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The Effect of Third Party Implementations on Reproducibility

BALÁZS HIDASI and ÁDÁM TIBOR CZAPP, Gravity R&D, a Taboola company, Hungary

Reproducibility of recommender systems research has come under scrutiny during recent years. Along with works focusing on

repeating experiments with certain algorithms, the research community has also started discussing various aspects of evaluation and

how these affect reproducibility. We add a novel angle to this discussion by examining how unofficial third-party implementations

could benefit or hinder reproducibility. Besides giving a general overview, we thoroughly examine six third-party implementations

of a popular recommender algorithm and compare them to the official version on five public datasets. In the light of our alarming

findings we aim to draw the attention of the research community to this neglected aspect of reproducibility.
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1 INTRODUCTION

Reproducibility is the cornerstone of science as the scientific process relies heavily on the repeatability of experiments.

Computer science is no exception to this rule. Experimentation in computer science is usually relatively cheap and

quick that enables experiments to be executed relatively quickly and cheaply. As a negative side effect, quick and cheap

experimentation can provide fertile ground for haphazard experiment design and careless experimentation. When a

research field – like machine learning – is evolving rapidly and new algorithms are proposed every day, reproducibility

tends to receive lower priority. This is then combatted by standardization efforts, e.g. benchmark datasets, standardized

evaluation frameworks, etc. Quickly evolving fields – such as computer vision or natural language processing – can

still have their own benchmarks [4, 13, 14, 19, 27, 29]. Compared to other areas of machine learning, reproducibility in

recommender systems research is severely underdeveloped. This is probably connected to evaluation being one of the

biggest challenges of the field.

Recommendation quality can be assessed either online or offline. Online A/B tests provide better approximation on

how well a recommender achieves its goals, but they are inherently not reproducible. The proprietary nature and com-

mercial value of live recommender systems makes them accessible to only a very limited set of researchers, preventing

the independent repetition of experiments. Due to the interactive nature of recommender systems, offline experimen-

tation is just an imperfect proxy of the online setup. While reproducible in theory, multiple factors influence how

repeatable an offline experiment is. In recent years, the research community has started discussing reproducibility and

paying more attention to evaluation, including, but not limited to:
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• Public datasets.Researchers are expected to showcase the performance of their algorithms on task appropriate

public datasets. This is made possible by the increasing number of publicly released datasets, e.g. [12, 17, 22]

• Open sourcing code.More and more researchers release code along with their papers, which makes repeating

the experiments significantly easier. [12, 24, 26]

• Hyperparameter tuning. Hyperparameters have significant effect on recommendation quality. Providing op-

timal hyperparameters for datasets and/or giving a general guide on how to get good parameterization is im-

portant for having strong baselines. [5, 7, 21]

• Evaluation setups. Data preprocessing, offline metrics, and executing appropriate experiments can make or

break the evaluation part of a research project. [5, 7]

• Standardization, benchmarking. Standardized benchmarks and frameworks supporting consistent evalua-

tion over multiple algorithms allow for an informative comparison of models. [2, 16, 23, 25, 34, 35]

1.1 Reimplementing recommender algorithms

In this paper we discuss the reimplementation of recommender algorithms with respect to reproducibility. As far as

we know, this is the first paper focusing on this topic. Reimplementing algorithms has been commonplace for recom-

mender systems for decades. Before open sourcing code became widespread, researchers had to resort to reimplement-

ing their baselines, based on the description alone. Even if an algorithm’s code is publicly available, reimplementation

might be reasonable due to convenience and/or standardization. Reimplementing an algorithm from scratch is also a

good way of deeply understanding its inner workings.

Convenience: The official implementation might have an API unsuitable for the planned experiments. It might be

written in a programming language the researcher is not familiar with. The researcher might need all baselines to be

in a single (proprietary) framework for consistent evaluation. The official version might be implemented inefficiently

or contain bugs. Etc.

Standardization in this case means reimplementing algorithms in benchmarking frameworks with the goal of

providing fair, unified, and consistent evaluation over a large set of algorithms; instead of researchers using slightly

different evaluation codes under the same name.

While unofficial reimplementations have existed for decades, open sourcing them is fairly new.When done correctly,

this can be beneficial to the research community. Havingmultiple options can significantly increase accessibility. E.g. re-

searchers with less experience in programming might find it hard to utilize a C library in their experiments, but they

might be able to use a Keras module. Releasing an unofficial implementation as part of benchmarking frameworks can

contribute towards the standardization of evaluation. The authors of the original algorithm can also benefit from the

wider visibility of their work and the contributors of the reimplementation can gain the goodwill of the community.

Unfortunately, there are also risks associated with unofficial releases. Reimplementing an algorithm from scratch

can be a non-trivial task, especially if the algorithm is complex or has a lackluster description that lacks important

nuances. The task is somewhat easier if a public official implementation exists since it can serve as a reference. In-

correct reimplementations – that are not in line with the original – can be harmful to research projects as they make

baseline results invalid. Thus flawed, publicly available unofficial implementations can affect several research projects

negatively.

Therefore, the quality and correctness of reimplementations is imperative, especially if they are publicly available.

In this paper we investigate this topic. Since a thorough study of every unofficial implementation of every algorithm
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would be infeasible, we selected a single algorithm for this purpose. We chose GRU4Rec [10, 11], a seminal work in

session-based / sequential recommendations. GRU4Rec is an ideal candidate for our study for the reasons below:

(1) It is an older algorithm (released 7+ years ago), but has frequently been used as a baseline for session-based and

sequential recommendations, due to it being a seminal work in this area.

(2) An official implementation1 was published along the papers, and it has been supported since then.

(3) The official version is implemented in Theano [1], a now discontinued deep learning framework. While Theano

still works fine, there is a clear incentive for reimplementation in more modern frameworks, e.g. PyTorch.

(4) GRU4Rec is not a complex algorithm, but still has distinctive features that are crucial for its good performance.

(5) Papers report inconsistent results for GRU4Rec that might be a result of using incorrect implementations. [12,

15, 24, 28, 30, 32]

We aim to answer the following research questions:

• (RQ1) Do third-party reimplementations implement the same algorithm as the official version?

• (RQ2) Are the third-party reimplementations feature complete?

• (RQ3) Are the third-party reimplementations correct? Are there any notable bugs or omissions?

• (RQ4) How do the differences between the reimplementations and the original affect offline measurements?

• (RQ5) How do the differences between the reimplementations and the original affect training times and scala-

bility?

The rest of the paper is structured as follows. After a brief overview of GRU4Rec and its main features, Section 2

presents an in-depth qualitative comparison between six third-party reimplementations and the original (RQ1, RQ2,

RQ3). Section 3 presents the results of our offline experiments (RQ4, RQ5). Our findings and their implications are

summarized in Section 4. Section 5 showcases related work, and Section 6 concludes this paper.

2 COMPARISON OF GRU4REC IMPLEMENTATIONS

In this section we compare the official GRU4Rec to six third-party reimplementations and answer RQ1, RQ2 and RQ3.

2.1 Brief description of GRU4Rec

GRU4Rec [10, 11] is a deep learning model originally proposed for session-based recommendations, and later utilized

for other sequential recommendation tasks. The algorithm utilizes the Gated Recurrent Unit (GRU), a type of recurrent

neural network. The model was released in 2015 [11] and was improved upon in 2017 [10]. It revitalized the field of

session-based / sequential recommendations and is considered to be one of the seminal works of the field.

The architecture of GRU4Rec is fairly simple. It receives an item of a session on its input and ranks every item based

on how likely they are to be the next one. The inputted item is first embedded, then processed by one or more GRU

layers. GRU layer(s) hold information on the state of the session, thus the model’s inference is based on the whole

sequence of events it observed so far in the session. Items are scored as the dot products between their embeddings

and the hidden state. GRU4Rec has distinctive features adapting it to the specialties of recommender systems that

distinguish it from simply processing behavior data with GRU. The official implementation contains all of the features

including losses, embedding methods, negative sampling, etc., and it has many hyperparameters. The main features of

GRU4Rec and the corresponding hyperparameters are listed below:

1https://github.com/hidasib/GRU4Rec
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• Session-parallel mini-batches: Since the length of sessions have a high variance and most of the sessions

are short, [11] argues that (a) backpropagation through time (BPTT) is not necessary2 , and (b) events should

be processed in a session-parallel way. A mini-batch is composed of input–target pairs from different sessions,

each covering a single time step of its session. The next mini-batch is composed by shifting the input and the

target to the next items respectively. When a session is fully consumed, the next available training session fills

its place, with its first and second items serving as the input and the target. The corresponding hidden state is

also reset to zero. The size of the mini-batch is governed by the batch_size parameter.

• Negative sampling: Scoring every item in every training step scales poorly, thus GRU4Rec utilizes two forms

of negative item sampling.

– Mini-batch based sampling: Each example within a mini-batch uses the target items of the other examples

as negative samples. This is a form of popularity based sampling that is very efficient to run on GPUs.

– Extra shared sampling: A number of n_sample items are sampled for each mini-batch with sampling prob-

abilities proportional to the items’ relative frequency on the power of sample_alpha. These negative samples

are shared between the examples of a mini-batch.

• Losses: Among the four available options (selected by loss), [10] deems two to be superior to the others.

– Cross-entropy over softmax: Item scores are passed through a softmax transformation3, before categorical

cross-entropy loss is applied on them. LogQ correction [33] is available to offset the sampling bias affecting

this loss specifically. Its strength is controlled by the logq parameter.

– BPR-max: Generalization of the BPR [20] loss for multiple negative examples that fixes the vanishing gradi-

ent problem of using mean BPR. It also contains score regularization governed by bpreg. The final activation

layer can be selected among linear, ReLU, ELU and sELU using the final_act parameter.

• Embedding: Items are embedded twice: for scoring, and as the input. There is one option for the former and

three for the latter, which is governed by the constrained_embedding and embedding parameters.

– No embedding: The input item is represented as a one-hot vector that is fed directly into the first GRU layer.

For efficiency’s sake, indexing is used instead of dense one-hot vectors and matrix multiplication.

– Separate embedding: A separate embedding is used for inputting and scoring the items.

– Shared / constrained embedding: The embedding on the input and the one used for scoring is the same.

• Training: Multiple optimizers (AdaGrad, RMSprop, Adam, AdaDelta) are available for training (selected by

adapt). The implementation defaults to Adagrad with Nesterov’s momentum (momentum parameter). Learning

rate is fixed during training and can be set by learning_rate. The model is trained for n_epochs number of

epochs.

• Regularization: The algorithm uses dropout as the primary way of regularization, even though ℓ2 regular-

ization is also available. The dropout_p_hidden parameter sets the drop probability for the GRU layers, and

dropout_p_embed does the same on the input embedding. The latter has no effect in no embedding mode.

2.2 Third-party reimplementations

The selected set of third-party versions consists of the two Tensorflow and two PyTorch reimplementations, as well as

two variants included in frameworks / algorithm collections.

2It is hinted that a proprietary BPTT version exists for sequential tasks with longer sequences.
3The final activation can be set to other than softmax, but it is not advised.
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GRU4REC-pytorch4 is a reimplementation in PyTorch. With 217 stars and 55 forks it is fairly popular. The first

version was published in October 2018, and the last commit is from March 2021.

Torch-GRU4Rec5 is another, less popular PyTorch reimplementation published in 2020.

GRU4Rec_Tensorflow6 is a relatively popular (213 stars, 89 forks) reimplementation in Tensorflow. Its updates

were committed between March 2017 and June 2019.

KerasGRU4Rec7 is a Keras / Tensorflow reimplementation. The repository was forked from the official implemen-

tation in June 2018, but most of the code was rewritten before the Keras version was released in December 2018. The

repository is still updated periodically by a bot, but the last meaningful update was committed in October 2020.

Microsoft Recommenders8 [2] is a popular collection of reimplementations of recommender algorithms, listed on

the ACM RecSys github as one of the useful evaluation frameworks. According to its description, it contains examples

and best practices for building recommender systems. It is often used for comparing algorithms. Its GRU4Rec version

is reimplemented in Keras, and was last updated in October 2021.

Recpack9 [16] is an experimentation toolkit for top-N recommenders, listed on the ACM RecSys github as one of

the useful evaluation frameworks. Its GRU4Rec is reimplemented in PyTorch.

2.3 Comparison

Five of the six third-party versions implement the same architecture (RQ1) as the original. However, “GRU4Rec” of the

Microsoft Recommenders collection only has two things in commonwith original: its name and that it uses GRU layers.

The list of differences starts with the embedding layer, where this reimplementation utilizes extra information (item

categories) besides the item ID. While changing the representation of the events within the session does not result in

a new algorithm, it already undermines the goal of reproducing the original work. The list continues with the training

of the GRU layer, where this algorithm requires sequences of equal length and processes multiple time steps in one

forward pass, ignoring one of the distinctive features of the original. Scoring is also different and deeply flawed as well.

In the reimplementation, a feedforward net scores hidden state–item pairs. This scoring function – unlike that of the

original – can not be factorized into a sequence and an item dependent parts, thus the hidden state needs to be cloned

as many times as the number of items to be ranked. This does not scale well beyond a few tens or maybe hundreds of

items. Therefore, the number of negative item samples is severely limited, but more importantly, this algorithm can not

rank items of even a small item catalog in a reasonable timeframe during inference. It seems that the authors are aware

of these shortcomings, since the example showcasing this algorithm ranks only 50 items during evaluation, because

full ranking would be impossible due to memory and time constraints. It is unclear why this completely different

(and conceptually flawed) algorithm is called GRU4Rec in the Microsoft Recommenders framework that is supposed

to be a curated collection of algorithms. Nevertheless, this reimplementation is excluded from further examination as

it critically failed the first and most basic comparison.

Table 1 showcases which reimplementation supports which features of the original (RQ2). Surprisingly, no reimple-

mentation supports shared embeddings, even though its usefulness on some datasets was highlighted in [10].

4https://github.com/hungthanhpham94/GRU4REC-pytorch, comparison is based on commit 666b84
5https://github.com/yeganegi-reza/Torch-GRU4Rec, comparison is based on commit 744f6b
6https://github.com/Songweiping/GRU4Rec_TensorFlow, comparison is based on commit d53fd9e
7https://github.com/paxcema/KerasGRU4Rec, comparison is based on commit 239522
8https://github.com/microsoft/recommenders
9https://gitlab.com/recpack-maintainers/recpack, comparison is based on commit a83beb
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Table 1. Availability of GRU4Rec’s main features in third-party versions: available (✓), missing (✗), or partially present / flawed (*).

GRU4Rec feature GRU4REC-pytorch Torch-GRU4Rec GRU4Rec_Tensorflow KerasGRU4Rec Recpack

Session parallel mini-batches ✓ ✓ ✓ ✓ *

Negative
sampling

Mini-batch ✓ ✓ ✓ ✗ *
Shared extra ✗ ✓ ✗ ✗ *

Loss
Cross-entropy * ✓ ✓ ✓ ✓

BPR-max * ✓ ✗ ✗ ✓

Embedding
No embedding ✓ ✓ ✗ ✓ ✗

Separate ✓ ✓ ✓ ✗ ✓

Shared ✗ ✗ ✗ ✗ ✗

Torch-GRU4Rec is the closest to the original as it supports all but the shared embedding feature. The other PyTorch

implementation (GRU4REC-pytorch) has a limited feature set that is close to the base model from 2015, even though

it is based on the improved model from 2017. The same is true for GRU4Rec_Tensorflow, but with even more features

missing. KerasGRU4Rec is the most basic one of the reimplementations, and it doesn’t use negative item sampling.

Instead, it computes the score for every item in every training step that makes it scale poorly. Recpack has two sub-

stantially different GRU4Rec implementations: the one with cross-entropy loss doesn’t use negative sampling, the one

with BPR-max does. Unfortunately, the implementation of the sampling is inefficient and also causes scalability prob-

lems (see Subsection 3.4). Recpack also does not replicate session-parallel mini-batches correctly, as each of its batches

lasts until every session within it is consumed. This increases training time, and also affects the loss.

Besides the hyperparameters corresponding to missing features, reimplementations might lack other ones as well.

E.g., momentum with Adagrad and logQ correction is not available in any of the third-party versions. The former

is missing due to the built-in Adagrad optimizers of PyTorch and Tensorflow lacking that feature. In some versions,

dropout – especially embedding dropout – is also missing (or does not work). Hyperparameters are hard-coded in cer-

tain reimplementations, with KerasGRU4Rec being the most extreme example with hard-coded layer size and dropout

probability.

Torch-GRU4Rec is mostly error free, but an easily noticeable typo prevents it from running as is. Other reimple-

mentations contain a fair amount of bugs and errors (RQ3). Some bugs are relatively easy to notice, while others are

more insidious. The effort required for fixing the bugs varies widely. The nature of these bugs can be (a) incorrect

implementation, e.g. flawed losses or incorrect resetting of the hidden states; (b) ineffective or misleading hyperpa-

rameters, e.g. dropout probability meaning keep probability or setting the dropout not actually enabling dropout; (c)

inefficiencies, e.g. negative sampling after score computations. The bugs of each reimplementation are discussed in

Section 3.

3 QUANTITATIVE COMPARISON

Section 2 showed that none of the reimplementations are feature complete, and most of them have bugs. However, it

is possible that the missing features are not that important or even the bugs might have only a small impact on the

performance of the algorithm. In this sectionwe examine how these differences affect the performance of the algorithm

(RQ4). This section provides quantitative comparison between the official and third-party implementations.
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3.1 Datasets

We use five publicly available, real-life session-based datasets.

• The Yoochoose1011 dataset contains user sessions from an unnamed e-commerce site. The data is already split

into proper sessions and each session consists of one or more click events and might have purchase event(s)

associated with it. As we are focusing on the next item prediction task within sessions, we only use the click

events. The dataset was originally released for RecSys Challenge 2015 and has been used for evaluating session-

based recommenders since then, e.g. by [3, 10, 11].

• The Rees461213 dataset contains 8 months of user behavior data – view, cart and purchase events – from a

multicategory e-commerce website between October 2019 and April 2020. Similarly to [3] we only used some of

the 8 months, but whereas they used only one month, we use two14. This is similar how real-life recommenders

are usually trained only on the most recent 0.5–2 months to avoid concept drift, if the traffic is large enough. We

only use view events for next item prediction. The dataset does comewith precomputed sessions, but it is unclear

how user histories are split into sessions. E.g. a few sessions have events from multiple users, and the time gap

between subsequent events within a session can be arbitrarily long. Therefore, sessions were recomputed from

the user histories using the standard 1 hour session gap threshold (i.e. if the time gap between two subsequent

events within a user’s history is longer than 1 hour, the later event is the start of a new session).

• The Coveo15 [22] dataset was released for the purpose of shopper intent prediction from clickstream data as

part of the SIGIR Ecom 2021 Challenge. The dataset consists of user sessions using 30 minutes as the session

gap threshold. The data was collected by Coveo from one of it’s partner’s e-commerce site. There are five types

of events: add, click, detail, purchase and remove. Detail events correspond to the user visiting the detail page

of an item (similarly to view events in e.g. Yoochoose). We use only these detail events to build the sessions.

• The RetailRocket dataset16 consists of view, add to cart, and transaction events collected over 4.5 months.

Similarly to previous datasets, we only keep the view events. The dataset was published to motivate research in

the field of recommender systems and was used by e.g. [9, 15, 31, 32].

• The Diginetica17 dataset consists of user sessions collected over six months. The sessions were extracted from

the search engine logs of an e-commerce site, and contain item page views that were preceded by search queries.

The dataset doesn’t have exact timestamps, but each event has a property denoting the elapsed time since its

session’s first query. The day of the first queries is also known. The dataset was released for the CIKM Cup 2016

Track 2: Personalized E-Commerce Search Challenge. Papers using the dataset include [28, 30, 32].

Data preprocessing is similar to [10, 11] with an additional step to approximate real-life use-cases even better:

(1) Only view / click / detail events are used (depending on the dataset), since our focus is on the next item prediction

task as it was defined in [10, 11]. These events are associated with the user accessing an item detail page either

through recommendations or organically, and together they describe item sequences or sessions.

10https://2015.recsyschallenge.com
11https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
12https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
13https://rees46.com/en/open-cdp
14Only these two months are available directly from the dataset’s page, the rest of the data is available through an external site.
15https://github.com/coveooss/shopper-intent-prediction-nature-2020
16https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
17https://competitions.codalab.org/competitions/11161#learn_the_details-data2
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Table 2. Basic statistics of the datasets (train/test split)

Dataset
Training set Test set

#Items
#Events #Sessions #Days Events/session #Events #Sessions #Days Events/session

Yoochoose 29,107,309 7,597,703 181 3.83 71,849 15,854 1 4.53 34,858
Rees46 67,575,203 10,190,006 60 6.63 1,054,210 166,841 1 6.32 172,756
Coveo 1,411,113 165,673 17 8.52 52,501 7,748 1 6.78 10,868
RetailRocket 750,832 196,234 131 3.83 29,148 8,036 7 3.63 36,824
Diginetica 833,113 177,266 146 4.70 70,164 15,040 7 4.67 40,351

(2) User histories are split into sessions using 1 hour as the session gap threshold for Rees46 and RetailRocket.

Precomputed sessions are used for Yoochoose, Coveo and Diginetica.

(3) Any data except the session ID, the item ID and the timestamp is ignored. For Diginetica a (virtual) timestamp

is computed from the day of the first query and the elapsed time.

(4) Subsequent repeating items in the sessions are filtered. I.e. if the user visits the same item multiple times in

succession, only the first occurrence is kept. E.g. (8, 8, 9) is reduced to (8, 9), but (8, 9, 8) is not modified. This is an

extra preprocessing step compared to [10, 11]. We argue that this aligns better with the goal of next item recom-

mendation for both training and evaluation. Repeating events can occur either by the user reloading/reopening

a page or via logging errors. Neither of these are informative for recommenders as recommending the same

item the user is currently viewing is never useful.

(5) The dataset is iteratively filtered for sessions shorter than 2 and items occurring less than 5 times until there

is no change in the dataset. I.e. after this filtering, every session consists of at least 2 items and each item is

present in the dataset at least 5 times. Sessions of length 1 are useless for both training and evaluation. A very

low minimal item support threshold is enforced, due to the collaborative filtering nature of GRU4Rec and to be

consistent with the original papers.

(6) Train/test splits are time based and very similar to [10, 11]. The split time for Yoochoose, Rees46 and Coveo is 1

day before the time of the dataset’s last event, and 7 days for RetailRocket and Diginetica. The latter two datasets

don’t have enough events to use only one day for evaluation. The test set consists of sessions that started after

the split time. The train set consists of events that happened before the split time, i.e. sessions extending over

are cut off at the split time.

Table 2 summarizes the basic statistics of the dataset. Note that after the train/test split, a few sessions of the train

set might have a length of 1 due to the strict cut-off. These are filtered from the train set. Test sets might contain items

that are not in the train sets. Since GRU4Rec is not able to handle item cold-start, we skip these during evaluation.

Preprocessing scripts and the code of our experiments are available on Github18.

3.2 Evaluation setup

We use the next item prediction task as defined in [10, 11]. Apart from the first event of each session, a recommendation

list is generated for every test event. This list is based solely on the events that happened before the test event in the

same session. The goal of themodel is to rank the item of the test event as high as possible among the recommendations.

We measure recall@N and MRR@N. Recall@N is the ratio of test items present in their corresponding recommen-

dation lists of length # and the number of test items. Since in this task a separate recommendation list is generated

18https://github.com/hidasib/gru4rec_third_party_comparison
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for every test item, recall@N is the same as hitrate@N. MRR@N (mean reciprocal rank at # ) is the mean of the re-

ciprocal ranks of the test items in their corresponding recommendation lists of length # . If the test item is not in the

recommendation list, its reciprocal rank is considered to be 0. The metrics were measured at # = {1, 5, 10, 20}. Similar

trends can be observed for different values of # , thus only results at # = 20 are included in the paper due to space

limitations. However, every result is available at the website19 of the study.

Section 2 revealed that the reimplementations lack some features of the original, and also suffer from implemen-

tation bugs. Aside from the direct out-of-the-box comparison, we are also interested in what is achievable with the

reimplementation by researchers of various thoroughness. Therefore, we created improved versions of the third-party

implementations as if an experienced user would have reviewed the code and fixed a portion of the bugs:

(1) Out-of-the-box: Only errors preventing the execution of the code are fixed.

(2) Inference fix: Only errors of the inferencing code are fixed. (E.g. inappropriate resetting of the hidden state.)

(3) Minor fix: Easily noticeable and fixable bugs of the training are fixed. Hard-coded parameters are made settable.

(4) Major fix:Obscure and/or hard to fix errors that still don’t require architectural change or rewriting a significant

portion of the code are fixed. Note that this version is still not fully fixed.

Note that (a) fixes are incremental, i.e. higher level fixes contain lower level ones; (b) not all levels are relevant for

every third-party implementation; (c) missing GRU4Rec features are not added to the code in either version.

The effect of bugs and the lack of features are examined separately. Therefore, the official GRU4Rec is trained both

with all of its features and feature sets matching the capabilities of the reimplementations (using their highest level

fix).

Hyperparameters are optimized on a separate training/validation split. This is created from the full training set

using the same process as the train/test split. Optimization is performed with the feature complete official version on

all five of the datasets separately, using Optuna20 over 200 iterations. The models are then retrained on the full training

set using the optimal hyperparameters or the supported subset corresponding to the capabilities of reimplementations

with missing parameters. Results presented in the paper are measured on the test set. Parameter search spaces, optimal

parameters, and the parametrization of every experiment are available on the website of the study.

3.3 Results

Every third-party implementation is compared to the full and matching features versions of the official implementation

on all five datasets using both cross-entropy and the BPR-max losses, if the reimplementation supports both.

3.3.1 GRU4REC-pytorch. This reimplementation suffers from several hard to spot and/or fix bugs, and it is the only

one with incorrect inference code. The following versions were used for our experiments:

Out-of-the-box: Running the code on GPU required moving mean computation of a variable to the correct device.

Inference fix: The evaluation code now resets the hidden state when the corresponding session ends.

Major fix: (a) Fixed the order of sampling and applying softmax transformation, as it was in the reverse order

resulting in small gradients and slow convergence. (b) Softmax transformation is now only applied once (was twice).

(c) Hidden states are now reset correctly during training. The mask governing the resets was only recalculated when

a session ended, resulting in false resets. (d) BPR-max loss is fixed to use the correct equation, but the missing score

19https://hidasib.github.io/gru4rec_third_party_comparison
20https://optuna.org/
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Table 3. �antitative comparison of GRU4REC-pytorch to the official implementation using recall@20 and MRR@20. Relative dif-
ference compared to the official version is shown in parentheses.

Dataset
Official GRU4Rec GRU4REC-pytorch

All features Matching features Out-of-the-box Inference fix Major fix

Cross-entropy loss

Recall MRR Recall MRR Recall MRR Recall MRR Recall MRR

Yoochoose 0.6804 0.3002 0.4583 (-33%) 0.1523 (-49%) 0.1169 (-83%) 0.1006 (-66%) 0.1212 (-82%) 0.1037 (-65%) 0.4271 (-37%) 0.1227 (-59%)
Rees46 0.5291 0.2003 0.3059 (-42%) 0.0828 (-59%) 0.1028 (-81%) 0.0713 (-64%) 0.1093 (-79%) 0.0755 (-62%) 0.1994 (-62%) 0.0371 (-81%)
Coveo 0.2947 0.0960 0.2061 (-30%) 0.0591 (-38%) 0.0628 (-79%) 0.0386 (-60%) 0.0663 (-78%) 0.0397 (-59%) 0.1806 (-39%) 0.0497 (-48%)
RetailRocket 0.4953 0.2012 0.3378 (-32%) 0.1121 (-44%) 0.0616 (-88%) 0.0517 (-74%) 0.0642 (-87%) 0.0545 (-73%) 0.2812 (-43%) 0.0986 (-51%)
Diginetica 0.4874 0.1440 0.2973 (-39%) 0.0749 (-48%) 0.0457 (-91%) 0.0329 (-77%) 0.0503 (-90%) 0.0366 (-75%) 0.2862 (-41%) 0.0736 (-49%)

BPR-max loss

Recall MRR Recall MRR Recall MRR Recall MRR Recall MRR

Yoochoose 0.6799 0.2931 0.4655 (-32%) 0.1760 (-40%) 0.0087 (-99%) 0.0011 (-99%) 0.1066 (-84%) 0.0118 (-96%) 0.1923 (-72%) 0.0391 (-87%)
Rees46 0.5206 0.1913 0.2615 (-50%) 0.0691 (-64%) 0.1316 (-75%) 0.0225 (-88%) 0.1418 (-73%) 0.0232 (-88%) 0.1764 (-66%) 0.0355 (-81%)
Coveo 0.3123 0.0994 0.2216 (-29%) 0.0643 (-35%) 0.1141 (-63%) 0.0279 (-72%) 0.1510 (-52%) 0.0368 (-63%) 0.1582 (-49%) 0.0410 (-59%)
RetailRocket 0.5187 0.2131 0.3142 (-39%) 0.1067 (-50%) 0.0794 (-85%) 0.0227 (-89%) 0.2528 (-51%) 0.0848 (-60%) 0.2554 (-51%) 0.0916 (-57%)
Diginetica 0.4995 0.1500 0.3141 (-37%) 0.0851 (-43%) 0.0070 (-99%) 0.0015 (-99%) 0.2367 (-53%) 0.0608 (-59%) 0.2616 (-48%) 0.0692 (-54%)

regularization was not added to algorithm. (e) Both dropout parameters now work as expected. Dropout on the final

GRU layer and embedding dropout in separate embedding mode was originally not applied.

Sampling is performed after all item scores are computed, which slows down training. This bug is rooted so deep

in the code that we did not fix it.

As shown in Table 3, the out-of-the-box performance is very bad (75%–99% lower than the original), even if infer-

encing is fixed (51%–96% lower) due mostly to errors in the implementation of both loss functions. The rest of the bugs

have a smaller, but still noticeable influence on the results. Missing features also significantly limit the implementation

as it can be seen by comparing the matching and all features versions of the official implementation.

3.3.2 Torch-GRU4Rec. The only error in Torch-GRU4Rec is that sampling is performed after the scores are computed,

which increases training times. This bug is rooted so deep in the code that we did not fix it. Therefore, this reimple-

mentation only has an out-of-the-box version:

Out-of-the-box: A single typo needed to be fixed, so the code is able to run.

The small differences (e.g. missing momentum parameter) add up to a noticeable difference when Torch-GRU4Rec

is compared to the matching features version. However, the performance of this reimplementation suffers the most

due the missing constrained embedding mode (up to 19% lower performance) as shown in Table 4.

3.3.3 GRU4Rec_Tensorflow. The following versions were created for GRU4Rec_Tensorflow:

Out-of-the-box: The code is able to run, however it is not prepared for unknown test items. The dropout parameter

was fixed to regain its original meaning as it was used as keep probability instead of drop probability.

Minor fix: (a) Lowered the large initial accumulator value close to zero as it prevented sufficient convergence. (b)

The exponential learning rate decay is discarded as it is not part of the original. (c) Now the hard-coded batch_size

parameter can be changed.

Out-of-the-box performance is poor (43%–94% lower compared to the original) due to the error preventing proper

convergence. The fixed version is still significantly worse (32%–67% lower), but most of the accuracy loss results from

the missing features and not the bugs. See Table 5 for details.
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Table 4. �antitative comparison of Torch-GRU4Rec to the official implementation using recall@20 and MRR@20. Relative differ-
ence compared to the official version is shown in parentheses.

Dataset
Official GRU4Rec Torch-GRU4Rec

All features Matching features Out-of-the-box

Cross-entropy loss

Recall MRR Recall MRR Recall MRR

Yoochoose 0.6804 0.3002 0.6690 (-2%) 0.2882 (-4%) 0.6671 (-2%) 0.2847 (-5%)
Rees46 0.5291 0.2003 0.4716 (-11%) 0.1624 (-19%) 0.4688 (-11%) 0.1606 (-20%)
Coveo 0.2947 0.0960 0.2848 (-3%) 0.0928 (-3%) 0.2835 (-4%) 0.0897 (-7%)
RetailRocket 0.4953 0.2012 0.4249 (-14%) 0.1635 (-19%) 0.3834 (-23%) 0.1464 (-27%)
Diginetica 0.4874 0.1440 0.4255 (-13%) 0.1246 (-13%) 0.4245 (-13%) 0.1229 (-15%)

BPR-max loss

Recall MRR Recall MRR Recall MRR

Yoochoose 0.6799 0.2931 0.6769 (-0%) 0.2919 (-0%) 0.6711 (-1%) 0.2907 (-1%)
Rees46 0.5206 0.1913 0.5112 (-2%) 0.1839 (-4%) 0.5081 (-2%) 0.1820 (-5%)
Coveo 0.3123 0.0994 0.2995 (-4%) 0.0962 (-3%) 0.2960 (-5%) 0.0944 (-5%)
RetailRocket 0.5187 0.2131 0.4639 (-11%) 0.1773 (-17%) 0.4201 (-19%) 0.1633 (-23%)
Diginetica 0.4995 0.1500 0.4597 (-8%) 0.1383 (-8%) 0.4550 (-9%) 0.1372 (-9%)

Table 5. �antitative comparison of GRU4Rec_Tensorflow to the official implementation using recall@20 and MRR@20. Relative
difference compared to the official version is shown in parentheses.

Dataset
Official GRU4Rec GRU4Rec_Tensorflow

All features Matching features Out-of-the-box Minor fix

Cross-entropy loss

Recall MRR Recall MRR Recall MRR Recall MRR

Yoochoose 0.6804 0.3002 0.4555 (-33%) 0.1495 (-50%) 0.3857 (-43%) 0.1359 (-55%) 0.4606 (-32%) 0.1482 (-51%)
Rees46 0.5291 0.2003 0.2940 (-44%) 0.0765 (-62%) 0.2066 (-61%) 0.0594 (-70%) 0.2698 (-49%) 0.0667 (-67%)
Coveo 0.2947 0.0960 0.2001 (-32%) 0.0576 (-40%) 0.0375 (-87%) 0.0075 (-92%) 0.1951 (-34%) 0.0549 (-43%)
RetailRocket 0.4953 0.2012 0.3309 (-33%) 0.1092 (-46%) 0.0439 (-91%) 0.0212 (-89%) 0.3388 (-32%) 0.1179 (-41%)
Diginetica 0.4874 0.1440 0.2976 (-39%) 0.0761 (-47%) 0.0284 (-94%) 0.0088 (-94%) 0.3014 (-38%) 0.0805 (-44%)

3.3.4 Keras GRU4Rec. Keras GRU4Rec is probably the most simplistic of the reimplementations, thus it doesn’t have

that many serious bugs in its code.

Out-of-the box: The implementation as is.

Minor fix: (a) Hard-coded parameters (hidden_size, dropout_p_hidden, learning_rate) now can be set. (b) The default

optimizer is changed to Adagrad.

Major fix: (a) Fixed incorrect resetting of hidden states (the same error that GRU4REC-pytorch has). (b) Epochs

don’t end now when the number of remaining sessions is not enough to fully fill the mini-batch.

Table 6 summarizes the outcome of the experiments. The limited algorithmic feature set results in up to 15% lower

performance. The lack of BPR-max loss might further widen the gap between this version and the best performing

model for certain datasets. Hard-coded parameters increase accuracy loss by 6%–36%. Fixing the bugs allows the model

to reach the level of official implementation with matching features on some of the datasets. Note that this version of
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Table 6. �antitative comparison of KerasGRU4Rec to the official implementation using recall@20 andMRR@20. Relative difference
compared to the official version is shown in parentheses.

Dataset
Official GRU4Rec KerasGRU4Rec

All features Matching features Out-of-the-box Minor fix Major fix

Cross-entropy loss

Recall MRR Recall MRR Recall MRR Recall MRR Recall MRR

Yoochoose 0.6804 0.3002 0.6722 (-1%) 0.2919 (-3%) 0.6392 (-6%) 0.2666 (-11%) 0.6784 (-0%) 0.3010 (+0%) 0.6768 (-1%) 0.3013 (+0%)
Rees46 0.5291 0.2003 0.4860 (-8%) 0.1740 (-13%) 0.4608 (-13%) 0.1574 (-21%) 0.4979 (-6%) 0.1868 (-7%) 0.4978 (-6%) 0.1866 (-7%)
Coveo 0.2947 0.0960 0.2852 (-3%) 0.0917 (-4%) 0.2739 (-7%) 0.0871 (-9%) 0.2822 (-4%) 0.0925 (-4%) 0.2826 (-4%) 0.0918 (-4%)
RetailRocket 0.4953 0.2012 0.4239 (-14%) 0.1705 (-15%) 0.3151 (-36%) 0.1250 (-38%) 0.3938 (-20%) 0.1642 (-18%) 0.3957 (-20%) 0.1647 (-18%)
Diginetica 0.4874 0.1440 0.4304 (-12%) 0.1268 (-12%) 0.3922 (-20%) 0.1133 (-21%) 0.3853 (-21%) 0.1146 (-20%) 0.3869 (-21%) 0.1141 (-21%)

Table 7. �antitative comparison of Recpack GRU4Rec to the official implementation using recall@20 and MRR@20. Relative dif-
ference compared to the official version is shown in parentheses.

Dataset
Official GRU4Rec Recpack GRU4Rec

All features Matching features Out-of-the-box Minor fix Major fix

Cross-entropy loss

Recall MRR Recall MRR Recall MRR Recall MRR Recall MRR

Yoochoose 0.6804 0.3002 0.6713 (-1%) 0.2877 (-4%) 0.6214 (-9%) 0.2627 (-12%) 0.6256 (-8%) 0.2653 (-12%) 0.6382 (-6%) 0.2755 (-8%)
Rees46 0.5291 0.2003 0.4812 (-9%) 0.1655 (-17%) 0.4412 (-17%) 0.1490 (-26%) 0.4414 (-17%) 0.1502 (-25%) 0.4386 (-17%) 0.1496 (-25%)
Coveo 0.2947 0.0960 0.2829 (-4%) 0.0912 (-5%) 0.2335 (-21%) 0.0752 (-22%) 0.2323 (-21%) 0.0739 (-23%) 0.2309 (-22%) 0.0722 (-25%)
RetailRocket 0.4953 0.2012 0.4235 (-14%) 0.1637 (-19%) 0.2442 (-51%) 0.1029 (-49%) 0.2210 (-55%) 0.0927 (-54%) 0.2866 (-42%) 0.1157 (-42%)
Diginetica 0.4874 0.1440 0.4263 (-13%) 0.1248 (-13%) 0.3279 (-33%) 0.0937 (-35%) 0.3219 (-34%) 0.0927 (-36%) 0.3296 (-32%) 0.0944 (-34%)

BPR-max loss

Recall MRR Recall MRR Recall MRR Recall MRR Recall MRR

Yoochoose 0.6799 0.2931 0.6749 (-1%) 0.2919 (-0%) 0.6430 (-5%) 0.2619 (-11%) 0.6464 (-5%) 0.2697 (-8%) 0.6433 (-5%) 0.2691 (-8%)
Rees46 0.5206 0.1913 0.5010 (-4%) 0.1743 (-9%) 0.4624 (-11%) 0.1536 (-20%) 0.4624 (-11%) 0.1544 (-19%) 0.4666 (-10%) 0.1562 (-18%)
Coveo 0.3123 0.0994 0.3003 (-4%) 0.0951 (-4%) 0.2091 (-33%) 0.0612 (-38%) 0.1953 (-37%) 0.0573 (-42%) 0.1536 (-51%) 0.0435 (-56%)
RetailRocket 0.5187 0.2131 0.4455 (-14%) 0.1647 (-23%) 0.3226 (-38%) 0.1157 (-46%) 0.3054 (-41%) 0.1092 (-49%) 0.3550 (-32%) 0.1245 (-42%)
Diginetica 0.4995 0.1500 0.4586 (-8%) 0.1379 (-8%) 0.3066 (-39%) 0.0913 (-39%) 0.3744 (-25%) 0.1046 (-30%) 0.3756 (-25%) 0.1040 (-31%)

the official implementation still uses negative item sampling during training. While it is possible to modify the official

version to abandon sampling it is ultimately pointless as poor scaling would make it unusable in practice.

3.3.5 GRU4Rec in Recpack. The following versions were used for testing Recpack GRU4Rec:

Out-of-the-box: Running the code on GPU required fixes in the evaluation pipeline and the application of dropout.

Minor fix: (a) bpreg is no longer hard-coded. (b) Fixed BPR-max so ;>6() can no longer have 0 as its argument. (c)

Switched weight matrix initialization to Glorot uniform [8] to match the original.

Major fix: Fixed dropout to use separate parameters for embeddings and hidden states.

Similarly to GRU4REC-pytorch, this version also suffers from computing the scores before sampling. This is rooted

too deep in the code to be fixed.

The missing features already amount for up to 23% accuracy loss, which is increased up to ∼ 51% due to bugs in the

code. Note that the matching features version of the official algorithm here uses negative sampling (see 3.3.4).

3.4 Training times & scalability

Scalability is really important for recommender algorithms as most real-life datasets are large, e.g. Rees46 can be

considered to be average sized. Table 8 shows the average time of a single epoch of the out-of-the-box version of

every implementation on all datasets (RQ5), measured on an nVidia A30. Note that the value of the hyperparameters
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Table 8. Training time (in seconds) of one epoch of the official and third party GRU4Rec implementations. The value in parentheses
show how much longer the training of reimplementation takes over the official version.

Dataset GRU4Rec GRU4Rec-pytorch Torch-GRU4Rec GRU4Rec_TFlow KerasGRU4Rec Recpack

Cross-entropy loss

Yoochoose 452 1,948 (x4.31) 2,082 (x4.61) 982 (x2.17) 13,740 (x30.4) 13,458 (x29.77)
Rees46 367 7,618 (x20.76) 7,193 (x19.6) 2,382 (x6.49) 123,266 (x335.87) 49,262 (x134.23)
Coveo 37 85 (x2.3) 91 (x2.46) 55 (x1.49) 568 (x15.35) 663 (x17.92)
RetailRocket 2.8 10.1 (x3.61) 10.7 (x3.82) 23 (x8.21) 276.3 (x98.68) 122.3 (x43.68)
Diginetica 4.5 17.7 (x3.93) 17.7 (x3.93) 26.3 (x5.84) 359.3 (x79.84) 115.2 (x25.6)

BPR-max loss

Yoochoose 488 1,855 (x3.8) 2,164 (x4.43) N/A N/A 21,270 (x43.59)
Rees46 1,957 29,528 (x15.09) 30,690 (x15.68) N/A N/A 179,835 (x91.89)
Coveo 12 23 (x1.92) 32 (x2.67) N/A N/A 771 (x64.25)
RetailRocket 6.9 20.5 (x2.97) 26.4 (x3.83) N/A N/A 450.2 (x65.25)
Diginetica 8 23.2 (x2.9) 36.9 (x4.61) N/A N/A 352.2 (x44.03)

and the number of events in the training data can significantly affect training times. Therefore, the baseline on each

dataset–parameterization pair can be significantly different.

As mentioned in the previous section, KerasGRU4Rec and the Recpack reimplementations are scaling poorly, thus

training themmight take more than 300+ times longer than the original. On Rees46, these two algorithms are unusable,

because a single epoch takes 0.5 . . . 2 days. The rest of the third-party implementations are usually 2 − 5 times slower

that can be attributed to the different deep learning frameworks they utilize. However, scalability and optimization of

these reimplementations is also far from perfect as they mildly break down on the Rees46 dataset.

4 DISCUSSION

The comparison of the six third-party reimplementations with the original resulted in this final tally:

• Microsoft Recommender’s version is GRU4Rec in name only. It implements a different and flawed algorithm.

• The rest of the reimplementations lack at least one GRU4Rec feature that has significant impact on accuracy.

• Except for Torch-GRU4Rec, these unofficial implementations suffer from bugs, hard-coded parameters, and di-

vergence from the original; which further deteriorates recommendation accuracy.

• KerasGRU4Rec and Recpack scale poorly due to the lack of negative item sampling during training, but all five

suffer from some kind of scalability problem.

Even thoughwe expected some of the third-party implementations being incorrect or lacking features, this outcome

still comes as an unpleasant surprise. Only Torch-GRU4Rec can be deemed as a competent attempt: while it still lacks

an important feature, it is mostly a correct and faithful implementation. GRU4Rec is not a complex algorithm, and

its main features are highlighted in its papers. Its publicly available official code can be used as both a crutch during

reimplementation and as a standard to validate against. Therefore, it is puzzling why the quality of these reimplemen-

tations is this low. Considering all of the above, we assume that the problem is not isolated or specific to GRU4Rec.
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Many algorithms might be affected by incorrect unofficial implementations. To somewhat alleviate the harm, we re-

lease feature complete reimplementations of GRU4Rec for both Tensorflow21 and PyTorch22 that are validated against

the official version.

As discussed in Section 1, incorrect unofficial public implementations might have a devastating effect on multiple

research projects, depending on how widespread they are. Unfortunately, most papers don’t mention which implemen-

tation of the baselines were used during experimentation. Our findings suggest that this is important information, on

par with optimal hyperparameters or the description of data preprocessing.

Our study raises some interesting questions for the research community to answer. If a research project show-

cases suboptimal baseline performance due to using an incorrect third-party implementation, who is responsible?

Researchers are responsible for what they publish, but to what extent do they need to double-check whether the tools

they use are correct? Does the implementation of every single baseline need to be validated rigorously against its orig-

inal paper? Are the contributors of reimplementations responsible for the misleading results, even if code is provided

as-is and without any guarantees?What should happen if a reimplementation is found incorrect? Is it feasible to correct

experiments in a large number, sometimes several years old papers? Should the incorrect third-party implementations

get fixed or withdrawn? What if these have been long abandoned by their original contributors?

Our advice to researchers is to either use the official implementation or validate the reimplementation they use

against the official version, and clearly state in their paper which implementation they used. Official open source

releases can also help reimplementation efforts, which is another reason for publishing code. Most importantly, con-

tributors of third-party implementations should validate their work before releasing it to the public.

5 RELATED WORK

We were unable to find any studies closely relating to our work. Looking at the wider area [6, 7] examined multiple

top-n recommender algorithms presented at prestigious conferences, and found that only 7 out of 18 works could be

reproduced with reasonable effort. Furthermore, 6 of those 7 could be outperformed by simple baselines. The major

problems they highlight relate to using weak baselines, arbitrary evaluation setups and suboptimal hyperparameters.

The latter was also examined in detail in [21] through the example of the now 15 years old iALS algorithm. iALS can

be a much stronger baseline – capable of beating more modern algorithms – with the appropriate parameterization.

[5] reassures the findings of [6, 7] for a wider variety of algorithms and baselines. They argue that while the majority

of recent papers utilize evaluation setups, datasets, metrics, etc. of previous work, these are reused without questioning

their validity, thus popular but flawed evaluation setups can spread in the community.

A recent work [18] reinforces the notion that claimed state-of-the-art performance is often skewed or invalid

through the example of BERT4Rec, as the results of the original paper can not be reproduced.

Standardization of evaluation through frameworks like [2, 16] can help reproducibility, if those frameworks are

mostly free of the issues discussed above. However, defining the proper evaluation setups with datasets, and correctly

implementing a wide variety of algorithms is not an easy task. Our findings show that algorithms reimplemented in

benchmarking frameworks can suffer from serious flaws.

21https://github.com/hidasib/GRU4Rec_Tensorflow_Official
22https://github.com/hidasib/GRU4Rec_PyTorch_Official
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6 CONCLUSION

When done correctly, reimplementing a popular algorithm can be beneficial for the research community due to in-

creasing accessibility or contributing towards the standardization of evaluation. However, it may also pose immense

risks to reproducibility if the unofficial implementation is incorrect or buggy. In this paper we described the results

of a thorough comparison between six third-party and the official implementation of GRU4Rec, a seminal algorithm

for session-based / sequential recommendations. One of the six unofficial reimplementations is GRU4Rec in its name

only as it implements a different architecture, which is also conceptually flawed. The remaining five lack important

features of the original that contribute to the good performance of the official version. Four of them also suffer from

errors / bugs of varying severity that are detrimental to their performance. In the most extreme case, out-of-the-box

performance is 99.63% lower compared to the official version. The reimplementations are also significantly slower to

train. Two of them scale very poorly, thus using them on larger datasets is highly impractical. We think that these find-

ings are alarming. Potentially a significant number of research project outcomes have been falsified by these errors.

But more importantly, we don’t think that this problem is isolated and specific to GRU4Rec, which is not a too com-

plicated algorithm with a publicly available official implementation. We urge the research community and especially

those who reimplement algorithms – either for their own use or as a public resource – to validate reimplementations

against the original work and the official implementation.
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