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ABSTRACT
In the present era of advanced technology, the Internet of Things
(IoT) plays a crucial role in enabling smart connected environ-
ments. This includes various domains such as smart homes, smart
healthcare, smart cities, smart vehicles, and many others. The IoT
facilitates the integration and interconnection of devices, enabling
them to communicate, share data, and work together to create in-
telligent and efficient systems. With ubiquitous smart connected
devices and systems, a large amount of data associated with them
is at a prime risk from malicious entities (e.g., users, devices, appli-
cations) in these systems. Innovative technologies, including cloud
computing, Machine Learning (ML), and data analytics, support the
development of anomaly detection models for the Vehicular Inter-
net of Things (V-IoT), which encompasses collaborative automatic
driving and enhanced transportation systems. However, traditional
centralized anomaly detection models fail to provide better services
for connected vehicles due to issues such as high latency, privacy
leakage, performance overhead, and model drift.

Recently, Federated Learning (FL) has gained significant recog-
nition for its ability to address data privacy concerns in the IoT
domain. In the context of V-IoT, which involves autonomous vehi-
cles and intelligent transportation systems with connected vehicles
communicating with various sensors and devices, FL is used to de-
velop an anomaly detection model. Current technology, the Digital
Twin (DT), proves beneficial in addressing uncertain crises and data
security issues by creating a virtual replica that simulates various
factors, including traffic trajectories, city policies, and vehicle uti-
lization. This enables the system to facilitate efficient and inclusive
decision-making. However, the effectiveness of a V-IoT DT system
heavily relies on the collection of long-term and high-quality data
to make appropriate decisions. Consequently, its advantages may
be limited when confronted with urgent crises like the COVID-19
pandemic.

This paper introduces a Hierarchical Federated Learning (HFL)
based anomaly detection model for V-IoT, aiming to enhance the
accuracy of the model. Our proposed model integrates both DT and
HFL approaches to create a comprehensive system for detecting
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1 INTRODUCTION
The proliferation of Internet of Things (IoT) technology has become
increasingly prevalent in our daily lives, primarily driven by the
advancements in low latency and high-speed cellular networks.
This technological progress has facilitated seamless connectivity
and communication between various smart devices, enabling them
to exchange data and interact in real-time. As a result, IoT has
found widespread applications in diverse domains such as smart
homes, healthcare, transportation, industrial automation, and more,
enhancing efficiency, convenience, and automation in our day-to-
day activities. As a result of such enormous growth, the number of
IoT and connected devices is expected to increase to 60 billion by
2025 [16]. A significant part of this rapid increase is likely linked
to the Vehicular Internet of Things (V-IoT). V-IoT comprises con-
nected vehicles, Road Side Units (RSUs), sensors, base stations, edge
servers, cloud servers, and other devices capable of data sharing and
communication with humans. This information generated through
V-IoT will play a vital role in traffic management, traffic safety,
infotainment services, smart city, and Intelligent Transportation
Systems (ITSs), as shown in Figure1.

Federated Learning (FL) is an innovative approach to Machine
Learning (ML) that emphasizes collaborative learning and privacy
preservation by avoiding the need to share raw data with a cen-
tralized server. In FL, multiple learning agents can efficiently and
securely collaborate their computing capabilities to achieve an im-
proved quality of services. The deployment of FL for V-IoT enables
vehicles, Roadside Units (RSUs), base stations, and other connected
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Figure 1: Applications of Smart Connected Automotive Sys-
tem.

devices to enhance learning efficiency in various aspects such as in-
telligent environment sensing, intelligent networking, cooperative
autonomous driving, and intelligent processing of large volumes of
vehicular data. By leveraging FL, V-IoT can benefit from collective
intelligence while preserving data privacy and promoting efficient
knowledge sharing among the connected entities.

Recent research studies [3, 4, 12, 13, 21] have made significant
contributions in securing V-IoT environment from anomalies and
malicious entities. These studies have proposed and developed vari-
ous methods and techniques, leveraging the power of FL, to enhance
the security and privacy of the V-IoT systems. Additionally, energy-
efficient models have been designed, utilizing the FL approach, to
optimize energy consumption in V-IoT deployments. The collective
findings of these research works contribute to the ongoing efforts
in establishing robust security mechanisms and energy efficiency
strategies in the V-IoT domain. Despite advances in FL based mod-
els for V-IoT system, there are still growing concerns about safety,
security and privacy of users. Therefore, this system requires a
comprehensive and robust anomaly detection approach to detect
anomalous behavior of various entities effectively.

A Digital Twin (DT) enables connectivity, interaction, and syn-
chronization between the physical entity and its virtual represen-
tation in real time. The DT is considered to be one of the most
promising technology due to its advanced capabilities, intelligent
services, and bridging the gap between the digital model and its
physical counterpart. A digital model of a vehicle can be placed at
the edge computing node that can serve as an edge middleware
in the V-IoT. With the help of this cloud-edge computing para-
digm, large-scale data analysis, storage, and modeling are made
possible. In addition to that, a huge volume of geographically dis-
persed information shared bymany DTs can be aggregated to derive
synthesized information with effectiveness. By creating a virtual
replica that mimics real-world conditions, the DT of V-IoT enables
simulations and analysis of crucial factors like traffic trajectories,
city policies, and vehicle utilization. This virtual representation

enhances decision-making processes and assists in developing ef-
fective strategies for managing crises while ensuring the security
of data within the V-IoT system.

In this paper, we integrate both DT and FL technologies into
the V-IoT framework. Our objective is to harness the advanced
computing capabilities offered by DT and leverage the collaborative
learning potential of FL to address the security and privacy chal-
lenges present in V-IoT systems. By combining these technologies,
we aim to enhance the overall performance, efficiency, and pri-
vacy preservation in the V-IoT environments. The utilization of DT
technology can significantly enhance the efficiency of the anomaly
detection model by incorporating data from various sources such
as smart sensors, traffic light data, weather statistics, vehicle data,
and city policies. The integration of data from multiple vendors
enables the provision of more accurate and expedited service de-
livery for the V-IoT system. In our proposed model, DT facilitates
data synchronization and weight aggregation in a synchronous
manner, reducing the wait time during FL process. This stream-
lined approach allows participants to efficiently share their data
with the model, ultimately improving the overall performance and
effectiveness of the FL-based anomaly detection system.

In our research, we have implemented a Hierarchical Federated
Learning (HFL) approach to develop an anomaly detection model.
For example, in region-1, where vendor-1 operates with two smart
vehicles, these vehicles collaborate to build their local anomaly de-
tection model. Similarly, in region-2, where Vendor-2 operates with
five smart vehicles, those vehicles collaborate to construct their
own local anomaly detection model. This hierarchical approach
allows smart vehicles from multiple regions to collaborate at differ-
ent levels, enabling the development of robust anomaly detection
models for the V-IoT within the same smart city.

By leveraging this HFL approach, our research aims to identify
anomalies and enhance the security of the V-IoT systems. Through
collaborative learning and data aggregation at different levels, we
can improve the accuracy and reliability of the anomaly detection
models, ultimately ensuring the integrity and safety of the V-IoT
ecosystem. The main contribution of this paper are as follows-

• In our research, we have identified a research gap in the de-
velopment of FL based anomaly detection models specifically
tailored for the V-IoT domain.
• We present the concept of a Hierarchical Federated Learning
(HFL) based anomaly detection model.
• We propose a system model where we integrate both the
emerging DT and FL technologies. This approach provides a
powerful framework for enhanced collaboration, learning,
and decision-making in the V-IoT domain, ultimately leading
to improved performance, efficiency, and security.
• We also present a use case scenario to demonstrate the feasi-
bility of our proposed model.

The remainder of this paper is organized as follows. Section 2
presents the literature review on DT and FL technologies in vehicu-
lar internet domains. We also discuss about the V-IoT, DT, and FL in
this section. The concept of a Hierarchical Federated Learning (HFL)
based anomaly detection model is presented in Section 3. Section 4
presents the proposed system model for identifying anomalies and
securing V-IoT. We discuss a use case scenario to demonstrate the
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practical application of our proposedmodel in Section 5. Conclusion
and future work are discussed in Section 6.

2 RELATEDWORK AND BACKGROUND
This section provides an in-depth discussion of fundamental con-
cepts and background information that are essential to understand
the research contributions. It covers key topics such as the concept
of the V-IoT, security and privacy concerns, as well as FL models
and DT.

Recently, there has been a growing interest in various technolo-
gies such as cloud computing, edge computing, ML, FL, and DT in
both academic and industrial sectors. These technologies are seen
as promising solutions for enabling smart cities and ITSs. Lu et
al. [13] proposed an asynchronous federated framework to imple-
ment secure and effective data sharing in the Internet of Vehicles
(IoV). In this approach, each vehicle serves as FL client and shares
data with an aggregation server at macro BS (MBS). Vehicles can
request a variety of services, including traffic prediction and path
selection to the MBS. The MBS develops a shared global model
based on accumulated vehicular datasets. Next, the MBS transforms
the sharing process into a computing task and resolves the sharing
request of vehicles by using an actor-critic reinforcement learning
framework.

Chai et al. [3] proposed a hierarchical blockchain-enabled FL
scheme for IoV. They presented a feasibility analysis of adapting the
hierarchical model to manage large-scale vehicles. In this scheme,
each vehicle serves as an FL client and uses its hardware resources to
implement local learning. Road side units (RSUs) are responsible for
collecting transactions from vehicles within their communication
region in a blockchain framework. Each RSU compute the FL model
and append into the blockchain framework to ensure security. The
blockchain framework is shared to all RSUs and vehicles in IoV.
Shrivastava et al. [23] presented a brief survey on Security in V-Iot
using blockchain. In addition, several security models for protecting
IoT devices in other domains are discussed in [1, 2, 5–10, 14, 19, 20].

2.1 Vehicular Internet of Things
V-IoT can be described as a platform that enables the exchange of
information between vehicles and their surroundings. This commu-
nication is facilitated through various channels, including vehicle-
to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-
everything (V2X) communication. These interactions allow vehicles
to connect with other vehicles, infrastructure elements, and various
entities in their environment, creating a networked ecosystem that
enhances safety, efficiency, and overall driving experience. Yang et
al. [26] put forward an abstract network model for the IoV. Their
research focuses on discussing the necessary technologies to estab-
lish the IoV framework. They explore various applications that can
be built upon existing technologies, highlighting the potential of
IoV in different domains. V-IoT enables drivers, pedestrians, and
other vehicles to utilize the data produced by vehicular ad hoc
networks (VANETs) with the aid of roadside infrastructure [15, 17].
V-IoT integrates the IoT technology with ITSs to improve trans-
portation efficiency and security. It is anticipated that the V-IoT will
play a vital role in enabling connected, shared, autonomous, and
electric future mobility. This article [11] conducted an extensive
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Figure 2: Overview of Federated Learning Model.

literature review focusing on the fundamental aspects of the IoV.
They covered essential information related to IoV, including basic
VANET technology, different network architectures employed in
IoV systems, and typical applications of IoV.

2.2 Federated Learning
FL is an approach that places a strong emphasis on privacy by
allowing ML models to be trained locally on individual devices,
without the need to share the underlying data with a centralized
server. This decentralized training process, depicted in Figure 2,
ensures that sensitive data remains on the devices where it is gen-
erated, reducing the risk of privacy breaches. By adopting FL, these
privacy risks can be mitigated, as the data remains securely stored
on the local devices, and only aggregated model updates are shared
with the central server. This way, FL strikes a balance between
data privacy and the need for accurate model training, making it a
reliable solution for privacy-preserving ML in various applications.
Du et al. [4] conducted a comprehensive survey of existing studies
on FL and its use in wireless IoT. Then, they highlighted the po-
tential benefits of FL in addressing the unique requirements and
complexities of vehicular IoT environments.

Mothukuri et al. [18] introduced a novel approach for anomaly
detection in IoT networks using FL. Their proposed method lever-
ages decentralized on-device data to proactively identify intrusions
in IoT networks.

2.3 Digital Twin
DT is referred to as a virtual representation of the real-world entity,
devices, machines, process, or other abstraction. Physical sensors,
computer programs, machine learning algorithms, and software
models are used to simulate real-time digital models of the physical
entity. Tao et al. [24] mentioned that It is considered as one of the
most promising enabling technologies for realizing smart manufac-
turing and Industry 4.0.Wang et al. [25] conducted a comprehensive
review of the Internet of Digital Twins (IoDT), focusing on various
aspects such as system architecture, enabling technologies, and
security/privacy concerns. It facilitates real-time interaction, close



RACS ’23, August 6–10, 2023, Gdansk, Poland Deepti Gupta, Shafika Showkat Moni, and Ali Saman Tosun

Local Aggregators 

Local Aggregator 

Global Aggregator 

Clients

Edge Server-1 Edge Server-2 

Edge Server-3 

Global Server 

Group-1 Group -2 Group -3

Client-1 Client-2 Client-3 Client-4 Client-5 Client-6 Client-7

Figure 3: Overview of Hierarchical Federated Learning
Model.

monitoring, and reliable communication between the digital model
and its physical counterpart. DT is considered to be one of the most
promising technology due to its advanced capabilities, intelligent
services, and bridging the gap between the digital model and its
physical counterpart. For instance, the DT of a vehicle can observe
the driving pattern of the driver and communicate, interact, and
share this information with other DTs to notify the driver about
possible issues or emergencies on road.

Previous research has introduced several anomaly detection
models based on FL in various domains. These models have been
deployed either on centralized cloud servers or edge devices. Ad-
ditionally, the concept of digital twins (DT) has been utilized to
identify anomalies in the industrial domain. However, as mentioned
earlier, these anomaly detection models often suffer from low ac-
curacy rates due to limited volumes of data available for training.
Consequently, a robust anomaly detection model that can provide
effective security and privacy solutions for protecting V-IoT sys-
tems is still lacking. To bridge this gap, our proposed integrated
approach-based anomaly detection model offers a novel perspective
for detecting anomalies in the vehicular domain. By combining the
strengths of different technologies, such as FL and DT, we aim to
enhance the accuracy and effectiveness of anomaly detection in the
V-IoT systems. Our approach provides a comprehensive solution
that leverages collaborative learning among distributed entities
and utilizes the virtual replicas created by digital twins to simulate
and analyze various factors contributing to anomalies. We strongly
believe that our integrated approach presents a promising solution
to address the challenges of anomaly detection in the vehicular
domain.

3 HIERARCHICAL FEDERATED LEARNING
BASED ANOMALY DETECTION MODEL

FL can be widely adopted in the V-IoT domain to train various
ML models, such as prediction analysis and anomaly detection, by
collecting data from vehicles in a privacy-preserving environment.
This approach offers several advantages, including low latency, high
efficiency, data privacy, and improved security mechanisms. For

RPM use case, a FL-based anomaly detection model [10] is proposed.
This model leverages edge computing to execute the anomaly de-
tection models locally on the edge devices without sharing patients’
data with a centralized server. To further enhance the capabilities
of the FL model for multi-user scenarios, HFL approach is devel-
oped. HFL allows the aggregation of gradients at multiple levels,
enabling the participation of multiple entities while leveraging edge
computing and DT technologies. Figure 3 provides an overview of
this approach. In this research, HFL approach is used to develop
anomaly detection model for the V-IoT systems.

In the connected automotive environment, there are various
types of anomalies, such as traffic congestion, collision detection,
malicious attacks, vehicle breakdown, traffic violations and dri-
ver fatigue or distraction. The detection and timely response to
these anomalies can contribute to improving safety, efficiency, and
overall performance in connected vehicle environments. Detecting
and understanding anomalies in the V-IoT can lead to enhanced
safety, security, performance optimization, and better management
of traffic and resources. It allows for proactive decision-making
and timely interventions to ensure a smoother and more efficient
functioning of the connected vehicle ecosystem.

To develop a HFL based anomaly detection model for the V-IoT,
we define the objectives, performance metrics, and requirements for
the anomaly detection model. Then, gather relevant data from vehi-
cles in the V-IoT, which may include sensor data, vehicle telemetry,
weather statistics, traffic light data and historical records. Ensure
that the data collection process preserves privacy and follows ethi-
cal guidelines, which is provided by city policies. After that, clean
and preprocess the collected data to remove noise, handle missing
values, and normalize the features. This step is crucial for preparing
the data for further analysis and training. In next step, design the
hierarchical architecture for FL in the V-IoT. Where, we need to
determine the levels of aggregation such as vehicle-level, region-
level, or vendor-level, based on the collaboration requirements and
privacy considerations.

To train the data, we utilize the FedTimeDis LSTM [10] approach,
which is specifically designed for the connected automotive envi-
ronment. Now, each smart vehicle performs local training using
their own data. This training is done in a privacy-preserving man-
ner, where data remains on the local device and only model updates
(e.g., gradients) are shared. To perform gradient aggregation at each
level of the hierarchy to combine the model updates from different
participants. This aggregation process ensures that the collective
knowledge of the participating entities is utilized to improve the
overall anomaly detection model. After developing the model, eval-
uate the performance of the aggregated anomaly detection model
using evaluation metrics such as accuracy, precision, recall, or F1-
score. Refine the model if necessary by adjusting hyperparameters,
incorporating feedback, or retraining with additional data. This
developed HFL-based anomaly detection model can be deployed
in a real-world V-IoT environment and the performance of the de-
ployed model can be monitored continuously. Incorporate new data,
update the model periodically, and iterate on the anomaly detection
process to enhance its accuracy, efficiency, and robustness.
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Algorithm 1 Anomaly Detection of all data nodes 𝑁
1: Collect vehicular the data 𝐷𝑖 from all data nodes 𝑁
2: Preparing the data 𝐷𝑖 by converting into numerical form
3: Normalize the data 𝐷𝑖

4: Create the sequences sets (𝑋𝑛, 𝑦𝑛) of data based on correlations
5: Take these input sequence sets (𝑋𝑛, 𝑦𝑛), where 𝑛 = 1, 2,. . . , 𝑁

from 𝑁 data nodes, initial model parameter𝑤𝑧 , local minibatch
size 𝐽 , number of local epochs 𝐻 , learning rate 𝛼 , number of
rounds 𝑄 , ℎ hidden layer.

6: Split local dataset 𝐷𝑖 to mini batches of size 𝐽 which are in-
cluded into the set 𝐽𝑖 and fed horizontally to four LSTM cells.

7: for each local epoch 𝑗 from 1 to 𝐻 do
8: for batch (𝑋,𝑦) ∈ 𝐽 do
9: ℎt = 𝐿𝑆𝑇𝑀 (ℎt-1, 𝑥 t,𝑤n)
10: 𝑦n = 𝜎 (𝑊 FCℎ2nd + 𝐵𝑖𝑎𝑠)
11: 𝑢n =𝑤n -𝑤𝑛

𝑧

12: 𝑤𝑛
𝑧 ←𝑤𝑛

𝑧 + 𝛼
𝑁

∑︁
𝑛 ∈ 𝐷𝑖

𝑢n

13: end for
14: end for
15: Update weights𝑤𝑛

𝑧 to federated cloudlet server and start train-
ing again until minimizing the error to build the anomaly de-
tection model.

4 SYSTEM MODEL
In this section, we introduce our proposed model, which aims to
identify anomalies and enhance the security of the V-IoT systems.

The model comprises six distinct phases, each involving data ex-
change and collaboration among different entities. The overall sys-
tem architecture is illustrated in Figure 4, providing a visual repre-
sentation of the data flow and interaction between the components.

The six phases of our proposed model are as follows:

• Initial Phase: During the initial phase of our proposed model,
the smart vehicle begins collecting various types of data,
including manufacturing data, driver perception data, and
external entities data. By collecting these various types of
data, the smart vehicle aims to gather comprehensive infor-
mation about its own performance, the driver’s behavior,
and the external environment.
• Functional Phase: During the functional phase of our model,
the entities within the V-IoT system transition into opera-
tional mode. This phase is divided into two sub-phases, each
serving specific purposes. In the first sub-phase, the focus
is on collecting data from the vehicle IoT sensors. These
sensors, which are activated and operational, capture var-
ious types of information such as vehicle diagnostics, and
performance metrics. The collected data is then transmitted
to the vendor cloudlet, a cloud-based infrastructure specifi-
cally designed to handle V-IoT data. Simultaneously, in the
second sub-phase, additional data is collected on the vendor
cloudlet. This includes a wide range of data sources such as
weather statistics, city regulations and policies, traffic light
information, and camera data. These supplementary data
sources provide contextual information about the external
environment in which the vehicles operate.
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Figure 5: Use Case for Vehicular IoT for Anomaly Detection in Federated Setting.

By collecting data from both the vehicle IoT sensors and
other relevant sources on the vendor cloudlet, a comprehen-
sive and multi-dimensional dataset is created.
• Analytic Phase: Once the data is collected from the V-IoT
system, it is transmitted to the simulated environment for fur-
ther analysis. This phase involves the transition of data from
the physical space to the simulated space, where advanced
data analytics techniques are applied. In the simulated envi-
ronment, a DT is developed for each entity within the V-IoT
system. A DT is a virtual representation of a physical en-
tity, in this case, the vehicles and other components of the
V-IoT system. The DT is created based on the generated data
collected from the previous phases. The data analytics pro-
cess is then performed on the vehicle DT. Various analytical
techniques and algorithms are applied to gain insights and
extract valuable information from the data. These analyt-
ics help in understanding the behavior, performance, and
patterns within the V-IoT system.
By leveraging the DT and conducting data analytics, it be-
comes possible to identify and understand anomalies within
the V-IoT system. Anomalies can include unusual behavior,
deviations from normal patterns, or any abnormal activities
that may indicate potential security or operational issues.
• Identifying Anomaly Phase: In this phase, the simulated data
𝐷𝑖 from all the data nodes that has been processed and pre-
pared in the previous phase is passed through a pipeline
to feed the anomaly detection model. The data is carefully
curated and transformed to be compatible with the model’s

input requirements. The anomaly detection model is devel-
oped using suitable machine learning algorithms and follows
the Algorithm 1. These algorithms are trained on the pre-
pared data to learn the patterns and characteristics of normal
behavior within the V-IoT system. The model aims to dis-
tinguish between normal and anomalous patterns based on
the input data. During the training process, the model un-
dergoes iterations to optimize its performance and enhance
its ability to accurately detect anomalies. This involves ad-
justing the model’s parameters, fine-tuning the algorithms,
and validating the model’s performance using appropriate
evaluationmetrics. Once the training is completed, the anom-
aly detection model is ready to be deployed and utilized. It
collaborates with other models that are part of the subse-
quent phases, working together to enhance the accuracy and
effectiveness of anomaly detection in the V-IoT system.
• Collaborative Phase: Indeed, in this phase, the collaboration
of multiple anomaly detection models take place to improve
the accuracy rate of anomaly detection in the V-IoT sys-
tem. By combining the weights of multiple ADM models,
the overall effectiveness of anomaly detection can be sig-
nificantly enhanced. Each model may have its own unique
approach, algorithm, or specialization in detecting specific
types of anomalies. By leveraging the strengths and capabil-
ities of different models, a more comprehensive and robust
anomaly detection system can be established. The collabora-
tion among anomaly detection models involves exchanging



Integration of Digital Twin and Federated Learning for Securing Vehicular Internet of Things RACS ’23, August 6–10, 2023, Gdansk, Poland

information, sharing insights, and aggregating their detec-
tion results. This collaborative process allows for a holistic
analysis of the system’s behavior and the identification of
anomalies from multiple perspectives.
• Reporting and Decision Phase: After an anomalous scenario
is detected by the anomaly detection model, it is crucial to
report the anomaly to the relevant stakeholders, including
the user, vendor, and device. This phase plays a vital role in
facilitating informed decision-making and taking necessary
actions to ensure the safety and security of the automo-
tive connected environment. Reporting the anomaly to the
user is essential as it enables them to be aware of the de-
tected anomaly and take appropriate measures. This could
involve alerting the user through notifications, messages, or
visual indicators, providing them with information about the
anomaly and any recommended actions they should take.
Notifying the vendor is also crucial as it allows them to be
aware of the anomaly and take the necessary steps to address
the issue. This could involve investigating the root cause of
the anomaly, analyzing the data collected, and implement-
ing corrective measures to prevent similar anomalies in the
future.
Overall, this phase of reporting anomalies is a critical compo-
nent of the anomaly detection process in the V-IoT system.
It helps to minimize the risks associated with anomalous
events, enables proactive decision-making, and contributes
to maintaining a safe and reliable automotive ecosystem.

By employing our proposed system model, the V-IoT environ-
ment can detect anomalies in real-time and enable prompt responses
to the system. This improves overall security and privacy, enhances
the efficiency of the transportation system, and improves the driv-
ing experience for individuals.

The following section presents a use case scenario of V-IoT,
where our proposed system model is employed to detect anomalies.

5 USE CASE SCENARIO
V-IoT is unfolding in many ways where users receive better services
and take advantage of autonomous vehicle. The proposed system
model where we present the integration of FL and DT, which can
be used to secure V-IoT applications, for example, ITSs, cooperative
autonomous driving, connected car services, smart city integration,
collision avoidance systems and intelligent traffic control etc. In
this section, we present a use-case scenario for securing V-IoT by
developing an anomaly detection model. The Figure 5 shows the
use case based on our proposed system model, which is discussed
in Section 4.

In a smart city, the adoption of IoT technologies and the de-
ployment of smart vehicles are guided by common city policies
and regulations. These policies ensure uniformity and standard-
ization across different regions within the smart city. Each region
within the smart city may have multiple vendors launching their
smart vehicles, contributing to the overall intelligent transportation
ecosystem. The presence of multiple vendors in different regions
allows for a diverse range of smart vehicles with varying features,
technologies, and capabilities. These vehicles may be equipped with

advanced sensors, communication systems, and intelligent algo-
rithms to enhance their functionality and contribute to the overall
smart city objectives.

In Figure 5, the depicted scenario showcases the presence of two
different vendors, namely vendor-1 and vendor-2, operating within
region-1 of the V-IoT system. Vendor-1 has two smart vehicles, SV-1
and SV-3, while vendor-2 has one smart vehicle, SV-2. Additionally,
region-1 consists of various data points, including sensor data, city
policies and regulations, traffic lights, and weather statistics. To
enable efficient data processing and anomaly detection in region-1, a
cloudlet is launched specifically for this region. The cloudlet serves
as a localized computing resource that can host and deploy DTs of
each smart vehicle within the region. These DTs not only receive
data from their respective smart vehicles (SV-1, SV-2, and SV-3) but
also incorporate data from other sources within the region, such as
sensor data, city policies and regulations, traffic lights, and weather
statistics.

In this use case, we deploy DTs on the cloudlet to reduce the gap
between physical objects and their digital representations which
are generally hosted in the cloud servers. These cloudlets are hosted
by the regions and basically a regional cloud that can better cloud
services nearer to the user. Cloudlets [22] are small-scale, mobility-
enhanced cloud data centers that sit at the network’s edge. The
cloudlet’s primary goal is to support furious resource and interac-
tive mobile applications by delivering strong computing resources
to mobile devices with reduced latency. A wireless local area net-
work with single hop at comparatively higher speed, allows User
Equipments (UEs) to connect to the computing resources in the
neighboring cloudlet. By leveraging the cloudlet in region-1, the DTs
can effectively analyze and process the combined data from multi-
ple sources. This integration of data from various entities allows for
a holistic understanding of the V-IoT environment within region-1.
The DTs can leverage this comprehensive data to enhance anomaly
detection capabilities, identify patterns, and detect any deviations
or anomalies in the behavior of the smart vehicles or the overall
V-IoT system. The deployment of DTs within the cloudlet of region-
1 enables localized processing and analysis, reducing latency and
enhancing real-time anomaly detection. The collaboration of the
DTs with the cloudlet infrastructure facilitates efficient information
exchange and enables timely response to any detected anomalies.

DT of SV-1 within region-1 plays a crucial role in the develop-
ment of the anomaly detection model. The data collected by SV-1’s
DT is utilized to train the initial anomaly detection model specific
to region-1. This model focuses on detecting anomalies within the
local context and behavior of the vehicles and infrastructure within
region-1. To enhance the accuracy and effectiveness of the anomaly
detection model, collaboration is encouraged among multiple mod-
els. In this case, the anomaly detection models of region-1 have the
capability to collaborate with each other using the concept of FL.
FL allows the models to share their knowledge and insights while
maintaining data privacy and security. By aggregating the local
models’ learnings through weight aggregation techniques, a more
robust and accurate anomaly detection model can be obtained.

Moreover, collaboration is not limited to models within the same
region. The anomaly detection model of region-1 can also collabo-
rate with the anomaly detection model of region-2 by using HFL
concept. This collaboration is facilitated by exchanging gradients on
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a federated multi-cloud server. The gradients represent the model
parameters that are shared and utilized to improve the models’ per-
formance collectively. By leveraging the collaboration capabilities
of FL and the exchange of gradients on the federated multi-cloud
server, the anomaly detection models of different regions can ben-
efit from each other’s insights and experiences. This cross-region
collaboration enhances the overall effectiveness of anomaly detec-
tion in the V-IoT system by incorporating knowledge from diverse
geographical areas and vehicle behaviors.

In summary, the integration of FL and the exchange of gradients
enable collaboration among anomaly detection models at different
levels by utilizing DT. This collaboration improves the accuracy and
robustness of the models, both within the same region and across
different regions, leading to more effective anomaly detection in
the V-IoT system.

6 CONCLUSION AND FUTUREWORK
In this paper, we have discussed the relevance of FL in V-IoT environ-
ments and its potential impact. We started by providing background
information on V-IoT, FL, and DT technologies. We emphasized
the importance of anomaly detection models in the V-IoT domain
and also presented the outline of HFL based anomaly detection
model. To address the challenges and opportunities in the V-IoT,
we proposed a system model that integrates DT and FL. This model
leverages the collaborative learning capabilities of FL and the bridg-
ing capabilities of DT between the physical system and its virtual
representation. We outlined the key components and phases of our
proposed model, emphasizing data exchange, anomaly detection,
and security.

To illustrate the practical application of our proposed model, we
presented a use case scenario in which the model is employed to
detect anomalies in the V-IoT environment. The scenario showcased
the data collection, processing, anomaly detection, and collaborative
response aspects of our model, highlighting its potential benefits
in ensuring safety and efficiency in the V-IoT systems.

Overall, this work aims to contribute to the advancement of FL,
DT, and V-IoT research. By introducing our proposed model and
presenting a use case scenario, we provide a foundation for further
exploration, development, and practical implementation of HFL
and DT in the V-IoT environments. We believe that this paper will
facilitate the progress of these fields and stimulate further research
in the area of HFL-based anomaly detection by utilizing DT in the
V-IoT.
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