4K <0.03

Compared to existing benchmarks for text-based image editing
(i.e., TeDBench [15], EditBench [36], and EditVal[3]), our bench-
mark, SOEBench, offers distinct advantages. TeDBench is limited
by its small dataset, consisting of only 100 images across 40 cate-
gories, primarily focused on modifying object attributes, states, or
appearances. Furthermore, TeDBench images typically feature a
single dominant subject occupying a significant portion of the im-
age. In contrast, EditBench includes a larger dataset of 240 images
and accommodates a wider range of mask sizes, from 0.08 to 0.9 of
the image size. However, even EditBench’s smallest mask sizes are
substantially larger than those in SOEBench, where the maximum
size of small object areas occupies only 1

36 of the image. Another
recent benchmark, EditVal[3], offers a more comprehensive set
of image-editing operations. Developed from the MSCOCO [22]
dataset, EditVal comprises 648 unique image-editing operations
across 19 classes. These operations include 13 types of real-world
edits, including one dedicated to controlling object size. Comparing
SOEBench with these benchmarks (summarized in Tab. 1), we ob-
serve that SOEBench offers a larger and more diverse test dataset,
covering a wider array of categories. Moreover, SOEBench features
significantly smaller target areas, presenting a greater challenge
for text-based image editing tasks.

5 Methodology
In this section, we present our training-free multi-scale joint atten-
tion guidance baseline in detail. In particular, we first describe the
problem definition of small objection editing in Sec. 5.1. Then, we
introduce our local attention guidance in Sec. 5.2 and our global
attention guidance in Sec. 5.3.
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Figure 3: The inference pipeline of our proposed SOE. We receive smaller mask region𝑚𝑠 , larger mask region𝑚𝑏 then randomly
initialize two identical 𝑧𝑇 and 𝑧′

𝑇
, text prompt 𝑐𝑡 as input. During the first K timesteps, we compute the cross-attentionmaps from

both parts J times at each timestep and calculate the L𝑙𝑔 and L𝑔𝑔 losses. Then, based on the loss gradients, we backpropagate to
optimize 𝑧𝑡 . After 𝐾 × 𝐽 rounds of optimization, we continue to use the diffusion model to denoise the image.
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Figure 4: The illustration of a cross-attention map. For an
input image with a size of 512 × 512, if the masked area is
64 × 64, the corresponding effective area comes to 1 × 1 in the
mid-block. The diminutive size of this masked area poses
a challenge as it may lack sufficient semantic information
essential for generating associated objects.

5.1 Problem Definition
In this paper, we propose a novel small object editing (SOE) task
that targets at in-painting the specified masked region𝑚𝑠 on the
given image 𝐼 , which is usually small, using a textual description
𝑐 as the condition. The task requires the model Ψ, which includes
a VAE encoder E, a diffusion model with weight 𝜃 from which
we can obtain the predicted noise 𝜖 and cross-attention map A,
and a VAE decoder D, to not only perform inpainting consistent
with the given condition but also perform the in-painting that
integrates seamlessly with the surrounding context of the original
image. Following previous works, a 𝐿-layer U-Net is adopted as the
backbone of the diffusion model. The key to the task is to avoid
any mismatch between the desired masked region and the intended
textual description, which is usually achieved by refining the cross-
attention map A.

In this paper, we aim at proposing a training-free baselinemethod
to tackle the SOE problem. Based on the 𝐿-layer U-Net architecture,
we focus on cross-attention map refinement and propose a local and
global attention guidance method, where we encourage the refined
cross-attention map to provide precise guidance to the latent code
estimation. The overall inference pipeline is shown in Fig. 3.

5.2 Local Attention Guidance
During the inference stage, given the small mask𝑚𝑠 and the image 𝐼 ,
we implement local attention guidance according to the following
steps. 1) we scale the height and the width of 𝑚𝑠 according to
the scaling factor 𝑠 to obtain a large mask 𝑚𝑏 . Note the center
position of𝑚𝑏 is identical to the center position of𝑚𝑠 . 2) Two sets
of attention map A𝑙 and A′𝑙 can be obtained according to Eq. 4
and Eq. 5, where

A𝑙 ← F𝜃 (𝑧𝑡 , 𝑡, 𝑐,𝑚𝑠 , 𝑧), (4)

and
A′𝑙 ← F𝜃 (𝑧′𝑡 , 𝑡, 𝑐,𝑚𝑏 , 𝑧), (5)

whereF𝜃 is the cross-attentionmap obtainment operation, where
we collect the cross-attention maps from the diffusion model, 𝑧′𝑡 is
the noised latent code predicted by using𝑚𝑏 as the input, which is
initialized by 𝑧′

𝑇
= 𝑧𝑇 and 𝑙 denotes the layer index of the model.

3)We use the index of the label 𝑐𝑟𝑒𝑞 in the given text condition 𝑐 ,
e.g., we obtain the index of the label “cat” in the given text “A small
cat on the grass”, to index the attention maps desired, i.e., A𝑙

𝑐𝑟𝑒𝑞

and A′𝑙𝑐𝑟𝑒𝑞 . 4) We crop A𝑙
𝑐𝑟𝑒𝑞

and A′𝑙𝑐𝑟𝑒𝑞 according to𝑚𝑠 and𝑚𝑏 ,
respectively, to obtain the desired attention maps 𝑟𝑚𝑠

(A𝑙
𝑐𝑟𝑒𝑞
) and

𝑟𝑚𝑏
(A′𝑙𝑐𝑟𝑒𝑞 ). 5) We rescale 𝑟𝑚𝑏

(A′𝑙𝑐𝑟𝑒𝑞 ) using bilinear interpola-
tion to the same size as 𝑟𝑚𝑠

(A𝑙
𝑐𝑟𝑒𝑞
) to calculate 𝐿𝑙𝑔 loss according

to Eq. 6.

L𝑙𝑔 =

𝐿∑︁
𝑙=1

∑︁
𝑖∈{𝑐𝑟𝑒𝑞 }




𝐼 (𝑟𝑚𝑏
(A′𝑙𝑖 )) − 𝑟𝑚𝑠

(A𝑙
𝑖 )




2
, (6)

Based on our observation, the model is prone to generate ac-
curate contents within such a large region. However, such an op-
eration may fail to handle the seamless integration with the sur-
rounding context of the original image problem. Therefore, we just
rescale the A′𝑙 and encourage such a precise cross-attention map
to provide guidance for A𝑙 .
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Figure 5: Local attention is primarily used to correct the semantic information within the mask area of the A corresponding to
the main object, ensuring it aligns with what is correct. Global attention guidance collectA from all work tokens and primarily
aims to accurately distinguish unimportant details beyond the main object during the process of generating the A from the
latent code.

It should be mentioned that Eq. 6 is designed solely to modify
A𝑙 while A′𝑙 remains unchanged, thus obviating the need for a
back-propagation operation.

5.3 Global Attention Guidance
Our local cross-attention guidance approach is training-free but
boosts the accuracy of the desired region in the cross-attention
map, which shows its great potential in tackling the SOE problem.
However, as shown in Fig. 5, as the desired mask region may be
too small, the pixels on the cross-attention map may be attracted to
the wrong region, like the background. To tackle the issue, in this
section, we further propose a global attention guidance operation to
alleviate the foreground noise, which guarantees that when utilizing
𝑚𝑠 to produce a cross-attention map, the map accurately zeroes in
on pertinent information within the masked areas associated with
the object being generated, effectively discounting data from areas
inconsequential to the textual depiction of the object.

In particular, based on A′𝑙 introduced in Sec.5.2, we encourage
A′𝑙 to provide global guidance for A𝑙 to alleviate the problem of
cross-attention matching to the wrong region. Different from local
attention guidance that only focuses on the cross-attention map on
the desired mask region alignment, we encourageA𝑙 to be aligned
with A′𝑙 for all queries, which can be formulated as

L𝑔𝑔 =

𝐿∑︁
𝑙=1

𝐼∑︁
𝑖=1




A′𝑙𝑖 − A𝑙
𝑖





2
. (7)

Recall that 𝑖 is the index for the 𝑖-th condition token, 𝐼 represents
the length of the sentence. Also note thatA′𝑙 is still unchanged and
only the value ofA𝑙 needs to be modified, and no back-propagation
operation is required.

The overall guidance function is defined as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑙𝑔 + L𝑔𝑔 . (8)

Then, we compute the gradient of 𝑧𝑡 and update the predicted 𝑧𝑡
as:

𝑧𝑡 ← 𝑧𝑡 − 𝜂∇𝑧𝑡L𝑡𝑜𝑡𝑎𝑙 , (9)

where 𝜂 is the learning rate.
Based on our experiments, we found that we only need to per-

form our joint attention guidance on the cross-attention map for
the former 𝐾 denoising timesteps, where 𝑧𝑡 undergoes a series of
updates. Specifically, it is refined through a gradient descent process
aimed at minimizingL𝑡𝑜𝑡𝑎𝑙 , which occurs 𝐽 times. The step-by-step
methodology for our method is delineated in Algorithm 1.

Our joint attention guidance method performs cross-attention
map alignment from a local perspective and a global perspective,
which provides a comprehensive correctionmechanism. Thismethod
aims to enhance the model’s ability to accurately focus and generate
small targets that are consistent with text descriptions, and assign
lower attention values to non-target areas, thereby addressing the
key challenge of using diffusion models to generate small targets.

6 Experiments
6.1 Evaluation Metrics.
In the evaluation of our methodology, we employed two metrics:
the CLIP-Score and the Fréchet Inception Distance (FID). The CLIP-
Score was used to quantify the similarity between the generated
objects within the target area and the corresponding text descrip-
tions. This metric effectively assesses how well our model’s output
aligns with the textual prompts, particularly focusing on the small
objects generated. The FID Score was utilized to gauge the quality
of the generated images in relation to the original images. Higher
CLIP-Score or lower FID, indicate better performance.

It’s important to note that the generated objects occupy a rela-
tively small proportion of the original image, using the entire image
for metric calculation could lead to misleading results. Therefore,
we apply a targeted approach by cropping the original images dur-
ing the evaluation phase. This cropping is designed to focus on the
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Algorithm 1: Our joint attention guidance method
1 Input: the textual prompt 𝑐 , the region mask𝑚𝑠 , the

extracted latent code 𝑧, the number of total timestep 𝑇 , the
number of guiding timestep 𝐾 , the number of backward
times 𝐽 , the diffusion model 𝜖𝜃 , the cross-attention map
obtainment operation F𝜃 , the learning rate 𝜂.

2 Output: the estimated latent code 𝑧0.

3 Initialization: 𝑧𝑇 ∼ N(0, 𝐼 ), 𝑧′𝑇 ← 𝑧𝑇

4 Scale:𝑚𝑏 ← enlarge𝑚𝑠 . # Fix the center of the small box,
then enlarge the length and width by a factor of 𝑠 .

5 for 𝑡 = 𝑇, . . . ,𝑇 − 𝐾 do
6 𝑧′

𝑡−1 = 𝜖𝜃 (𝑧
′
𝑡 , 𝑡, 𝑐,𝑚𝑏 , 𝑧) , A′𝑙 = F𝜃 (𝑧′𝑡 , 𝑡, 𝑐,𝑚𝑏 , 𝑧)

7 for 𝑗 = 0, . . . , 𝐽 − 1 do
8 𝑧𝑡−1 = 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐,𝑚𝑠 , 𝑧) , A𝑙 = F𝜃 (𝑧𝑡 , 𝑡, 𝑐,𝑚𝑠 , 𝑧)
9 Get Features to Compute the 𝐿𝑙𝑔:

10 A𝑙
𝑐𝑟𝑒𝑞

= A𝑙 [𝑐𝑟𝑒𝑞] , A′𝑙𝑐𝑟𝑒𝑞 = A′𝑙 [𝑐𝑟𝑒𝑞]
11 𝑟𝑚𝑠

(A𝑙
𝑐𝑟𝑒𝑞
), 𝑟𝑚𝑏

(A𝑙
𝑐𝑟𝑒𝑞
) #features within𝑚𝑠 ,𝑚𝑏

12 Rescale:
13 𝐼 (𝑟𝑚𝑏

(A′𝑙𝑐𝑟𝑒𝑞 )) ← resize 𝑟𝑚𝑏
(A′𝑙𝑐𝑟𝑒𝑞 ) downscaling

the 𝑟𝑚𝑏
(A′𝑙𝑐𝑟𝑒𝑞 ) using bilinear interpolation .

14 L𝑡𝑜𝑡𝑎𝑙 = L𝑙𝑔 (𝑟𝑚𝑠
(A𝑙

𝑐𝑟𝑒𝑞
), 𝐼 (𝑟𝑚𝑏

(A′𝑙𝑐𝑟𝑒𝑞 ))) +
L𝑔𝑔 (A𝑙 ,A′𝑙 ) , ∇𝑧𝑡 = 𝜕𝑧𝑡 L𝑡𝑜𝑡𝑎𝑙 , 𝑧𝑡 = 𝑧𝑡 - 𝜂 ∇𝑧𝑡

15 end
16 end
17 for 𝑡 = 𝑇 − 𝐾 − 1, . . . , 0 do
18 𝑧𝑡 = 𝜖𝜃 ( 𝑧𝑡 , 𝑡 ,𝑐 ,𝑚𝑠 , 𝑧)
19 end
20 Return: 𝑧0

area of interest, ensuring a more direct and meaningful compar-
ison between the generated object and the original context. This
method of evaluation ensures that our metrics accurately reflect
the model’s performance in generating small objects, providing a
true assessment of its capability in this specific task.

6.2 Implementation Details
We use the stable diffusion v1-5 painting model as the baseline
method and use DDIM as the noise scheduler. Considering the
resize operation on the mask area, a too-large resize ratio will bring
a large loss error. We set the scaling factor 𝑠 to a value randomly
selected from 1.5 to 3. We set the learning rate 𝜂 = 100 by default.
The noise correction is performed during the initial 𝐾 = 5 steps of
the denoising process and repeated 𝐽 = 5 times at each step. More
ablation study about the hyper-parameter can be found in Tab.XX,
and the results indicates that our method is not sensitive to the
hyper-parameters, highlighting the robustness of our approach.

6.3 Experimental Results
We evaluate our approach on our proposed benchmarks SOE-2k
and SOE-4k with two kinds of prompt templates, i.e., label and

Table 2: Compare our proposed training-free approach with
the stable diffusion model (SD-I) on the SOEBench dataset.
lg indicates our local attention guidance method and gg indi-
cates our global attention guidance method. The best results
are highlighted in bold.

Prompt Methods SOE-2k SOE-4k
CLIP-Score FID CLIP-Score FID

label
SD-I 23.79 34.65 23.11 35.21

SD-I+lg 23.93 35.02 23.25 35.02
SD-I+lg+gg 24.05 34.32 23.39 34.67

color
+label

SD-I 24.10 34.73 23.31 34.96
SD-I+lg 24.21 34.32 23.47 34.74

SD-I+lg+gg 24.36 33.85 23.62 34.28

color+label, e.g., "a dog" and "a brown dog", and quantitatively com-
pute the CLIP-Score and FID to prove the effectiveness of our cross
attention correction. The result is shown in Tab. 2 and our method
demonstrated a great improvement compared to the baseline mod-
els, exceeding the baselinemethod stable diffusion by a largemargin
of nearly 1 point in terms of the FID score on the SOE-2k subset, and
around 0.7 points in terms of the FID score on the SOE-4k dataset.
It can be also inferred from the table that given a detailed condition,
i.e., color with label, the editing performance of our method exceeds
the performance of given a simpler condition, i.e., label only, by a
large region of around 0.5 points in terms of the FID score on the
SOE-2k subset, indicating the effectiveness of our method of un-
derstanding different conditions. It should also be mentioned that
our method is training-free, and the experimental results verify the
great potential of our method on tackling the small object editing
problem.

6.4 Ablation Study
We further analyze the effectiveness of the detailed module de-
signs of our joint attention guidance method, which includes a
local attention guidance (lg) method and a global attention guid-
ance (gg) method. It can be inferred from Tab. 2 that our local
attention guidance can efficiently improve the models’ in-painting
performance on the small object editing task, mainly attributed to
our newly proposed mask region scaling-and-rescaling operation,
which efficiently enables the model to generate precise content
corresponding to the textual description, and can also be integrated
with the surrounding context of the original image successfully.
Based on our local attention guidance method, our global attention
guidance method can further bring performance improvement, as
our global attention guidance method further reduces the proba-
bility of the model modifying the background part, ensuring the
accuracy of the modified part, and at the same time ensuring the
quality of background image generation.

6.5 Qualitative results
To complement our quantitative studies above, we present quali-
tative results in this section. We provide samples and qualitative
comparison with Stable-Diffusion Inpainting model in Fig 6. As
show in the examples, when using the SD-I model for generating
images of small objects, issues frequently arise such as low quality,
mismatches between text and images, or the absence of generated
objects. However, as shown in the third column of each image group
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in the figures, our method has been able to address these issues to a
considerable extent, enhancing the performance of the base model.
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Figure 6: Qualitative results of our method on the SOEBench
dataset. The first column of each set contains the original
image,mask, and text. The second column shows results from
the SD-I model, and the third column displays outcomes of
SD-I+Ours.

6.6 User Preference Study
Besides the automated metrics, we also incorporated a user study
to align more closely with intuitive human preference. In the study,
we aim to assess both prompt adherence and the overall image.
We employed our methods and SD-I(Stable-diffusion-Inpainting)
as comparison models, keeping the seed fixed to generate 25 pairs,
totaling 50 images. Our study involved 100 total participants. Par-
ticipants were tasked with ranking images of small target objects
generated these two methods. Fig. 7 present the user study. The
most important results are:Our training-free methods can enhances
the base model’s ability to improve both the image quality of gen-
erated objects and their alignment with the associated text to a
certain extent.

50 75 1000 25

O
U
RS

O
U
RS

SD
-I

SD
-I

Preference[%]

Image Quality / Prompt Alignment

Figure 7: User preference study. We compare the perfor-
mance of our training-free methods against baselines Stable-
Diffuion Inpainting. Our method outperforms baseline in
both image quality and prompt alignment study.

6.7 Discussion
Method comparison with P2P. In the realm of image content
editing, prompt-to-prompt (P2P) methods have proven to be highly
effective for various image manipulation tasks. Nevertheless, they
exhibit notable limitations in generating small objects, primarily
due to the mismatch between text and the corresponding cross-
attention map. To further evaluate this, we conducted tests using

a P2P-based method, wherein we attempted to transfer the ap-
propriate attention map from the large mask to the smaller one.
Unfortunately, this approach proved ineffective for the generation
of small objects because it did not correct the erroneous regions of
the cross-attention map. This further corroborates the effectiveness
of our method in addressing this specific issue.
Failure Cases. While our method effectively mitigates perfor-
mance degradation through attention guidance, its efficacy remains
constrained by the limitations of the base model. As depicted in
Fig. 8, we showcase instances of object omission and subpar quality
in our generated images. To bolster the small object editing capa-
bilities further, fine-tuning the model on dedicated small object
images presents a straightforward solution.

or
an

ge
 o

ra
ng

e brown dog

br
ow

n 
te

dd
y 

be
ar

red car

Figure 8: Failure cases. Due to the performance of the base
model, issues such as object missing and low quality will still
be encountered even our joint attention guidance approach
is adopted.

7 Conclusion
In this work, our research introduces two significant contributions
to the field of SOE (Small Object Editing) using diffusion models.
We firstly developed a new benchmark dataset specifically designed
to evaluate small object editing. This dataset addresses the unique
challenges and requirements of small object imagery, providing a
comprehensive and targeted platform for testing and comparing
different models. Alongside this dataset, we propose a training-free
approach represents a major advancement in solving the issue of
generating small objects. By focusing on the alignment of cross
attention maps between text and small objects, our method effec-
tively bridges the gap that has historically hindered accurate and
detailed generation of small objects in response to textual descrip-
tions. This alignment enables the model to more precisely interpret
and render the intricate details required for small object generation
.This baseline serves as an initial reference point for future research,
offering a simplified yet effective framework for subsequent models
to build upon and refine.

Another critical aspect to consider is that our method operates
within the constraints of the existing capabilities of the diffusion
model’s backbone. Since we do not modify the parameters of the
diffusion backbone, the quality and the fidelity of the generated
images are inherently bound by the performance of the underlying
model. Therefore, while our approach enhances the model’s ability
to generate small objects in alignment with text descriptions, the
overall effectiveness is still dependent on the inherent capabilities
of the diffusion model.
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