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Fig. 1. We introduce a fully automatic, active 3D reconstructionmethod which integrates interaction perception from depth sensors, real robot-object interaction
(e.g., opening drawers), and on-the-fly scanning and reconstruction to obtain a complete geometry acquisition of both the object exteriors and interiors.

We introduce an active 3D reconstruction method which integrates visual
perception, robot-object interaction, and 3D scanning to recover both the
exterior and interior , i.e., unexposed, geometries of a target 3D object. Unlike
other works in active vision which focus on optimizing camera viewpoints to
better investigate the environment, the primary feature of our reconstruction
is an analysis of the interactability of various parts of the target object and
the ensuing part manipulation by a robot to enable scanning of occluded
regions. As a result, an understanding of part articulations of the target
object is obtained on top of complete geometry acquisition. Our method
operates fully automatically by a Fetch robot with built-in RGBD sensors. It
iterates between interaction analysis and interaction-driven reconstruction,
scanning and reconstructing detected moveable parts one at a time, where
both the articulated part detection and mesh reconstruction are carried out
by neural networks. In the final step, all the remaining, non-articulated parts,
including all the interior structures that had been exposed by prior part
manipulations and subsequently scanned, are reconstructed to complete the
acquisition. We demonstrate the performance of our method via qualitative
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and quantitative evaluation, ablation studies, comparisons to alternatives,
as well as experiments in a real environment.
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1 INTRODUCTION
3D shape reconstruction has been one of the most classical prob-
lems in computer graphics. To date, the dominant majority of the
proposed methods, whether geometry-based [Berger et al. 2017]
or learning-based [Xie et al. 2022], can only capture the exterior
surfaces of the target 3D object, since only these surfaces are ex-
posed to the acquisition devices, such as a camera or a laser scanner.
Such models can be well visualized but not properly interacted with,
especially when the interactions can lead to part articulations that
may reveal the objects’ inside or interiors. For example, when a
cabinet door or desk drawer is opened, the interior structures of
these furniture items will be exposed, but they may have never been
acquired to start with. In interactive applications such as VR/AR,
games, smart homes, and embodied AI, it is highly desirable to en-
dow the 3D models therein with not only interior structures but
also part-level motion attributes, so as to present a realistic user
experience.
In this paper, we introduce an active 3D reconstruction method

which integrates visual perception, robot-object interaction, and 3D
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scanning to recover both the exterior and interior geometries of a
target 3D object. In our problem setting, the object interiors refer
to unexposed structures of the object relative to its initial state or
articulated pose when it is being scanned. Such interiors can only be
captured by applying proper motions to one or more of the object’s
parts to reveal them. Our approach falls into the general realm
of active perception [Bajcsy 1988; Gibson 1966], which seeks to
understand the world around us by moving around and exploring it.
However, unlike other works in active vision [Aloimonos et al. 1988]
which focus on optimizing camera viewpoints to better investigate
the environment, the primary feature of our reconstruction is an
iterative analysis of the interactability of various parts of the target
object and the ensuing part manipulation by a robot, e.g., opening
the drawer of a cabinet, to reveal the unexposed geometries and
scan both the outside and inside of the object. As a result, our
method not only achieves complete geometry acquisition but also
an understanding of part articulations.
Fig. 2 shows an overview and running example of our method,

which operates fully automatically by a Fetch robot with built-in
depth sensors. At the high level, our reconstruction process consists
of two repeated phases: interaction analysis and interaction-driven
reconstruction. Given a target 3D object, the robot first acquires
an initial scan, resulting in the initial object state, over which an
interaction analysis is carried out by a neural network to detect
moveable parts and predict the associated motion attributes. Then,
iteratively, for each moveable part detected, the robot executes the
predicted part manipulation, e.g., opening a drawer as shown in
Fig. 2, to reach a new object state for a new point cloud scan and
the ensuing mesh reconstruction of the moveable part. In our work,
the mesh reconstruction is also performed by a neural network.
Once a moveable part has been reconstructed, it is masked out
so that the next interaction analysis would be carried out over
the remaining regions of the target object. After all the moveable
parts have been manipulated and reconstructed, e.g., the cabinet
drawer and then the door as shown in the example in Fig. 2, the
robot-object interaction terminates. In the final step, the remaining,
non-articulated parts, including all the interior structures that had
been exposed by previous part manipulations and subsequently
scanned, e.g., the shelving in Fig. 2, are reconstructed.

We conduct experiments on our reconstruction method in both a
simulated environment and real-world setup. Qualitative and quan-
titative evaluations are provided to demonstrate the overall per-
formance of our 3D reconstruction, in terms of quality and com-
pleteness of the final meshes and generality across different object
categories. Comparisons and ablation studies are also presented to
assess the individual components in our solution pipeline.

2 RELATED WORK
3D reconstruction has been one of the most intensively studied
problems in both computer graphics and computer vision. We refer
the readers to surveys on classical [Berger et al. 2017] and learning-
based [Xie et al. 2022] reconstruction methods for a comprehensive
coverage. Among the latter, we only mention neural dual contouring
(NDC) [Chen et al. 2022], a state-of-the-art method which we adopt

as our mesh reconstruction network due to its versatility, gener-
alizability, and reconstruction quality. In this section, we mainly
cover related works on active 3D reconstruction, neural percep-
tion and reconstruction of part articulations, as well as simulation
environments that support agent-object interactions.

Active 3D reconstruction. Classical 3D acquisition requires con-
tinuous scanning around a 3D object, e.g., in Kinect fusion [New-
combe et al. 2011], where the viewpoints and scanning paths are
pre-determined. Yan et al. [2006] propose an algorithm for building
the kinematic chain of an articulated object from feature trajectories,
which first segments the trajectories by local sampling and spectral
clustering, and then builds the kinematic chain from a graph con-
structed from the segmented motion subspaces. Katz et al. [2013]
present an interactive perceptual skill for segmenting, tracking, and
modeling the kinematic structure of 3D articulated objects. Repre-
sentative examples of active 3D scanning, sometimes referred to as
autoscanning, include [Wu et al. 2014] and [Yang et al. 2018]. Both
works develop guided view planners to optimize viewpoint selection
and their scanning paths, but neither allows direct manipulation of
the target object being acquired.

Despite the vast literature on 3D reconstruction, very few works
have been devoted to the capture of object interiors. Most closely
related to our work is proactive scanning [Yan et al. 2014], which exe-
cutes continuous 3D scanning while a human user actively interacts
with the captured scene, e.g., opening the drawer of a cabinet or the
trunk of a car, to access occluded regions. However, there are a few
downsides of this approach: a) it requires substantial human effort
and time to obtain a complete reconstruction; b) it imposes several
technical challenges involving motion perception and tracking, es-
pecially due to the presence of both human and camera movements,
on top of scene modification. For example, the human user is an
added occluder and an entity that also exhibits motions that must
be separated from part articulations by the target object.
In contrast, our reconstruction method is fully automatic, re-

placing the human user by a robotic agent to carry out the part
manipulation and active scanning and reconstruction. With our cur-
rent acquisition setup, both the robot and camera movements can
be precisely controlled. On the other hand, the technical challenges
are now shifted to interactivity analysis and part manipulation.

Neural perception and reconstruction for articulated shapes. Yi et
al. [2018] extract the motion type and joint parameters for articu-
lated parts given point cloud shapes with two different articulation
states. RPM-Net [Yan et al. 2019] and Shape2Motion [Wang et al.
2019] are two frameworks which directly infer the motion attributes
associated with object parts from a single point cloud frame. Xu
et al. [2022] propose an unsupervised framework that learns con-
sistent part parsing for man-made articulated objects with various
part poses from a single-frame point cloud.

There has also been recent research on direct inference of interac-
tions. Martín-Martín et al. [2016] propose an integrated approach for
pose tracking, shape reconstruction, and the estimation of kinematic
structures, where the three tasks complement each other. Paolillo
et al. [2017] present a method based on virtual visual servoing to
estimate the configuration of articulated objects. Where2Act [Mo
et al. 2021] and AdaAfford [Wang et al. 2022] are two deep-learning
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Fig. 2. A pipeline overview and running example for our active, interaction-driven 3D reconstruction method. Given a target 3D object in its rest state S0, our
robot first obtains a scan C0 and infers its associated interactability map I0 to predict the action 𝑎𝑖 in each iteration, and then the robot executes the action so
that the object would reach state S𝑖 . A new scan is obtained and then segmented with respect to the moveable part to obtain C𝑠

𝑖
. The moveable part R𝑖 is

reconstructed and then masked out for the subsequent interaction analysis on the new interactability map I𝑖 . Simultaneously, C0 is updated by merging the
segmentation results, including movable part removal and interior addition, denoted by C𝑖

0 . After all the moveable parts have been reconstructed, the C𝑘
0 ,

which constitutes the non-articulated parts, including the scanned interior structures, are finally reconstructed to complete the full geometry acquisition.

based methods that are trained to predict correct action parame-
ters for object part manipulation. Our work adopts Where2Act to
construct the interactability map.
In terms of representation learning and neural reconstruction

for articulated shapes, most recent works resort to implicit rep-
resentations [Chen and Zhang 2019; Mescheder et al. 2019; Park
et al. 2019] due to their superior representation capabilities for con-
tinuous functions. Mu et al. [2021] introduce A-SDF to represent
articulated shapes with a disentangled latent space. Given an unseen
shape instance in a random articulation state, it is able to generate
novel states for the shape. Zhang et al. [2021] present StrobeNet
that reconstructs animatable 3D models of articulated objects from
one or more unposed RGB images. In NASAM, Wei et al. [2022]
learn a neural shape and appearance model for articulated shapes
in a self-supervised manner. Ditto [Jiang et al. 2022] is a framework
that jointly predicts part-level geometry and joint parameters given
two point cloud shapes exhibiting different articulation states. Hsu
et al. [2023] further extend the method to the scene level, which
predicts the motion parameters and geometries for the objects in the
indoor scene. Similar to Ditto, Nie et al. [2023] proposed a method
to recover part geometries and joint parameters from a sequence
of interactions. Unlike these methods that propose pure network
frameworks and apply them on real platforms, the pipeline of our
active reconstruction method involves specific robot operations and
makes use of robot feedback.

Simulation environments. VirtualHome [Puig et al. 2018] is a sim-
ulator for users to create an activity video dataset with rich ground-
truth data. It is driven by programs controlling agents in a synthetic
world. SAPIEN [Xiang et al. 2020] is a realistic, physics-rich sim-
ulator which hosts a moderately large set of articulated objects
from PartNet-Mobility (see below). It enables various robotic vision

and interaction tasks that require detailed part-level understanding.
iGibson [Li et al. 2022; Shen et al. 2021] is a simulation environ-
ment that aims to develop robotic solutions for interactive tasks
in large-scale realistic scenes. It contains several fully interactive
indoor scenes populated with both rigid and articulated objects. In
our experiments, we utilize iGibson as the virtual setup.
3D datasets. 3D shape collections play a key role to enrich the

simulation environments. ShapeNet [Chang et al. 2015] is the largest
(more than 3M models) and most widely adopted dataset for shape
analysis and geometric deep learning. However, there is no joint
information between the object parts in ShapeNet, which makes
these models hard to use in such tasks as part-level interaction in
robotics and VR/AR. PartNet [Mo et al. 2019] is a dataset of 3D
shapes annotated with instance-level and hierarchical part informa-
tion. PartNet-Mobility is an asset of the SAPIEN [Xiang et al. 2020]
simulator; it contains 14,000 parts from 2,346 object models, many
of which do possess interior structures. Liu et al. [2022] introduce
AKB-48, which is a large-scale articulated object knowledge base
that consists of 2,037 real-world 3D articulated object models across
48 categories.

3 OVERVIEW
Given a target 3D object S0 to be fully reconstructed, from the
outside to the inside, our Fetch robot first moves in front of the
object to obtain an initial point cloud scan C0 using its built-in
depth camera. Note that we do not perform any reconstruction in
this initial step. The key first task is to analyze the interaction for
C0 and obtain the interactability map I0. Specifically, the map is
defined by a point-wise probability indicating the likelihood that
each point belongs to a part that can be successfully manipulated.
More details about the interaction analysis are given in Section 4.
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TranslationRotation

Fig. 3. The illustration of the rules to generate training data for interaction
perception network, where the force 𝐹 is decomposed in two different ways
for each type of motions to compute the interactability scores.

To enable a part manipulation, we need to pass a specific action to
the robot. We denote an action as 𝑎 = (𝑎𝑝𝑜𝑠 , 𝑎𝑑𝑖𝑟 ) ∈ R6, where 𝑎𝑝𝑜𝑠
represents the action position and 𝑎𝑑𝑖𝑟 the action direction. Given
an action 𝑎, the robot moves its gripper to 𝑎𝑝𝑜𝑠 and manipulates the
part along the direction 𝑎𝑑𝑖𝑟 . Once the part is successfully opened,
we reach a new stateS1 for the target object. In addition, themobility
information of the part, including motion axis and motion range,
can be obtained by fitting the parameters from the trajectory of the
manipulation process. Note that this step is critical as it corrects the
predicted action by the actual interaction.
Next, the robot moves back to the front of the current object

configuration to obtain a new point cloud C1, which is further seg-
mented by a network to obtain C𝑠

1 . According to the segmentation
label, we complete and reconstruct the current moving partR1 using
a completion and reconstruction module that is trained to perform
well amid noise and sparse scans. The update of C0 is obtained by
removing the moveable part and adding the new observed parts
based on segmentation masks, denoted as C1

0 .
Since the target 3D object may have more than one movable

part, we update the interactability map by masking out the seg-
mentated part, denoted as I1. Then, we repeat the action selection,
manipulation, scanning, and segmentation process to obtain the
point cloud C𝑠

𝑖
, reconstruction of the current part R𝑖 , while the

non-articulated point cloud C𝑖
0, 𝑖 ≥ 2, can be updated accordingly.

Note that each time before the next action, the robot will first move
the last manipulated part back to restore its original configuration.
To determine when the interaction analysis shall terminate, we

examine the updated interactability map I𝑘 to obtain the number of
points deemed to be sufficiently moveable. If this number falls below
a preset threshold, then the part manipulation would stop, reach-
ing the final completion and reconstruction step, which takes the
remaining part C𝑘

0 as input. In the end, we merge the reconstructed
meshes and the part mobility information to obtain our final ac-
tive reconstruction R. More details about the interaction-driven
reconstruction are presented in Section 5.

4 INTERACTION ANALYSIS
Given the initial point cloud C0 of the input shape S0, the goal of
our interaction analysis is to predict the initial interactability map
I0. We first use a network module to give an initial prediction of

Input Output

PointNeXt
Encoder

Action Scoring
Decoder

Per-point

Interactability

Action

Direction

Interaction

Score

Interaction
Decoder

Action Proposal
Decoder

Fig. 4. The architecture of the interaction perception network. Given the
initial scan C0, the feature 𝑓 is first extracted, and then the interactability
score for each point is predicted, denoted as I0. The action direction can be
inferred from the action proposal decoder, and the action scoring decoder
is trained to provide guidance for the other two decoders.

the interaction, then it is gradually updated at each of the following
steps until the stop condition is reached.

Rule-based training data generation. We first collect the ground
truth (GT) data of how likely an interaction 𝑎 = (𝑎𝑝𝑜𝑠 , 𝑎𝑑𝑖𝑟 ) is able
to move the part. Where2Act [Mo et al. 2021] uses simulation in
virtual environment to collect the training data. Specifically, they
first sample a large number of interactions in 3D space, and then
test each of them in SAPIEN [Xiang et al. 2020]: if the state of the
interacting part after interaction meets their pre-defined success
conditions, this interaction will be labeled as true. However, since
all the sampled interactions need to be tested via simulation, it is
time-consuming and the binary GT label could not provide detailed
supervision for the interactability prediction.
Our key observation is that the interactability of articulated ob-

jects is highly related to its part mobility. For example, the door is
more easily opened from the side away from the hinge. Since each
model in our dataset is associated with its part mobility information,
it allows us to define several physics-based rules that can be used to
calculate the interactability score given an action 𝑎 = (𝑎𝑝𝑜𝑠 , 𝑎𝑑𝑖𝑟 )
on a point cloud shape to serve as GT for training.
Fig. 3 shows the interactability score computation of two exam-

ples with different types of motions. For the part with rotational
motion, given a force 𝐹 on 𝑎𝑝𝑜𝑠 with direction 𝑎𝑑𝑖𝑟 , we decompose
the force 𝐹 along the normal direction at the current position. To
obtain the torque, we calculate the smallest distance 𝑑 from the
action position to the axis, and the action score is defined as:

𝑆𝑐𝑜𝑟𝑒𝑟 = 𝑑 × 𝐹⊥𝑛𝑜𝑟𝑚 − 𝜇𝐹 ∥𝑛𝑜𝑟𝑚, (1)

where 𝜇 is the friction coefficient.
For the part with translational motion, we decompose 𝐹 along

with two directions: the direction parallel to the axis 𝐹 ∥𝑎𝑥𝑖𝑠 , which
drive the part to move; and the direction perpendicular to the axis
𝐹⊥𝑎𝑥𝑖𝑠 , which would produce resistance during the movement. We
define the score for translation as:

𝑆𝑐𝑜𝑟𝑒𝑡 = 𝐹 ∥𝑎𝑥𝑖𝑠 − 𝜇𝐹⊥𝑎𝑥𝑖𝑠 , (2)

where 𝜇 is the friction coefficient.
Note that the score distribution for translation and rotation may

be different, so we normalize the score for each movable part to
generate the GT training data. Specifically, given a point cloud, we
randomly generate 10 directions in 3D space for each point with the
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same segmented label and compute 10 scores. Then all the scores of
the part for that label are collected and normalized to the [0, 1].

Network structure. The interaction perception network used to
predict the initial interactability map I0 is adapted from the work of
Where2Act [Mo et al. 2021], with the network architecture shown
in Fig. 4. The network consists of one encoder and three different
decoders, where the action scoring decoder is trained first, then it is
used to guide the training for the other two decoders. The network
first extracts the point-wsie feature 𝑓 of the input C0, and then for
each point 𝑝 , the corresponding feature 𝑓𝑝 together with a direction
𝑎𝑑𝑖𝑟 will be passed to the action scoring decoder to infer the success
probability. To use the success probability predicted by the action
scoring decoder to guide the training of the interaction decoder for
per-point interactability, for each point, we sample 100 directions
𝑎𝑑𝑖𝑟 and pass them to the action scoring decoder to get 100 scores,
and then we use the average score as the GT interactability score.
Moreover, we train the third action proposal decoder to predict the
optimal interaction direction for each point with the highest success
score to provide full guidance for interaction manipulation of the
robot. More details about the network parameters can be found in
the supplementary material.

Loss function. The loss function for the action proposal decoder
L𝑝

𝑖
is the cosine distance between the predicted and GT action di-

rections. For the action scoring decoder, differently fromWhere2Act
which treats the problem as that of a binary classification, we cal-
culate the score for each action based on the rules, and thus, the
loss function L𝑠

𝑖
is defined as the mean square error between the

predicted and GT scores. For the interaction decoder, the loss func-
tion L𝑎

𝑖
is defined as the mean square error between the predicted

and the average score for 100 action samples obtained from the
action proposal and action scoring decoders. The final loss for the
interaction prediction network is then:

L𝑖 = 𝜔𝑑L
𝑝

𝑖
+ 𝜔𝑠L𝑠

𝑖 + 𝜔𝑎L𝑎
𝑖 , (3)

where we set the weights (𝜔𝑑 , 𝜔𝑠 , 𝜔𝑎) to be (1, 1, 50).

5 INTERACTION-DRIVEN RECONSTRUCTION

5.1 Interaction execution
Our active reconstruction method works automatically by using a
Fetch robot to execute a set of operations: mobile scanning, action
selection, part manipulation, and termination. The details of each
operation are described below.

Mobile scanning. Given a shape in front of the robot, we first
estimate its bounding box based on the captured depth image and
then generate two new viewpoints to capture two new depth images
from the two front sides. The point cloud data is then obtained by
fusing the depth maps together with the corresponding camera
parameters. Note that the normal direction for each point is also
calculated according to the camera extrinsic.

Action selection. Given an interactability map I, we take the
action candidate with the highest probability to guide the part ma-
nipulation. Then, the robot attempts to manipulate the object part
following the action. If the action fails to move the part, another

(a) Translational motion �tting (b) Rotational motion �tting

Motion range Motion range

Fig. 5. The examples of the motion fitting. Given a set of points sampled
from the gripper trajectory, we fit the motion axis and motion range using
least squares optimization.

action candidate will be selected from I. Specifically, to avoid the
candidates falling in a small region of the part, we first filter all
the points around the failed action point with radius 𝑟 , and then
sample another action candidate with the highest probability in the
remaining region. We set 𝑟 = 0.05𝑚 in our experiments.

Part manipulation. For the execution of part manipulation, we re-
place the default clamp-based gripper on the Fetch with the suction-
based gripper, so that the robot can perform any interaction without
knowing the specific action type, such as pushing, pulling, etc. Given
an action (𝑎𝑝𝑜𝑠 , 𝑎𝑑𝑖𝑟 ), the gripper first approaches the position 𝑎𝑝𝑜𝑠 .
To make sure the suction state is stable, the gripper would move
forward an additional 0.01𝑚 along the inverse direction of 𝑎𝑑𝑖𝑟 be-
fore starting suction in our experiments. During the manipulation
process, the robot captures the point cloud at every time step 𝑡 = 3𝑠
and compares it to the initial state to see if the part has been moved
or still moving. As the robot location and camera are fixed during
the manipulation, we calculate the Chamfer distance between two
point clouds, and if the distance is smaller than 1.5𝑒−3, the release
signal will be sent to the gripper to stop the manipulation action.

Termination. The stopping condition for robot operations is:

𝐶𝑜𝑢𝑛𝑡 (∀𝑎 ∈ I > 𝑇𝑎) < 𝑇𝑐 (4)

where 𝑇𝑎 = 0.8 is an action score threshold and 𝑇𝑐 = 30 the ac-
tion count threshold. This condition is checked each time when an
updated interactability map is received.

5.2 Active reconstruction
Our active reconstruction utilizes not only scans of the object in
different states to get the geometrical surface but also the moving
trajectory of the gripper to estimate the motion parameters for
each part. Moreover, the part motion parameters are used to help
with the movable part segmentation, and thus we first give details
about the motion acquisition and then explain the part segmentation
and reconstruction modules. Note that as the movable parts are
manipulated one by one during the whole active reconstruction
process, the point cloud of each part is segmented and reconstructed
separately in a row, which will eventually be combined together to
form the final complete shape reconstruction.

ACM Trans. Graph., Vol. 42, No. 6, Article 249. Publication date: December 2023.
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Motion acquisition. Although the action predicted by the interac-
tion perception network may not be perfectly accurate, the move-
ment of the object part during manipulation is always unique. There-
fore, we record the movement trajectory of the robot gripper during
the interaction process, and fit the motion parameters, including
motion axis, motion range and motion type, as illustrated in Fig. 5.
We start recording the position of the gripper once the start

suction signal is sent to the robot. We then uniformly sample 20
positions following the moving trajectory, and use least squares
optimization to fit either a circle or a line. To judge whether the
motion type is rotation or translation, we first fit a circle given
the position samples, and if the radius of the circle is larger than a
threshold𝑇𝑟 , we set the motion type to translation. We set𝑇𝑟 to 1 in
our experiments, which is the size of normalization bounding box.
For rotation, the axis of motion is the line perpendicular to the

fitted circle at the center. We draw two lines from the start and end
positions to the circle center, and use the angle between the lines to
define the rotation range. For translation, the axis is the fitted line
itself, and the range is inferred by computing the distance between
the start and end positions. For each motion type, we represent
axis as M = (𝑥,𝑦, 𝑧,𝑢, 𝑣,𝑤), where (𝑥,𝑦, 𝑧) is the axis position and
(𝑢, 𝑣,𝑤) is the axis direction. The rotation and translation ranges
are represented as an angle value and length value, respectively. In
this way, we obtain the exact motion information for each moving
part by fully utilize the manipulation feedback.

Part segmentation. Given the initial point cloud C0, the one after
robot manipulation C1, together with the part motion parameters
vectorM1, we design a part segmentation network to extract the
corresponding moving part as well as the newly detected parts, as
shown in Fig. 6. Unlike most existing networks that take individual
point cloud shapes as input and segment all the movable parts, our
goal is to recognize the variable region of a pair of shapes before and
after the interaction. Thus, we directly concatenate the two point
clouds so that the points density of the fixed region is higher than
the region that is changed, which could be easier for the network
to capture and thus lead to better results.
In more detail, those two point clouds with shape 4,096×3 are

first concatenated into a new point cloud C𝑐
01 with shape 8,192×4,

where the fourth dimension stores the label for each point indicating
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Fig. 7. The completion and reconstruction module of our method, where
the completion network is adapted from SeedFormer [Zhou et al. 2022] and
pre-trained NDC [Chen et al. 2022] is directly used for meshing.

whether the point comes from C0 or C1. Then, we pass C𝑐
01 to the

PointNeXt encoder [Qian et al. 2022] to extract the point-wise fea-
ture 𝑓 with shape 8,192×64. The feature is then concatenated with
the motion parametersM1 with shape 1×7. Note that the motion
vector is repeated 8,192 times to concatenate with 𝑓 . Then we split
the concatenated feature and pass each of them to two Residual MLP
decoders to predict the masks corresponding to the segmentation on
each of the input C0 and C1. Parts P1

0 , P
1
1 shown in yellow represent

the moving part in either the initial or the manipulated scans, while
P2
1 shown in green represents the interiors of the non-articulated

part observed after robot manipulation. The loss function for part
segmentation network is defined as the cross entropy loss between
the predicted and GT segmentation labels.

Note that our segmentation module not only segments the mov-
able parts but also discovers the inner structure of the non-articulated
part, which can be used to update the initial point cloud C0. Specifi-
cally, C0 first masks out themoving partP1

0 and then is concatenated
with the interior P2

1 . We denote the updated shape as C𝑖
0, with an

example for iteration 𝑖 = 1 shown in Fig. 6(b).

Part reconstruction. Fig. 7 shows an example of our reconstruc-
tion pipeline that takes segmented parts as input and generates the
complete mesh. Due to self-occlusion, most of the part scans are
incomplete even if they are fully opened, so we first complete each

ACM Trans. Graph., Vol. 42, No. 6, Article 249. Publication date: December 2023.



Interaction-Driven Active 3D Reconstruction with Object Interiors • 249:7
in

p
u

t 
m

o
d

e
l

Refrigerator MicrowaveTable TrashcanStorage OvenDishwasher

P
ar

t 
se

g
m

en
ta

ti
o

n
In

te
ra

ct
a

b
lil

it
y

 m
a

p
R

e
co

n
st

ru
ct

io
n

P
ar

t 
co

m
p

le
ti

o
n

M
es

h
in

g

Fig. 8. The reconstruction results of our method on synthetic data. The input model is shown in the first row, and the interactability maps predicted by
the interaction perception network are shown in the second row, where the red color indicates higher interactability. In the next row, we show the part
segmentation masks, where the results corresponding to the initial object states and the manipulated object states are shown in two rows inside the cell,
respectively. The mask of the moving part is drawn in red color, while the newly-observed interior of the non-articulated part is shown in green color. The
completion result and the corresponding reconstruction mesh for each part are shown in the fourth and fifth row. The last row demonstrates the final
reconstruction of our method, with the motion axis drawn in magenta for each of the movable parts.

of the parts and then reconstruct them. Specifically, each part to-
gether with its motion information is fed into a completion network
adapted from SeedFormer [Zhou et al. 2022] to predict the missing
region.Note that for the non-articulated part, its associated motion
parameters are all set to zero.The loss functions for completion are
the same as the original SeedFormer. We then feed the completed
point cloud to NDC [Chen et al. 2022], which is the state-of-the-art
meshing algorithm that generates high-quality mesh from a variety
of inputs including point clouds. Note that as the original NDC is
trained on a large dataset with nice generalizability, we directly use
the pre-trained NDC model to get the reconstruction results.

6 RESULTS AND EVALUATION

6.1 Experimental Setup
Simulation environment. We use iGibson [Li et al. 2022] as the

simulation environment to develop the whole interaction 3D re-
construction method. We initialize the scene with an indoor room

without furniture. Then, we load each of the models to a specific
position in the middle of the room and perform our method.

Real world setup. We use a Fetch Mobile robot which has a 7-DoF
arm to conduct a series of operations in real-world scenarios. We
add a suction module to the original gripper of Fetch. The suction
is controlled by a vacuum pump and an air release valve, both of
which are electrical. This allows the robot to control the state of the
suction gripper by sending signals to the pump. For more details
about the robot settings, please refer to the supplementary.

Dataset. We select seven categories from the PartNet-Mobility
dataset [Xiang et al. 2020] to train and test our method, with a
total of 434 shapes and 827 parts. The train/test ratio is set to 8:2,
and all the quantitative evaluation and comparisons are based on
the same test set. Each of the shapes 𝑆 in the dataset is stored in
URDF (Unified Robot Description Format) format, which specifies
the attributes (kinematic tree, names, ranges, etc.) of the joints and
links of the shape. Given a URDF shape model, we extract each of
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the part models along with the motion axis, motion type, and motion
range. Then, we normalize each shape using a unit box located at
[0.5, 0.5, 0.5], and each part of the shape is transformed based on its
motion axis and motion range information. Afterward, we obtain
the point cloud data by scanning the models from three viewpoints,
which are located in front of the object to simulate the robot view.
More details about the training data generation process are provided
in the supplementary.

6.2 Qualitative results
On synthetic data. Fig. 8 shows one example reconstruction result

for each category in our dataset. We can see that our active recon-
struction obtains high-quality results in each of the steps. For inter-
action perception, our network is able to distinguish between the
single door and double side doors with similar geometry of storage
and refrigerator. For microwave, dishwasher, and trashcan, higher
probability accurately distributed in the correct side of the shape,
corresponding to the rotations of side-opening, down-opening, and
up-opening, respectively. For part segmentation, our network is
able to predict the correct mask for a pair of point cloud shapes in
initial and manipulated states. Moreover, the interior of the non-
articulated parts is also accurately segmented. From the fourth row,
we can see that our method can generate complete and reasonable
geometries for the partial point cloud, and the following reconstruc-
tion meshes for each part are also clean and well-structured for
movable parts and non-articulated parts. For example, we obtain
the complete geometry for the drawers of the table, and the body
of the storage with the clapboards is also fully recovered. The last
row demonstrates the final reconstruction of our method, with the
correct motion axis for each of the movable parts.
To further illustrated the reconstruction quality of the interior

parts, we show the error map for several reconstructions with re-
spect to their corresponding GT results in Fig. 9. Specifically, we
calculate the Hausdorff distance between the vertices sampled on
the two meshes, with higher error colored in red. The range of error
values for each histogram is labled on the right. The first row shows
a refrigerator reconstructed by our method, and we can see both the
door and the interior region of the refrigerator are reconstructed
accurately. The second and third rows show another two examples
of the reconstruction of the non-articulated part. Note how they are
nicely captured and reconstructed with small errors. For the oven
shown in the Third row, the region with higher errors is mainly dis-
tributed on the heat dissipation area of the oven, with is occluded by
the cover. To better illustrate the reconstruction of specific moving
parts, we show a reconstructed drawer of a cabinet in the last row,
and we can see that the thin structure like the handle is preserved
on the reconstruction, and the error region on the front surface are
higher since the location of the reconstructed surface are slightly
shifted comparing to the GT.

On real data. Fig. 10 shows some example reconstruction results
on real scanned objects. The first column shows a storage with three
drawers, whose whole reconstruction pipeline is also shown in the
supplementary video. The objects in the following four columns
are coming from the same indoor scene, as shown in Fig. 1. The
robot first scan in front of the scene, then we segment each of the

Reconstruction Error on ground truth

Fig. 9. Reconstruction quality for our results indicated by the error map
shown on the ground truth models. The error is calculated using the Haus-
dorff distance, with larger distances colored in red.

objects, so that the robot knows the location of each object, and
then performs the reconstruction process respectively. We can see
that the point clouds scanned in the real world are incomplete and
noisy, while our method works robustly and can successfully predict
interactability, manipulate parts with the robot arm, and reconstruct
the geometry with accurate motion parameters.

6.3 Quantitative evaluation
In this section, we first introduce the quantitative metrics and then
compare our active reconstruction method to state-of-the-art works.
We also conduct several ablation studies to evaluate each module in
our method and justify the design choices.

Evaluation metrics. To measure the accuracy of the interaction
perception network, we count the number of action attempts for
reconstructing each of the shapes. Specifically, given a test shape,
we run our method and count the number of action candidates𝑀 =∑𝑘

𝑛=1𝐶𝑜𝑢𝑛𝑡 (𝑎𝑛𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ) selected for robot manipulation during the
whole process, where 𝑘 is the number of movable parts. In the best
situation,𝑀 would be equal to the number of moving parts, which
means that all the parts are successfully manipulated by the first
attempt of the robot. We denote the accuracy of the interaction
perception network as 𝐴𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑘

𝑀
.

For the part segmentation network, we measure the accuracy
for each shape as 𝐴𝑠𝑒𝑔 =

𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑝𝑡𝑜𝑡𝑎𝑙

, where 𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the number of
points with predicted labels matching the GT labels, and 𝑝𝑡𝑜𝑡𝑎𝑙 is
the number of points for each shape. We also use the mean IoU to
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Fig. 10. The reconstruction results of our method on real scanned objects. We show the initial scan and predicted interactability in the first two rows, the
results of part segmentation, completion, meshing, and the final reconstruction are shown in the following rows.

measure the prediction accuracy, denoted as𝑚𝐼𝑜𝑈 . Since we seg-
ment the point clouds in both the initial state and the manipulated
state, the accuracy is calculated for each state respectively, denoted
as 𝐴𝑠𝑡𝑎𝑟𝑡

𝑠𝑒𝑔 , 𝐴𝑒𝑛𝑑
𝑠𝑒𝑔 ,𝑚𝐼𝑜𝑈 𝑠𝑡𝑎𝑟𝑡 , and𝑚𝐼𝑜𝑈 𝑒𝑛𝑑 .

For the completion network, we measure the Chamfer Distance
(CD) 𝐸𝑐𝑑𝑐𝑜𝑚𝑝 and Earth Mover’s Distance (EMD) 𝐸𝑒𝑚𝑑

𝑐𝑜𝑚𝑝 between the
generated and GT point clouds.

For the reconstructed mesh, we first unifomly sample 2048 points
on the surface of predicted and ground truthmesh, then calculate CD
and EMD between the sampled points to measure the reconstruction
error, denoted as 𝐸𝑐𝑑𝑟𝑒𝑐𝑜𝑛 and 𝐸𝑒𝑚𝑑

𝑟𝑒𝑐𝑜𝑛 .
For part motion acquisition, including motion axis and range, we

measure the error of axis direction 𝐸𝑑𝑖𝑟𝑚𝑜 by calculating the cosine
between the predicted and GT direction; the error of axis position
𝐸
𝑝𝑜𝑠
𝑚𝑜 is the L2 distance between the predicted and GT position. Note
that for the translation type of motion, the position of the axis is
less important, thus we only calculate 𝐸𝑑𝑖𝑟𝑚𝑜 for translation.

Quantitative results. The quantitative results of our method are
shown in Table 1. Note that our method works well for all seven
categories tested in our experiments. For interaction perception, we
can see that the accuracy of the categories with more parts such
as storage and table is lower than that of the object categories that
have fewer parts, due to the accumulated errors in robot navigation
and localization. For segmentation, the accuracy for the end state
is slightly higher since the moved region is more distinguishable
than the start state. The errors for both part completion and mesh
reconstruction are low, even for the categories with complex ge-
ometries and variations such as table. Moreover, we can see that
the motion parameters predicted by our axis fitting strategy have
robust performance with small variance across all categories.

Comparison with the state-of-the-art methods. We mainly com-
pare our method to the two most related state-of-the-art methods
Ditto [Jiang et al. 2022] and A-SDF [Mu et al. 2021], which predicts
joint parameters and geometries for articulated shapes from a pair
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Table 1. Quantitative results of our method. Note that 𝐸𝑐𝑑𝑐𝑜𝑚𝑝 , 𝐸
𝑐𝑑
𝑟𝑒𝑐𝑜𝑛 are multiplied by 103, while 𝐸𝑒𝑚𝑑

𝑐𝑜𝑚𝑝 , 𝐸
𝑒𝑚𝑑
𝑟𝑒𝑐𝑜𝑛 , 𝐸

𝑑𝑖𝑟
𝑚𝑜 and 𝐸

𝑝𝑜𝑠
𝑚𝑜 are multiplied by 102.

Category Storage Table Refrigerator Microwave Dishwasher Oven Trashcan Average
𝐴𝑎𝑐𝑡𝑖𝑜𝑛 0.21 0.25 0.25 0.68 0.58 0.38 0.58 0.41

𝑚𝐼𝑜𝑈 𝑠𝑡𝑎𝑟𝑡 0.964 0.924 0.950 0.934 0.970 0.952 0.937 0.957
𝑚𝐼𝑜𝑈 𝑒𝑛𝑑 0.970 0.928 0.952 0.964 0.970 0.941 0.923 0.963
𝐴𝑠𝑡𝑎𝑟𝑡
𝑠𝑒𝑔 0.991 0.994 0.982 0.976 0.987 0.981 0.976 0.989
𝐴𝑒𝑛𝑑
𝑠𝑒𝑔 0.991 0.997 0.983 0.984 0.988 0.981 0.974 0.990

𝐸𝑐𝑑𝑐𝑜𝑚𝑝 0.273 0.313 0.213 0.217 0.153 0.351 0.257 0.254
𝐸𝑒𝑚𝑑
𝑐𝑜𝑚𝑝 1.624 2.626 1.158 1.343 1.095 1.726 1.507 1.583

𝐸𝑐𝑑𝑟𝑒𝑐𝑜𝑛 0.633 0.192 0.229 0.379 0.294 0.872 0.535 0.448
𝐸𝑒𝑚𝑑
𝑟𝑒𝑐𝑜𝑛 1.074 0.457 0.699 1.096 1.752 0.881 1.005 0.999
𝐸𝑑𝑖𝑟𝑚𝑜 2.07 2.22 2.51 1.97 1.31 2.21 1.73 2.00
𝐸
𝑝𝑜𝑠
𝑚𝑜 1.12 0.86 0.87 1.08 0.98 0.54 1.32 1.13

Table 2. Quantitative comparisons to A-SDF and Ditto. Note that for A-SDF,
we only measure the reconstruction error due to the lack of segmentation
and motion output. 𝐸𝑐𝑑𝑟𝑒𝑐𝑜𝑛 , 𝐸

𝑒𝑚𝑑
𝑟𝑒𝑐𝑜𝑛 are multiplied by 103, 102, respectively.

𝑚𝐼𝑜𝑈 𝑒𝑛𝑑 𝐴𝑒𝑛𝑑
𝑠𝑒𝑔 𝐸𝑐𝑑𝑟𝑒𝑐𝑜𝑛 𝐸𝑒𝑚𝑑

𝑟𝑒𝑐𝑜𝑛 𝐸𝑑𝑖𝑟𝑚𝑜 𝐸
𝑝𝑜𝑠
𝑚𝑜

A-SDF - - 4.377 10.436 - -
Ditto 0.935 0.978 0.861 3.308 9.68 5.21
Ours 0.963 0.990 0.448 0.999 2.00 1.13

OursDittoA-SDF GT

Fig. 11. Qualitative comparisons of our method to A-SDF and Ditto. Note
that A-SDF reconstructs the whole shape without part segmentation, while
Ditto reconstructs shape with only one moving part recovered.

of shapes in different articulation states. The key difference between
the two methods is that we fully utilize the feedback during in-
teraction such as the motion axis, which can enhance the ensuing

reconstruction. Also, our method is able to reconstruct shapes with
multiple parts automatically. Note that we make the comparison to
Ditto on their dataset.
Table 2 shows the quantitative comparisons and some visual

comparisons are presented in Fig. 11. For visual results, compared
to A-SDF and Ditto, our reconstructions can capture more detailed
thin structures. Moreover, the parts reconstructed by our method
are more distinguishable, instead of blending with the other parts.
Our method is also able to reconstruct objects with multiple parts
automatically. Note how the drawers are successfully recovered in
the first two rows, and the inside structure of the trashcan in the
last row is also successfully reconstructed.
For the quantitative comparisons, the reconstruction error of

our method is lower than the baselines. For A-SDF, it generates
the whole shape in different articulate states given a mesh input,
and it cannot predict part segmentation and motion information.
Compared to Ditto, the part segmentation accuracy of our method is
slightly higher, while the motion predicted by our method through
trajectory fitting ismore accurate than the network-predicted results
from Ditto. Note that Ditto predict segmentation on the generated
part, so we only show the metrics of 𝐴𝑒𝑛𝑑

𝑠𝑒𝑔 and𝑚𝐼𝑜𝑈 𝑒𝑛𝑑 .

6.4 Ablation studies
To justify the network structures and loss functions designed in our
method, we perform several ablation studies.

Design choices of interaction perception network. We compare our
adopted interaction perception network to the original method of
Where2Act [Mo et al. 2021] in Table 3.𝑇𝑔𝑒𝑛 denotes the time for gen-
erating one action sample, while𝑇𝑡𝑒𝑠𝑡 denotes the time for predicting
an action given a shape during testing. Specifically, in Where2Act,
the action position and direction are sampled randomly and simu-
lated in the environment to obtain whether the action is successful
or not. While in our rule-based data sampling strategy, given a point
cloud shape with its motion information, we can directly calculate
the scores given arbitrary action, so that the required time is 10,000
times less than Where2act. Also, the time for testing one shape
with our method is also faster. For action prediction accuracy, our
method is 2 times higher than Where2Act.
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Table 3. Quantitative comparisons of interaction perception network.

𝐴𝑎𝑐𝑡𝑖𝑜𝑛 𝑇𝑔𝑒𝑛 (second) 𝑇𝑡𝑒𝑠𝑡 (second)
Where2Act 0.16 18.044 1.203

Ours 0.41 0.0012 0.251

Table 4. Quantitative comparisons of part segmentation network.

𝑚𝐼𝑜𝑈 𝑠𝑡𝑎𝑟𝑡 𝑚𝐼𝑜𝑈 𝑒𝑛𝑑 𝐴𝑠𝑡𝑎𝑟𝑡
𝑠𝑒𝑔 𝐴𝑒𝑛𝑑

𝑠𝑒𝑔

Seg-baseline 0.928 0.934 0.963 0.971
Ours w/o motion 0.951 0.962 0.982 0.988

Ours 0.957 0.963 0.989 0.990
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Fig. 12. Qualitative comparisons of our segmentation network to the base-
lines. The mask of the moving part is drawn in red color, while the newly-
observed interior of the non-articulated part is shown in green color.

Design choices of part segmentation network. We compare our seg-
mentation network to a version that removes the motion encoder.
Additionally, we design a baseline segmentation network denoted as
"Seg-baseline", which encodes the feature from a pair of input shapes
independently, instead of concatenating them together, the network
structure of the baseline segmentation network is provided in the
supplementary. Fig. 12 shows the visual results of the three methods,
for each pair of inputs, we show the segmentation on the initial and
end state of the point cloud. We can see that by passing the motion
information to the network, the segmentation accuracy especially
for the initial state is improved with fewer outliers, and the seg-
mented region is more regular in our method compared to the other
two options. From the quantitative comparison shown in Table 4,
our method achieves the best performance for the segmentation on
both the start and end states of the objects.

Sliding Motion
(b)

××

Floating Lid Robot arm limit
(a)

Fig. 13. Failure cases of ourmethod. (a) Two kinds of objects that ourmethod
fails to reconstruct due to the unsupported movement of the gripper or
freeform motion of the non-articulated part; (b) A top-down view of a robot
opening a door where the opening angle fails to reach its maximum range
due to the arm limit.

7 CONCLUSION
We introduce a fully automatic, active 3D reconstruction method
focusing on robot-object interactions to not only recover the other-
wise occluded interior structures of the target object but also obtain
an understanding of part articulations. Our approach is designed to
be fully realizable by a real robot, with RGBD sensors, in a physical
simulation environment. Qualitative and quantitative evaluations
are provided to demonstrate the overall performance of our method
over several object categories and articulation types.

Limitations. As shown in Fig. 13 (a) for the cabinet with a sliding
motion, while the predicted action direction is correct, the suction-
based gripper is unable to move in parallel to the door, leading to
an unsuccessful reconstruction. For objects with non-articulated
parts such as the teapot, we can predict interactions with the lid
correctly, but once the gripper picks up the lid, it is hard to continue
to the next action since the gripper has to hold the lid. Moreover,
our current estimation of the part movement range may be limited
by the length of the robot arm, as shown in Fig. 13 (b). To initiate
our interaction analysis, we require that the target 3D object to
be in its rest pose, e.g., without exhibiting any part articulations.
Similarly, both the prediction and reconstruction accuracies will
hinge on proper part manipulations by the robots, e.g., complete
closing of any opened parts. In reality however, error accumulation
due to imprecise robot operations may be unavoidable.
In addition, our current method does not utilize any RGB infor-

mation from the robot’s camera, which could benefit interaction
prediction. The reconstruction quality is also limited by the spar-
sity of the input points. Typically, high-quality 3D reconstruction
requires hundreds of thousands input points, while the raw input
scans must go through a consolidation step for denoising, resam-
pling, etc. In contrast, our problem setting involves low-end robot
scanning, resulting in low scan resolution, with the timing also of
concern for active 3D reconstruction with real-world interactions.
In general, each module in our method, including motion pre-

diction, interaction execution, and mesh reconstruction, is a chal-
lenging technical problem on its own, where our current solu-
tions all have their intrinsic limitations. Our key contribution is
to demonstrate the feasibility of fully automated, robot-assisted,
and interaction-driven 3D reconstruction, which should stimulate
future improvements in every phase of our solution pipeline.
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Our method is able to reconstruct the object interiors that are
exposed by robot-object interactions, not only the part structures,
but also any objects contained therein, such as a notebook inside
of an opened drawer. However, for most of the shapes in synthetic
dataset including ShapeNet, PartNet, the space inside are empty.
A dataset with various types of objects inside is worth developing
for further research. Another future direction is to explore ways to
handle hierarchical interaction, e.g., a drawer inside a cabinet door,
by optimizing the interaction-perception procedure.
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