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ABSTRACT
The integration of dual-modal features has been pivotal in advanc-
ing RGB-Depth (RGB-D) tracking. However, current trackers are
less efficient and focus solely on single-level features, resulting in
weaker robustness in fusion and slower speeds that fail to meet the
demands of real-world applications. In this paper, we introduce a
novel network, denoted as HMAD (Hierarchical Modality Aggrega-
tion and Distribution), which addresses these challenges. HMAD
leverages the distinct feature representation strengths of RGB and
depth modalities, giving prominence to a hierarchical approach
for feature distribution and fusion, thereby enhancing the robust-
ness of RGB-D tracking. Experimental results on various RGB-D
datasets demonstrate that HMAD achieves state-of-the-art perfor-
mance. Moreover, real-world experiments further validate HMAD’s
capacity to effectively handle a spectrum of tracking challenges in
real-time scenarios.

CCS CONCEPTS
• Computing methodologies → Tracking; Artificial intelligence;
Computer vision.

KEYWORDS
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1 INTRODUCTION
RGB-D tracking is a type of multimodal object tracking [11, 15,
16, 29], which combines RGB and depth data. RGB offers visual
details like color and texture but is limited to 2D dimensions. Depth
information, providing the distance from the camera to the ob-
ject, enables accurate 3D object localization. This combination is
widely used in tasks like saliency detection, object detection, and
tracking [9, 10, 32, 40, 41].

Among these tasks, RGB-D tracking presents the most valu-
able and challenging applications. It plays a crucial role in human-
computer interaction, robotic environmental perception, and other
∗Corresponding author.

Figure 1: Comparison results with representative trackers on
DepthTrack dataset.

domains [1, 17, 25, 35]. The fundamental requirement of this task is
to efficiently utilize the complementary dual-modal features in real-
time to address complex tracking scenarios. Especially in complex
indoor environments with intricate backgrounds, similar targets,
and dim lighting, the optimal use of these dual-modal complemen-
tary features becomes the central challenge for RGB-D tracking.

Current RGB-D trackers primarily focus on modal fusion meth-
ods [36, 37, 40]. Fusion methods have evolved from simple additive
or weighted fusion of both modalities [36] to using Transformer
for fusion [40] or applying prompt learning to guide the fusion
process [39]. While these methods have gradually improved fusion
quality, they have introduced two challenges: (1) Can the increas-
ingly complex fusion methods meet the real-time requirements
of RGB-D tracking tasks? This concern is particularly relevant in
contexts where RGB-D tracking is commonly used, such as robot-
ics and human-computer interaction device, where computational
power is limited. (2) Are all features suitable for RGB-D tracking
tasks? Is it possible to select appropriate features for the tracking
task?

We propose the HMAD tracker specifically designed to address
the aforementioned issues. To address the first issue, the HMAD
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tracker adopts the classical RGB tracking framework DIMP [3] as a
baseline. This framework has strong feature discrimination capa-
bility and uses less computational cost compared to the complex
Transformer structure. Additionally, HDMA itself is a simple and
effective hierarchical modality fusion method, avoiding the sub-
stantial speed loss that complex fusion methods can entail. For the
second problem, we propose a hierarchical modality aggregation
and distribution network to extract rich color and texture features
provided by RGB at the shallow feature level, and semantic features
such as contour distance provided by depth information at the deep
feature level. By effectively integrating these features, we extract
as many valid features as possible while using minimal resources,
thus enhancing the robustness of RGB-D tracking. Experimental
results show that the HMAD tracker performs well on major RGB-
D tracking datasets. Importantly, it achieves a tracking speed of 15
FPS on edge device, meeting real-time tracking requirements.

The main contributions of this paper is summarized as follows:
• We propose a real-time RGB-D tracker HMAD based on the
DIMP framework, which guarantees high tracking perfor-
mance while achieving real-time tracking speed.

• We propose a hierarchical modality aggregation and distri-
bution network capable of fully extracting and integrating
effective features from both RGB and depth information.

• We validate the effectiveness of the HMAD on existing RGB-
D tracking datasets. Moreover, we conduct real-world ex-
periments on real-world edge device to demonstrate the
effectiveness and real-time capabilities of the tracker in real-
world scenarios.

2 RELATEDWORK
2.1 Single Object Tracking
Two primary strategies dominate the field of single-object track-
ing: Siamese-based and tracking-by-detection methods. Siamese-
based methods, represented by SiamFC [2], utilize template cor-
relation within a search area to identify tracking targets. Subse-
quent enhancements to this approach include SiamRPN [4] and
SiamRPN++ [22] by Li et al., which integrate RPN [31] networks
and feature pyramids to increase model performance. Further ad-
vances have seen the incorporation of Transformer [33] structures,
as demonstrated in Chen et al.’s TransT [6] tracking network, pro-
viding improved global association capabilities for tracking. Subse-
quently, Cui et al. delved into the Transformer architecture, going
a step further to replace the traditional convolutional neural net-
work backbone with a Transformer structure [33], which led to
the development of the MixFormer [7]. This innovation greatly
enhanced the effectiveness of feature extraction and achieved state-
of-the-art results in the domain of generic single-object tracking.
In a parallel approach, Lin et al. adopted a similar line of thinking,
designing a new Transformer-based backbone network for tracking,
as described in their work SwinTrack [23].

Contrastingly, tracking-by-detection methods, exemplified by
MDNet [28] fromNam et al., employ a discriminator model to locate
tracking target within input image. Extensions of this approach
include the ATOM [8] by Danelljan et al., which integrates both
target estimation and online update modules to increase robustness.
Bhat et al.’s DiMP [3] method introduced a discriminative learning

loss, enhancing target identification. Moreover, the Keep-track [26]
method by Mayer et al. incorporates a target association module
that is specialized for scenarios with a large number of similar
interfering targets.

2.2 RGB-D Tracking
In the domain of RGB-D tracking, there are two main strategies:
methods based on correlation filters, and methods relying on trans-
fer RGB tracking [41].

The former approach includes the work of researchers such as
Camplani et al., who proposed a real-time tracker [5] based on the
Kernelized Correlation Filters (KCF) [14] algorithm, which inte-
grates RGB and depth information to manage complex situations
such as occlusions. This work demonstrates promising results. Kart
et al. seek to transform short-term RGB trackers into RGB and depth
trackers by proposing a general framework [19] that integrates an
occlusion detection module based on depth segmentation into a
correlation filter framework [18]. In addition, Harika et al. intro-
duced multimodal fusion at different layers to integrate the features
of RGB images and depth maps [12].

On the other hand, among the transfer RGB tracker based meth-
ods, Yan et al. performed fusion of RGB and depth features on
end-to-end RGB tracker ATOM [8] and DiMP [3]. They used a
straightforward addition method to merge the deep features of
RGB and depth images [36]. Xue et al. went a step further and
used the more advanced Transformer tracking framework for fea-
ture fusion [40]. They leverage the powerful feature association
capability of Transformer to achieve better results, although the
complexity of the Transformer structure results in slower tracking.
Additionally, some researchers applied prompt learning to RGB-D
tracking [37, 39]. By utilizing minimal prompt information, they
were able to transfer single-modality tracking methods to RGB-D
tracking, substantially reducing the complexity and challenges of
training. This approach represents a novel utilization of existing
methodologies, expanding the applicability to more advanced and
diverse tracking scenarios.

3 METHODOLOGY
3.1 Network Architecture
We propose an RGB-D single object tracking method namde HMAD,
based on the DIMP [3]. This method incorporates a hierarchical
modality aggregation and distribution network to integrate features
from both modalities. These fused features are then used to train
a discrimination model, which subsequently predicts the classifi-
cation score and location of the tracking target. The flow of the
method is illustrated in Figure 2.

The input of the HMAD tracker is the corresponding RGB and
depth images, which are merged through a hierarchical modal-
ity aggregation and distribution network. This process consists of
two parts: the first part involves attention-based [34] shallow fea-
ture extraction, while the second part involves feature distribution
and fusion. The former is responsible for extracting the effective
components in shallow features, while the latter is responsible for
distributing and fusing shallow features with deep features. The
fused features are then used for final target discrimination and
tracking.
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Figure 2: The framework of HMAD, consists of backbone , hierarchical modality aggregation and distribution network and a
target discrimination model.

Ourmethod uses random samples from video sequences to train a
discriminative model derived from the DIMP [3]. The fused features
are fed into the discrimination model initialization module, which
initializes the target region. This module adopts a method of precise
pooling to generateW × H × N feature filters. It then iteratively
optimizes the initialized filters with background information from
the target region and generates the final discriminative model,
which is used in the testing phase to predict the classification score
and location of the tracked target.

In order to maintain the robust generalization ability of the dis-
crimination model during tracking, the HMAD tracker employs the
online update strategy of DIMP [3] to update the discrimination
model. During prediction, for the first frame with annotations, a
data augmentation strategy is used to construct an initial set of K
samples, given the accuracy of the annotations. The trained discrim-
inationmodel is then applied to theseK samples for further gradient
descent, initially satisfying the feature distribution of the sequence.
As tracking progresses, if the confidence in the tracked target is
high, the network opts to discard the oldest samples, maintaining
a maximum of L samples. Throughout the tracking process, the
discrimination model is optimized using the saved samples every P
frames. This ensures that the discrimination model always satisfies
the feature distribution of the sequence and does not lose its dis-
criminative power over the target features due to environmental
disturbances or target scale variations.

3.2 Hierarchical Modality Aggregation and
Distribution Network

The hierarchical modality aggregation and distribution network can
be divided into two parts: attention-based shallow feature extraction
and feature distribution fusion. Their respective roles are to extract
the effective parts of shallow features and effectively fuse deep and
shallow features.

Attention-based shallow feature extraction first extracts shallow
features from the second layer of the ResNet50 [13] backbone net-
work and uses an attention mechanism to fuse the shallow features,
which uses CBAM [34] attention module. The module contains a
channel attention component and a spatial attention component.
The experiments of the CBAM show that places channel attention
before spatial attention can achieve better performance. Therefore,
we use the same design. To facilitate reader comprehension, we
briefly introduce channel attention and spatial attention. For further
details, please refer to CBAM [34]. The channel attention first apply
max-pooling and mean-pooling to the features. Subsequently, the
channel attention distributes weights across the channels, employ-
ing a multi-layer perceptron for this process. The output feature
vectors from these two parts are then summed element-wise and
activated using a sigmoid function. The formulation governing the
channel attention mechanism is given as follows:

𝐹𝑐 = 𝜎 (MLP(AvgPool(𝐹𝑜𝑟𝑖 )) +MLP(MaxPool(𝐹𝑜𝑟𝑖 ))), (1)

where 𝐹𝑐 represents the feature processed by the channel atten-
tion mechanism, 𝜎 (·) denotes the sigmoid activation function, and
MLP(·) stands for a multi-layer perceptron; AvgPool(·) represents
average pooling and MaxPool(·) correspond to max pooling opera-
tions.

The role of spatial attention is to enhance the meaningful local
regions within features. The feature output from channel attention
is first concatenated after max pooling and average pooling opera-
tions in sequence, and then output after convolution and activation
operations. The spatial attention formulation is as follows:

𝐹𝑠 = 𝜎

(
𝑓 7×7 ( [AvgPool(𝐹𝑐 ); MaxPool(𝐹𝑐 )])

)
, (2)

where 𝐹𝑠 represents the feature processed by the spatial attention
mechanism, 𝜎 (·) denotes the Sigmoid activation function, and 𝑓 7×7

is a convolution operation with a 7 × 7 kernel. AvgPool(·) and
MaxPool(·) are the average pooling and max pooling operations
respectively.
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After the attention mechanism, the parts of shallow features that
are beneficial for the tracking task are greatly enhanced. These
features not only complement the lack of texture information and
detailed features in deep features, but also guide deep features to
pay more attention to the parts that require more attention. This
module uses convolutional pooling operations to scale it to the
same size as the deep features, which are then fed into the feature
distribution module together with the deep features.

The inputs to this module include deep RGB features, deep depth
features, and shallow fusion features. After adding the three fea-
tures, they are passed into the global average pooling operation.
This operation obtains a global feature vector through average
pooling and projection operations to comprehensively consider the
three aspects of features. Then this feature vector is divided into
three parts, which are the RGB feature branch, the depth feature
branch, and the shallow feature branch. Each branch goes through a
projection operation and activation operation, and outputs a weight
for each channel of the branch. This weight describes in detail the
importance of each channel of the three features. Multiplying this
weight by the three-channel input feature elementally, the adjusted
deep and shallow features can be obtained. These features not only
comprehensively consider the necessary feature information glob-
ally but also contain contour and texture features, which greatly
assist the subsequent tracking tasks. The formula for global distri-
bution is as follows:

𝐹𝑔 = 𝐹𝐶 (𝐺𝑃 (𝐹𝑅 ⊕ 𝐹𝐷 ⊕ 𝐹𝑆 )) , (3)

where FC(·) represents fully connected layer, GP(·) represents
global pooling; 𝐹𝑅 , 𝐹𝐷 and 𝐹𝑆 represent deep RGB features, deep
depth features, and shallow fusion features, respectively; ⊕ denotes
element-wise addition. After obtaining the distribution features of
the three branches, the final fused features can be obtained again
using element-wise addition.

𝐹𝑖 = 𝐹𝑖 ⊗ 𝜎

(
𝐹𝐶𝑖

(
𝐹𝑔𝑙𝑜𝑏𝑎𝑙

))
, 𝑖 ∈ {𝑅, 𝐷, 𝑆}, (4)

where 𝐹𝑖 represents the processed corresponding feature; FCi (·)
represents fully connected layer in different branches; ⊗ denotes
the element-wise multiplication operation.

4 EXPERIMENTS
4.1 Datasets and Metrics
We conduct comparison experimentswith existing high-performance
trackers on two popular RGB-D tracking datasets, DepthTrack [36]
and RGBD1K [40]. Given that the datasets predominantly consists
of extended temporal sequences, evaluation metrics for long-term
tracking have been selected to assess performance. These include
precision (Pr), recall (Re), and F-score [21, 24].

Precision is calculated by the Gaussian Mixture Distribution be-
tween all frame output boxes and the given correct output boxes.
The sum of all computed Gaussian Mixture Distributions is divided
by the total frame count to determine tracking precision. The pre-
cision is calculated as follows:

Pr (𝜏𝜃 ) =
1
𝑁𝑝

∑︁
𝑡

Ω (𝐴𝑡 (𝜃𝑡 ) ,𝐺𝑡 ) , 𝑡 ∈ {𝑡 : 𝐴𝑡 (𝜃𝑡 ) ≠ ∅} , (5)

where Pr (𝜏𝜃 ) represents precision, 𝐴𝑡 (𝜃𝑡 ) represents the tracker’s
output, 𝐺𝑡 represents the ground truth, and Ω(·) represents the in-
tersection of the two. The sum is taken over all non-empty predicted
results.

Recall is calculated by the Gaussian Mixture Distribution be-
tween all frame output boxes and the given correct output boxes.
The sum of all computed Gaussian Mixture Distributions is divided
by the total frame count where targets are present to determine
tracking recall:

Re (𝜏𝜃 ) =
1
𝑁𝑔

∑︁
𝑡

Ω (𝐴𝑡 (𝜃𝑡 ) ,𝐺𝑡 ) , 𝑡 ∈ {𝑡 : 𝐺𝑡 ≠ ∅} , (6)

where Re (𝜏𝜃 ) represents recall, 𝐴𝑡 (𝜃𝑡 ) represents the tracker’s
output. The sum is taken over all non-empty ground truth results.
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Table 1: Comparision between HDMA and the state-of-the-arts trackers. The best results are highlighted in red and the second
are highlighted in green. The performance is evaluated in terms of precision (Pr), recall (Re), F-score and frame per second
(FPS).

Method DepthTrack RGBD1K FPSPr Re F-score Pr Re F-score
Siam_LTD [27] 0.342 0.418 0.376 0.543 0.318 0.398 13.0

DAL [30] 0.512 0.369 0.429 0.562 0.407 0.472 -
CLGS_D [27] 0.369 0.584 0.453 - - - 7.3
ATCAIS [27] 0.455 0.500 0.476 0.511 0.451 0.479 1.3
DDIMP [27] 0.469 0.503 0.485 0.557 0.534 0.545 4.7
Drefine [20] - - - 0.532 0.462 0.494 -
OSTrack [38] 0.522 0.536 0.529 - - - -
DeT [36] 0.506 0.560 0.532 0.438 0.419 0.428 36.8
SPT [40] 0.549 0.527 0.538 0.545 0.578 0.561 25.3

ProTrack [37] 0.583 0.573 0.578 - - - -
ViPT [39] 0.596 0.592 0.594 - - - 14.1
HMAD 0.626 0.597 0.611 0.573 0.552 0.562 50.0

Sim
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HMAD Ground Truth DAL DeT ViPT

Figure 4: Qualitative comparison between HDMA and other
trackers on three challenging sequences in DepthTrack date-
set.

F-score is divided by the summary of Pr and Re and then multi-
plied by two to obtain the tracking F-score:

𝐹 -𝑠𝑐𝑜𝑟𝑒 (𝜏𝜃 ) = 2
Pr (𝜏𝜃 ) Re (𝜏𝜃 )

(Pr (𝜏𝜃 ) + Re (𝜏𝜃 ))
, (7)

where Re (𝜏𝜃 ) represents the corresponding recall; Pr (𝜏𝜃 ) repre-
sents the corresponding precision.

4.2 Implementation Details
All experimental methods are trained on a server with an 5.2GHz
CPU and a RTX-3090 GPU with 24GB memory. The proposed
tracker was then deployed on the NVIDIA Jetson AGX Orin plat-
form, which boasts a 1.6GHz CPU and 2,000 stream processors GPU.
In terms of parameter settings, we utilize an Adam optimizer with
a learning rate of 2e-4 for optimization. The network loss function
is divided into two parts, namely the classification loss and the IoU
loss. Both of these are online update loss functions that change as

the model is updated online. During prediction, for the first anno-
tated frame, the initial set of samples is set to 15, the threshold for
adding samples is set to 0.6, and the maximum number of samples
is set to 50.

4.3 Compararison with the State-of-the-Arts
To verify the effectiveness of HMAD, we compare HMAD on the
test set of DepthTrack [36] and RGBD1K [40] with 11 state-of-
arts methods, including DDIMP [27], ATCAIS [27], Siam_LTD [27],
OSTrack [38], CLGS_D [27], Drefine [20], DAL [30], DeT [36], Pro-
Track [37], SPT [40] and ViPT [39]. All the tracking speed are
derived from the published papers.

The results of the proposed tracker on DepthTrack [36] are
presented in Table 1. The proposed method outperforms all existing
techniques, including the prompt learning based method ViPT [39].
Specifically, we observe improvements of 3.0%, 0.5% and 1.7% in Pr,
Re, and F-score, respectively. Moreover, our method achieves the
fastest tracking speed among the existing methods.

The comparative results on the RGBD1K [40] dataset are shown
in Table 1. The proposed tracker surpasses all other methods. Com-
pared to the second-placed SPT method, our method leads by 2.8%
and 0.1% in PR and F-score, respectively. The fact that the pro-
posed tracker achieves the best performance on the larger, more
complex RGBD1K dataset sufficiently demonstrates its superiority.
To intuitively demonstrate the effectiveness of HMAD, we select
three challenging sequences from DepthTrack dataset [36] for vi-
sualization analysis, as shown in Figure 4. In the Hand01_indoor
sequence, the main challenges are complex hand gesture changes
and similar targets. HMAD accurately and robustly tracks the tar-
get, while other methods suffer from tracking losses and errors. In
the Ball06_indoor sequence, the primary challenges include numer-
ous similar targets and rapid movement, HMAD stably tracked the
correct target. In the Rolle_indoor sequence, the main challenge is
the dimly lit environment, and HMAD effectively overcame this
problem, achieving stable tracking.
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Figure 5: Real-world test results of the proposed tracker, the
tracking results are marked in red and the ground truth are
marked in green.

Table 2: Ablation study on different components. The perfor-
mance is evaluated on the DepthTrack test set in terms of
precision (Pr), recall (Re) and F-score.

Variations Pr Re F-score
baseline 0.548 0.525 0.536

w/o distribution 0.571 0.545 0.557
w/o attention 0.596 0.562 0.579

HMAD 0.626 0.597 0.611

4.4 Ablation Study
To evaluate the specific impact of each module within our proposed
method, we conduct an ablation experiment using the test set of
the DepthTrack [36]. Table 2 presents the results of our ablation
experiment. The baseline model used in this study directly add
RGB and depth data, resulting in Pr, Re, and F-score values of 0.548,
0.525 and 0.536 respectively. We use the attention module [34]
independently on top of the baseline, resulting in improvements of
2.3%, 2.0% and 2.1% for Precision, Recall, and F-score, respectively.
Similarly, the incorporation of the feature distribution aggregation
module separately led to performance gains of 4.8%, 3.7% and 4.1%
for Precision, Recall, and F-score, respectively. The complete HDMA
achieve a score of 0.626, 0.597 and 0.611 respectively. The ablation
study allows us to investigate the impact of each module on the
overall performance of the proposed method.

4.5 Real-World Tests
In this section, we deploy the proposed tracker on an actual edge
device to validate its performance in the real world. We conduct
experiments using the NVIDIA Jetson AGX Orin platform and the
Orbbec Astra PRO RGB-D dual-modality camera, The device used is
shown in the bottom right corner of Figure 5. Notably, this camera
can effectively detect distances up to eight meters with an error

of less than three millimeter, meeting the requirements of real-
world application scenarios. Meanwhile, the edge device used in
this system has a computing power of approximately one-third of
the mainstream GPU RTX-3090, which places higher requirements
on real-time performance for the method.

RGB-D tracking is primarily used in the real world for human
pose estimation and behavior recognition. To evaluate the perfor-
mance of the proposed tracker in these application scenarios, we
simulated real-world scenarios and added corresponding challenges.
As shown in rows one and two of Figure 5, in the commonly used
gesture tracking task in human-machine interaction, the proposed
method can stably track complexly varying hand targets. The im-
ages in row three and four demonstrate tracking in scenes with
similar targets; when there are two similar targets in the scene, the
proposed method can still stably track the correct target. The last
two rows show the tracking effect in a dim environment; even when
the RGB modality is essentially ineffective, the proposed method
still successfully tracks the target using depth information.

Throughout all experiments, the tracker consistently maintained
a tracking speed of 15 FPS on the edge device. These experiments
comprehensively illustrate that the proposed tracker not only at-
tained excellent metrics on offline datasets but also demonstrated
real-time tracking capabilities and exceptional performance in real-
world environments and on edge device.

5 CONCLUSIONS
In this paper, we proposed a novel HMAD tracker for real-time and
robust RGB-D tracking tasks. We proposed a hierarchical modality
aggregation and distribution network that efficiently fuses multi-
level features from RGB and depth modalities. Experimental results
demonstrated that HMAD achieves state-of-the-art performance
on multiple datasets. Moreover, real-world test verified that HMAD
can effectively handle various challenges presented in real-world
and achieves real-time effectiveness.
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