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ABSTRACT

Recommender systems can be privacy-sensitive. To protect users’
private historical interactions, federated learning has been proposed
in distributed learning for user representations. Using federated
recommender (FedRec) systems, users can train a shared recommen-
dation model on local devices and prevent raw data transmissions
and collections. However, the recommendation model learned by
a common FedRec may still be vulnerable to private information
leakage risks, particularly attribute inference attacks, which means
that the attacker can easily infer users’ personal attributes from the
learned model. Additionally, traditional FedRecs seldom consider
the diverse privacy preference of users, leading to difficulties in
balancing the recommendation utility and privacy preservation.
Consequently, FedRecs may suffer from unnecessary recommen-
dation performance loss due to over-protection and private infor-
mation leakage simultaneously. In this work, we propose a novel
user-consented federated recommendation system (UC-FedRec) to
flexibly satisfy the different privacy needs of users by paying a min-
imum recommendation accuracy price. UC-FedRec allows users to
self-define their privacy preferences to meet various demands and
makes recommendations with user consent. Experiments conducted
on different real-world datasets demonstrate that our framework
is more efficient and flexible compared to baselines. Our code is
available at https://github.com/HKUST-KnowComp/UC-FedRec.

CCS CONCEPTS

« Security and privacy; « Information systems — Collabora-
tive filtering;

KEYWORDS

Federated Learning, Privacy-preserving, Recommender Systems,
Collaborative Filtering.

ACM Reference Format:

Qi Hu and Yanggqiu Song. 2024. User Consented Federated Recommender
System Against Personalized Attribute Inference Attack. In Proceedings
of the 17th ACM International Conference on Web Search and Data Mining
(WSDM °24), March 4-8, 2024, Merida, Mexico. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3616855.3635830

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM °24, March 4-8, 2024, Merida, Mexico

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0371-3/24/03...$15.00
https://doi.org/10.1145/3616855.3635830

Yangqiu Song
Department of CSE, HKUST
Hong Kong SAR, China
ygqsong@cse.ust.hk

=, Client-1: My occupation is
sensitive, | want to keep it secret.

Client-2: | do not want to reveal

Central Server )
my gender to avoid harassment

Client-3:1 do not care privacy, |
just want best recommendation
accuracy

7
N

Figure 1: Overview of the user consented FedRec framework.
Different users have various privacy or utility preferences.

1 INTRODUCTION

Recommender systems have gained considerable popularity in pre-
dicting users’ interests in online services, such as e-commerce and
social media [40]. Recently, deep learning based recommendation
algorithms, which use interactions of users and items, and/or at-
tributes with a parameterized network to predict users’ preferences,
have proven to be effective [21, 53]. However, the historical user
and item interaction data and some users’ attribute data are highly
privacy-sensitive. With the growing attention to privacy preserva-
tion and the changes in privacy regulations such as the General
Data Protection Regulation (GDPR), balancing privacy protection
and recommendation accuracy is becoming increasingly critical
[41, 51].

To protect users’ raw data, federated learning has been proposed,
which only exchanges the gradients between users and the server
[26, 32]. Based on federated learning, federated recommender (Fe-
dRec) systems have been developed to address privacy issues by
decentralizing the training process. In such systems, raw user-item
interaction data is decoupled from the model training [13, 35]. De-
spite avoiding raw data collection and transmission, several issues
still need to be addressed with FedRec systems. First, the personal-
ization of users learned by FedRec, based on their past behaviors,
poses the risk of user-level private information leakage [2, 18, 52].
Research has shown that a high-quality personalized federated
learning model is vulnerable to attribute inference attacks to re-
veal participants’ personal information [7, 45]. We use attackers
to predict users’ attributes from some FedRecs [34, 35] trained on
MovieLens [19], the results in Table 1 show that those FedRecs
face attribute inference attacks. Second, there is a tradeoff between
privacy protection and recommendation utility. However, privacy
demands differ among participants, and existing FedRec systems
provide the same privacy protection for all users without consider-
ing their specific demands. This results in users with strong privacy
demands are not satisfied, whereas users with weak privacy de-
mands pay an unnecessary recommendation performance price.
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Table 1: Attribute inference attacks on FedRecs

Utility Privacy
NDCG Recall | Gender Age  Occupation
LDP-Rec 0.694 0.433 0.685 0.296 0.136
Fedfast-BPR 0.72 0.46 0.745 0.353 0.15
Random Attacker 0.5 0.141 0.05

FedRecs

Third, every user’s privacy demands are not static, and traditional
FedRec systems mainly focus on privacy protection in the train-
ing stage, making it difficult for users to modify privacy settings
[34, 36]. Consequently, the balance between utility and privacy is
not flexible for users in traditional FedRec systems.

To meet the personalized privacy demands of various users,
we propose a new framework called User-Consented Federated
Recommender System (UC-FedRec), where users can flexibly safe-
guard their sensitive personal information and decide on the trade-
off between individual privacy and recommendation accuracy. The
UC-FedRec framework aims to satisfy users’ diverse privacy de-
mands while paying minimum recommendation accuracy costs. As
illustrated in Figure 1, clients have various privacy demands and
utility preferences. Thus, the framework has a dual objective: 1)
to meet privacy needs and protect private clients from inference
attacks, and 2) to avoid other clients paying the unnecessary cost
and retaining high-quality recommendation results. To achieve this
goal, we leverage the different privacy preferences of participants
to train a set of sensitive attribute information filters. These filters
can be optionally applied to the local recommendation models on
client sides according to their privacy demands during the local
training stage, so the model can flexibly eliminate the sensitive
attribute information that users care about.

We summarize our main contributions as follows:

e To the best of our knowledge, our work is the first user-
consented FedRec framework. By applying sensitive attribute
filters, users can flexibly protect their personal sensitive
private information with proper configuration.

e We introduce an adversarial framework in FedRec and pro-
pose a personalized privacy-aware algorithm to meet users’
diverse privacy and utility preferences. Our framework can
meet the different privacy needs of users while minimizing
the recommendation accuracy cost.

e We quantify the privacy leakage problem in FedRec and
evaluate the proposed framework in privacy protection and
utility on two real-world datasets. The results indicate that
the framework can flexibly deal with various and changing
user privacy preferences.

2 RELATED WORK

In this section, we briefly summarize the related work. Our work
is closely related to collaborative filtering and privacy-preserving
systems.

2.1 Collaborative Filtering

Collaborative filtering (CF) is one of the most popular approaches
in recommender systems and has been widely used in real-world
systems. Having the assumption that people with similar historical
interactions will have similar preferences, CF models, such as those
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proposed in [5, 15, 21] parameterize users and items and their inter-
actions by vectorized representations. Based on the representations,
CF models predict the interactions by vector computations like
inner product [27]. To improve the recommendation accuracy and
solve the cold-start problem, existing works focus on improving the
quality of the representations. For example, some studies made use
of side information such as user/item relations [17, 48] and external
knowledge graph [43]. Some works [21, 49] utilized deep learning
models to extract interaction features in user-item interactions.
Some GNN-based collaborative filtering techniques [5, 10, 44] were
proposed to exploit the high-order connectivity from user-item
interactions. Most collaborative filtering techniques are centralized,
requiring users to share their private historical interactions with
the server. With the increasing concern about the privacy problem,
decentralized collaborative models [1, 8] were proposed to avoid
sensitive data sharing. However, the models learned by the recom-
mender system are personalized and are unbalanced for sensitive
variables [6, 9, 12] and federated learning faces the problem same
as the central system.

2.2 Privacy-Preserving Systems

To overcome the privacy leakage problem, various frameworks are
proposed. One direction targets the private information in learned
models. For example, some studies use perturbation and differential
privacy to prevent an adversary from inferring a targeted user’s
private information [3, 24, 30, 54]. Some works propose to use adver-
sarial learning to protect users’ private personal attributes [4, 20].
Some propose to disentangle the private information from utility
tasks [22, 23, 33]. However, these methods provide privacy preser-
vation in central learning and cannot be applied in distributed
learning where personal data is kept on local devices. To over-
come the central data collection problem, federated learning was
proposed, allowing data owners to collaboratively build a shared
privacy-preserving decentralized model in distributed. [26, 32, 50].
Many works are proposed to learn federated recommender systems
with various privacy guarantees [1, 35, 46]. Differential privacy
(DP) [13, 46] is commonly applied in the context of distributed
computing. It adds random noise to true data records such that
two arbitrary records have close probabilities to generate the same
noisy data record. It provides data anonymous that will not reveal
individual information in sensitive information collection and anal-
ysis [39]. However, DP in federated learning is designed for the
model weights or update of information transmission and is not
suitable for the problem of inference attacks and privacy leakage
in the learned federated recommender model.

3 USER CONSENTED FEDERATED
RECOMMENDATION
In this section, we present the user-consented FedRec. It meets

users’ privacy demands by utilizing different privacy preferences
to eliminate specific sensitive information accordingly.

3.1 Preliminary

Following general settings of recommender systems [21, 25, 44], we
denote a recommender system R containing a set of users and items
represented by U = {u,up,--- ,u|(u|} and 7 = {iy,ip, - ,i|]|}
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respectively. Denote the interaction matrix between users and items
asY € {0, 1}‘7’”X‘I|, where the value of 1 indicates that there is
an interaction between corresponding user u and item i while the
value 0 means that user u is not interested in the item i or user is not
aware of the existence of item i. Due to privacy concerns, federated
learning is adopted. Users’ data is stored in local devices to protect
privacy, each user u holds its own historical interaction records Y.
The recommendation model can be summarized as estimating user
u’s preference on any item i by learned latent user representations
hy = fop(u) € R4 and item representations h; = fp(i) € R9, where
d denotes the representation size, so that:

Gui = sy (hu, hi), (1)
where the scoring function sy (-) can be dot product, multi-layer
perceptions, etc., and 7, s denotes the preference score for user u
on unobserved item i which is usually presented in probability [47].
Representation function fy commonly has two parts: embedding
layer which maps user/item to vectors e, /e; and propagation layer
which catches collaborative signals. The recommendation objective
can be formalized as:

min D Lisyfow) fo)),Y), ®
T uel,iel

where £ can be commonly used loss functions in recommender
systems (e.g., BPR loss for implicit feedback [44]). To solve the cold-
start problem and improve recommendation accuracy, it is common
for recommender systems to investigate a set of user attributes
(e.g., occupation, location) 7. However, privacy can be a different
definition for users [38]. Though the information is kept on local
devices, some users may find some attributes are sensitive and want
to eliminate the information in FedRec. We denote user u’s personal
sensitive attributes as 7, C 7.

3.2 Problem Definition

Given a FedRec where users have different privacy preferences,
each user u has its own private attribute set 7, and non-sensitive
attributes 7\7, are revealed but are kept in local devices. The
challenge is that if partial participants’ attributes are leaked, the at-
tacker can easily infer the unknown sensitive attributes that private
users prefer not to reveal from the FedRecs. This is mainly because
collaborative filtering models can catch the signals from similar
behavior users. UC-FedRec aims to eliminate the information of
sensitive attributes in the training stage with minimum recommen-
dation utility cost so that the sensitive attribute leakage risks will
be reduced.

3.3 Basic Framework

Next, we introduce the basic structure of our proposed framework.
UC-FedRec is a supplement of common FedRecs and uses arbitrary
embedding-based FedRec as the base model. Compared to tradi-
tional FedRec, the critical module of UC-FedRec is the compositional
sensitive attribute filters (distribution estimators). It can leverage
the different privacy needs to learn sensitive attribute filters to pro-
tect private information from inference attacks. As shown in Figure
2, it mainly consists of a central server and a set of user clients.
On the client side, the filters are flexibly applied or trained by all
the users according to their privacy preferences. User u’s privacy
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is protected by the 7 feature filters. These filters can eliminate
the sensitive information in the representations. When the user
regards some attributes as non-private, it takes the responsibility
of training 7"\ 7;, feature distribution estimators. Each user learns
user/item embeddings from its interaction data and feature extrac-
tors from its non-private attributes, and uploads filtered gradients
of embeddings and non-private feature extractors. On the server
side, the central server is responsible for aggregating the gradients
and distributing the updated global models to clients.

3.4 Compositional Privacy Protection

3.4.1 Non-private attributes. In practice, FedRec faces the prob-
lem of sparsity and cold-start [53]. It is common for FedRec to
utilize user personal information to improve recommendation qual-
ity. Some users are willing to choose a part of non-private attributes
to reveal for a better experience. Suppose user u reals 7\ 7, features.
We define the attribute probability distribution when given user u’s
representations as p(yu,¢|hy), where y,, s is the label of attribute ¢
for user u. As the real distribution is unknown, and unfortunately
the computation is expensive and in most cases intractable, it is
necessary to introduce an auxiliary distribution qg, (yu,¢|hu) to ap-
proximate the posterior distribution. Users are responsible for the
training of non-private attribute distribution estimators. We aim to
have the 94, (Yu,z|hw) as close as possible to p(yy,¢|hy). Therefore,
we use the Kullback-Leibler divergence (KL divergence) to mea-
sure the difference between two distributions [28] and minimize
the distance:

gl(iﬁnKL(P(yu,ﬂhu)”q(/;,(yu,t|hu))
SYt
=00 Ep (g, ) 08 P Vit hu) = By i) 108 95, (Ve )

@rdpén— P(hu,yu,t)[Iquqﬁt(yu:f'hu)] vVt € T\Ty.
¥t
®3)

To solve the objective function, we parameterize the g4, function
using a node classifier gy, defined on the user representations.
Suppose a set of users U; consider ¢ as non-private attributes, then
the objective function can be estimated as:

min Z CE(gy, (fo(w)), Yu,e), (4)

0.6 uel,
where CE(-) is the cross entropy loss.

3.4.2 Private attributes. The FedRec is at risk of leaking privacy,
the fundamental reason is that the representations generated by the
FedRec contain plenty of private information. Therefore, our goal
is to eliminate the sensitive information in FedRec. The sensitive
attributes are expected to be independent from the learned user u’s
representations, that is minimizing the mutual information I(hy; t)
learned by FedRec, generalized to multiple attributes:

min Z I(hu:t). (5)

teTy,

To solve the Equation (5), we leverage the upper bound I,crus (hu; t)
proposed in [11] and the minimizing attribute mutual information
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Figure 2: The overall architecture of UC-FedRec. The clients’ training has three learning targets: D) to train the recommendation
part as the primary goal; 2 to train attribute distribution estimator on personal non-private attributes; (3) to utilize estimators
to eliminate private information in the representation model. Finally, it uploads the gradients to the server. The server aggregate

and distribute the gradients after receiving local clients’ upload.

problem is equivalent to minimize the least upper bound:
meln Z I(hy;t)
teTy,

< min E Lcrus (hy; t).
6
teTy,

(6)

To solve the Equation (6), we utilize a objective function proposed
in [42]:

min Z max By p,, 1) [log q¢t(yu,t|hu)] @)
0 te Ty P ’

where the posterior distribution gy, is estimated by parameterized
neural networks g4, which are trained by other users. Therefore,
users do not update the estimator g, for private attributes. Specifi-
cally, we have:

min Z max By, 1) [1og gy, (Y.t |hu)]
0 te Ty P

= méix Z CE(gqg[ (hw), Yut)-
teTy

®

As the labels y,; are kept secret, the objective function is not
practical in the training, we transform the objective function to
unsupervised training. To maximize the cross entropy loss, we aim
to raise the uncertainty of the estimated distribution:

max Z CE(gg, (hu), Yu,t)
teTy

zmein Z KL(gg, (fo(w), Ju,t),

teTy,

©

where ¢, ; ~ U, which is the discrete uniform distribution.

3.4.3 Objective function. Equations (2), (4), and (9) are three
sub-targets in UC-FedRec which correspond to three motivations
respectively: recommendation performance, attribute distribution
estimation, and private information elimination. For each user, we
formulate two local training processes to meet the private repre-
sentation training objective.

We solve the Equation (4) for attribute distribution estimator
training. We sample a set of users u from U; and the corresponding
attribute labels y,, ¢, disentangle the training objective, and view
the user representation fp(u) as the input. We have:

¢; = argmin Z CE(gg, (hu), Yu,z)- (10)
¢ ueU,

To solve the Equation (2) and Equation (9). We sample a set
of users from U and their historical interaction data. Combining
two objectives as joint learning, the private representation training
objective for clients is as follows:

0.y = arg mein(ﬂ m];n L(sy (fo(w), fo(i)),Y)

+(1=B) Y. KL(gg,(fo(w)), Jur)),

teTy,

(11)

where f € [0, 1] is the trade-off between recommendation utility
and privacy protection. A larger f indicates stronger privacy pro-
tection while a smaller f has a better recommendation accuracy.
Note that the weight of each attribute’s privacy loss can be adjusted.
Here we assume that users weigh all the private attributes the same
for simplicity.

3.5 Training Algorithm

There are three types of neural network in UC-FedRec: recommen-
dation representation network fp, recommendation score function
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sy are learned for recommendation, and attribute distribution es-
timator gy, is for sensitive attribute information protection. We
adopt joint learning to train three networks. The UC-FedRec train-
ing process can be divided into two scenarios: distributed learning
and central learning.

3.5.1 Distributed learning. To solve the learning objective pro-
posed in Section 3.4, we make a complement to common FedRecs.
Similar to a general federated learning system, the central server is
responsible for coordinating the training process. For example, sam-
pling a set of users participating in a training round, distributing
parameters, aggregating and updating model weights [32]. Com-
pared to the FedRec used as the base model, the server takes on
extra filters updating. The server needs to aggregate gradients from
those non-private users for filters and distribute them to all the
users for privacy-preserving learning.

For clients, local training updates three types of neural networks.
Clients perform several iterations to update non-private attribute
filters weights ¢y, Vt € 7\7, and compute the multi-task loss to
update representation weights 6 and score function weights ¢ in
minibatch training. The filters eliminate specific user attribute infor-
mation in representations. We iteratively update models’ weights
for local epoch E times. Finally, the client adds Laplace noise to
model weights and uploads the perturbed weights to the server. Sim-
ilar as other federated learning system, the gradients are protected
by LDP [34, 46].

3.5.2 Central protection. As users’ privacy preferences change
over time, UC-FedRec needs to provide protection promptly when
users find an originally non-private attribute sensitive. To reduce
the communication consumption, the server directly uses the learned
filters to eliminate the sensitive information without federated
learning. Assume that user u requests additional attribute ¢ preser-
vation, similar as the Equation (9), we have the objective function:

ngin KL(gg, (W), u,t)- (12)

The propagation layer contains the collaborative signals, updating
weights will inevitably influence others’ recommendation accuracy,
therefore, in the central protection, we choose to simply update
user’s embedding layer rather than the whole representation neural
network to minimize the influence on the whole recommendation
model. We iteratively update user embeddings until the difference
reaches a threshold (le], — ey | < T).

4 EXPERIMENTS

In this section, we conduct experiments to evaluate the performance
of the proposed UC-FedRec. We aim to answer the following ques-
tions: Q1: Whether UC-FedRec can protect personalized privacy
while maintaining high recommendation utility compared to its
base FedRec model? Q2: How does UC-FedRec perform on different
privacy preferences such as utility-privacy tradeoff, various pri-
vate attributes, etc? Q3: Whether UC-FedRec can provide prompt
protection when users’ privacy preferences change?

We first introduce experimental setup and metric in section 4.1,
then we evaluate UC-FedRec in sections 4.3, 4.4, and 4.5 to answer
three questions respectively.
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4.1 Dataset and Experiment Setting

4.1.1 Dataset. We select two real-world recommendation datasets
with users’ side information: MovieLens [19] and Douban [31]. Both
datasets are widely used in recommendation system evaluation.
MovieLens contains 1,000,209 ratings by 6,040 users on 3,952 items.
We treat users’ gender, occupation and age as private attributes.
Douban includes 647,263 interactions by 6,368 users with 22,347
items, location is treated as privacy. We transform the datasets into
implicit data where each observed rating is treated as a positive in-
stance and indicated by an interaction signal. Besides, we treat user
attributes as sensitive information. As some users lack attribute
information, we only retain users with all features so as for con-
venient privacy evaluation. For each user, we randomly select a
set of features as the private attributes with probability a and the
remaining as the non-private attributes. In such a way, we can sim-
ulate various compositional privacy preferences. In the evaluation,
if there is no further statement, we set a = 0.3.

4.1.2 Hyperparameter setting. In the experiment, if there is no
further statement, we use the following implementation settings.
We use FedGNN [46] and FedNCF [36] as our base FedRecs and use
dot product as the scoring function. The dimension of user and item
embeddings and their hidden representations learned by FedRecs
are 128. We follow the technique proposed in [37] to achieve the
1-LDP guarantees to protect the gradient transmission. We use SGD
as the optimization algorithm with 0.1 learning rate. We use BPR
loss to train the recommendation model. For the privacy-preserving
part, we use 2-layer perceptrons (MLP) as attribute information
filters and information leakage evaluation using SGD optimization
with 0.01 learning rate. We set the privacy-utility tradeoff § = 0.5.

4.1.3 Performance Evaluation. To evaluate recommendation
utility, we adopt the leave-one-out strategy which has been widely
used in literatures [14]. We take out their latest interaction for the
test set and use the remaining data for training. Since ranking all the
items is time-consuming, we follow the common strategy [16, 21]
that randomly samples 50 items that are not interacted with by the
user and ranks the test item among the 50 items. The performance
of a ranked list is adjusted by Hit Ratio (HR) [14] and Normalized
Discounted Cumulative Gain (NDCG). We truncate the ranked list
at 10 for both metrics. We calculate both metrics for each test user
and report the average score. For privacy protection evaluation, we
adopt attribute classifiers to evaluate the information leakage in the
representations. We use neural networks to infer users’ attributes.
Binary attributes are evaluated using Area under the ROC Curve
(AUC) and multi-class attributes are evaluated using micro-F1. Our
goal is to prevent features from inference attacks, therefore lower
scores indicate better privacy protection.

4.2 Problem Evaluation

We evaluate the attribute inference risks in several FedRecs and
compare UC-FedRec’s utility performance and private attribute
protection ability to them. We select FedGNN [46], a graph-based
FedRec on user-item graph expansion and private sharing, and
FedNCF [36], a federated learning extension of neural collaborative
filtering as our baselines. We implement these FedRecs basically
following the original paper while setting the same embedding



WSDM °24, March 4-8, 2024, Merida, Mexico

Qi Hu & Yangqiu Song

Table 2: Performance on different methods in terms of recommendation and privacy.

MovieLens Douban
Methods — - o -
Utility Privacy Utility Privacy
Protection Base Model | NDCG Recall | Gender Age  Occupation | NDCG Recall | Location
- 0.843 0.544 0.817 0.489 0.171 0.724  0.492 0.265
Early stopping FedGNN 0.794 0.509 0.787 0.364 0.158 0.692 0.483 0.249
UC-FedRec 0.783 0.509 0.631  0.283 0.128 0.688 0.482 0.221
- 0.784 0.496 0.755 0.358 0.152 0.696 0.489 0.263
Early stopping FedNCF 0.742 0.471 0.653 0.284 0.131 0.686 0.476 0.245
UC-FedRec 0.734 0.471 0.602 0.212 0.117 0.683 0.477 0.225
1 0.6 0.2 n
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Figure 3: Utility-privacy tradeoff comparison of the framework with baselines on MovieLens.

dimension for fair comparison. We apply UC-FedRec framework to
both base models to evaluate the effectiveness. Besides, we also re-
port the performance of FedGNN and FedNCF with early stopping
to maintain similar recommendation performance (recall) for con-
venient comparison. The results are summarized in Table 2. Com-
pared to the base model, UC-FedRec can efficiently protect private
information while sacrificing acceptable recommendation accu-
racy. With similar recommendation utility, models with UC-FedRec
better protect private attributes than early-stopping. Besides, UC-
FedRec provides privacy protection to both FedGNN and FedNCF,
and its performance is related to the base model. UC-FedRec with
FedGNN as its base model can perform better in recommendation
utility while facing relatively severe privacy leakage than FedNCF.

4.3 Model Effectiveness

We also validate our method’s effectiveness in privacy preserva-
tion. To the best of our knowledge, there are no techniques that
can provide personalized and compositional privacy protection
in federated learning, therefore, we only select 2 types of data
privacy-preserving baselines [29] and compare our framework’s

overall protection performance on all attributes with them for a
fair comparison. A detailed introduction of these baselines is listed
below:

Noise perturbation: We train the base FedRec and apply Gauss-
ian noise (0, 0?) to trained private user embeddings in the server.
The injected noise can provide strong privacy guarantees that avoid
the model from privacy leakage. The tradeoff can be influenced by
noise strength o.

LDP: LDP is widely used to protect privacy, user injects Laplace
noise to the gradients on the client side, and the privacy budget can
be adjusted by the noise strength A, therefore, we inject stronger
noise to private user’s gradients to provide better protection.

We compare the utility privacy tradeoff in our framework with
the other two baselines. In our experiments, we provide three fea-
ture protection choices in MovieLens dataset, which are gender,
age, and occupation. As the two baselines cannot provide person-
alized information preservation, we assume that there are 30%
users who want to hide all their attributes and other users do not
mind revealing some personal attribute information to have the
best recommendation experience for a fair comparison. For our
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Figure 4: Utility evaluation on non-private users.

framework, we set different § for various utility-privacy balances.
Here we set f = {0.3,0.5,0.7, 0.8}, respectively. For the noise per-
turbation baseline, we add different strength Gaussian noise to
learned private user embeddings. Here we set o = {1,3,5, 7}, re-
spectively. In the LDP method, a smaller privacy budget provides
stronger privacy guarantees for users. We differently set private
users’ smaller privacy budgets to protect their privacy. Here we
set € = {0.1,0.3,0.5,0.7}, respectively. We evaluate and compare
private users’ recommendation utility and privacy protection. As
shown in Figure 3, it can be observed that privacy protection leads
to a degradation in utility in all the techniques. However, our frame-
work has a better utility-privacy tradeoff compared to the other
two baselines. Utilizing the different user privacy preferences, the
framework can eliminate the privacy information more accurately.
Taking gender protection as an example, in Figure 3(a) and 3(d), the
AUC of Gender inference attack on the base FedRec is 0.817 and
decreases to 0.5 when the utility-privacy tradeoff § increases to 0.8.
When our framework can eliminate all the private users’ gender
information (AUC = 0.5), it can still remain 0.75 HR and 0.457
NDCG which is 89.0% and 84.0% of the base model performance
respectively. While LDP and noisy perturbation can only get about
72% and 50% original recommendation performance.

4.4 Privacy Influence

4.4.1 Influence on non-private users. Users have different pri-
vacy preferences and some users care more about their recom-
mendation experience rather than personal privacy, therefore the
recommendation utility for them cannot be largely influenced. We
conduct experiments to evaluate our framework’s influence on
non-private users. For every user, we randomly sample private at-
tributes with a probability of 30%, and evaluate the recommendation
performance for those users with no private attributes.

Figure 4 shows the recommendation performance for non-private
users in MovieLens and Douban datasets. It indicates that our frame-
work can well retain recommendation performance for non-private
users. These users do not need to pay much utility cost for unneces-
sary privacy. For example, when f = 0.7, the HR and NDCG can still
reach 0.698 and 0.477 which are 96.4% and 97.0% for non-private
users compared to the base model in Douban dataset respectively.
The recommendation performance still degrades due to the frame-
work will eliminate the sensitive information in the whole system
including collaborative signals.

4.4.2 Personalized privacy preference. Besides users’ different
privacy and utility preferences, they usually have various privacy
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Figure 6: Comparison of different private user ratios.

preferences. For example, some users may find gender is more sensi-
tive compared to age while others do not. We conduct experiments
on single attribute protection to validate personalized privacy pro-
tection. In MovieLens, we randomly assign gender or age privacy
protection for every user and infer their personal attributes. As
shown in Figure 5, both gender and age feature filters can provide
privacy protection for either gender and age compared to the base
model. For example, the gender filter eliminates some age informa-
tion so that the attacker’s inference micro-F1 drops from 0.489 to
0.444. However, the age filter can protect users’ age information
more accurately where the attacker can only reach 0.313 mirco-F1,
which means that our specialized filters can provide more precise
protection to meet users’ different personalized privacy preferences.

4.4.3 Private attribute amounts. In this part, we evaluate the
impact of the number of private attributes. We divide users into
different groups according to their private attribute amount, then
evaluate the recommendation performance of each group. As shown
in Figure 7, it can be observed that the recommendation utility de-
grades when the private attributes increase, which means that users
pay more recommendation costs when they need to protect more
attributes. However, it still remains high recommendation accuracy
when all the attributes are protected. For example in MovieLens,
users can have 0.773 HR and 0.479 NDCG which are 91.7% and 88.3%
compared to non-private users respectively, it indicates that UC-
FedRec can retain most of the collaborative filtering information
and satisfy users’ privacy needs with acceptable cost.
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4.4.4 Private user ratio. As our framework utilizes users’ dif-
ferent privacy preferences and needs users to share part of their
non-private attributes to train the attribute distribution estimators.
The ratio of private attributes for the whole recommendation sys-
tem can influence the estimators’ accuracy, thereby influencing
the protection effectiveness. Therefore, we evaluate the framework
on different private attribute ratios . We choose privacy ratio
a = {0.3,0.5, 1} respectively and evaluate the privacy protection
and recommendation utility under different tradeoffs.

Figure 6 shows that UC-FedRec can protect users’ privacy under
all the private users’ ratios. However, if there are more users willing
to share their own attributes, the framework can provide a better
utility-privacy tradeoff balance for users, because the attribute
distribution estimators are well-trained and the private information
is eliminated precisely. When the private attribute ratio increases,
the framework has to pay more recommendation utility to get
the same protective effect. For example, though the attack AUC
is similar (AUC = 0.56), the recommendation utility can retain
HR = 0.75 when a = 0.3 while HR = 0.63 when a = 1. This is
because of the performance drops in sensitive attribute estimators.
Besides, even if there are no user-sharing attributes (¢ = 1), the
framework can still provide protection because it adds random
noise to the gradients and performs like an LDP protection under
this circumstance.

4.5 Central Protection

In the framework, privacy protection can be done not only during
the training stage but also for the trained model. As introduced in
Section 3.5.2, when users’ privacy preferences change, the frame-
work can directly use trained filters to provide protection promptly.
After the model is trained, we randomly choose 20% users who
do not care about specified feature protection and apply central
protection to protect the feature for these users. We set the thresh-
old T = 100 and iteratively update the embeddings of these users
until the difference reaches the threshold. Table 3 shows the cen-
tral protection performance on the age attribute in MovieLens and
Occupation attribute in Douban. The utility and privacy evalua-
tion comparison indicates that the framework can remove sensitive
information on a central server with acceptable recommendation
utility costs.

Qi Hu & Yangqiu Song

Table 3: Results on central protection.

Utility Privacy
HR  NDCG | Micro-F1
MovieLens Non-private | 0.829  0.535 0.387

(Age) Private 0.768  0.502 0.291

Protection

Douban  Non-private | 0.721  0.492 0.304
(Location) Private 0.698  0.473 0.265
09
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Figure 8: Convergence speed on MovieLens.

4.6 Convergence Rate

In this section, we evaluate whether the framework would influence
the convergence rate. Figure 8 shows the framework’s recommen-
dation performance in different communication rounds compared
to the base model in MovieLens. As shown in the figure, the frame-
work slightly influences the convergence speed, including slower
convergence speed and less stable training. However, the difference
mainly happens at the beginning of training. It is mainly because
the attribute distribution estimators need several rounds to con-
verge. The total communication rounds for the FedRec and our
UC-FedRec are similar.

5 CONCLUSION

In this paper, we present a personalized privacy protection frame-
work for FedRec which handles the problem that traditional FedRec
suffers inference attacks. Our framework can provide different user-
level attribute preservation according to users’ various privacy
preferences. Experiments on two real-world datasets demonstrate
that our framework outperforms the baselines in recommendation
utility and privacy protection tradeoff. Our framework can pro-
vide flexible and effective privacy protection which does not pay
much recommendation accuracy cost. In addition, the framework’s
convergence speed is similar to the base FedRec. In the future,
we plan to extend our model to non-adversarial techniques and
unsupervised learning scenarios to protect unseen attributes.
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