
1

NPU-Accelerated Imitation Learning for
Thermal Optimization of

QoS-Constrained Heterogeneous Multi-Cores
Martin Rapp, Heba Khdr, Nikita Krohmer, and Jörg Henkel

Abstract—Application migration and dynamic voltage and frequency scaling (DVFS) are indispensable means for fully exploiting the
available potential in thermal optimization of a heterogeneous clustered multi-core processor under user-defined quality of service
(QoS) targets. However, selecting the core to execute each application and the voltage/frequency (V/f) levels of each cluster is a
complex problem because 1) the diverse characteristics and QoS targets of applications require different optimizations, and
2) per-cluster DVFS requires a global optimization considering all running applications. State-of-the-art resource management
techniques for power or temperature minimization either rely on measurements that are often not available (such as power) or fail to
consider all the dimensions of the problem (e.g., by using simplified analytical models). Imitation learning (IL) enables to use the
optimality of an oracle policy, yet at low run-time overhead, by training a model from oracle demonstrations. We are the first to employ
IL for temperature minimization under QoS targets. We tackle the complexity by training a neural network (NN) and accelerate the NN
inference using a neural processing unit (NPU). While such NN accelerators are becoming increasingly widespread on end devices,
they are so far only used to accelerate user applications. In contrast, we use an existing accelerator on a real platform to accelerate
NN-based resource management. Our evaluation on a HiKey 970 board with an Arm big.LITTLE CPU and an NPU shows significant
temperature reductions at a negligible run-time overhead, with unseen applications and different cooling than used for training.

Index Terms—Machine learning, Imitation learning, Neural networks, AI accelerators, Thermal management, Quality of service,
Processor scheduling, Task migration

F

1 INTRODUCTION

E LEVATED on-chip temperature accelerates aging mecha-
nisms in processors, and thereby degrades the system

reliability [2], [3]. Moreover, in mobile devices, it may
adversely affect the user experience since it leads to an
increased skin temperature [4]. That makes temperature
minimization of paramount importance. The two main
knobs to reduce the temperature are application migration,
to dynamically change the mapping of applications to cores,
and DVFS. Using these knobs without considering the
application characteristics misses significant optimization
opportunities and may degrade the QoS of the applications,
thereby also degrading the user experience [5]. The reason is
that the impact on performance and power when migrating
an application between clusters differs from one application
to another [6]. Similarly, the sensitivities of performance and
power to DVFS also vary. Hence, the possibilities of QoS-
constrained thermal optimization vary between applications
as the following motivational example demonstrates.

1.1 Motivational Example
In Scenario 1 in Fig. 1, we execute one application, adi or
seidel-2d from the Polybench [7] suite, on an Arm big.LITTLE

• M. Rapp, H. Khdr, and J. Henkel are with the Chair for Embedded Sys-
tems, Department of Computer Science, Karlsruhe Institute of Technology
(KIT), 76131 Karlsruhe, Germany.
E-mail: martin.rapp@kit.edu, heba.khdr@kit.edu, henkel@kit.edu

• N. Krohmer was with the Chair for Embedded Systems, Department
of Computer Science, Karlsruhe Institute of Technology (KIT), 76131
Karlsruhe, Germany. E-mail: nikita-krohmer@web.de

• A subset of this work has been first presented in DATE’22 [1].

Scenario 1: single application

LITTLE big

App.

App. LITTLE big

Scenario 2: parallel applications

BG BG

LITTLE big

App.

App. LITTLE big

adi 48.1 ◦C 45.7 ◦C
seidel-2d 45.1 ◦C 46.8 ◦C

adi 58.9 ◦C 59.6 ◦C

Fig. 1. On Arm big.LITTLE, the optimal mapping that minimizes the
temperature under QoS targets varies between applications, and with
other parallel applications (BG). The clusters are operated at the lowest
V/f levels that satisfy all QoS targets.

CPU. The QoS target is selected as 30 % of the performance,
measured in instructions per second (IPS), that is reached
at the highest V/f level on the big cluster. The clusters
are operated at the lowest V/f level that satisfies the QoS
target. Intuitively, executing the applications on the LITTLE
cluster should minimize the temperature. However, this is
not always the case. For adi, mapping it to the big cluster
instead minimizes the temperature. The reason is that adi
requires 1.8 GHz on the LITTLE cluster to reach its QoS
target, but only 0.7 GHz on the big cluster. In contrast,
seidel-2d reaches its QoS target already at 1.2 GHz on the

ar
X

iv
:2

20
6.

05
45

9v
1

 [
cs

.D
C

]
 1

1
Ju

n
20

22

2

LITTLE cluster, and requires 1.0 GHz on the big cluster,
resulting in a similar temperature on both clusters, with a
small advantage of the LITTLE cluster. The reason for the
different V/f level requirements at different clusters is that
the applications benefit differently from the out-of-order
execution and larger caches on the big cluster. Consequently,
such different application characteristics render different
mappings optimal. Optimal thermal management needs to con-
sider application characteristics and QoS targets.

Scenario 2 studies adi with the same QoS target as in
Scenario 1 but now, additional background applications
with high QoS targets run on both clusters. Intuitively,
as in Scenario 1, mapping adi to the big cluster should
still minimize the temperature. However, the background
applications require to operate both clusters at the peak
V/f level to reach their QoS targets. Since our platform
has per-cluster DVFS, adi is also executed at the peak V/f
level. In this case, mapping adi to the LITTLE or big cluster
has almost the same temperature, unlike what has been
observed in Scenario 1. Hence, per-cluster DVFS affects the
optimal mapping when several applications run in parallel.
Optimal thermal management needs to perform global optimiza-
tion considering the characteristics of all running applications.

1.2 Challenges and Contributions

There are several challenges in temperature minimization
on heterogeneous multi-core processors under QoS targets.
Firstly, there is high complexity in all involved aspects of
the platform. For instance, the power and performance of
applications depend on the instruction sequence, CPU mi-
croarchitecture, memory architecture, and V/f level, while
temperature depends on the power density, floorplan, and
cooling. Secondly, the workload, i.e., the executed applica-
tions and their arrival times, is commonly not known at
design time. Therefore, the management policy must not be
specific to selected applications but achieve good manage-
ment for any workload. Thirdly, per-cluster DVFS forces all
applications on the same cluster to run at the same V/f level,
requiring global optimization. Finally, there is limited access
to measurements. For instance, most platforms, such as the
one studied in this work, have no power sensors and only
few temperature sensors.

Many works perform optimization with models for indi-
vidual aspects such as power, performance, or temperature.
These models can be built analytically [8] or by machine
learning (ML) [9], [10]. However, building such models
requires fine-grained access to internal measurements of
processor-internal properties like power, which may not
be available. To solve this, end-to-end learning of man-
agement decisions based on the available measurements
can be employed. The two main methods to achieve this
are reinforcement learning (RL) and IL. In both cases, NN
learning can be used to cope with the high complexity [11].

RL suffers from several problems. It requires to com-
bine objective and constraints in a single scalar reward,
which does not reflect their different properties and may
lead to suboptimal actions (reward hacking [12]). Moreover,
RL trains at run time. This is computationally expensive,
preventing a low-overhead implementation, and may re-
sult in instability such as catastrophic forgetting, leading

to suboptimal management decisions. However, run-time
thermal minimization while satisfying QoS targets requires
a lightweight, yet near-optimal optimization to improve
user experience, and a stable policy to avoid abrupt QoS
violations and jumps in the temperature. IL is the only method
that provides all of these capabilities. In particular, it enables
using the optimality of an oracle policy, which explicitly
considers objectives and constraints, yet at low run-time
overhead, by design-time training of a model from ora-
cle demonstrations. Design-time training until convergence
also provides stability. However, since IL does not perform
run-time retraining, the model must be trained such that it is
capable to cope with the different scenarios that may happen
at run time. This includes for instance, different workloads,
or different cooling capabilities.

Motivated by the advantages of IL, researchers have
started to apply IL in resource management [13], [14], [15],
[16], but they all target power or energy optimization. This
significantly differs from temperature optimization due to
spatial (heat transfer) and temporal (heat capacity) effects
that do not exist in power/energy. We are the first to employ
IL for temperature optimization.

To accelerate ML-based resource management, few
works have proposed their own specific ML accelera-
tors [17], [18]. However, they incur additional area overhead
to the used platform and are only applicable to platforms
that feature this specific accelerator. Recently, generic NN
accelerators, e.g., NPUs or DSPs, became common in end
devices such as smartphones [19]. These accelerators are
intended to increase the performance and energy-efficiency
of user applications that perform NN inference. Despite
their increasing spread and benefits, these existing accelera-
tors have never been used to speed up NN-based resource
management, and we are the first to do that.

We make the following novel contributions in this work:

• We design, train, and employ NN-based IL for tem-
perature optimization under QoS targets, as it en-
ables near-optimal decisions at low run-time over-
head. Our solution, TOP-IL, employs application mi-
gration and DVFS on heterogeneous multi-cores.

• We accelerate TOP-IL using an existing generic NN
accelerator (NPU) on a real platform.

• We develop RL-based thermal optimization and
show that IL outperforms RL in terms of achieving
the target objective and run-time stability.

• We demonstrate that the learned policy generalizes
to unseen workloads and different cooling settings
than what is used during training.

2 RELATED WORK

The state-of-the-practice Android/Linux resource manage-
ment [27] performs application mapping and migration
(scheduling), and DVFS. Most schedulers are designed for
homogeneous multi-core processors. However, Global Task
Scheduling (GTS) aims at increasing the energy efficiency of
heterogeneous processors by migrating mostly-idle applica-
tions to the LITTLE cluster. Android/Linux performs DVFS
with different governors, such as powersave for power min-
imization or ondemand for a trade-off between power and
performance. However, these techniques do not consider

3

TABLE 1
Overview of related work

Technique Method Goal Actions Optimization Per-clust. Het. Unkn. Multi- Lim. Power
Map./Mig. DVFS Temp. QoS DVFS Cores Apps. Prog. Sensors

ondemand/
powersave Rules max perf./

min P × ×
[20] RL max perf st. P × × × × ()1 ×
[21] RL min E st. R × × × × × ×
[18] RL min EDP × × × ()1

[22] RL max R st. QoS × ()1 ()1 ×
[23] RL min P st. QoS × × ()1 ×
[24] RL min T × × ()1 ()1

[25] RL min T × × ()1 ()1

[26] RL min T st. QoS ()1 ()1 × ×
[13] IL min E ()2 × × ×
[14] IL min E st. QoS × × × ()1 × ×
[15] IL min E st. QoS ()2 × ×
[16] IL min E st. QoS ()2 × ×

TOP-IL (our) IL min. T st. QoS

T: temperature, P: power, E: energy, R: reliability. 1 Not studied, likely applicable with minor changes. 2 Controls the number of active cores.

application characteristics nor their QoS targets, and only
indirectly affect the temperature (via power or energy).

ML provides powerful algorithms for system-level op-
timization [28]. Supervised learning can be used to train
models that predict system properties like performance or
power [29]. Such models enable rule-based power/thermal
management to predict the impact of a decision, and thereby
achieve proactive management [9]. However, model train-
ing requires access to measurements like per-core power,
which are often not available in real-world processors [30].

Several works have employed RL for power/thermal
optimization [31]. The works in [18], [20], [21] use RL for
power management via DVFS. However, they neither con-
sider temperature nor QoS. The work in [22] optimizes the
reliability under QoS using both migration and DVFS. While
reliability depends on the temperature, the two are not
interchangeable. For instance, a part of the reward function
in [22] minimizes thermal cycling, which is unrelated to the
absolute temperature. In addition, the work does not cope
with several applications running in parallel. In [23], RL is
employed at the core level. A high-level coordinator trans-
lates the system goal, i.e., minimizing power, into core-level
target IPS. Then, core-level RL agents select the V/f level
to manage the core IPS accordingly. However, this work
also does not consider temperature, is not applicable to per-
cluster DVFS, and requires run-time power measurements.
Several works employ RL for temperature optimization. The
work in [24] performs migration for temperature minimiza-
tion based on per-core temperature measurements. In [25],
the temperature is minimized via mapping applications at
arrival time. However, these works do not consider QoS.
Finally, [26] considers both temperature and QoS. It uses ap-
plication mapping and DVFS. However, this work analyzes
intermediate compiler-level representations of applications,
and, hence, is only applicable to known applications. In
addition, it does not cope with several applications running
in parallel. Table 1 summarizes these works.

Several recent works employ IL for system-level opti-
mization. The work in [13] trains a model to predict the
optimal number of active cores and per-cluster V/f levels

to minimize the energy. In [14], an IL technique is proposed
for DVFS to minimize the energy under a QoS targets. They
train a separate policy per application, and, hence, cannot
cope with unknown applications. The work in [15] uses IL
to select the types, number, and V/f levels of active cores,
for several optimization goals, e.g., minimize the energy
under a QoS targets. Finally, a hierarchical IL technique is
proposed in [16] to select the number of active cores and
the per-cluster V/f level to maximize the energy efficiency
of a heterogeneous multi-core processor under QoS targets.
These works divide the application execution into phases
and record performance counters, performance, and power
for each phase at different configurations (number of active
cores, V/f levels, etc.). Oracle demonstrations are created by
finding the optimal sequence of configurations per phase.
This only works because power, performance, and energy
of a phase depend only on the used configuration in
this phase. However, this does not apply to temperature,
which is subject to both spatial (heat transfer) and temporal
(heat capacity) effects that do not exist in power/energy.
Consequently, the temperature during a phase additionally
depends on all configurations of all previous phases. This
would require an exponential number of traces, which is
infeasible. In addition, the power sensors required for the or-
acle are often not available in real-world processors. Table 1
also summarizes these works. IL has not yet been employed
for thermal optimization despite its unique capabilities to
combine the optimality of an oracle policy with a low run-
time overhead. We are the first to do that.

In summary, none of these works targets temperature mini-
mization under QoS targets, and considers heterogeneous cores
with per-cluster DVFS running parallel applications.

3 PROBLEM FORMULATION

We target a heterogeneous multi-core processor with per-
cluster DVFS, where Fx is the list of frequencies of cluster x
and fx is its current V/f level. There are two clusters in our
platform, LITTLE and big, i.e., x∈{l, b}, but our solution
is compatible with any number of clusters. The processor

4

executes parallel applications, each with its own QoS tar-
get Qk and current QoS qk, which are expressed in terms of
the IPS. We target an open system, where a priori unknown
applications arrive at a priori unknown times. Our solution
does not rely on run-time power measurement, as they are
often not available on real-world processors [30].

Objective minimize the on-chip temperature
Constraint maintain QoS of applications (IPS)
Knobs app.-to-core mapping (migration),

per-cluster DVFS.

We split the problem into two parts: 1) application-to-
core mapping (via application migration), and 2) per-cluster
DVFS. Decisions on application migration are made with
NN-based IL, while the DVFS is implemented in a simple
control loop. While it would be intuitive to train a single NN
for both migration and DVFS, performing only migration
with the model reduces its complexity (create training data,
topology, inference overhead). Nevertheless, we consider
V/f level information as input for migration decisions to
achieve near-optimal decisions. We accelerate the run-time
inference with an NPU. The design-time training and run-
time management are described in Sections 4 and 5.1, re-
spectively. Section 5.2 describes the DVFS control loop.

4 IL-BASED APPLICATION MIGRATION

Employing IL requires to select features, create oracle
demonstrations, and train the model that is used at run time.

4.1 Feature Selection

The features need to accurately describe the platform state to
be able to make near-optimal migration decisions, and need
to be observable at run time. The optimal mapping of an
application of interest (AoI) depends on a) its characteristics,
which affect its power and performance on different clus-
ters, b) its QoS target, which determines the suitable clusters
and required V/f levels, and c) other (background) applica-
tions, which determine the available cores, the required V/f
levels per cluster to satisfy QoS targets of the background
applications, and affect the temperature distribution.

The selected features (Table 2) cover all three aspects
(a-c). The AoI characteristics (a) comprise the current QoS
and the number of L2D accesses per second. The latter
indicates the memory-/compute-intensiveness of the AoI.
We use the Linux perf API to read performance counters
(IPS and L2D accesses). The current mapping of the AoI pro-
vides information about the source core and cluster, thereby
providing context to the performance counter readings. It
is represented as one-hot encoding of all cores. The QoS
target (b) is represented in terms of IPS. The background
(c) is represented by the core utilizations, as well as by the
estimated V/f level change if the AoI would not be executed
(for each cluster). The latter indicates potential temperature
savings if the AoI is migrated to another cluster. This is
calculated by first estimating the minimum V/f level f̃k,min
for each running application k that is required to satisfy its
QoS target Qk. During training data generation at design
time, f̃k,min can be determined from the execution traces.
At run time, no traces at other V/f levels are available,

TABLE 2
The Selected Features for IL-based Migration (per Application)

Feature Count Feature Count

AoI QoS (a) 1 AoI QoS target (b) 1
AoI L2D accesses (a) 1 f̃x\AoI/fx (c) 2

AoI curr. mapping (a) 8 Core utilizations (c) 8

and linear scaling from the current V/f level fx(k) of its
cluster x(k) is performed instead:

f̃k,min = min{f ∈ Fx(k) : qk · f/fx(k) ≥ Qk} (1)

This estimate is calculated at run time based on the current
QoS qk in the current execution phase, i.e., f̃k,min does not
need to be known at design time and may change over time.
Finally, the required V/f level without the AoI is determined
per cluster x as the maximum among all other applications:

f̃x\AoI = max{f̃k,min : app. k mapped to x ∧ k 6=AoI} (2)

4.2 Oracle Demonstrations (Training Data)
The training data need to indicate the optimal migration
w.r.t. QoS and temperature for a variety of scenarios. To
this end, we collect measurements of temperature and per-
formance counters (traces) of benchmark applications in
various scenarios and extract training data from the traces.

Collect Traces: The process to collect traces is depicted
in the upper part of Fig. 2. Since this is the most time-
consuming part of training, redundant executions must
be avoided. The straightforward approach to collect traces
would be to select a scenario, i.e., a combination of AoI,
its QoS target, and background, and execute it once per
mapping of the AoI to each free core. However, this creates
redundant executions. The reason is that with per-cluster
DVFS, only the application with the highest QoS target, i.e.,
highest required V/f level, determines the V/f level of the
cluster. As a result, scenarios that differ only in the QoS,
may result in the same selected V/f levels.

We avoid redundancy by obtaining traces for different
combinations of per-cluster V/f levels and afterwards select
different QoS targets to create training data. This optimiza-
tion requires a constant QoS of the benchmarks that are used
to create the training data, i.e., no execution phases. As the
evaluation demonstrates, our model also generalizes to applica-
tions with execution phases. To further accelerate collecting
traces, we stop traces after 1010 instructions of the AoI,
which is large enough to observe significant differences in
the temperature between traces but still reduces the time
to collect a trace, and obtain traces for a reduced set of
V/f levels. However, TOP-IL supports applications with
more executed instructions. We execute the background of
each scenario for 2 min before starting the AoI to ensure
consistent initial temperature. We randomize the order of
executions to avoid any remaining systematic error. We use
active cooling with a fan because it prevents triggering
dynamic thermal management (DTM), which would throttle
the V/f levels unpredictably, polluting the training data. We
show in our evaluation that the trained NN also can be used
without retraining for different cooling, i.e., without a fan.

5

Figs. 3a and 3b present an illustrative excerpt of the
collected traces (performance of the AoI and temperature)
for a single selection of background applications and AoI
(seidel-2d). In this example, only the two cores 3 and 6 are
free. The other cores are running background applications.

Extract Training Data: The lower part of Fig. 2 shows
the steps to extract training data from the collected traces:
select many QoS targets, find the corresponding traces, and
create training examples. We first select a combination of
background and AoI from the traces. Then, we sweep the
values of the QoS target QAoI of the AoI, and the required
V/f levels of the background f̃l\AoI , f̃b\AoI . Next, we find
the corresponding trace when mapping the AoI on core j
with the selected parameters. The V/f levels fl, fb of this
trace are the lowest levels to satisfyQAoI , f̃l\AoI , and f̃b\AoI :

fl,fb=argmin
f ′
l
,f ′

b

(f ′l≥f̃l\AoI∧f ′b≥f̃b\AoI∧qAoI(f
′
l , f
′
b)≥QAoI) (3)

The peak temperature for each mapping of the AoI to each
free core j is determined from these traces. We observe that
in many cases, several mappings result in a very close tem-
perature (e.g., mappings to different LITTLE cores). In our
experiments, there is on average one additional mapping
that is within 1 ◦C of the temperature obtained with the
optimal mapping. Therefore, we use a soft label lj∈[0, 1],
indicating the quality of mapping the AoI to core j:

lj =


0 core j occ. by background
−1 core j cannot meet QAoI
e−α(Tj−minj′ Tj′) otherwise

(4)

Cores that are used by the background get lj=0. Map-
pings that violate the QoS target at the highest V/f level
get lj= − 1. The mapping with the lowest temperature
has lj=1. For other mappings, the higher the tempera-
ture is compared to the optimum, the closer lj gets to 0.
The parameter α determines a trade-off between tolerating
slightly higher temperatures and susceptibility to temper-
ature measurement noise. We empirically set α=1. Fig. 3c
lists some illustrative examples. For instance, when selecting
QAoI=400·106 IPS, f̃l\AoI=1.4GHz, and f̃b\AoI=0.7GHz
(Line I), the minimum frequencies of LITTLE/big to satisfy
all QoS targets are 1.8GHz/0.7GHz and 1.4GHz/1.2GHz
for a mapping of the AoI to cores 3 and 6, respectively. This
results in respective temperatures of 42.5 ◦C and 46.6 ◦C,
i.e., a mapping to core 3 is cooler. Therefore, the respective
labels for cores 3 and 6 are 1 and 0.02. Fig. 3c also lists
examples where the two cores result in similar temperature,
where core 6 is beneficial, and where core 3 cannot meet the
QoS target, even at the highest V/f levels (Line II).

After creating the label, the features that describe an
execution of the AoI with the selected QoS and background
are determined from the traces according to Section 4.1. One
training example is created for each free core, where the AoI
could be executed when determining the optimal migration,
i.e., each source of a migration. This is illustrated in Fig. 3d
with a few examples. By creating one training example for
every free core for each selection of QAoI , f̃l\AoI , and f̃b\AoI ,
the process of training data generation is already exhaustive
because the policy is trained to recover from each potential
mapping of the AoI. This is the reason why we do not need

LITTLE big

Free cores F

Select rand. background apps. + mapping: BG Select rand. AoI

for each free core c ∈ F
for each (fl, fb) ∈ (Fl ×Fb)

RunExecution(BG,AoI → c, fl, fb)

Traces
DB

repeat

for each combination (BG,AoI) ∈ DB

for each (QAoI , f̃l\AoI , f̃b\AoI) ∈ (Qtrain ×Fl,train ×Fb,train)

Evaluate free cores cj ∈ F

c1 c2 . . . ckMap AoI → cj

fl,1, fb,1, PC1 fl,2, fb,2, PC2 fl,k, fb,k, PCk
fl,j , fb,j based

on Qi: Eq. (3)

T1 T2 TkTemperature

l1 l2 lk
Labels: Eq. (4)

lowTj →high lj

feat1 feat2 featkCreate features

Features
feat1

. . .
featk

Labels
[0, l1, l2, 0, l3, 0, 0, l4]

. . .
[0, l1, l2, 0, l3, 0, 0, l4]

Training data

repeat fil
lw

it
h

0
fo

r
c
∈

B
G

Fig. 2. Design-time training data generation for IL-based migration.

to employ algorithms like DAgger [32], which initially only
train the policy on the optimal sequence of management
decisions, and only gradually add training data to recover
from suboptimal decisions to increase the robustness of
the model. We create 19,831 training examples from 100
combinations of AoI and background.

4.3 IL Model Creation and Training
We build a fully-connected NN model and decide its topol-
ogy (number of layers and neurons) by neural architecture
search (NAS). Fig. 4 shows the result of the grid search
to determine the depth and width of the NN. The best
topology uses 4 hidden layers with 64 neurons, each. The
hidden layers use ReLU activation, the output layer with 8
neurons does not use an activation function. We use Adam
optimizer with momentum. The exponentially decaying
learning rate is set at 0.01·0.95(epoch). We use mean squared
error (MSE) loss and early stopping with a patience of
20 epochs. Three models are trained with different random
seed to demonstrate that the training is robust to the weight
initialization, as will be shown in Section 7.

5 RUN-TIME TEMPERATURE / QOS MANAGEMENT

The run-time part of TOP-IL (Fig. 5) integrates IL-based
application migration with a per-cluster DVFS control loop.

5.1 Application Migration with NPU-Accelerated IL
If K applications run in parallel, each should be migrated
to its optimal core w.r.t. temperature and QoS. However,

6

Performance q fb
0.7GHz 1.2GHz 1.5GHz . . .

fl

0.5GHz 137MIPS 140MIPS 139MIPS . . .
1.4GHz 366MIPS 363MIPS 373MIPS . . .
1.8GHz 471MIPS 478MIPS 479MIPS . . .

Temperature T fb
0.7GHz 1.2GHz 1.5GHz . . .

fl

0.5GHz 35.8 ◦C 42.3 ◦C 50.7 ◦C . . .
1.4GHz 40.5 ◦C 46.2 ◦C 53.7 ◦C . . .
1.8GHz 42.5 ◦C 49.6 ◦C 56.1 ◦C . . .

(a) Trace results* (running AoI on core 3 on the LITTLE cluster)

Performance q fb
0.7GHz 1.2GHz 1.5GHz . . .

fl

0.5GHz 256MIPS 455MIPS 563MIPS . . .
1.4GHz 255MIPS 455MIPS 563MIPS . . .
1.8GHz 256MIPS 454MIPS 562MIPS . . .

Temperature T fb
0.7GHz 1.2GHz 1.5GHz . . .

fl

0.5GHz 38.0 ◦C 46.2 ◦C 52.2 ◦C . . .
1.4GHz 38.4 ◦C 46.6 ◦C 56.5 ◦C . . .
1.8GHz 39.5 ◦C 48.8 ◦C 57.0 ◦C . . .

(b) Trace results* (running AoI on core 6 on the big cluster)

Trace results (AoI on core 3) Trace results (AoI on core 6) Labels
QAoI f̃l\AoI f̃b\AoI fl,3 fb,3 T3 fl,6 fb,6 T6 l0 . . . l7

400MIPS 1.4GHz 0.7GHz 1.8GHz 0.7GHz 42.5 ◦C 1.4GHz 1.2GHz 46.6 ◦C 0 0 0 1.00 0 0 0.02 0
200MIPS 1.4GHz 1.2GHz 1.4GHz 1.2GHz 46.2 ◦C 1.4GHz 1.2GHz 46.6 ◦C 0 0 0 1.00 0 0 0.65 0
400MIPS 0.5GHz 1.5GHz 1.8GHz 1.5GHz 56.1 ◦C 0.5GHz 1.5GHz 52.2 ◦C 0 0 0 0.02 0 0 1.00 0
500MIPS 0.5GHz 0.7GHz − 0.7GHz − 0.5GHz 1.5GHz 52.2 ◦C 0 0 0 −1 0 0 1.00 0

(c) Examples for calculating the labels

Features* (Excerpt) Labels
fl fb qAoI QAoI AoI curr. map. Core utils. f̃l\AoI/fl f̃b\AoI/fb l0 . . . l7

1.8GHz 0.7GHz 471MIPS 400MIPS 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0.76 1.00 0 0 0 1.00 0 0 0.02 0
1.4GHz 1.2GHz 455MIPS 400MIPS 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1.00 0.56 0 0 0 1.00 0 0 0.02 0
1.8GHz 0.7GHz 471MIPS 500MIPS 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0.28 1.00 0 0 0 −1 0 0 1.00 0
0.5GHz 1.5GHz 563MIPS 500MIPS 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1.00 0.46 0 0 0 −1 0 0 1.00 0

(d) Training data examples

I

I

I

I

I

I

II

II

II

II

Fig. 3. Illustrative example for training data generation. Only cores 3 and 6 are available for the AoI. (a) and (b) show the trace results (AoI
performance and temperature) for the two free cores and several combinations of V/f levels fl and fb. (c) demonstrates the label calculation for
a given AoI QoS target QAoI , and minimum required V/f level to maintain the QoS of the background (f̃l\AoI , f̃b\AoI). For each mapping, the
minimum V/f levels that satisfy all QoS targets are determined to obtain the temperature. Labels are calculated by Eq. (4). (d) lists some training
examples. (I) highlights an example, in which a mapping to the LITTLE cluster is optimal. (II) highlights an example, in which the LITTLE can not
reach the QoS target even at the highest V/f level. *The number of L2 cache accesses has been omitted from the traces and features for brevity.

1 2 4 8 16
32

64
128

256
512

0.80

0.85

0.90

Depth [# Hidden Layers] Width [# Neurons/

Hidden Layer]

M
od

el
Q

ua
lit

y
(A

vg
.L

ab
el

of
Se

le
ct

ed
M

ig
ra

ti
on

)

Best Topology

Fig. 4. The best topology uses 4 hidden layers with 64 neurons, each.

migrating several applications at once results in a high
number of potential combinations, i.e., large action space,
and the impact of several migrations at once would be
difficult to predict. We solve this by migrating only one
application at a time, but we find in each iteration the best
migration among all possible migrations of all applications.
Our NN model has been trained for one AoI, which is
migrated, and several other background applications. We
perform parallel inference, where each application is used
as the AoI once. The inference output is a matrix, where

LITTLE big NPU

App 1 App 2

App 3

App 4

f̃1,min f̃2,min f̃3,min f̃4,min

DVFS DVFS

Model
Input

(Features)

Find
Maximum

Improvement

Accelerate

Parallel Prediction for All Applications (Batch Inference)

Per-App.
Samples

Per-App.
Pred. Migration

DVFS
every 50 ms

Migration
every 500 ms

Fig. 5. Illustration of TOP-IL at run time. Application migration uses the
NPU to accelerate predicting the best migration per each application.

each entry l̃k,c is the rating of mapping application k to
core c. The best migration maximizes the improvement in
the rating compared to the current mapping c(k):

k̂, ĉ = argmax
k′,c′

(
lk′,c′ − lk′,c(k′)

)
(5)

The result of this optimization is to migrate application k̂ to
core ĉ. The migration policy is executed each 500 ms. This

7

blackscholes
bodytrack

canneal
dedup

facesim ferre
t

fluidanimate
swaptions

average

−2

0

2

4
M

ig
ra

ti
on

O
ve

rh
ea

d
[%

]

Fig. 6. The performance impact of application migration is negligible.

is fast enough to adapt to changing workload phases of the
applications, which run for several minutes, but still allows
to maintain a reasonable overhead.

To further reduce the overhead of the NN inference, we
employ the already existing NPU of the HiKey 970 board.
The available parallelism in the NPU allows performing
parallel inference for all applications simultaneously in a
single batch. The NPU is accessible via the HiAI DDK, which
originally is designed to speed up user apps. We develop a
C++ binary that runs in user space, uses the Linux perf API
and the /proc filesystem to read performance counters and
information about running applications, employs the NPU
for inference via the HiAI DDK (non-blocking call), and uses
the Linux affinity feature for migration.

Since, we perform migration each 500 ms, the migra-
tion overhead, e.g., due to cold caches, is negligible. We
perform experiments to quantify the worst-case overhead,
i.e., periodically migrating an application between the big
and LITTLE cluster in each migration epoch. The migration
overhead m is calculated by:

m =
1/2 · (1/tbig + 1/tLITTLE)

1/tmigrate

− 1 (6)

The numerator represents the average performance of the
big and LITTLE clusters, while the denominator represents
the measured performance with periodic migration. We
repeat each experiment three times and plot the average
and standard deviation of the migration overhead of sev-
eral applications in Fig. 6. The overhead differs between
applications because of their different memory and cache
intensity. For some applications, (dedup, facesim), we observe
a negative overhead, which we interpret as follows. If an
application has different execution phases that benefit dif-
ferently from the features of big cluster, potential correlation
between the migration epoch and the execution phases
improves the performance of these applications, and thereby
results in a negative overhead. The maximum worst-case
migration overhead is less than 4%, while the average
worst-case migration overhead is 0.1%, which is negligible.

5.2 Control Loop for Per-Cluster DVFS
The IL-based migration is integrated with a DVFS control
loop to select the per-cluster V/f-levels. The control loop
utilizes the estimated f̃k,min per application k, as defined in
Eq. (1). It then determines the minimum required V/f level
per cluster x to satisfy the QoS target of all applications
running on it:

f̃x = max{f̃k,min : application k mapped to cluster x} (7)

Since the run-time estimates of f̃k,min are based on linear
scaling, they are only accurate for small V/f level changes.
Therefore, we adjust the current V/f level fx by only one
step towards f̃x and call this control loop more frequently
than migration, i.e., every 50 ms. We skip two iterations, one
when application migration is executed and one directly
after a migration, to account for transient effects of cold
caches that result in spurious QoS violations. Idle clusters
are operated at the lowest V/f level. We use the Linux
userspace governor to set per-cluster V/f levels.

The combination of IL-based application migration and
DVFS control loop enables us to achieve temperature opti-
mization under QoS targets, as evaluated in the Section 7.

6 RL-BASED APPLICATION MIGRATION

As discussed earlier, RL is another method for end-to-end
learning and directly making management decisions, like
IL. However, IL outperforms RL in terms of stability of
the learned policy. To demonstrate this in a quantitative
comparison, there is a need to implement an RL-based tech-
nique Therm-RL that has the same goal as our IL-based TOP-
IL. Section 2 reviewed the state-of-the-art techniques that
employ RL for application mapping/migration or DVFS.
However, none of them targets the same goal as ours and
considers heterogeneous cores with per-cluster DVFS run-
ning parallel applications. Therefore, this section presents
an RL-based application migration policy, motivated by the
state of the art, to serve as a baseline for the IL-based
policy described in Section 4. To enable a fair comparison
between RL and IL, we also perform only migration with
RL and employ the same DVFS control loop described in
the previous section.

TOP-IL achieved independence from the number of
running applications by performing independent inference
per each running application, denoted the AoI, to find the
optimal migration. RL additionally requires to perform run-
time training, which requires maintaining information about
the previous state. Therefore, we instantiate one agent per
application. This has the additional benefit of maintaining
state and action spaces at a reasonable size, as will be
discussed in the next section. The overall structure of Therm-
RL is depicted in Fig. 7.

6.1 State, Action, and Reward

The state space used for the RL agent comprises the same
features as also used for the IL model. In particular, these are
the QoS, number of L2D accesses, and the current mapping
of the AoI, as well as the frequencies and utilizations of the
big and LITTLE clusters. All these features are quantized to
maintain a Q-table with a reasonable size. For instance, the
information about the QoS is represented by a binary signal
indicating whether or not the QoS target is met.

The action space is selected the same as with our IL
technique, which is also the same as in [24]. There is one
action per core, indicating a migration to this core, i.e., in
total 8 actions. The Q-table contains 2,304 entries, which is
similar in size to what is reported in [18].

The reward function needs to combine the objective
(temperature minimization) and constraint (QoS target) into

8

LITTLE big

App 1 App 2

App 3

App 4

DVFS (same as in Fig. 5, Section 5.2)

Agent 1 Agent 2 Agent 3 Agent 4

Q-table

a1 a2 a3 a4

Mediator

a r

Fig. 7. RL-based migration instantiates one agent per application.
All agents share the Q-table. A mediator selects the single executed
action a from each per-agent action ai (in this example from Agent 3).
Only the selected agent updates the Q-table based on the reward.

a single scalar value. The objective is similar to [24], which
only rewards a low temperature T : r=80◦C−T . We extend
it to penalize QoS violations:

r =

{
80◦C− T if ∀i : qi ≥ Qi
−200 otherwise (QoS violation)

(8)

We have empirically tuned the negative reward of −200 in
case of a QoS violation, in order to achieve a good trade-off
between low temperature and low QoS violations.

6.2 Multi-Agent Learning for Parallel Applications
As discussed earlier, we instantiate one RL agent per appli-
cation. Mediation between the agents is required to avoid
1) contradicting decisions by different agents, and 2) in-
stability in the learning. Contradicting migration decisions
could result if two agents decide to perform a migration
at the same time to the same core. Such decisions should
be not executed, because applications sharing a core would
likely violate QoS targets. Moreover, even two migrations
at the same time to different cores should be avoided, as
simultaneous migrations might nullify the benefits of each
other. Additionally, a change in temperature when perform-
ing two migrations at once can not be traced back to either
of the two, causing instability in the learning.

We, therefore, implement a mediator between the agents,
similar to [33]. The mediator selects the best action among
the individual actions selected by each agent based on the
highest Q-value, and executes it. After having executed the
action, the reward obtained in the next control step should
only be used to perform learning about this action, not
about actions from other agents that have not been selected.
Therefore, the mediator forwards the reward only to the
agent selected in the previous step to perform learning.
Fig. 7 illustrates the mediation process. All agents share
a common Q-table to improve generalization to different
applications, and to immediately start with a trained policy
when a new application arrives to the system.

6.3 Training
We select the training parameters as in [24]. We use an
ε-greedy policy with ε=0.1, a discount factor γ=0.8, and

a learning rate α=0.05. As the Q-table is initialized with
constant values, a high-quality RL policy is only obtained
after significant training. Therefore, the initial performance
of an RL policy is not representative. We avoid this by first
training a policy until convergence (∼3 h) on a different
random workload from what is used later in the evaluation.
We then store the Q-table and load it at the beginning of
each evaluation run. To reduce the impact of randomness
on the policy performance, three policies are trained with
different random seeds, like with the IL model.

7 EXPERIMENTAL EVALUATION

We perform experiments on a HiKey970 [30] board. It em-
ploys a HiSilicon Kirin 970 smartphone SoC that imple-
ments the common Arm big.LITTLE architecture with four
Arm Cortex-A53 and four Arm Cortex-A73 cores. It sup-
ports per-cluster DVFS with frequencies up to 1.84 GHz and
2.36 GHz, respectively. Furthermore, it comes with an NPU
to accelerate NN inference. The board runs Android 8.0.
We place the board in an A/C room to maintain a constant
ambient temperature. The on-chip temperature is monitored
with the on-board thermal sensor with a frequency of 20 Hz.

TOP-IL is compared with Therm-RL presented in Sec-
tion 6, as well as with state-of-the-practice solutions, Linux
GTS, paired with either ondemand or powersave governors.
GTS assigns applications to a cluster depending on the com-
putational requirements, i.e., mostly-idle and performance-
hungry applications are migrated to the LITTLE and big
cluster, respectively. Ondemand aims at providing a high
performance but saving power when low performance is
required. It achieves this by scaling the V/f-levels according
to the CPU utilization, where V/f levels are upscaled if
the utilization exceeds a fixed threshold, and downscaled
if it falls below a second threshold. Powersave minimizes
the power consumption by always operating at the lowest
V/f levels, irrespective of the associated performance losses.
These Linux policies are not aware of detailed application
characteristics or QoS targets. GTS/ondemand is the default
configuration that is shipped with Android 8.0 on HiKey970.

Generalization and Robustness: We demonstrate that
TOP-IL and the employed NN model can cope with: 1) Un-
seen applications that have not been used for training. 2) Dif-
ferent cooling: We perform experiments also with passive
cooling (without a fan) instead of the active cooling used for
training data generation. 3) Randomness in the training and at
run time: We train three models with different random seeds
to demonstrate the robustness to weight initialization. We
then repeat the experiments three times, where each repeti-
tion uses a different model, and report average and standard
deviation of results. This demonstrates robustness to run-
time variability due to workload fluctuations. In addition,
we demonstrate 4) the stability of the learned policy.

7.1 Illustrative Example

We first present an illustrative example comparing the mi-
gration decisions of IL and RL. We study the same case as
presented in the motivational example in Fig. 1, i.e., we
run the two applications adi and seidel-2d. Fig. 8a shows
the selected cluster (mapping) of adi. A mapping to the

9

0 10 20 30 40 50 60 70 80

big*

LITTLE

TOP-IL Therm-RL

0 10 20 30 40 50 60 70 80
150
200
250
300
350

QoS target Q

Q
oS

q
[M

IP
S]

0 10 20 30 40 50 60 70 80

42

43

44

Time [s]

Te
m

p.
[◦

C
]

(a) adi (*optimal mapping: big)

0 10 20 30 40 50 60 70 80 90 100 110 120

big

LITTLE*

TOP-IL Therm-RL

0 10 20 30 40 50 60 70 80 90 100 110 120
150

200

250

300

350

QoS target Q

Q
oS

q
[M

IP
S]

0 10 20 30 40 50 60 70 80 90 100 110 120

41

42

43

Time [s]

Te
m

p.
[◦

C
]

(b) seidel-2d (*optimal mapping: LITTLE)

Fig. 8. Illustrative example demonstrating the mappings chosen by our TOP-IL and Therm-RL with the two applications adi and seidel studied
already in Fig. 1. Our TOP-IL selects the optimal mapping for both applications. Therm-RL in general shows a similar trend but is unstable, selecting
also suboptimal mappings. The QoS targets are reached in all cases. However, Therm-RL increases the temperature during suboptimal mappings.

0.2 0.4 0.6 0.8 1
30

40

50

60

A
vg

.T
em

p.
[◦

C
]

TOP-IL Therm-RL GTS/ondemand GTS/powersave

0.2 0.4 0.6 0.8 1
0

5

10

15

20

Application Arrival Rate [1/min]

A
vg

.Q
oS

V
io

la
ti

on
s

[#
A

pp
lic

at
io

ns
]

(a) With a fan (same as for oracle demonstrations)

0.2 0.4 0.6 0.8 1
40

50

60

70

80

A
vg

.T
em

p.
[◦

C
]

TOP-IL Therm-RL GTS/ondemand GTS/powersave

0.2 0.4 0.6 0.8 1
0

5

10

15

20

Application Arrival Rate [1/min]

A
vg

.Q
oS

V
io

la
ti

on
s

[#
A

pp
lic

at
io

ns
]

(b) Without a fan

Fig. 9. Main results: Our TOP-IL significantly reduces the temperature, while achieving low QoS violations. This is the case both when running with
a fan, as when recording the traces for the oracle demonstrations, but also without the fan, demonstrating the generalization of our model. Bars
show mean and standard deviation over three experiments. TOP-IL and RL use models trained with different random seeds.

big cluster is optimal. TOP-IL always selects the optimal
mapping. Therm-RL also mostly selects a mapping to the big
cluster but infrequently migrates adi to the LITTLE cluster.
In both cases, adi reaches its QoS target. The temperature
reached by the two techniques is also similar, as they select
the same mapping most of the time. Fig. 8b shows the
mappings selected with seidel-2d, for which the LITTLE
cluster is optimal. TOP-IL again consistently selects the op-
timal mapping. In contrast, Therm-RL is more unstable and
migrates seidel-2d irregularly between both clusters. This
results in an unnecessarily high QoS during the time on the
big cluster, which also results in a higher temperature dur-
ing these periods. These examples illustrate that the policy
learned with IL is stable and consistently selects the optimal
mapping, in contrast to RL, which is more unstable. This
ultimately results in a lower temperature. The instability of
RL leads to even worse results (QoS violations) with more

realistic workloads with multiple parallel applications, as
will be shown in the next section.

7.2 Main Experiment: Parallel Mixed Workload

We now evaluate the capabilities of all techniques to reduce
the temperature under QoS targets. We create a mixed work-
load of 20 randomly selected applications among blacksc-
holes, bodytrack, canneal, dedup, facesim, ferret, fluidanimate,
and swaptions from PARSEC [34], and adi, fdtd-2d, floyd-
warshall, gramschmidt, heat-3d, jacobi-2d, seidel-2d, and syr2k
from Polybench [7]. Only the Polybench applications (except
jacobi-2d) have been used for training TOP-IL and Therm-
RL. All other applications are unseen. We select a random
QoS target for each application. The arrival times are dis-
tributed by a Poisson distribution with varying arrival rate to
test different system loads. With TOP-IL, the average/peak

10

5

10
TOP-IL Therm-RL GTS/ondemand GTS/powersave

0.51 1.02 1.21 1.40 1.56 1.69 1.84
0

1

2

Frequency [GHz]

C
PU

Ti
m

e
[h

]

5

10

0.68 1.02 1.21 1.36 1.50 1.65 1.86 2.09 2.36
0

1

2

Frequency [GHz]

C
PU

Ti
m

e
[h

]

(a) LITTLE cluster

(b) big cluster

Fig. 10. Total CPU time (among all arrival rates) per cluster and V/f level
per technique in the experiments without a fan (Fig. 9b).

system utilizations vary from 13 %/38 % to 37 %/75 %, for
minimum and maximum arrival rates, respectively. We let
the board cool down for 10 min between experiments. All
experiments are performed three times (with different mod-
els for TOP-IL and Therm-RL), as explained earlier.

Figs. 9a and 9b shows the results (mean and standard
deviation for three repetitions) for the cooling with a fan,
i.e., like for training data generation, and without a fan,
i.e., different from the training data, respectively. TOP-IL
reduces the average temperature by up to 17 ◦C compared
to GTS/ondemand at only slightly more QoS violations. GTS/
powersave achieves the lowest temperature but the majority
of applications violate their QoS target. Finally, the temper-
ature with Therm-RL is similar to TOP-IL. However, TOP-IL
achieves 63 % to 89 % fewer QoS violations. TOP-IL is the
only technique to achieve temperature minimization at few
QoS violations. This result is independent of the cooling.

To explain these results we analyze the selected map-
pings and V/f levels. Fig. 10 plots the distribution (mean
and standard deviation for the three repetitions) of the total
CPU time (time executing an application) for executing the
workload at all arrival rates according to the cluster and
selected V/f level for the experiment without a fan. GTS
favors the big cluster and ondemand selects high frequencies
when applications are executed. As a result, GTS/ondemand
uses most CPU time at the highest V/f level on the big clus-
ter, leading to low QoS violations. However, this also leads
to high temperature and ultimately even causes thermal
throttling, forcing GTS/ondemand to occasionally reduce the
V/f levels. In contrast, powersave always selects the lowest
V/f level. The reduced performance increases the number
of simultaneously running applications, which forces GTS
to also use the LITTLE cluster. As a result, GTS/powersave
uses CPU time on both clusters at the lowest V/f level,
leading to the lowest temperature but many QoS violations.
Therm-RL uses a lot of CPU time on the LITTLE cluster at

blackscholes
bodytrack

canneal
dedup

facesim ferre
t

fluidanimate
swaptions

30

40

50

A
vg

.T
em

p.
[◦

C
]

TOP-IL Therm-RL GTS/ondemand GTS/powersave

blackscholes
bodytrack

canneal
dedup

facesim ferre
t

fluidanimate
swaptions

0

1

2

3

#
Q

oS
V

io
la

ti
on

s
in

th
e

3
R

ep
et

it
io

ns

Fig. 11. Our TOP-IL is the only technique to achieve no performance
violations, yet low temperature for all single application workloads. All
applications are unseen, i.e., not used for training.

the highest V/f level and on the big cluster at the lowest
V/f level. In both cases, a migration to the other cluster
would likely have been beneficial to either be able to satisfy
the QoS target, or to reduce the temperature. In particular,
the high CPU time spent on the LITTLE cluster at peak
V/f level explains the high number of QoS violations. The
reason for the suboptimal mapping decisions of Therm-RL
are policy instability due to continual exploration in online
learning and combining objectives and constraints into a
single scalar reward. In contrast, TOP-IL uses more time
on the big cluster at rather low V/f levels, which allows
it to meet the QoS target at a low temperature, as seen in
Fig. 9. We also did this analysis for the experiment with a fan
and found similar results (except for no throttling with GTS/
ondemand). In summary, TOP-IL is the only technique to achieve
temperature minimization at low QoS violations. This is achieved
for mixed workloads containing unseen applications, for different
cooling setting than used during training, and is reproducible for
models trained with different random initialization.

7.3 Single-Application Workloads
The results of the previous section contain both seen and
unseen applications. To further demonstrate the generaliza-
tion, we run experiments with only unseen applications. The
QoS targets are set such that they can be met at the highest
V/f level on the LITTLE cluster. As in the previous section,
we repeat each experiment three times with different IL or
RL models. Fig. 11 visualizes the results in terms of average
temperature and QoS violations. As in the previous experi-
ments, GTS/ondemand reaches the highest temperature. The
other three techniques all result in a similar low tempera-
ture. As there is only one application per workload, it can
either reach or violate its QoS target. We therefore report the
number of executions with a QoS violation instead of the
average number of applications that violate their QoS. As
expected, GTS/powersave violates almost all QoS targets. The
only exception is canneal, which is memory-intensive and

11

1 2 3 4 5 6 7 8
0

5

10

15

Number of Running Applications

To
ta

lO
ve

rh
ea

d
[m

s/
s] App. Migration (2×/s) DVFS Control Loop (16×/s)

Fig. 12. The overhead of the DVFS control loop increases with the
number of executed executions, whereas application migration has a
constantly low overhead due to the parallel NN inference with the NPU.

its performance depends less on the CPU V/f level. Therm-
RL also violates the performance constraint in 33 % of the
executions. The reason is that the policy learned with RL
suffers from instabilities, which causes frequent migrations.
After each migration, the DVFS control loop requires a few
iterations to determine the V/f level. During this time, the
QoS may be temporarily violated, potentially resulting in
a global QoS violation among the whole execution. The
only technique that achieves both a low temperature and no
QoS violations is TOP-IL. These experiments demonstrate
again the capabilities of TOP-IL to effectively minimize the
temperature under a QoS target, but most importantly also
the generalization capabilities of TOP-IL to unseen applications.

7.4 Model Evaluation
This section evaluates the NN model in isolation. We split
the training/test data into training and test based on the
AoI, where seven out of nine benchmarks are only used
for training (same as in previous sections), and others only
for testing. As discussed earlier, our goal is to select any
near-optimal mapping in case several mappings result in a
similar temperature. The following reports the mean and
standard deviation across three models trained with dif-
ferent random seeds. Our model selects a mapping within
1 ◦C of the optimum in 82±5% of the cases. The selected
mapping is, on average, only 0.5±0.2 ◦C hotter than the
optimum. This demonstrates that our training process is robust
and consistently creates models that make near-optimal decisions.

7.5 Run-Time Overhead
The results in Figs. 8 to 11 already inherently contain the
run-time overhead (additional CPU load, induced tempera-
ture) of TOP-IL as it is running in parallel to the workload.
We perform in this section additional experiments to ex-
plicitly evaluate the overhead of our technique. We study
different system utilization values, i.e., different numbers
of running applications. Fig. 12 presents the results. The
DVFS control loop is executed 16 times per second. Its
overhead increases with the number of managed appli-
cations. The main component is reading the performance
counters, which scales linearly with the number of appli-
cations. In contrast, the overhead of the migration policy,
which is executed twice per second, barely changes with
more running applications. This is as its main component
is the NN inference, which uses parallel inference of the
NN, and thereby maintains a constant low latency. In the

worst case, the DVFS control loop and migration policy have
an overhead of 8.7 ms/s and 8.6 ms/s (0.54 ms and 4.3 ms
per invocation), respectively. The total run-time overhead of
TOP-IL is ≤1.7 %, and therefore negligible. It is important
to notice that we use a single-threaded implementation of
TOP-IL, i.e., the overhead only affects a single core.

8 CONCLUSION

Temperature minimization under QoS targets requires ap-
plication migration and DVFS. Optimization can only be
achieved by jointly considering the diverse characteristics
and QoS targets of all running applications, and, hence, is
a complex problem. We tackle the complexity with NN-
based IL, which enables us to combine the optimality of
the oracle policy with a low run-time overhead. We employ
the existing NPU of a smartphone SoC to accelerate the run-
time inference. Our policy offers stable management and
generalizes to different workloads and cooling settings than
what has been used for training.

ACKNOWLEDGMENTS

This work was partly funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) – Project
Number 146371743 – TRR 89 Invasive Computing.

REFERENCES

[1] M. Rapp, N. Krohmer, H. Khdr, and J. Henkel, “NPU-Accelerated
Imitation Learning for Thermal- and QoS-Aware Optimization
of Heterogeneous Multi-Cores,” in Design, Automation & Test in
Europe Conf. & Exhibition (DATE). IEEE, 2022.

[2] H. Khdr, H. Amrouch, and J. Henkel, “Aging-Constrained Perfor-
mance Optimization for Multi Cores,” in Design Automation Conf.
(DAC). IEEE, 2018.

[3] S. Wang and J.-J. Chen, “Thermal-Aware Lifetime Reliability in
Multicore Systems,” in Int. Symp. on Quality Electronic Design
(ISQED), 2010.

[4] B. Egilmez, G. Memik, S. Ogrenci-Memik, and O. Ergin, “User-
Specific Skin Temperature-Aware DVFS for Smartphones,” in De-
sign, Automation & Test in Europe Conf. & Exhibition (DATE), 2015,
pp. 1217–1220.

[5] A. Pathania, H. Khdr, M. Shafique, T. Mitra, and J. Henkel, “QoS-
aware Stochastic Power Management for Many-Cores,” in Design
Automation Conf. (DAC), 2018.

[6] J. Henkel, H. Khdr, and M. Rapp, “Smart Thermal Management
for Heterogeneous Multicores,” in Design, Automation & Test in
Europe Conf. & Exhibition (DATE). IEEE, 2019, pp. 132–137.

[7] T. Yuki and L.-N. Pouchet, “Polybench 4.0,” 2015.
[8] G. Bhat, G. Singla, A. K. Unver, and U. Y. Ogras, “Algorithmic Op-

timization of Thermal and Power Management for Heterogeneous
Mobile Platforms,” IEEE Tran. on Very Large Scale Integration (VLSI)
Systems, vol. 26, no. 3, pp. 544–557, 2017.

[9] K. R. Basireddy, A. K. Singh, B. M. Al-Hashimi, and G. V. Mer-
rett, “AdaMD: Adaptive Mapping and DVFS for Energy-Efficient
Heterogeneous Multicores,” IEEE Tran. on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 39, no. 10, pp. 2206–
2217, 2019.

[10] M. Rapp, M. B. Sikal, H. Khdr, and J. Henkel, “SmartBoost:
Lightweight ML-Driven Boosting for Thermally-Constrained
Many-Core Processors,” in Design Automation Conf. (DAC), 2021.

[11] A. T. Goh, “Back-Propagation Neural Networks for Modeling
Complex Systems,” Artificial Intelligence in Engineering, vol. 9,
no. 3, pp. 143–151, 1995.

[12] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,
and D. Mané, “Concrete Problems in AI Safety,” arXiv preprint
arXiv:1606.06565, 2016.

12

[13] U. Gupta, C. A. Patil, G. Bhat, P. Mishra, and U. Y. Ogras,
“DyPO: Dynamic Pareto-Optimal Configuration Selection for Het-
erogeneous MPSoCs,” ACM Tran. on Embedded Computing Systems
(TECS), vol. 16, no. 5s, 2017.

[14] R. G. Kim, W. Choi, Z. Chen, J. R. Doppa, P. P. Pande, D. Mar-
culescu, and R. Marculescu, “Imitation Learning for Dynamic VFI
Control in Large-Scale Manycore Systems,” IEEE Tran. on Very
Large Scale Integration (VLSI) Systems, vol. 25, no. 9, pp. 2458–2471,
2017.

[15] S. K. Mandal, G. Bhat, C. A. Patil, J. R. Doppa, P. P. Pande, and
U. Y. Ogras, “Dynamic Resource Management of Heterogeneous
Mobile Platforms via Imitation Learning,” IEEE Tran. on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 12, pp. 2842–2854, 2019.

[16] A. L. Sartor, A. Krishnakumar, S. E. Arda, U. Y. Ogras, and
R. Marculescu, “Hilite: Hierarchical and Lightweight Imitation
Learning for Power Management of Embedded SoCs,” IEEE Com-
puter Architecture Letters (CAL), vol. 19, no. 1, pp. 63–67, 2020.

[17] Q. Fettes, M. Clark, R. Bunescu, A. Karanth, and A. Louri, “Dy-
namic Voltage and Frequency Scaling in NoCs with Supervised
and Reinforcement Learning Techniques,” IEEE Tran. on Computers
(TC), vol. 68, no. 3, pp. 375–389, 2019.

[18] E. Kwon, S. Han, Y. Park, J. Yoon, and S. Kang, “Reinforcement
Learning-Based Power Management Policy for Mobile Device
Systems,” IEEE Tran. on Circuits and Systems I: Regular Papers
(TCAS-I), 2021.

[19] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, and
L. Van Gool, “AI Benchmark: Running Deep Neural Networks on
Android Smartphones,” in Euro. Conf. on Computer Vision (ECCV),
2018.

[20] Z. Chen, D. Stamoulis, S. Member, and D. Marculescu, “Profit :
Priority and Power / Performance Optimization for Many-Core
Systems,” IEEE Tran. on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 10, pp. 2064–2075, 2018.

[21] S. M. P. Dinakarrao, A. Joseph, A. Haridass, M. Shafique, J. Henkel,
and H. Homayoun, “Application and Thermal-Reliability-Aware
Reinforcement Learning based Multi-Core Power Management,”
ACM Jrnl. on Emerging Tech. in Computing Systems (JETC), vol. 15,
no. 4, 2019.

[22] A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar,
and B. Veeravalli, “Reinforcement Learning-based Inter-and Intra-
Application Thermal Optimization for Lifetime Improvement of
Multicore Systems,” in Design Automation Conf. (DAC), 2014.

[23] B. Donyanavard, A. Sadighi, F. Maurer, T. Mück, A. Rahmani,
A. Herkersdorf, and N. Dutt, “SOSA: Self-optimizing Learning
with Self-adaptive Control for Hierarchical SoC Management,”
Int. Symp. on Microarchitecture (MICRO), pp. 685–698, 2019.

[24] S. Lu, R. Tessier, and W. Burleson, “Reinforcement Learning for
Thermal-Aware Many-Core Task Allocation,” in Great Lakes Symp.
on VLSI (GLSVLI), 2015, pp. 379–384.

[25] S.-G. Yang, Y.-Y. Wang, D. Liu, X. Jiang, H. Fang, Y. Yang, and
M. Zhao, “ReLeTa: Reinforcement Learning for Thermal-Aware
Task Allocation on Multicore,” arXiv preprint arXiv:1912.00189,
2019.

[26] D. Liu, S.-G. Yang, Z. He, M. Zhao, and W. Liu, “CAR-
TAD: Compiler-Assisted Reinforcement Learning for Thermal-
Aware Task Scheduling and DVFS on Multicores,” IEEE Tran. on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2021.

[27] B. Jeff, “big.LITTLE Technology Moves Towards Fully Heteroge-
neous Global Task Scheduling,” ARM white paper, 2013.

[28] M. Rapp, H. Amrouch, Y. Lin, B. Yu, D. Pan, M. Wolf, and
J. Henkel, “MLCAD: A Survey of Research in Machine Learning
for CAD (Keynote Paper),” IEEE Tran. on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2021.

[29] Y. Kim, P. Mercati, A. More, E. Shriver, and T. Rosing, “P4: Phase-
Based Power/Performance Prediction of Heterogeneous Systems
via Neural Networks,” in International Conf. on Computer-Aided
Design (ICCAD). IEEE, 2017, pp. 683–690.

[30] Linaro 96Boards, “Hikey970,” https://96boards.org/product/
hikey970/.

[31] T. Ebi, D. Kramer, W. Karl, and J. Henkel, “Economic Learning for
Thermal-Aware Power Budgeting in Many-Core Architectures,” in
International Conference on Hardware/Software Codesign and System
Synthesis (CODES). ACM, 2011, pp. 189–196.

[32] S. Ross, G. Gordon, and D. Bagnell, “A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learn-

ing,” in International Conf. on Artificial Intelligence and Statistics
(AISTATS), 2011, pp. 627–635.

[33] R. Jain, P. R. Panda, and S. Subramoney, “Cooperative Multi-
Agent Reinforcement Learning-based Co-Optimization of Cores,
Caches, and On-Chip Network,” ACM Tran. on Architecture and
Code Optimization (TACO), vol. 14, no. 4, 2017.

[34] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Bench-
mark Suite: Characterization and Architectural Implications,” in
Int. Conf. on Parallel Architectures and Compilation Techniques (PACT).
ACM, 2008.

Martin Rapp has successfully defended his
Ph.D. in Computer Science at Karlsruhe In-
stitute of Technology (KIT) in May 2022 un-
der the supervision of Prof. Dr. Jörg Henkel.
Mr. Rapp received a B.Sc. and M.Sc. degree –
both with distinction – in Computer Science from
the KIT in 2014 and 2016, respectively. His cur-
rent research focuses on resource-constrained
machine learning: ML-based run-time resource
management for many-core architectures and
distributed resource-aware on-device training of

neural networks. ORCID 0000-0002-5989-2950

Heba Khdr received her Ph.D. (Dr.-Ing.) in Com-
puter Science from Karlsruhe Institute of Tech-
nology (KIT) in July 2018 under the supervision
of Prof. Jörg Henkel. Mrs. Khdr received her B.
Sc in Computer Science from Aleppo University
in Syria, with excellent grade and the first rank.
She is currently a research group leader at the
Chair for Embedded Systems (CES) at KIT. Her
main research interests are resource manage-
ment techniques that consider power, tempera-
ture and aging issues in embedded processors.

Nikita Krohmer received a B.Sc. degree in
Computer Science from Technical University of
Berlin in 2018 and a M.Sc. degree in Computer
Science from Karlsruhe Institute of Technology
in 2021. His research interests lie in embed-
ded machine learning and applied artificial intel-
ligence.

Jörg Henkel received the Diploma and Ph.D.
(summa cum laude) degrees from the Technical
University of Braunschweig, Germany. He was a
Research Staff Member with NEC Laboratories,
Princeton, NJ, and is currently the Chair Pro-
fessor of embedded systems with the Karlsruhe
Institute of Technology, Karlsruhe, Germany. His
research focus is on co-design for embedded
hardware/software systems. Dr. Henkel has re-
ceived six best paper awards from major CAD
conferences. He served as the Editor-in-Chief

for the ACM Transactions on Embedded Computing Systems and IEEE
Design&Test. He has led several conferences as a General Chair incl.
ICCAD, ESWeek etc. He coordinates the DFG Program SPP 1500
“Dependable Embedded Systems” and is a site coordinator of the DFG
TR89 collaborative research center on “Invasive Computing.” He is the
Chairman of the IEEE Computer Society, Germany Chapter. He is a
Fellow of the IEEE.

https://96boards.org/product/hikey970/
https://96boards.org/product/hikey970/

	1 Introduction
	1.1 Motivational Example
	1.2 Challenges and Contributions

	2 Related Work
	3 Problem Formulation
	4 IL-based Application Migration
	4.1 Feature Selection
	4.2 Oracle Demonstrations (Training Data)
	4.3 IL Model Creation and Training

	5 Run-Time Temperature / QoS Management
	5.1 Application Migration with NPU-Accelerated IL
	5.2 Control Loop for Per-Cluster DVFS

	6 RL-based Application Migration
	6.1 State, Action, and Reward
	6.2 Multi-Agent Learning for Parallel Applications
	6.3 Training

	7 Experimental Evaluation
	7.1 Illustrative Example
	7.2 Main Experiment: Parallel Mixed Workload
	7.3 Single-Application Workloads
	7.4 Model Evaluation
	7.5 Run-Time Overhead

	8 Conclusion
	References
	Biographies
	Martin Rapp
	Heba Khdr
	Nikita Krohmer
	Jörg Henkel

