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ABSTRACT
Several tools to support autograding of student provided SQL state-
ments have already been introduced. The full potential of such tools
can only be leveraged, if they extend beyond grading efficiency by
also providing tutoring capabilities to the students. With that, tools
become really useful by offering self-paced and individually timed
learning experiences. In this paper we present an extension for an
SQL autograder which improves the hints generated for students in
cases where their solution is not entirely correct. Our approach is to
compare the student’s solution with the model solution structurally
to identify differences between the syntax trees describing the state-
ments. This complements comparing the student’s query with a
model solution based on query results. In addition to improving the
quality of hints generated for the students, this concept can also be
used easily for data manipulation language (DML) or data definition
language (DDL) statements, thus extending the applicability of the
autograder. Along with details about the concept we present some
example hints generated to illustrate the usefulness of the approach.
We also report anecdotally on experiences with the system in two
different level database courses. Results from different instances
of one of them show improvements of student learning as well as
student involvement by using the newly generated hints.
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1 INTRODUCTION
The concept of automated grading of SQL statements submitted
by students as exercise solutions has been introduced in [13] for
the first time. Several implementations have been completed and
described in the literature since then, see Sec. 2 for a more detailed
discussion. Almost all of those fully automated systems, including
the one used at the authors’ institution ([12]), focus on compar-
ing the results of the student submitted query with results of an
instructor-provided sample solution. In addition, most of these
systems (not the one in [12] though) use fixed and rather small
database schemata and content, so that the reliability of a result-
based grading is further reduced. Does the student query really
solve the problem or is the result correct just by accident? Also,
this cannot reasonably be applied to queries with empty or simple
results (consider e. g. an aggregation with a single number as aggre-
gation result). For such problems and also for problems involving
joins, listing sample missing or gratuitous result rows is not a fea-
sible approach. Moreover the concept of result based grading is
directly only applicable to querying data (for DML or DDL state-
ments defining and comparing results requires additional concepts)
and, most importantly, the possibilities of supporting students in
improving their solutions are limited.

The grading system at the authors’ institution has thus been
extended by an additional grading step which performs a structural
comparison of the query tree provided by the student with the
model solution tree supplied by the instructor. The idea is that
differences in the tree are very likely to correspond to differences
in the result and are thus potential errors in the student’s solution.
Naturally, such a comparison has to go beyond a mere syntactical
comparison as a certain level of sensitivity to unharmful differences
is needed. Consider for instance a different naming of aliases or
using a different order of relations contributing to a join query. In
such cases differences between student and instructor solution are
not indicators of errors. On the other hand different or forgotten
selection predicates are likely to be errors in the student query.
Thus, an intelligent comparison algorithm is needed to generate
helpful hints how students can improve their solution.

The algorithm used in our grading system computes a similarity
score between student and instructor solution as additional result
of the comparison. This score can be used to assign partial credit
for the solution in case it is not entirely correct. Note, that partial
credit is very difficult to assign in a fair manner when using result
based grading only, as the number of rows differing from the correct
solution is not a good quality measure, e. g. in cases where only a
minor error might produce a completely different result.
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The remainder of the paper is organized as follows: we give
an overview of previously published tools in Sec. 2. After a brief
overview of our own autograder in Sec. 3 we explain more details
on the newly added structural comparison and hint generation in
Sec. 4. Following are practical examples in Sec. 5 and a report on
experiences and some quantitative evaluation in Sec. 6, before we
conclude with some ideas for future improvements in Sec. 7.

2 RELATEDWORK
Automated grading of SQL statements has been in the focus of
instructors for over two decades now. Thus, several systems for
automated grading of SQL statements have been reported in the
literature. Among the older ones are e. g. [16] and [13]. More re-
cently other systems have been proposed such as [9], [8] or [19] .
Another one being cited rather often (probably, since it provides
code on GitHub and thus can be easily used at one’s own institu-
tion) is [11]. An overview of those and even more systems is part
of [15]. This publication also reviewed and compared the systems
in more detail. One of the major conclusions is that only SQLify
([5]) provides useful feedback to students in terms of improving the
solution by tutoring. However, that feedback is primarily provided
by peer reviews and not in an automated way. Interestingly, even
the systems reported in the literature with a focus on the tutoring
aspect (rather than the grading efficiency) did not solve the hint
generation issue. Particularly the older ones had this focus and
[16] introduced interesting first steps towards valuable hints, but
those have not been realized yet. A practical evaluation in [14] has
shown that high level feedback is more valuable for students than
detail feedback. This aspect is addressed by our proposal by the
option to generate more intelligent feedback from higher levels of
the syntax tree as opposed to low level comments (which might
be helpful for rather simple problems anyway). Consequently, im-
proving the quality of the hints for students in order for them to
autonomously improve their solutions is a crucial advancement for
any SQL autograder. A more general systematic overview of SQL
teaching approaches beyond autograders can be found in [18].

Ideas complementing our approach are presented in [1] where
the focus is on disposing of syntax errors. Since we assume these are
addressed by error messages from the database system itself, such
concepts are not found in our approach. Similarly, [6] presents an
interesting concept to support students in improving their individ-
ual approach to problem solving. Also, ideas from hint generation
in general programming tutoring could be used, see [4].

Apart from improving hint generation fairer partial grading
is also facilitated by our approach. Most other systems focus on
correctness testing and grading such as [17]. In addition, [11] uses
the grades as guideline for the students trying to support learning
mostly by improving correctness grading results. Grading-wise
the most similar system to ours is [19]. They also use different
grading aspects, which in addition can be flexibly combined as in
our approach. But they provide only a limited structural analysis
of the student solution. Another approach with good partial credit
assignment, but very limited hint generation can be found in [9].
Also, each SQL construct has to be added separately with its own
concept there. [2] also presents the idea of similarity based grading
of solutions, however they do not provide hint generation.

Most similar to our approach are [10], which is based on a con-
ceptually sound concept with different grading aspects, however
more basic in terms of hints, and [7], following a similar idea, how-
ever, queries are transformed into XML to detect differences. We see
advantages in directly using the parsing tree of the SQL expression
as in our approach instead of transforming it into XML first. Also
no evaluation results are presented there.

3 BRIEF OVERVIEW OF THE AUTOGRADER
The autograder used at our institution, before adding the features
introduced in this paper. is explained in [12]. Basically, it uses a
multiple step approach for grading where each grading step can
be individually activated or deactivated per problem. Traditional
grading steps (along with typical level in Bloom’s taxonomy) are:
• Syntactical correctness (remember)
• Efficiency of execution (apply)
• Result correctness (apply/analyze)
• Style check (remember)

Execution of grading steps per submission can be made dependent
on successful completion of previous grading steps (e. g. only syn-
tactically correct statements can be executed for result correctness).
In addition, each grading step can be assigned a certain weight for
the final grade which may also be 0 in cases where no credit shall be
awarded for certain steps (e. g. syntactical correctness in advanced
classes) despite them being checked.

The result correctness step at first compares the metadata of the
student and instructor query such as names and datatypes of the
result columns as well as number of rows in the results. On one hand
this is useful, as a comparison of query results only makes sense, if
both results consist of the same columns using the same datatypes.
On the other hand this facilitates at least some helpful hints for the
students in cases where the result is not correct. In case metadata
matches result correctness is checked by computing the union of
the difference sets between student and sample solution inside the
database. If this set is empty, the results are identical. This approach
is very efficient since the outcome can be computed inside the
database system. However, only binary grading (correct/incorrect)
can be used for correctness. Other approaches such as intersection
over union may often lead to inappropriate or unfair grades as
small mistakes may lead to large differences in result sets whereas
large mistakes may only result in small differences.

Finally, our autograder is integrated into the university’s LMS
(Moodle) which simplifies many LMS-typical tasks such as user
management, submission handling and managing grades produced
by the autograder in the context of other grades in the course.

4 CONCEPT FOR IMPROVED HINT
GENERATION

Since the hints generated based on the result correctness step did
not solve all problems students had in providing correct solutions,
we looked for additional hints to be generated in order to address
the analyze level of Bloom’s taxonomy better. One problem of hints
based on result correctness is that they only address metadata of
the query. They do not consider internal aspects of the student’s
query. Thus, a wide range of issues cannot be addressed this way.
These range from rather simple errors (such as malformed selection
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criteria) over medium difficulty (such as wrong combinations in
join formulation) up to more complex issues such as unnecessary
or malformed subqueries. Such issues can only be detected and
addressed in hints presented to the student, if the structure of the
student’s statement is analyzed and compared to the structure of
the sample solution.

As explained above, the basic idea of the improvement is to
generate parse trees of both the student as well as the instructor
query and then to look for structural differences in the two trees.
These can be on lower levels of the trees for the more simple errors
or on higher levels for the more complex issues. Technically, we
decided to add the new functionality as another grading step in the
grading process to retain maximum flexibility.

Algorithm 1 Tree Mapping and Hint Generation
Require: modelSolution, studentSolution syntactically correct

modeltree← generateParseTree(modelSolution);
studenttree← generateParseTree(studentSolution);
if !(modeltree is identical to studenttree) then

// Mapping
loop Perform parallel preorder traversal of trees

if similarity(modnode, studnode) ≥ 𝑚𝑎𝑝𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
map nodes

end if
end loop
for all unmapped nodes in studenttree do

𝑡𝑠𝑖𝑚 ← 0
for all unmapped nodes in modeltree do

𝑡𝑠𝑖𝑚 ← max(similarity(modnode, studnode), 𝑡𝑠𝑖𝑚)
if 𝑡𝑠𝑖𝑚 ≥ 𝑚𝑎𝑝𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

map nodes
end if

end for
end for
𝑡𝑟𝑒𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← 𝑎𝑣𝑔(𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 ) over all nodes
// Hint Generation
for all mapped nodes in studenttree do

mark node as done
end for
for all mapped nodes in modeltree do

mark node as done
end for
// Analyze undone nodes (forming blocks for subtrees etc)
loop all undone nodes in studenttree, modeltree

form blocks for semantically coherent subtrees
end loop
Generate hints for undone node blocks in three categories:
// Differing in studenttree from modeltree
// Only in studenttree
// Only in modeltree

else
𝑡𝑟𝑒𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← 1

end if

An abstract pseudo-code description in Alg. 1 illustrates the
procedure in more detail. Obviously, since we compare the parse

trees of the statements, these must be syntactically correct in order
to be able to compute a parse tree at all. This is typically ensured
by previous execution of the syntactical correctness grading step.

In the first part of the algorithm a parallel preorder traversal of
both trees is performed where a mapping of visited nodes based
on a node similarity function is tried (if the similarity is above a
pre-defined threshold the nodes are considered matching). Since
typically the general structure of the parse trees tends to be similar
at least on higher tree levels, this already identifies most of the
similarities. Only nodes not assigned a mapping partner (and simi-
larity score) in the student tree are then examined to find a suitable
mapping to any of the remaining unmapped nodes in the model
solution tree. The node with the highest similarity score which is
above the threshold is used as mapping partner (in most cases there
is at most a single node satisfying this condition anyway). After
the mapping process is complete, based on the similarity scores of
all nodes an overall similarity score of the trees is computed.

In the second part of the algorithm the hints for the students
which will be further illustrated in Sec. 5 are generated. For this pro-
cess only unmapped nodes from the previous phase are considered
since the mapped nodes are interpreted as equivalent between the
two queries. Note that it is not a viable option to simply output all
unmapped nodes of the parse tree to the student. On one hand, by
listing all nodes of the sample solution that have not been mapped
to the student solution, the student, after supplying a trivial and
incorrect answer, would essentially be given the whole sample so-
lution. He could then assemble this into his own solution without
gaining any actual knowledge, why this solution solves the given
problem. On the other hand, for typical medium to advanced levels
of difficulty in problems the number of unmapped nodes will be
very large. This will only lead to more confusion on the part of
the students as they need to navigate through a large list of nodes.
For instance, for the problem in example 5.2 the student parse tree
consists of 90 nodes, the instructor parse tree of 82 nodes and 22
of these nodes could not be mapped, even though the statements
are not too different. Listing all the 22 unmapped nodes would
definitely confuse a student rather than help improve his solution.

In addition, not all nodes in the parse tree correspond to syntac-
tically recognizable parts of the query, so that it is very likely that
students who are struggling to write correct SQL queries will be
overwhelmed with the much higher level of abstraction required to
interpret elements of a parse tree. Thus, there is a need to perform
the abstraction within the grading system and only provide the
students with a limited set of meaningful differences to the sample
solution. A similar observation has also been reported in [14].

To address this, several optimizations are performed in an anal-
ysis phase such as forming semantically relevant subtrees of un-
mapped nodes in order to reduce the number of hints. In addition,
nodes with syntactical relevance are identified, since hints always
have to correspond to a specific part of the student statement,
i. e. some syntactical element. Finally, hints are generated in three
categories, namely components only present in either the student
or the model solution and components present in both, but not
equivalent. These will lead to hints of the categories Unnecessary,
Missing and MixedUp (cf. Sec. 5), respectively.

An important part of the algorithm is the node similarity function
computing a similarity score between two nodes. This function is a
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weighted sum of several parameters of the comparison of the nodes
consisting of the following aspects:
• logical position of nodes within the SQL statement
• string representation of nodes as boolean value
• syntactical type of nodes
• semantical type of nodes
• similarity of path to the root of the tree
• depth in the tree
• column position of the nodes within the query string
• nodes’ sizes

The weights for these similarity factors have been determined
heuristically, resulting in decreasing weights in the order of the
above description and weights ranging from 0.35 down to 0.02. It
should be noted though that these have not yet been systematically
optimized in order to get the best mapping results. However, in
most cases the mapping has proven to be appropriate in practice.

Currently, in cases where students use the same tables at the
same logical positions inside an SQL statement (e. g. within a join)
but assign different aliases the similarity comparison will detect
that both solutions are actually semantically equivalent by prop-
erly mapping the table nodes against each other inside of the also
properly mapped join nodes. This is done by managing a list of
aliases and their corresponding fully qualified efficient table names
and then mapping based on these names, so that different aliases
do not prevent the semantically correct mapping.

5 EXAMPLES
We will now present two different examples of questions and cor-
responding incorrect student solutions including a rather simple
as well as a more complex query. Both are from actual instances
of our database systems 1 or 2 classes and the solutions are actual
solutions students submitted. We will use these to illustrate which
hints can be generated by the tree comparison and how they are
more useful for the student than the hints generated by the previ-
ously available result correctness grading step. For all examples we
will use the well-known Oracle HR example database schema, but
since the grader is schema agnostic it would work accordingly for
other schemata as well.
Example 5.1. Missing selection predicate

The task is to select names and salaries of all employees that
have no manager or are not assigned to any department. The model
solution is as follows:
SELECT first_name , last_name , salary

FROM hr.employees

WHERE department_id IS NULL OR manager_id IS NULL;

A student missing the cases where there is no department as-
signed submitted the following solution:
SELECT first_name ,last_name , salary

FROM hr.employees

WHERE manager_ID IS NULL;

When using the result correctness grader it will determine that
the number of rows returned by the student solution is wrong (and
thus obviously also the result content), while all other metadata
such as column names and datatypes are correct. Still it will assign
0 points for correctness with the message:

ERROR Your result has an incorrect number of rows.
Correct solution: 2 rows. Your solution: 1 rows.

This does not really help the student in determining the error,
he just learns that he needs a different number of result rows, but
not why some results are excluded in his solution. The output of
the new hint generation, however, is more helpful:

WARNING Hint: Missing: [department_id]
WARNING Hint: Missing: Symbol[OR]
WARNING Hint: Missing: [IS NULL]

These hints inform the student about components missing in
his solution without actually providing the solution1. He learns
about missing components in his solution, yet still has to arrange
them in the correct order. In addition, a similarity score of the trees
is computed at 0.902 which might be used to assign partial credit.
Probably, there is the need for some transformation of the similarity
score into a partial credit grade as 90% of the correctness points
might be too much for this simple query.

Example 5.2. Incorrect join
Here the task is to select names and countries (only ID) where

employees are working. Note that countries are retrieved from a
relation locationwhich is referenced from employees only via the
department relation in which an employee works. Since employees
w/o any department also need to be selected, we require an outer
join operation. The sample solution is:
SELECT e.first_name || '␣' || e.last_name AS name ,

l.country_id AS country

FROM hr.employees e

LEFT JOIN hr.departments d

ON (e.department_id = d.department_id)

LEFT JOIN hr.locations l

ON (d.location_id = l.location_id)

A student solution submitted did not leverage the functionality
of the outer join and instead tried to fix this by a complex function
in the projection part as follows:
SELECT e.first_name || '␣' || e.last_name AS name ,

CASE WHEN l.country_id = '' THEN 'NULL'

ELSE l.country_id END AS country

FROM hr.departments d

JOIN hr.locations l

ON l.location_id = d.location_id

JOIN hr.employees e

ON e.department_id = d.department_id;

The traditional result correctness check delivers a similar mes-
sage as the one in Ex. 5.1 (in addition correct metadata of the result
is reported):

ERROR Your result has an incorrect number of rows.
Correct solution: 107 rows. Your solution: 106 rows.

The correctness score is 0. Note that in this case, even though 106
of the 107 result rows have been retrieved correctly, there are still
serious errors and misconceptions in the student solution, so that
a correctness score based on the proportion of correctly selected
rows, such as 106

107 = 0.9907 would be much too generous here.
1Even though, in this rather simple example, there is only a small step from the hints
to the correct solution; yet, actually there is not much more complexity in such a
simple exercise at all anyway.
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The first issue again is that the student did not understand how
an outer join can be used in this case. The second issue is that, apart
from the stylistically problematic try to fix this by a CASE statement
in the projection, the student assigned the string NULL instead of the
semantically different value of NULL. All these aspects are reflected
in the hints generated by the new grading step as follows:

WARNING Hint: Redundant: Column[l.country_id]
WARNING Hint: Redundant: [CASE]
WARNING Hint: Redundant: [WHEN]
WARNING Hint: Redundant: ['NULL',NULL,'']
WARNING Hint: Redundant: [THEN]
WARNING Hint: Redundant: [ELSE]
WARNING Hint: Redundant: [END]
WARNING Hint: Missing: Join[LEFT]

While the issue with the unnecessary CASE part leads to many
hints which should be grouped in a future version of the grader,
there are also hints pointing to the NULL issue as well as the missing
outer join. Note that the different order of join components used
by the student did not confuse the grader and did not yield any
unnecessarymessages. This has been prevented by the nodemapper
being agnostic of the order of subnodes in join situations. Also, the
hints do not directly solve the problem for the student, but should
point him to checking what an outer join is (last hint message)
which he missed. This should ultimately make him remedy the
problems himself. In this case the tree comparison computed a
similarity score of 0.849 which might also be pretty high to assign
partial credit in this case. Yet, it is significantly smaller than the
score in Ex. 5.1 which seems appropriate and also much better than
the potential 0.9907 from the correctness grading.

6 EXPERIENCES AND EVALUATION
6.1 Experiences
We have used the autograder with the additional hint generation
step in our introductory database class in spring 2021 and 2022
as well as in the advanced database system class in winter 2021.
The enrollment is about 100 in the introductory class and about 50
in the advanced class. Students were able to achieve a bonus for
the exam by succesfully completing the autograded exercises (and
some others), so about 70% completed the autograded exercises.

In general, the autograding was well received by the students as
documented by frequent usage and they especially liked the option
to complete the exercises at any time and still have support in case
they had difficulties. In spring 2021 the whole semester was an
online semester, so the autograding, esp. the improved hints, sig-
nificantly simplified and almost only facilitated providing practical
support as in the online sessions individual support for students
by the instructor was very hard to provide. Without the additional
hints generated by the tree comparison (as in earlier years) the stu-
dents would not have been able to complete most of the exercises
as they typically do not advance much based on the correctness
grading and thus relied on personal support by the instructor. The
improved hints helped some students complete the exercises on
their own. Still, there were several students which did not look at
the hints at all or did not try to leverage the information in order
to improve their solution. This phenomenon is also known in pro-
gramming classes where students tend to ignore error messages

generated by the compiler. Some students when instructed to read
the hints were actually able to improve their solution accordingly.

A well appreciated improvement over previous years was the
possibility to assign partial credit for partially correct solutions.
Some students were happy with almost correct solutions and others,
which at least tried to solve the exercises, were better motivated by
the partial credit. Ultimately, the partial credit is still very generous
if based directly on the similarity score (cf. Sec. 4) which might
have contributed to this phenomenon.

An important aspect is the flexibility of the tree comparison
which does not generate hints for any difference between the trees,
just for those that might be relevant to improve the solution (cf. the
join order example 5.2). Similarly, the grouping of differences in
the analysis phase has reduced the number of hints and also lifted
the hints to a higher level than a mere syntactical comparison. This
part is still not perfect as not all semantically equivalent constructs
are yet identified (consider, e. g. 𝑎 >= 10 comparsion versus 𝑎 > 9
comparison on integers). This is also an area for future work.

As mentioned before the translation of similarity score to partial
credit needs to be fine tuned in the future. This is particularly
important for simple problems where a mere SELECT ... FROM
... WHERE with some working content will already lead to a pretty
high similarity score. This is not a technical issue as this can be
achieved by our Moodle integration. However, it might be more
challenging to define this score properly from a semantic point of
view for all cases during grading.

An inherent drawback of the tree comparison approach is that
the model solution plays a central role. If there are different ways
to solve a problem and the student’s try is almost correct but using
a different solution concept, the hints will always try to lure the stu-
dent to the concept used in the model solution. A classical example
for this issue are non-existence queries between tables, e. g. find all
department names where no employee works in this department.
This can be done by an outer join followed by a NULL check or
alternatively by a subquery inside an EXISTS. Both solutions are
equally good, yet the system will always try to move the student
towards the concept used in the model solution instead of trying to
improve his specific solution concept.

6.2 Quantitative Evaluation
In this section we will present some sample quantitative evaluations
of the autograder and its new hint feature. For this we use data
from three instances of the introduction to database systems course,
namely spring semesters of 2020, 2021, and 2022. Threats to validity
of the results are the small and thus potentially non-representative
number of courses the evaluation is based on as well as that in each
instance the autograder has been used in a different configuration:
• 2020: hint feature not used at all
• 2021: hint feature used, but only displayed inconspicuously
and not used in grading
• 2022: hint feature used for grading and peculiarly displayed,
individual problem variant per student introduced

In Fig. 1 we give an overview of the average maximum result
scores2 per student achieved for each of the autograded problems

2Note that even in the presence of tree similarity scores from 2021 onwards, for
comparison purposes we always use the mere result score in this section.
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Figure 1: Average maximum result scores per student for
different problems and instances

Figure 2: Average number of attempts per student for differ-
ent problems and instances

in different semesters; this is also the final score for each student as
the maximum has been counted ultimately. The problem keys are
shown on the x-axis. The overall high scores show the effectiveness
of the autograder in general, since most students achieved pretty
high result scores ultimately. There is no large difference between
different years which is a remarkable result with regard to 2022
when students received individual problem variants, so that mere
result copying from peers would result in a result score of 0.

While it is difficult to illustrate the individual improvements
per student based on the provided hints in a summative fashion,
Fig. 2 tries to do this to a certain degree by displaying the average
number of tries that the a student needed to achieve the maximum
result score. The benefit of the new hint generation shows in a
reduced number of attempts for each problem per student in 2022
compared to previous years. This effect is even more impressive,
since the number of submitters is still high and the novel variant
feature being in place preventing result copying. The helpfulness
of the hints is also underlined by the fact that the average result
score per attempt is lowest in 2022 (graph omitted due to space
constraints). This means the highest improvement in result score
has been achieved with the lowest number of attempts in 2022.

Regarding the preliminary tree similarity scores assigned in
2022 in addition to the 0/1-result scores, we observed an average
similarity score per attempt of 72.1% compared to an average result

score of 50.5%. This seems to be a motivating aspect for students.
The averagemaximum similarity score of 79.2%, however, illustrates
a need for a better assessment in the future as it is well below the
93.1% average maximum result score. This has not been perceived
a problem by students so far, though, as correct results always
received full credit for the entire problem.

Thus, we can conclude that students obviously individually im-
proved their solutions significantly faster with fewer attempts. This
combination of effects shows the usefulness of the hint generation
feature and the partial score assignment based on similarity.

7 CONCLUSION AND FUTUREWORK
As explained above the extension of our autograder by an additional
grading step comparing the parse trees of the student solution and
the model solution made it possible to generate much more precise
and helpful hints for the students in cases where their solution is not
entirely correct. It is important to note again that this is considered
just one additional step in the grading process (cf. Sec. 3) on top
of e. g. result correctness based grading or style checking. This
additional option facilitates advanced self improvement options
of the student solution by following the hints. This is helpful in
distance learning situations and/or in situations where students
work on problems outside of regular class hours. Similarly, this
approach lowers the tutoring effort on the instructor side, especially
in cases with rather simple to fix issues which can be detected by the
comparison algorithm. Another benefit is the possibility to assign
fairer partial credit for partially correct solutions as possible by a
mere result based comparison. Recall that the number of correctly
returned rows might not be a good measure for solution quality.

While the system has already proven useful, there is still a lot
of improvement possible and planned based on a more thorough
quantitative evaluation. The first item is improving the translation
of tree similarity into partial credit, so that it better reflects a grade
that would be given by a human grader; currently the system is
rather generous to the students. To remedy the issue that a student
is always hinted towards the single model solution even if he tries
to use a different, but correct solution concept, we plan to add the
option of providing multiple model solutions and only generate
hints towards the one that is closest to the student’s try. This is
similar to an idea in [3].

Another planned improvement is the node analysis for hint
generation. We want to be able to identify further situations in
which subtrees are equivalent and thus do not need to be hinted at
all. Also, we would like to assemble unmapped nodes in even larger
subtrees in order to make the hints even more helpful, e. g. generate
a missing subquery hint instead of a missing select. The idea
of grouping student answers in clusters as described in [20] could
be used in the future.

Finally, we could also improve the node mapping algorithm by
finding better weighting parameters in the computation of node
similarity. It might even be an option to use machine learning algo-
rithms on the rather large existing example set of trees assembled
in the last semesters to learn these parameters better than in the
currently heuristic definition. However, we are pretty confident that
the set of influential parameters should already be comprehensive
and that just the weights have to be optimized.

253



Enhancing Feedback Generation for Autograded SQL Statements ITiCSE 2024, July 8–10, 2024, Milan, Italy

REFERENCES
[1] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond Lister.

2016. Students’ Syntactic Mistakes in Writing Seven Different Types of SQL
Queries and Its Application to Predicting Students’ Success. In Proceedings of
the 47th ACM Technical Symposium on Computing Science Education (Memphis,
Tennessee, USA) (SIGCSE ’16). Association for Computing Machinery, New York,
NY, USA, 401–406. https://doi.org/10.1145/2839509.2844640

[2] Peter Brusilovsky, Sergey Sosnovsky, Michael V. Yudelson, Danielle H. Lee,
Vladimir Zadorozhny, and Xin Zhou. 2010. Learning SQL Programming with
Interactive Tools: From Integration to Personalization. ACM Trans. Comput. Educ.
9, 4, Article 19 (jan 2010), 15 pages. https://doi.org/10.1145/1656255.1656257

[3] Bikash Chandra, Ananyo Banerjee, Udbhas Hazra, Mathew Joseph, and S. Su-
darshan. 2021. Edit Based Grading of SQL Queries. In Proceedings of the 3rd
ACM India Joint International Conference on Data Science & Management of Data
(Bangalore, India) (CODS-COMAD ’21). Association for Computing Machinery,
New York, NY, USA, 56–64. https://doi.org/10.1145/3430984.3431012

[4] Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. 2018. Intelligent Tu-
toring Systems for Programming Education: A Systematic Review. In Proceedings
of the 20th Australasian Computing Education Conference (Brisbane, Queensland,
Australia) (ACE ’18). Association for Computing Machinery, New York, NY, USA,
53–62. https://doi.org/10.1145/3160489.3160492

[5] Michael de Raadt, Stijn Dekeyser, and Tien Yu Lee. 2006. Do Students SQLify? Im-
proving Learning Outcomes with Peer Review and Enhanced Computer Assisted
Assessment of Querying Skills. In Proceedings of the 6th Baltic Sea Conference
on Computing Education Research: Koli Calling 2006 (Uppsala, Sweden) (Baltic
Sea ’06). Association for Computing Machinery, New York, NY, USA, 101–108.
https://doi.org/10.1145/1315803.1315821

[6] Tadej Matek Dejan Lavbič and Aljaž Zrnec. 2017. Recommender system for
learning SQL using hints. Interactive Learning Environments 25, 8 (2017), 1048–
1064. https://doi.org/10.1080/10494820.2016.1244084

[7] Robert Dollinger and Nathaniel A. Melville. 2011. Semantic evaluation of SQL
queries. In 2011 IEEE 7th International Conference on Intelligent Computer Com-
munication and Processing. 57–64. https://doi.org/10.1109/ICCP.2011.6047844

[8] Mario Fabijanic and Igor Mekterović. 2023. Partial SQL Query Assessment.
2023 46th MIPRO ICT and Electronics Convention (MIPRO) (2023), 1317–1322.
https://api.semanticscholar.org/CorpusID:259299956

[9] Mario Fabijanić, Goran Ðambić, and Jan Sasunić. 2022. Automatic, configurable,
and partial assessment of student SQL queries with subqueries. In 2022 45th Jubilee
International Convention on Information, Communication and Electronic Technol-
ogy (MIPRO). 542–547. https://doi.org/10.23919/MIPRO55190.2022.9803559

[10] Mohammad Karimzadeh and Hasan M Jamil. 2022. ViSQL: An Intelligent Online
SQL Tutoring System. In 2022 International Conference on Advanced Learning

Technologies (ICALT). 212–213. https://doi.org/10.1109/ICALT55010.2022.00069
[11] Anthony Kleerekoper and Andrew Schofield. 2018. SQL Tester: An Online SQL

Assessment Tool and Its Impact. In Proceedings of the 23rd Annual ACMConference
on Innovation and Technology in Computer Science Education (Larnaca, Cyprus)
(ITiCSE 2018). Association for Computing Machinery, New York, NY, USA, 87–92.
https://doi.org/10.1145/3197091.3197124

[12] Carsten Kleiner, Christopher Tebbe, and Felix Heine. 2013. Automated Grading
and Tutoring of SQL Statements to Improve Student Learning. In Proceedings of
the 13th Koli Calling International Conference on Computing Education Research
(Koli, Finland) (Koli Calling ’13). Association for Computing Machinery, New
York, NY, USA, 161–168. https://doi.org/10.1145/2526968.2526986

[13] Antonija Mitrovic. 1998. Learning SQL with a Computerized Tutor. SIGCSE Bull.
30, 1 (mar 1998), 307–311. https://doi.org/10.1145/274790.274318

[14] A. Mitrovic and B. Martin. 2000. Evaluating the effectiveness of feedback in SQL-
Tutor. In Proceedings International Workshop on Advanced Learning Technologies.
IWALT 2000. Advanced Learning Technology: Design and Development Issues. 143–
144. https://doi.org/10.1109/IWALT.2000.890591

[15] Sidhidatri Nayak, Reshu Agarwal, and Sunil Kumar Khatri. 2022. Review of
Automated Assessment Tools for grading student SQL queries. In 2022 Inter-
national Conference on Computer Communication and Informatics (ICCCI). 1–4.
https://doi.org/10.1109/ICCCI54379.2022.9740799

[16] Julia Coleman Prior. 2003. Online Assessment of SQL Query Formulation Skills.
In Proceedings of the Fifth Australasian Conference on Computing Education -
Volume 20 (Adelaide, Australia) (ACE ’03). Australian Computer Society, Inc.,
AUS, 247–256.

[17] Shazia Sadiq, Maria Orlowska, Wasim Sadiq, and Joe Lin. 2004. SQLator: An
Online SQL LearningWorkbench. In Proceedings of the 9th Annual SIGCSE Confer-
ence on Innovation and Technology in Computer Science Education (Leeds, United
Kingdom) (ITiCSE ’04). Association for Computing Machinery, New York, NY,
USA, 223–227. https://doi.org/10.1145/1007996.1008055

[18] Toni Taipalus and Ville Seppänen. 2020. SQL Education: A Systematic Mapping
Study and Future Research Agenda. ACM Trans. Comput. Educ. 20, 3, Article 20
(aug 2020), 33 pages. https://doi.org/10.1145/3398377

[19] Paul J. Wagner. 2020. The SQL File Evaluation (SQLFE) Tool: A Flexible and
Extendible System for Evaluation of SQL Queries. In Proceedings of the 51st
ACM Technical Symposium on Computer Science Education (Portland, OR, USA)
(SIGCSE ’20). Association for Computing Machinery, New York, NY, USA, 1334.
https://doi.org/10.1145/3328778.3372599

[20] Matthew Weston, Haorong Sun, Geoffrey L Herman, Hisham Benotman, and
Abdussalam Alawini. 2021. Echelon: An AI Tool for Clustering Student-Written
SQL Queries. In 2021 IEEE Frontiers in Education Conference (FIE). 1–8. https:
//doi.org/10.1109/FIE49875.2021.9637203

254

https://doi.org/10.1145/2839509.2844640
https://doi.org/10.1145/1656255.1656257
https://doi.org/10.1145/3430984.3431012
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1145/1315803.1315821
https://doi.org/10.1080/10494820.2016.1244084
https://doi.org/10.1109/ICCP.2011.6047844
https://api.semanticscholar.org/CorpusID:259299956
https://doi.org/10.23919/MIPRO55190.2022.9803559
https://doi.org/10.1109/ICALT55010.2022.00069
https://doi.org/10.1145/3197091.3197124
https://doi.org/10.1145/2526968.2526986
https://doi.org/10.1145/274790.274318
https://doi.org/10.1109/IWALT.2000.890591
https://doi.org/10.1109/ICCCI54379.2022.9740799
https://doi.org/10.1145/1007996.1008055
https://doi.org/10.1145/3398377
https://doi.org/10.1145/3328778.3372599
https://doi.org/10.1109/FIE49875.2021.9637203
https://doi.org/10.1109/FIE49875.2021.9637203

	Abstract
	1 Introduction
	2 Related Work
	3 Brief Overview of the Autograder
	4 Concept for Improved Hint Generation
	5 Examples
	6 Experiences and Evaluation
	6.1 Experiences
	6.2 Quantitative Evaluation

	7 Conclusion and Future Work
	References



