
Cache Optimization and Performance Modeling of Batched,
Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors

SAMEER DESHMUKH, School of Computing, Tokyo Institute of Technology, AIST, Japan
RIO YOKOTA, School of Computing, Tokyo Institute of Technology, AIST, Japan
GEORGE BOSILCA, Innovative Computing Laboratory, University of Tennessee at Knoxville, USA

Factorization and multiplication of dense matrices and tensors are critical, yet extremely expensive pieces
of the scientific toolbox. Careful use of low rank approximation can drastically reduce the computation and
memory requirements of these operations. In addition to a lower arithmetic complexity, such methods can, by
their structure, be designed to efficiently exploit modern hardware architectures. The majority of existing
work relies on batched BLAS libraries to handle the computation of many small dense matrices. We show that
through careful analysis of the cache utilization, register accumulation using SIMD registers and a redesign
of the implementation, one can achieve significantly higher throughput for these types of batched low-rank
matrices across a large range of block and batch sizes. We test our algorithm on 3 CPUs using diverse ISAs –
the Fujitsu A64FX using ARM SVE, the Intel Xeon 6148 using AVX-512 and AMD EPYC 7502 using AVX-2,
and show that our new batching methodology is able to obtain more than twice the throughput of vendor
optimized libraries for all CPU architectures and problem sizes.

CCS Concepts: • Theory of computation→ Shared memory algorithms; • Computer systems organi-
zation→Multicore architectures; • Computing methodologies→ Linear algebra algorithms; Shared
memory algorithms.

Additional Key Words and Phrases: Low-rank matrix multiplication, batched matrix multiplication, cache
blocking, performance modeling

ACM Reference Format:
Sameer Deshmukh, Rio Yokota, and George Bosilca. 2023. Cache Optimization and Performance Modeling of
Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD, and Fujitsu Processors. J. ACM 1, 1
(November 2023), 31 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Large dense matrices and tensors appear in applications such as Boundary integral methods, ma-
chine learning, computational finance and multivariate regression. While direct multiplication and
factorization of such data sets is computationally expensive, careful use of low rank approximation
techniques can drastically reduce the compute and memory cost of these methods with a control-
lable decrease in accuracy. Examples of such applications are the use of hierarchical matrices [26]

Authors’ addresses: Sameer Deshmukh, deshmukh.s.aa@m.titech.ac.jp, School of Computing, Tokyo Institute of Technology,
AIST, Ishikawadai Bldg. 9, 2-12-1 Ookayama, Meguro-ku, Tokyo, Tokyo, Japan, 152-8550; Rio Yokota, rioyokota@gsic.titech.
ac.jp, School of Computing, Tokyo Institute of Technology, AIST, Ishikawadai Bldg. 9, 2-12-1 Ookayama, Meguro-ku, Tokyo,
Tokyo, Japan, 152-8550; George Bosilca, bosilca@icl.utk.co.us, Innovative Computing Laboratory, University of Tennessee
at Knoxville, Claxton 308C, 1122 Volunteer Blvd, Knoxville, USA, 37996.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
0004-5411/2023/11-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

ar
X

iv
:2

31
1.

07
60

2v
1

 [
cs

.P
F]

 1
1

N
ov

 2
02

3

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Deshmukh, Yokota and Bosilca.

for factorization of large dense matrices, tensor decomposition for multilinear systems [9] and
FMM in Deep Learning [44].
Maximizing the computational efficiency of such methods has its unique challenges, different

from both dense matrices and sparse matrices. On one hand, it shares some of the challenges
of sparse matrices, where the amount of arithmetic operations (Flops) per loaded data (Bytes)
decreases with the rank of the low-rank blocks. On the other hand, it is different from sparse
matrices in the sense that the low-rank blocks are not completely sparse but consist of small
dense matrices, providing some opportunities for data reuse and prefetch. The resulting fine-grain
regularity allows these methods to more efficiently utilize SIMD operations compared to the efficacy
of sparse matrices. Optimizing the throughput of these structured low-rank matrices, however, is
not an area that has been investigated sufficiently in the literature. We have attempted to address
this gap by manually writing our own matrix multiplication kernels for low-rank matrices that
greatly outperform vendor optimized libraries in respect to this particular issue.
This work focuses on optimizing the inner kernel for this new type of problem, where the

matrix is neither dense nor sparse. As such, this work runs counter to other existing work that
focus more on the parallel scalability of structured low-rank matrices. Although [10, 13, 47, 50, 62]
report hierarchical matrix factorization on many hundreds of nodes, the computation shows sub-
optimal resource utilization mainly attributed to library routines that are not efficiently tuned for
handling the memory bound kernels of such factorization routines. We revisit this, and address the
improvement of the efficiency of the low rank kernels that form a core of the computation.

In this paper we propose a new technique for optimizing a central component of structured low-
rank matrices, the low rank matrix multiplication. Our technique performs batched computation of
low rank matrices and shows, through a careful utilization of the different levels of cache, more
efficiency than vendor optimized math libraries such as MKL, AMD-BLIS and SSL-2 (Scientific
Software Library) for a variety of block and batch sizes. Thus, when compared to vendor libraries,
our method shows stronger scaling for a shared memory execution. Specifically, we make two
contributions in this paper:

(1) An improved algorithm for batched computation of low rank matrix multiplication, that can
achieve more than 2𝑥 greater throughput than vendor optimized libraries for all the CPU
architectures and problem sizes tested;

(2) Techniques for optimization and performance validation of low level kernels with extensive
use of the ECM [31] (Execution-Cache-Memory) performance model.

The rest of this paper is organized as follows. In Section 2 we review the existing literature on
low rank matrices and concretely define the low rank multiplication operation optimized in this
paper. In Section 3 we review the current state of the art in obtaining optimal chip performance,
along with various performance modeling methodologies for guiding the development of high
performance implementations. Section 4 describes the new algorithm and proposed cache blocking
methodology. Section 5 reviews the applicability of the ECM performance model for our problem
on the tested CPUs and demonstrates that use of the ECM model plays a pivotal role in achieving
the best possible performance from a given CPU. Section 6 contains a detailed analysis of each
kernel within our algorithm and presents the optimization on each of our target CPUs using the
ECM performance model. We then provide the results of our method for our target CPUs compared
to various vendor-optimized libraries in Section 7 and finally conclude the paper in Section 8.

2 LOW RANK MULTIPLICATION
The low rank approximation of a dense matrix allows capturing the most significant row and
column bases of the dense matrix. If the singular values of the dense matrix (typically obtained

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors 3

Dense U

S VT

RSVD
Low Rank

m

n

m

n

ra
nk

rank rank

Fig. 1. Representation of a low rank matrix using an algebraic method such as the Randomized Singular
Value Decomposition (RSVD).

Algorithm 1: Low Rank matrix multiplication.
Input: LowRank A(𝐴𝑈 , 𝐴𝑋 , 𝐴𝑉𝑇) of (𝑚,𝑘, 𝑟𝑎𝑛𝑘𝐴), LowRank B(𝐵𝑈 , 𝐵𝑋 , 𝐵𝑇𝑉) of (𝑘, 𝑛, 𝑟𝑎𝑛𝑘𝐵)
Result: 𝐺𝑋𝑌 of size 𝑟𝑎𝑛𝑘 × 𝑟𝑎𝑛𝑘

1 𝐶𝑡𝑒𝑚𝑝 = 𝐴𝑉𝑇 · 𝐵𝑈
2 𝐸𝑡𝑒𝑚𝑝 = 𝐴𝑋 ·𝐶𝑡𝑒𝑚𝑝
3 𝐺𝑋𝑌 = 𝐸𝑡𝑒𝑚𝑝 · 𝐵𝑋

from the Singular Value Decomposition of the matrix) reduce very rapidly, we only need to retain
the first few singular values and associated basis vectors, thus expressing the dense matrix with
significant data compression. The number of significant bases retained is the numerical rank of the
matrix.

Low rank matrices are generated from the corresponding dense matrix block using a decomposi-
tion like randomized SVD (Singular Value Decomposition) [28], Interpolative Decomposition [28],
and Adaptive Cross Approximation (ACA) [49] (which are more efficient than SVD). The dimensions
of the low rank approximation of a dense matrix of dimension𝑚 × 𝑛 using a rank of 𝑟𝑎𝑛𝑘 can
be represented using a tuple of 3 elements (𝑚,𝑛, 𝑟𝑎𝑛𝑘). A dense matrix 𝐴𝑚×𝑛 is represented as a
product of three matrices as shown in Eq. 1, and represented in Fig.1.

𝐴𝑚×𝑛 ≈ 𝑈𝑚×𝑟𝑎𝑛𝑘 · 𝑆𝑟𝑎𝑛𝑘×𝑟𝑎𝑛𝑘 ·𝑉𝑟𝑎𝑛𝑘×𝑛 (1)

Thus the total storage requirement of the matrix reduces to𝑚 × 𝑟𝑎𝑛𝑘 + 𝑟𝑎𝑛𝑘 × 𝑟𝑎𝑛𝑘 + 𝑟𝑎𝑛𝑘 × 𝑛,
a value significantly smaller than𝑚 × 𝑛 memory necessary for the dense matrix, if 𝑟𝑎𝑛𝑘 is much
smaller than𝑚 and 𝑛.

An important component in the approximation and solution of hierarchical matrices as shown in
Section 1 is the low rank multiplication algorithm shown in Algorithm 1. This algorithm involves
multiplication between two ‘skinny’ matrices 𝐴𝑉𝑇 and 𝐵𝑈 and two ‘small’ matrices 𝐴𝑋 and 𝐵𝑋 of
the form 𝐴𝑋 ×𝐴𝑉𝑇 × 𝐵𝑈 × 𝐵𝑋 . Multiplication between such matrices is particularly challenging as
a result of their small sizes, which makes the computation heavily memory bound. The technique
that we develop in this paper optimizes this specific step by batching a large number of independent
low rank matrices together for improved performance. The low rank multiplication forms the first
step of the rounded addition [7] algorithm for addition of low rank matrices, and the low rank
matrix-vector multiplication.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

4 Deshmukh, Yokota and Bosilca.

CPU

L1 cache
(32kB)

L2 cache
(1024 kB)

L3 cache (28 MB)

Main Memory
(191 GB)

11
0

ns 20
 n

s 5
ns

1 ns

FMA
Ac

ce
ss

 la
te

nc
y

fo
r e

ac
h

le
ve

l FMA time =
0.0109 ns

Fig. 2. Access latency along the memory hierarchy when fetching data to execute an FMA on an Intel Xeon
6148 CPU (Skylake-X micro-architecture).

3 PERFORMANCE OPTIMIZATION ONMULTI-PROCESSORS
3.1 Software methodologies for optimal hardware utilization
Having reached the limits of Moore’s law, CPU architecture designers have moved from simply
improving CPU clock speed and die size to exposing multiple layers of parallelism in their designs.
Innovations such as SIMD architectures, Simultaneous Multi-threading (SMT) and ccNUMA designs
have led to potential parallelism on every level of the CPU. However, there is still a large difference
in the time taken for arithmetic operations vs. time taken for fetching them from memory. For
example, Fig. 2 shows the time to execute an FMA operation on a single core on the Intel Xeon Gold
6148 CPU vs. the time taken to fetch a single double-precision number from various layers of the
cache hierarchy. Thus, the large ratio of memory vs. CPU speed (termed the ‘machine balance’ [43]),
has led software writers to adopt innovative data locality optimizations in their designs in order to
ensure that hardware spends most of its time on performing useful arithmetic calculations.
The dense linear algebra community has envisioned several approaches for optimizing dense

linear algebra routines using analytically modeled blocked algorithms [6, 23, 40, 54, 61, 63], auto-
tuning [56], systematic derivation of algorithms [24] and recursive cache oblivious algorithms [18,
19]. Memory bound sparse matrix algorithms have similarly seen various innovations [4, 35, 45,
55] where the implementation of register blocking and new sparse matrix formats have led to
increased efficiency. The tiny matrices arising out of low rank multiplication can be potentially
batched together for better SIMD and bandwidth utilization, as has been done by batched matrix
multiplication routines from MAGMA [27], Intel Math Kernel Library, and KokkosKernels [38].
Various approaches have been proposed for batching on both CPUs and GPUs [1, 2, 14, 37, 41].

The LIBXSMM library [22, 29] even optimizes batched matrix operations using register blocking
and a JIT compiler. Alternate data layouts that interleave data across batches have been shown to

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors 5

8 x 8 16 x 16
DIMENSION

0.000

0.001

0.002

0.003

0.004

G
F

L
O

P
S

KOKKOS-KERNELS

MKL

MKL BATCH

MKL COMPACT

(a) Small matrices

8x512 8x1024 8x2048 16x512 16x1024 16x2048
DIMENSION

0

20

40

60

80

100

120

G
F

L
O

P
S

KOKKOS-KERNELS

MKL

MKL BATCH

MKL COMPACT

(b) Skinny matrices

Fig. 3. Performance of batched small and skinny matrices for a batch size of 10000 using 20 physical cores
using various batching techniques on a Intel Xeon Gold 6148 CPU. MKL uses non-batched MKL routines in a
loop around the batch dimension. MKL BATCH performs batching with batched MKL routines without using
memory interleaving across the batch dimension, and MKL COMPACT performs batching using memory
interleaving as described by Dongarra et. al. [16]. Kokkos-kernels [38] is a library designed from the ground
up for obtaining efficiency with heterogeneous architectures and irregular matrix sizes.

outperform simple batching in some cases [16, 38]. This approach differs from the other batching
approaches in that it utilizes a different permutation of the data across the batch dimension to
keep the SIMD units busy. While efficient for very small matrices, the packing and unpacking
quickly becomes a bottleneck as the matrix sizes increase. LibShalom [60] does away with the
packing overhead for specific matrix sizes and optimizes the instruction schedule to achieve high
performance of small matrix multiplications on ARM v8 CPUs. BLASFEO [20, 21] also provides
batched LAPACK routines apart from matrix multiplication and achieves better performance than
vendor optimized libraries on various CPUs. TSM2 and TSM2X [15, 48] are specifically built for
optimizing tall-and-skinny matrix multiplication and use code generation for tuning the usage of
threads and the cache hierarchy on the GPU.

Fig. 3 shows the performance of various batching techniques (KOKKOS-KERNELS, MKL BATCH
and MKL COMPACT) vs. not batched techniques (MKL) for independent small matrices in Fig. 3(a)
and for independent skinny matrices in Fig. 3(b) for a constant batch size of 10,000. Performing
the same computation using batched routines shows better performance in most cases. The batch
size is fixed at 10,000 since it is found to be a sufficiently large batch size to show the benefits
of batched vs. non-batched routines. Clearly, while efficient implementations for batched skinny
matrices exist, small matrix operations are always under-performing. These operations are the least
efficient part of many algorithms, and as such are the most promising candidates for enhancing the
performance of low rank multiplication. Although Kokkos-kernels comes close to the performance
of vendor-optimized batched routines, it does so for only some specific cases and we therefore use
only vendor-optimized libraries in our experimental evaluation in Sec. 7.

3.2 Optimization with performance modeling
Performance modeling is useful for predicting the ideal or peak performance of an algorithm given
architectural constraints. It can be used not only for analytically deriving the peak performance,
but also for indicating which area most benefits from direct optimization.
Techniques such as the roofline model [58] are useful for gaining a measure of the memory-

boundedness of an algorithm. However, these ‘top-level’ techniques do not dive deeper into the

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

6 Deshmukh, Yokota and Bosilca.

0
40

0
80

0
12

00
16

00
20

00
24

00
28

00
32

00
36

00

DIMENSION

0

2

4

6

8
L

L
C

M
IS

S
E

S
×109

HAYSTACK

PAPI L3 TCM

0

20

40

60

80

100

R
el

.
E

rr
or

(%
)

Rel. Error

Fig. 4. LLC misses of small matrix multiplication as predicted by haystack. The Y axis on the right shows the
relative error between the calculated LLCmisses by haystack vs. PAPI_L3_TCMmeasurements for𝑀 = 𝑁 = 𝐾

as given in the X axis. Tests performed on a Intel Xeon Gold 6148 CPU (Skylake-X).

performance of the kernels in question. As a result, opportunities for optimization with the roofline
model are difficult to identify.

3.3 Performance modeling of LLC misses
A simple approach for modeling the overall run time of memory bound applications is to measure
the number of last-level-cache (LLC) misses [11, 25, 33, 34]. Several approaches ranging from
analytical [34] and semi-empirical modeling [30] have been suggested for this purpose. More
advanced approaches involving simulation have been suggested by [12, 42] using stack distances.
This idea is extended by [25], whose tool ‘haystack’ allows predicting the LLC misses using a faster
simulation methodology than previously available. However, as Fig. 4 shows, haystack is not able
to predict the LLC misses of smaller matrices.

4 BATCHING METHODOLOGY
4.1 Looping order of Low rank multiplication
The usual low rank multiplication is shown in Algorithm 1. If done separately, this will lead to 3
nested loops for each multiplication. Since there exist dependencies between these loops, we end
up writing the temporary blocks to memory after each step. With a rewrite of the loops, we can
perform the batched matrix multiplication using 6 nested loops as shown in Algorithm 2. This
way the result can be accumulated into a single variable 𝐺𝑋𝑌 and written back into memory only
once, at the end of the computation. We also notice that all temporary blocks used in this new
algorithm are tiny matrices (size 𝑟𝑎𝑛𝑘 × 𝑟𝑎𝑛𝑘) and can fit within the vector registers when 𝑟𝑎𝑛𝑘 is
sufficiently small. We term the 𝐴𝑋 and 𝐵𝑋 as ‘small matrices’ and 𝐴𝑉𝑇 and 𝐵𝑈 as ‘skinny matrices’.
Since the batch dimension is typically the largest dimension in a batched multiplication of small
sized matrices, performing the multiplication as specified in Algorithm 2 allows for more optimal

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors 7

Algorithm 2: Batched low rank multiplication expressed as 6 nested loops.
Input: 𝐴𝑉𝑇 _𝑏𝑎𝑡𝑐ℎ, 𝐵𝑈 _𝑏𝑎𝑡𝑐ℎ, 𝐴𝑋 _𝑏𝑎𝑡𝑐ℎ, 𝐵𝑋 _𝑏𝑎𝑡𝑐ℎ
Result: 𝐺𝑋𝑌 _𝑏𝑎𝑡𝑐ℎ

1 for 𝑏𝑎𝑡𝑐ℎ ← 0 to 𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸 do /* Loop 1 */
2 𝐴𝑉𝑇 = 𝐴𝑉𝑇 _𝑏𝑎𝑡𝑐ℎ(𝑏𝑎𝑡𝑐ℎ)
3 𝐵𝑈 = 𝐵𝑈 _𝑏𝑎𝑡𝑐ℎ(𝑏𝑎𝑡𝑐ℎ)
4 𝐴𝑋 = 𝐴𝑋 _𝑏𝑎𝑡𝑐ℎ(𝑏𝑎𝑡𝑐ℎ)
5 𝐵𝑋 = 𝐵𝑋 _𝑏𝑎𝑡𝑐ℎ(𝑏𝑎𝑡𝑐ℎ)
6 𝐺𝑋𝑌 = 𝐺𝑋𝑌 _𝑏𝑎𝑡𝑐ℎ(𝑏𝑎𝑡𝑐ℎ)
7 for𝑚 ← 0 to 𝑟𝑎𝑛𝑘 do /* Loop 2 */
8 for 𝑛 ← 0 to 𝑟𝑎𝑛𝑘 do /* Loop 3 */
9 𝐶𝑀𝑁 = 0

10 for 𝑘 ← 0 to 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 do /* Loop 4 */
11 𝐶𝑀𝑁 += 𝐴𝑉𝑇 (𝑚,𝑘) × 𝐵𝑈 (𝑘, 𝑛)
12 end
13 for 𝑥 ← 0 to 𝑟𝑎𝑛𝑘 do /* Loop 5 */
14 𝐸𝑋𝑁 = 𝐴𝑋 (𝑥,𝑚) ×𝐶𝑀𝑁
15 for 𝑦 ← 0 to 𝑟𝑎𝑛𝑘 do /* Loop 6 */
16 𝐺𝑋𝑌 (𝑥,𝑦) += 𝐸𝑋𝑁 × 𝐵𝑋 (𝑛,𝑦)
17 end
18 end
19 end
20 end
21 end

utilization of bandwidth and therefore reduces the amount of time spent in fetching data from
main memory for a multi-threaded implementation. This has been experimentally proven to be
true in Sec. 7. Therefore, a combination of improved bandwidth utilization and accumulation of
intermediate results within SIMD registers allows our algorithm to achieve superior results than
vendor optimized libraries.

4.2 Locality optimization for low rank multiplication
BLISLAB [46] separates the implementation of the dense matrix multiplication into a portable
macro kernel written in a high level language such as C, and an architecture-specific micro kernel
typically written using intrinsics or assembly code. This allows libraries like BLIS to be portable
across a diverse set of machines and exposes thread-level parallelism [51] in the macro kernel. This
approach has been shown to attain near peak performance for a diverse set of CPU architectures
as a result of enhanced data reuse.

We follow a similar approach for the low rank multiplication as shown in Algorithm 3. Assuming
a three level cache hierarchy, loop 1A packs small matrices into the last level cache (L3) and loop
1B packs the skinny matrices into the L2 cache. Loop 1C then iterates over the batches of skinny
matrices that are already packed in the cache. Thus loop 1 in Algorithm 2 is split into loop 1A, 1B
and 1C in Algorithm 3. The data can then be streamed directly from the cache closest to the CPU
(L1) when loading into registers. This can be changed to use only two cache levels in case of the
A64FX CPU.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

8 Deshmukh, Yokota and Bosilca.

Algorithm 3: Batched low rank multiplication with a micro-kernel.
Input: 𝐴𝑉𝑇 _𝑏𝑎𝑡𝑐ℎ, 𝐵𝑈 _𝑏𝑎𝑡𝑐ℎ, 𝐴𝑋 _𝑏𝑎𝑡𝑐ℎ, 𝐵𝑋 _𝑏𝑎𝑡𝑐ℎ
Result: 𝐺𝑋𝑌 _𝑏𝑎𝑡𝑐ℎ
/* Pack as many small matrices in as possible in L3 cache with

thread-level parallelism. */

1 for 𝑏𝑎𝑡𝑐ℎ𝑠𝑚𝑎𝑙𝑙 ← 0 to 𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸 step 𝐵𝑠𝑚𝑎𝑙𝑙 do /* Loop 1A */
2 𝑝𝑎𝑐𝑘𝑒𝑑_𝐴𝑋 ← 𝑝𝑎𝑐𝑘_𝐴𝑋 _𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 ()
3 𝑝𝑎𝑐𝑘𝑒𝑑_𝐵𝑋 ← 𝑝𝑎𝑐𝑘_𝐵𝑋 _𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 ()

/* Pack 𝐵𝑠𝑘𝑖𝑛𝑛𝑦 skinny matrices into the L2 cache of each core. */

4 for 𝑏𝑎𝑡𝑐ℎ𝑠𝑘𝑖𝑛𝑛𝑦 ← 0 to 𝐵𝑠𝑚𝑎𝑙𝑙

𝐵𝑠𝑘𝑖𝑛𝑛𝑦
do /* Loop 1B */

5 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← 𝑏𝑠𝑚𝑎𝑙𝑙 × 𝐵𝑠𝑚𝑎𝑙𝑙 + 𝑏𝑠𝑘𝑖𝑛𝑛𝑦 × 𝐵𝑠𝑘𝑖𝑛𝑛𝑦
6 𝑝𝑎𝑐𝑘𝑒𝑑_𝐵𝑈 ← 𝑝𝑎𝑐𝑘_𝐵𝑈 ()
7 𝑝𝑎𝑐𝑘𝑒𝑑_𝐴𝑉𝑇 ← 𝑝𝑎𝑐𝑘_𝐴𝑉𝑇 ()
8 for 𝑏𝑎𝑡𝑐ℎ ← 𝑜 𝑓 𝑓 𝑠𝑒𝑡 to 𝑜 𝑓 𝑓 𝑠𝑒𝑡 + 𝐵𝑠𝑘𝑖𝑛𝑛𝑦 do /* Loop 1C */
9 𝐺𝑋𝑌 ← 𝐺𝑋𝑌 _𝑏𝑎𝑡𝑐ℎ(𝑏𝑎𝑡𝑐ℎ)

10 for𝑚𝑐 ← 0 to𝑚 step𝑀𝑃𝐴𝐶𝐾 do /* Macro kernel. Loop 2 */
11 for 𝑛𝑐 ← 0 to 𝑛 step 𝑁𝑃𝐴𝐶𝐾 do /* Loop 3 */
12 𝐶𝑀𝑁 =𝑚𝑖𝑐𝑟𝑜_𝑘𝑒𝑟𝑛𝑒𝑙_𝑐𝑚𝑛(
13 𝑚𝑐 , 𝑛𝑐 , 𝑝𝑎𝑐𝑘𝑒𝑑_𝐵𝑈 ,
14 𝑝𝑎𝑐𝑘𝑒𝑑_𝐴𝑉𝑇

15)
16 for 𝑥𝑐 ← 0 to 𝑥 step 𝑋𝑃𝐴𝐶𝐾 do /* Loop 5 */
17 𝐸𝑋𝑁 =𝑚𝑖𝑐𝑟𝑜_𝑘𝑒𝑟𝑛𝑒𝑙_𝑒𝑥𝑛(
18 𝑚𝑐 , 𝑥𝑐 , 𝑝𝑎𝑐𝑘𝑒𝑑_𝐴𝑋 ,𝐶𝑀𝑁
19)
20 for 𝑦𝑐 ← 0 to 𝑦 step 𝑌𝑃𝐴𝐶𝐾 do /* Loop 6 */
21 𝐺𝑋𝑌 =𝑚𝑖𝑐𝑟𝑜_𝑘𝑒𝑟𝑛𝑒𝑙_𝑔𝑥𝑦 (
22 𝑝𝑎𝑐𝑘𝑒𝑑_𝐵𝑋 , 𝐸𝑋𝑁 ,
23 𝑛𝑐 , 𝑦𝑐

24)
25 end
26 end
27 end
28 end
29 end
30 end
31 end

Algorithm 2 maintains portability across CPU architectures with varying cache sizes by changing
the parameters 𝐵𝑠𝑚𝑎𝑙𝑙 and 𝐵𝑠𝑘𝑖𝑛𝑛𝑦 that control the number of small and skinny matrices being
packed into cache, respectively. The number of small matrices 𝐵𝑠𝑚𝑎𝑙𝑙 being packed into the LLC is
determined using Eq. 2 (assuming double as the type of our matrices). Eq. 2 is obtained by dividing
the number of bytes that the L3 cache can hold by the total number of bytes required for holding
two 𝑟𝑎𝑛𝑘 × 𝑟𝑎𝑛𝑘 small matrices.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors 9

CPU 𝑟𝑎𝑛𝑘 ≥ 𝑉𝐿 𝑋𝑃𝐴𝐶𝐾 𝑌𝑃𝐴𝐶𝐾 𝑀𝑃𝐴𝐶𝐾 𝑁𝑃𝐴𝐶𝐾
Fujitsu A64FX YES/NO 8 8 8 8
Intel Xeon
Gold 6148

YES 4 16 8 16
NO 8 8 8 8

AMD EPYC 7502 YES/NO 4 4 4 4
Table 1. Values of slicing variables according to architecture and 𝑟𝑎𝑛𝑘 . It is experimentally found that AMD
and Fujitsu micro kernels do not need modification irrespective of the 𝑟𝑎𝑛𝑘 whereas the Intel micro kernels
perform best when the slice widths are changed if the rank is greater than the vector length (𝑉𝐿).

The L2 cache typically has enough capacity to hold multiple skinny matrices from each operand
of the low rank multiplication for a variety of block and rank sizes. Fig. 5 shows the effect of
changing the number of skinny matrices from each low rank operand packed into the L2 cache.
Experimentally, we find that packing only a single skinny matrix from each low rank operand leads
to the best performance when using a sufficiently large batch size of 20,000 using an entire CPU
socket (20 cores). Therefore, we fix 𝐵𝑠𝑘𝑖𝑛𝑛𝑦 = 1 for all future experiments.

Algorithm 3 shows how the loops shown in Algorithm 2 can be be expressed in terms of macro
kernel loops shown by the corresponding loops 2,3,5 and 6, and three micro kernels, each for
accumulating the𝐶𝑀𝑁 , 𝐸𝑋𝑁 and𝐺𝑋𝑌 block. Each of these blocks is of size 𝑆𝑉𝐸𝐶 ×𝑆𝑉𝐸𝐶 where 𝑆𝑉𝐸𝐶
is the vector length of the CPU. Loop 4 from Algorithm 2 is absorbed into𝑚𝑖𝑐𝑟𝑜_𝑘𝑒𝑟𝑛𝑒𝑙_𝑐𝑚𝑛() and
optimized using assembly code. The macro kernel loops choose the slices of the packed blocks that
must be computed by the micro kernels. The variables𝑀𝑃𝐴𝐶𝐾 , 𝑁𝑃𝐴𝐶𝐾 , 𝑋𝑃𝐴𝐶𝐾 and 𝑌𝑃𝐴𝐶𝐾 control
the sizes of the slices that the macro kernel loops iterate over. These values are changed according
to the architecture and the rank of the problem.

For the case where 𝑟𝑎𝑛𝑘 = 𝑆𝑉𝐸𝐶 , an entire matrix𝐺𝑋𝑌 of dimension 𝑆𝑉𝐸𝐶×𝑆𝑉𝐸𝐶 can be computed
within the registers without having to perform expensive reads and writes of the temporarymatrices
𝐶𝑀𝑁 and 𝐸𝑋𝑁 . In this case all the blocking variables in Algorithm 3, i.e. 𝑀𝑃𝐴𝐶𝐾 , 𝑁𝑃𝐴𝐶𝐾 , 𝑋𝑃𝐴𝐶𝐾
and 𝑌𝑃𝐴𝐶𝐾 will be equal to 𝑟𝑎𝑛𝑘 . In these instances the computation can be performed directly
within the vector registers without a single write to memory. When the 𝑟𝑎𝑛𝑘 is too large to fit into
the SIMD registers, we perform blocking by using register blocks of different values so that the
multiplication time of the skinny matrices is minimized and yields the best performance. Table 1
shows the values of these variables when using a rank equal to the vector length and greater than
the vector length for each CPU.

𝐵𝑠𝑚𝑎𝑙𝑙 =

⌊
𝐿𝐿𝐶𝑏𝑦𝑡𝑒𝑠

2 × 𝑟𝑎𝑛𝑘 × 𝑟𝑎𝑛𝑘 × 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑑𝑜𝑢𝑏𝑙𝑒)

⌋
(2)

4.3 Packing techniques for minimization of latency
We tried out an alternate packing technique than that suggested in Sec. 4.2, where we packed the
skinny matrices 𝐵𝑈 and 𝐴𝑉𝑇 matrices in the L3 cache and small matrices in the L2 cache. However,
this showed lesser performance than packing the small matrices in the L3 cache. This is because
the time for fetching small matrices into the L3 cache is minimized when the outermost loop (loop
1A in Algorithm 3) performs this fetching since that loop has the most parallelism. Therefore, the
small matrices can be packed into the cache with maximum bandwidth utilization.

Another technique is to pack the data across batches (similar to [38]). If this is done, the 6 loop
structure used in Algorithm 2 cannot be used since it relies on processing each low rank matrix
one after another and not when the matrices are interleaved. Moreover, the interleaved batched
layout is slow for skinny matrices as shown in Fig. 3.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

10 Deshmukh, Yokota and Bosilca.

1 2 3 4 5
Bskinny VALUE

50

55

60

65

70

75

G
F

L
O

P
S

512× 8

1024× 8

2048× 8

Fig. 5. 𝐵𝑠𝑘𝑖𝑛𝑛𝑦 is the number of skinny matrices from each low rank matrix operand being packed into the
L2 cache. This experiment shows the variation in performance as 𝐵𝑠𝑘𝑖𝑛𝑛𝑦 is varied, keeping a sufficiently
large batch size constant at 20000 and using 20 physical cores of an Intel Xeon Gold 6148 CPU. It can be seen
that 𝐵𝑠𝑘𝑖𝑛𝑛𝑦 = 1 leads to the best performance, and this value is fixed in all future experiments.

5 THE ECM PERFORMANCE MODEL
The ECM (Execution-Cache-Memory) performance model [59] is an analytical technique for mod-
eling the performance of steady-state loops. It models the ideal number of clock cycles necessary
for execution of a single iteration of a loop subject to the constraints of the algorithm and machine.
This level of detail allows individual modeling of the kernels of an algorithm and cycles through an
optimization process until they match or are close to the predicted performance.

Alappat et. al. have previously used the ECM model for optimizing sparse matrix vector multipli-
cation on the Fujitsu A64FX [5]. The ECM model has been used for optimizing conjugate gradient
based iterative solvers[17, 31], modeling the proportion of bandwidth utilized by overlapping
kernels [3], and performance tuning and optimization of CFD applications [57, 59]. Witmann et. al.
[59] combine the ECMmodel with an energy consumption model to optimize both the performance
and power consumption of a lattice-boltzmann CFD solver. They compare various performance
modeling techniques and ultimately utilize insights gained from the ECM model for gaining the
most significant speedups in their application.

The ideal number of clock cycles for executing a single iteration of a loop using a single thread
on a single physical core is given by 𝑇𝐸𝐶𝑀 . As shown in Eq. 3, 𝑇𝐸𝐶𝑀 is composed of various terms,
which can be described as follows:
• 𝑇𝑐 – Clock cycles for pure compute instructions such as FMA and addition.
• 𝑇𝐿1𝐿 – Clock cycles for loads from L1 cache into registers.
• 𝑇𝐿1𝑆 – Clock cycles for stores from registers to L1 cache.
• 𝑇𝑙 – Clock cycles for reads and writes between 𝑙 − 1 and level 𝑙 cache.
• 𝑇𝑚𝑒𝑚 – Clock cycles for reads and writes between main memory and the last level cache
(LLC).

𝑇𝐸𝐶𝑀 =𝑚𝑎𝑥 (𝑇𝑐 , 𝑓 (𝑇𝐿1𝐿 ,𝑇𝐿1𝑆 ,𝑇2 . . .𝑇𝑙 ,𝑇𝑚𝑒𝑚)) (3)

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors 11

The main strength of the ECM model lies in the fact that it allows building an estimate of the
overlap between levels of caches in a CPU. An important step in modeling the performance of
any CPU using the ECM model involves first finding the function 𝑓 in Eq. 3 in order to quantify
whether the reads and writes between the caches are simultaneous or in serial. This step differs
between various CPU designs and has a non-trivial impact on the predicted performance.

Since the ECM model takes into account the individual instructions that comprise a loop, various
bottlenecks such as assembly code generation by the compiler, inconsistent cache usage, and lack
of Out of Order execution can be quickly pointed out.
We use the methodology provided by Hofmann et. al. [31] for obtaining the ECM model for a

given CPU architecture. We first build the ECM model for the STREAM TRIAD kernel for each
CPU. This is done by first building a model of the machine as shown in Sec. 5.1. We then build an
application model specifically for STREAM TRIAD as shown in Sec. 5.2. Finally, we can obtain the
equation for 𝑇𝐸𝐶𝑀 for each CPU as shown in Sec. 5.3. Since 𝑇𝐸𝐶𝑀 for each CPU (Table 2) remains
constant for all steady-state loops for that CPU, the same equation can be used for our specific
application of low rank multiplication.

5.1 Building the machine model

AMD EPYC 7502 Fujitsu A64FX Intel Xeon Gold 6148
Vector Length (bits) 512 512 256

Instruction Set AVX2 ARM SVE AVX512
Microarchitecture Zen2 ARM v8.2 SVE Skylake-X

Cores 32 48 20
FMA (/core) 2 2 2
LOAD (/core) 2 2 2
STORE (/core) 1 1 1

Cache line size (bytes) 64 256 64
Cache write policy write-allocate write-allocate write-back

Victim cache Victim L3 - Victim L3
L1 load (bytes/cycle) 32 64 64
L1 store (bytes/cycle) 32 64 64
L2 load (bytes/cycle) 32 64 64
L2 store (bytes/cycle) 32 32 64
L3 load (bytes/cycle) 16 - 14
L3 store (bytes/cycle) 16 - 14

L1 size 32 × 32 KiB 48 × 64 KiB 20 × 32 KiB
L2 size 32 × 512 KiB 4 × 8192 KiB 20 × 1024 KiB
L3 size 8 × 16MiB - 20 × 1.375 MiB

Clock freq. (Hz) 2 × 109 2 × 109 2.2 × 109
Table 2. Various machine parameters used for building the ECM performance model for each CPU.

We first take into account various machine parameters as shown in Table 2 for our target
architectures. The A64FX is configured to run on ‘normal’ mode, which means it runs at a frequency
of 2 × 109 Hz. For the Intel Xeon CPU we disable Turbo Boost and assume the frequency that is
obtained by running a simple Fused Multiply Add loop using AVX-512 instructions. We chose
these architectures since they use three diverse instruction sets, AVX2, ARM SVE and AVX-512.
This allows us to compare the performance of the low rank matrix multiplication depending on

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

12 Deshmukh, Yokota and Bosilca.

various capabilities provided by the Instruction Set Architecture (ISA), along with other machine
parameters. The cache LOAD/STORE bandwidths from various levels of cache in Table 2 can
be determined by formulating the STREAM usable bandwidth with empirical benchmarks and
formulating and validating hypotheses about the bandwidth performance that fit the empirical
measurements [31, Sec. 4].

5.2 Building the application model
The STREAM TRIAD [43] kernel is a simple kernel of the form 𝐴(𝑖) = 𝐵(𝑖) + 𝛼 ×𝐶 (𝑖). Assuming
double precision, each execution of the kernel requires loading 16 bytes of memory (𝐵(𝑖) and 𝐶 (𝑖))
and storing 8 bytes (𝐴(𝑖)) for a total of 24 bytes data transfer per iteration, in addition to a single
multiply and add operation that can be done as a single operation using the fused multiply-add
instruction. Note that the actual amount of data transferred can vary according to the write policy
of the caches. Every memory access is assumed to be a full cache line transfer [57].

We build an ECM application model for the STREAM TRIAD kernel on similar lines as has been
done by [5, 31]. The instructions that make up the STREAM TRIAD kernel, along with their latency
and throughput on various architectures can be seen in Table 3.

AMD EPYC 7502 Fujitsu A64FX Intel Xeon Gold 6148

Latency Reci.
TPut. Latency Reci.

TPut. Latency Reci.
TPut.

LOAD 𝐴(𝑖), REG0 5 0.5 11 0.5 3 0.33
LOAD 𝐵(𝑖), REG1 5 0.5 11 0.5 3 0.33
FMA REG0, alpha, REG1 5 0.5 9 0.5 4 0.75
STORE REG0, 𝐶 (𝑖) 4 0.75 9 1 3 0.66

Table 3. STREAM TRIAD kernel with respective latencies and throughputs.

Each instruction shown in Table 3 works in units of one Vector Length (VL) corresponding
to the length shown in Table 2. The latency and throughput can be easily obtained by running
identical instructions in succession with dependencies between successive instructions for latency
and without dependencies for the throughput. Alternatively, the ibench [39] tool can be used.

5.3 Building the overlap hypothesis
As shown by Hofmann et. al. [31], building the overlap hypothesis is an important step in con-
struction of the ECM model for a given CPU. Overlap hypotheses for the CPUs that we test have
already been constructed for the Fujitsu A64FX [5], and also for AMD and Intel [31, 32] CPUs.
In this section we use the techniques shown by the aforementioned authors to derive our own
assumptions about performance using the ECM model. We build ECM models for each CPU as
shown in Table 4. The performance assumptions from these models are validated in Fig. 6.

CPU ECMModel
Fujitsu A64FX 𝑇𝐸𝐶𝑀 =𝑚𝑎𝑥 (𝑇𝑐 ,𝑚𝑎𝑥 (𝑇𝐿1𝐿 +𝑚𝑎𝑥 (𝑇𝐿1𝑆 ,𝑇𝐿2),𝑇𝑚𝑒𝑚))
Intel Xeon Gold 6148 𝑇𝐸𝐶𝑀 =𝑚𝑎𝑥 (𝑇𝑐 ,𝑇𝐿1𝐿 +𝑇𝐿1𝑆 +𝑇𝐿2 +𝑇𝐿3 +𝑇𝑚𝑒𝑚)
AMD EPYC 7502 𝑇𝐸𝐶𝑀 =𝑚𝑎𝑥 (𝑇𝑐 ,𝑇𝐿1𝐿 ,𝑇𝐿1𝑆 ,𝑇𝐿2,𝑇𝐿3,𝑇𝑚𝑒𝑚)

Table 4. Derived ECM model assumptions for each CPU in our tests.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors 13

101 102 103 104 105 106

SIZE (KB)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

C
Y

C
L

E
S

/
V

L

A64FX Empirical

A64FX ECM

(a) Fujitsu A64FX

102 104 106

SIZE (KB)

0

10

20

30

C
Y

C
L

E
S

/
V

L

SKX EMPIRICAL

SKX ECM

(b) Intel Xeon Gold 6148

102 104 106

SIZE (KB)

0

2

4

6

8

10

C
Y

C
L

E
S

/
V

L

EPYC EMPIRICAL

EPYC ECM

(c) AMD EPYC 7502

Fig. 6. Empirical vs. analytical clock cycles per vector length (VL) for each iteration of the STREAM TRIAD
using a single core on each CPU. As the size of the data increases along the X axis, the number of cycles
required for fetching one VL goes up. The ‘steps’ in each plot show how many cycles are needed when
data fits into a particular level of cache. Each successive step shows that the data is being streamed from a
progressively lower level of cache. The Fujitsu and Intel CPUs have a VL of 8 and the AMD CPU has a VL of 4.

Fig. 6(a) shows the cycles per VL for the STREAM TRIAD after disabling the compiler’s aggressive
prefetching and pipelining for the Fujitsu A64FX. Each step corresponds to data being fetched
from L1, L2 and main memory respectively. In practice, we observe that the compiler does a lot of
aggressive prefetching into the L2 cache and exhibits behaviour as if the data were present in the
L2 cache itself, which we use for constructing the ECM model. Fig. 6(c) shows that the AMD CPU
goes from 4 cycles per VL to 8 after crossing the 16 MiB threshold as a result of the non-shared L3
cache present in the chiplet-based Zen2 architecture, in spite of having a total 128 MiB of L3 cache.

As per Table 11, even though the memory bandwidth of the AMD node is only 30% higher than
the Intel node, comparing the clock cycles needed to fetch a single double precision digit from
memory between Fig. 6(b) and Fig. 6(c) shows that the AMD CPU takes about half the clock cycles
as the Intel CPU when the data size exceeds that of LLC as shown in Table 2. This can be attributed
to the fact that the AMD CPU employs full memory overlap between all caches whereas the Intel
CPU is completely non-overlapping, as can be seen in Table 4. Therefore, even though the Intel
CPU employs the AVX-512 instruction set with 512-bit long SIMD, the advantage still lies with
the AVX2-enabled 256-bit long AMD CPU as a result of fully overlapping communication between
caches.

Thus, Fig. 6 shows that the Fujitsu A64FX takes the least number of clock cycles to fetch a single
double precision number from main memory. This can be explained as a result of the better cache
overlap design in the Fujitsu A64FX as shown in Table 4.

6 SINGLE THREADED OPTIMIZATION USING THE ECM PERFORMANCE MODEL
The computation of the low rank multiplication kernels can be broadly divided into kernel op-
erations that involve packing the 4 matrices into caches, followed by the computation in the
𝑚𝑖𝑐𝑟𝑜_𝑘𝑒𝑟𝑛𝑒𝑙_𝑐𝑚𝑛(),𝑚𝑖𝑐𝑟𝑜_𝑘𝑒𝑟𝑛𝑒𝑙_𝑒𝑥𝑛() and𝑚𝑖𝑐𝑟𝑜_𝑘𝑒𝑟𝑛𝑒𝑙_𝑔𝑥𝑦 () as shown in Algorithm 3. For
brevity, we refer to𝑚𝑖𝑐𝑟𝑜_𝑘𝑒𝑟𝑛𝑒𝑙_𝑐𝑚𝑛(),𝑚𝑖𝑐𝑟𝑜_𝑘𝑒𝑟𝑛𝑒𝑙_𝑒𝑥𝑛() and𝑚𝑖𝑐𝑟𝑜_𝑘𝑒𝑟𝑛𝑒𝑙_𝑔𝑥𝑦 () from Al-
gorithm 3 as the𝐶𝑀𝑁 , 𝐸𝑋𝑁 and𝐺𝑋𝑌 kernels, respectively, after the intermediate products that they
compute.
We use the ECM model for optimizing the performance of the 𝐶𝑀𝑁 kernel and the packing of

𝐴𝑉𝑇 and 𝐵𝑈 since these are the most expensive parts. Using the ECM model we have identified
and addressed several bottlenecks in the default C++ code, allowing us to reach very close to the
maximum machine throughput. Fig. 7 shows the packing order of the operands into the caches.
The small operands are packed into the shared L3 cache whereas the skinny matrices are packed

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

14 Deshmukh, Yokota and Bosilca.

EXN

AX BY AV
T

BATCH_SIZE

BATCH_SIZE

BATCH_SIZE

BATCH_SIZE

BATCH_SIZE

BU

Main Memory

L3 Cache

L2 Cache

L1 Cache

mx x

block_size

bl
oc

k_
si

ze

m y

n

n

m

x
S V

EC

GXY

n * B
sm

all

S V
EC

m

Registers

m

block_size * B
skinny

SVEC

... ...

CMN+=
.

AX CMN. += EXN BX. GXY+=

Register Accumulation

S V
EC

block_size

S V
EC

... ...

Cache Fetch

y

m * Bsmall

block_size * Bskinny

Fig. 7. Diagram of the proposed low rank multiplication batching method.

into the per-core L2 and L1 caches. The 𝐴𝑉𝑇 is packed in column major whereas the 𝐵𝑈 is packed
in row major for facilitating loading into SIMD registers [40].

We calculate the latency and throughput of each instruction used in the kernels, and report our
findings in Table 5. Note that we only consider bench-marking the inner kernel execution and not
the full computation, therefore we ignore all instructions outside of the specified kernel. However,
the full computation is considered when reporting the final results in Sec. 7.
We demonstrate the use of ECM modeling for the packing kernels when using ranks that are

multiples of the vector length of themachine. Indeed, as highlighted in [31, 3.4.2] the ECM prediction
is a function of the total number of full cache lines transferred, so we need to count in full cache
lines even if only a part of the cache line will be used. In case of strided cases with strides greater
than 𝑟𝑎𝑛𝑘 , extra reads are considered as a result of reading more cache lines in order to factor in
the increased stride.

When reporting ECM model predictions, we report them as𝑇𝑣𝑎𝑙𝑢𝑒 = (𝑟𝑒𝑎𝑑) + (𝑤𝑟𝑖𝑡𝑒) in order to
differentiate between read and write contributions in case of caches where both values contribute
to the outcome. In other cases the values show only read or only write contributions.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors 15

Instruction Description Latency Reci.
TPut.

AMD EPYC 7502 (Zen2)
VMOVAPD(simple load) Standard load with immediate addressing. 5 0.5
VMOVAPD(simple store) Standard store with immediate addressing. 4 0.75
LEA Load effective address. 2 0.5
VGATHERQPD(gather) Gather with stride of 8/16/32/512/1024/2048/4096 . - 6
VBROADCASTSD(simple) Standard broadcast with a single double in memory. 4 0.75
VFMADD231PD(simple) FMA between 3 256 bit AVX registers. 5 0.5

Fujitsu A64FX (ARM v8.2 SVE)
LD1D(simple) Standard load with immediate addressing. 9 0.5
LD1D(gather, stride 8) Gather with stride of 8. - 2
LD1D(gather, stride 16/32/512/1024/4096) Gather with stride of 16/32/512/1024/4096. - 4
LD1D(gather, stride 2048) Gather with stride of 2048. - 16
ST1D(simple) Standard store with immediate addressing. 9 1
LD1RD(simple) Standard broadcast with a single double in memory. 9 0.5
FMLA(simple) FMA between 3 512 bit SVE registers. 11 0.5

Intel Xeon Gold 6148 (Skylake-X)
VMOVAPD(simple load) Standard load with immediate addressing. 3 0.33
VMOVAPD(simple store) Standard store with immediate addressing. 4 0.66
VGATHERQPD(gather) Gather with stride of 8/16/32/512/1024/2048/4096 . - 3
VBROADCASTSD(simple) Standard broadcast with a single double in memory. 1 0.33
VFMADD231PD(simple) FMA between 3 512 bit AVX registers. 5 0.5

Table 5. Latency and throughput of instructions depending on their operators for each CPU tested. All
operations except memory-specific operations are performed on double precision floating point numbers.

8 16 32 8 16 32 4 8 16
RANK

0

5

10

15

20

C
L

O
C

K
C

Y
C

L
E

S
/

V
L

CMN COMPUTE

8 16 32 8 16 32 4 8 16
RANK

BU PACKING

8 16 32 8 16 32 4 8 16
RANK

AV T PACKING

TECM ANALYTICAL FUJITSU A64FX INTEL XEON 6148 AMD EPYC 7502

Fig. 8. Comparison of analytical and empirical number of clock cycles for packing𝐴𝑉𝑇 and 𝐵𝑈 and computing
𝐶𝑀𝑁 . All tests are performed for a block size of 1024 and batch size 10000 using a single thread of execution.
The ranks are varied as shown in the X-axis. The Y-axis shows the number of clock cycles taken per vector
length.

6.1 Overall comparison of analytical and empirical kernel performance
We first show analytical vs. empirical results for the computation 𝐶𝑀𝑁 and packing of 𝐵𝑈 and 𝐴𝑉𝑇

for all CPUs. We address the challenges faced in reaching approximate peak ECM performance for
each CPU in subsequent sections. We then elaborate on the strategy used for determining 𝑇𝐸𝐶𝑀 .

Fig. 8 shows the empirical performance of the three kernels vs. the analytical peak performance
determined using the ECM model for each. It can be seen that our code is able to reach theoretical
peak performance as determined by the ECMmodel for almost all cases. In subsequent experiments,
we term the number of matrices in a batch as the batch size and the longest dimension of the skinny

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

16 Deshmukh, Yokota and Bosilca.

Variable Stride 8 Stride 16 Stride 32
𝑇𝐿1𝐿 0.5 0.5 0.5
𝑇𝐿1𝑆 1 1 1
𝑇𝐿2 (6464) + (

64×2
64) = 3 (64×264) + (

64×2
64) = 4 (64×464) + (

64×2
64) = 6

𝑇𝑚𝑒𝑚 (6464) + (
64
32 +

64
32) = 5 ((64×2)64) + (

64
32 +

64
32) = 6 ((64×4)64) + (

64
32 +

64
32) = 8

𝑇𝐸𝐶𝑀 5 6 8
Table 6. ECM performance breakdown for packing 𝐵𝑈 for various strides for Fujitsu A64FX. All measurements
are reported in number of clock cycles.

Block Rank 𝐴𝑉 analytical 𝐴𝑉 empirical
2048 8 26 26.32

16 26 26.22
32 26 26.30

Table 7. Packing time per vector length for 𝐴𝑉𝑇 for Fujitsu A64FX for block size 2048. All measurements are
shown in clock cycles per VL for a batch size of 10000.

matrices as the block size. We assume that both low rank operands have equal rank and equal block
size.

We report data only for block size 1024 as we do not observe a significant deviation in the results
for larger block sizes, except for 𝐴𝑉𝑇 packing using block size 2048 on the Fujitsu A64FX, which
we elaborate on in Sec. 6.2.1.

6.2 Optimization on the Fujitsu A64FX with the ECMmodel
As shown in Table 5, the throughput of the LD1D instructions changes as the operands change.
The reciprocal throughput of this instruction when performing a gather operation changes as the
stride changes. We observe an anomaly when using a stride of 8 and 2048, where the reciprocal
throughput changes to 2 and 16 respectively.

6.2.1 Packing 𝐴𝑉𝑇 and 𝐵𝑈 performance analysis. We rely on manually inserting SVE gather and
load intrinsics for reducing the packing time, since we found that the Fujitsu compiler does not
make full use of vectorization. The 𝐵𝑈 matrix is packed in row major order, corresponding to the
format in which it is already stored, so we can utilize LD1D (load) instructions for this purpose.
Table 6 shows the ECM calculations for a variety of possible strides for 𝐵𝑈 .

The 𝐴𝑉𝑇 matrix is packed in column-major order, and similarly to the packing of 𝐵𝑈 benefits
from manually inserting SVE gather intrinsics. While Fig. 8 shows the empirical vs. analytical time
taken when the block size is 1024. For most strides, the 𝑇𝐸𝐶𝑀 can be calculated by setting 𝑇𝐿1𝐿 = 4,
𝑇𝐿1𝑆 = 1, 𝑇𝐿2 = (64×864) + (

64
64 +

64
64) = 10 and 𝑇𝑚𝑒𝑚 = (64×864) + (

64
32 +

64
32) = 12. We observe however

a performance anomaly for a stride of 2048 corresponding to the increased latency of the LD1D
instruction shown in Table 5. Table 7 shows the empirical vs. analytical performance when the
block size is 2048.

6.2.2 𝐶𝑀𝑁 kernel performance analysis. The basic ARM SVE loop of the CMN kernel uses one
LD1D instruction for loading 8 unique contiguous elements of the left operand, 8 FMA instructions
for performing 8 SIMD multiplications and 8 LD1RD instructions for loading 8 elements of the right
operand duplicated within each register for each rank-1 update that results in a matrix of size 8 × 8.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors 17

It can be seen that there are 8 LD1RD operations and 1 LD1D operation each taking 0.5 clock cycles,
thus leading to a 𝑇𝐿1𝐿 of 4.5. There are a total of 8 FMA operations, leading to a total 𝑇𝑐 of 4 clock
cycles. Thus 𝑇𝐸𝐶𝑀 =𝑚𝑎𝑥 (𝑇𝑐 ,𝑇𝐿1𝐿) = 4.5 for a single rank-1 update.

We began by writing ARM ACLE instrinsics for the CMN kernel, but this turned out to be taking
many more clock cycles than the ideal shown by the ECM model as a result of extra instructions
generated in order to maintain portability between varying SVE lengths [53, 3.1]. We then enabled
register length specific code generation and kept a fixed vector length of 512 using FCC compiler
options, which led to more optimized code.
Table 5 shows that both the LD1RD and FMA instructions have a reciprocal throughput of 0.5

cycles each. Given that one rank-1 update generates an 8 × 8 matrix, a single LD1RD and FMA will
together generate one row of this matrix, taking 1 clock cycle. 8 of these pairs will use 8 clock
cycles. The reason why these instructions are executed likewise is because we accumulate the
intermediate products within the available SIMD registers, which places an upper limit on the size
of the rank-1 update that can be performed in the CMN block. This, combined with the first LD1D
will take about 8.5 clock cycles. As far as the LD1RD and FMA instructions are concerned, exactly
64 bytes are computed for 64 bytes loaded, which leads to a 1:1 ratio between the flops and bytes.
For ideal FMA throughput, this ratio must be at least 2:1 so that two FMA instructions can execute
independently on the two available FMA ports of the A64FX.

In order to overcome this limitation, we utilize 8 extra registers and perform two separate rank-1
updates using alternate slices of the skinny matrices to improve the performance further. We then
add these slices at the end of the of the computation in order to obtain the block in registers z0-7.
This leads to the time dropping to about 7 cycles per rank-1 update as a result of improved port
pressure. The technique can be described as in Fig. 9.

CMN

AV

BU

Fig. 9. Rank-1 update for 8x8 matrix block using alternate rows and columns of the skinny matrices and then
adding the blocks at the end.

The ECM model assumes that instructions run at peak throughput, however that can never be
true in this case since the upper limit on the number of FMA instructions that can be executed
given the constraints on blocking has been reached. Therefore, about 7 cycles per rank-1 update is
the best that can be achieved given the constraints on the number of usable registers.

Table 8 shows the comparison of the analytical 𝑇𝐸𝐶𝑀 compared to the performance obtained by
successive optimizations. The usefulness of the ECM model can be seen in support of optimization.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

18 Deshmukh, Yokota and Bosilca.

Block Rank 𝑇𝐸𝐶𝑀 SVE ACLE SVE intrinsics SVE multi-register intrinsics
1024 8 4.5 30.11 8.59 7.12

16 4.5 29.81 8.58 7.10
32 4.5 29.77 8.78 7.15

Table 8. Comparison of successive optimizations to the CMN kernel compared to 𝑇𝐸𝐶𝑀 for batch size of
10000 for the Fujitsu A64FX. All measurements are in terms of clock cycles per rank-1 update.

Variable Stride 8 Stride 16 Stride 32
𝑇𝐿1𝐿 0.33 0.33 0.33
𝑇𝐿1𝑆 0.66 0.66 0.66
𝑇𝐿2 (6464) + (

64
64) = 2 (2 × 64

64) + (
64
64) = 3 (4 × 64

64) + (
64
64) = 5

𝑇𝐿3 (6464) + (
64
64) = 2 (2 × 64

64) + (
64
64) = 3 (4 × 64

64) + (
64
64) = 5

𝑇𝑚𝑒𝑚 (6414) + (
64
14) = 9 (6414) + (

64
14) = 9 (6414) + (

64
14) = 9

𝑇𝐸𝐶𝑀 14 16 20
Table 9. ECM performance breakdown for packing 𝐵𝑈 for various strides for Intel Xeon Gold 6148 (Skylake-X).

6.3 Optimization on Intel Xeon Gold 6148 with the ECMmodel
6.3.1 Packing 𝐴𝑉𝑇 and 𝐵𝑈 performance analysis. The ECM models for packing 𝐵𝑈 can be con-
structed by first noting the fact that packing oneVL (i.e. 8 doubles) requires one load (VMOVAPD(load))
and one store (VMOVAPD(store)) operation. These operations have a throughput of 0.33 and 0.66,
respectively. The breakdown of the analytical ECM modeling is shown in Table 9.

When packing 𝐴𝑉𝑇 , we make use of gather instructions, which means there is one VGATHERQPD
and one store (VMOVAPD(store)) being used per VL. It is hard to exactly model the behaviour of the
gather instruction since it seems to be fetching several cache lines together without incurring the
overhead for fetching each cache line individually. Our explanation is that as a result of page-based
fetching for the L3 cache, we can ignore the fact that multiple cache lines are being fetched and
model that as a single cache line fetch. With this assumption, we can state that𝑇𝐿1𝐿 = 3,𝑇𝐿2𝑆 = 0.66,
𝑇𝐿2 =

64
64 , 𝑇𝐿3 = 2 × 64

64 = 2 and 𝑇𝑚𝑒𝑚 = 64
14 = 4.57.

6.3.2 𝐶𝑀𝑁 kernel performance analysis. Each rank-1 update on the𝐶𝑀𝑁 kernel requires 1 VMOVAPD,
8 VBROADCASTSD, and 8 VFMADD231PD instructions. Given that the data is always streamed from the
L1 cache, the only cost is 𝑇𝐿1𝐿 = 𝑇𝐸𝐶𝑀 = 4.66.

6.4 Optimization on AMD EPYC 7502 with the ECMmodel
In order to keep the comparison between A64FX, AVX-512 and AVX2 fair, we use data sizes that
correspond to the vector length and its multiples for building the ECM models. Therefore, in case of
AVX2, the ranks used are 4, 8 and 16 which correspond to the VL, twice the VL and four times the
VL for each instruction. These factors of the VL are proportional to the factors taken for A64FX and
AVX512, for which the ranks are 8, 16 and 32 as shown in Sec. 6.3 and Sec. 6.2 respectively. As shown
in Sec. 7.4, the target application of the low rank multiplication is the matrix vector multiplication
routine for a block low rank matrix. The accuracy of the multiplication can be changed using the
admissibility condition, and we do not need to change the rank of the low rank matrices in order to
modify the accuracy. Therefore, we test only for multiples of the SIMD register length for each
CPU.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors 19

Variable Stride 4 Stride 8 Stride 16
𝑇𝐿1𝐿 0.5 0.5 0.5
𝑇𝐿1𝑆 0.75 0.75 0.75
𝑇𝐿2

32
32 + 2 ×

32
32 = 3 2 × 32

32 + 2 ×
32
32 = 4 4 × 32

32 + 2 ×
32
32 = 6

𝑇𝐿3
32
32 + 2 ×

32
32 = 3 2 × 32

32 + 2 ×
32
32 = 4 4 × 32

32 + 2 ×
32
32 = 6

𝑇𝑚𝑒𝑚
32
16 +

32
16 = 4 32

16 +
32
16 = 4 32

16 +
32
16 = 4

𝑇𝐸𝐶𝑀 4 4 6
Table 10. ECM performance breakdown for packing 𝐵𝑈 for various strides for a single thread on the AMD
EPYC 7502. All measurements are reported in number of clock cycles.

6.4.1 Packing 𝐴𝑉𝑇 and 𝐵𝑈 performance analysis. We can derive the ECM model by using the
throughput values from Table 5 and the machine model from Table 2. 𝐵𝑈 packing takes one LOAD
and one STORE operation. Since the clock cycles depend on the stride, the theoretical performance
for various values of stride are shown in Table 10.

6.4.2 𝐶𝑀𝑁 kernel performance analysis. The 𝐶𝑀𝑁 kernel in this case is very similar to that in
Intel. The difference being that the VL is limited to 4 due to the AVX2 instruction set. Therefore,
the rank-1 update in this case is for a 4x4 matrix block, unlike the 8x8 matrix block for the Intel.
For each rank-1 update, we use 4 VBROADCASTSD, 4 FMADD231PD and 1 VMOVAPD instructions. This
amounts to 𝑇𝐿1𝐿 = 3.5. Since the data is directly streamed from the L1 cache, all other terms in the
ECM equation are 0 and therefore 𝑇𝐸𝐶𝑀 = 3.5.

7 EXPERIMENTAL EVALUATION
We perform experiments using the nodes and compiler flags listed in Table 11. The hardware
specification of the CPU within each node can be found in Table 2. Our method works for any kind
of data. However, for these experiments we use randomly generated entries following a normal
distribution in order to accurately evaluate all of our test matrices. Since we are only working with
low rank multiplication, the data within the low rank blocks does not affect our results. All tests
are performed using double precision floating point numbers.

𝐺𝐹𝐿𝑂𝑃𝑆 =
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × (4 × 𝑟𝑎𝑛𝑘3 + 2 × 𝑟𝑎𝑛𝑘2 × 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒)

𝑡𝑖𝑚𝑒 (𝑠) × 10−9 (4)

The GFLOPS, where shown, are calculated as presented in Eq. 4. Bandwidth calculation depends
on the cache overlapping displayed by the particular CPU and will be specified where necessary.
We compare the bandwidth of each problem size with the STREAM TRIAD bandwidth for a given
number of physical cores in order to demonstrate the ‘ideal’ usable bandwidth vs. what is actually
realized.

Experiments are performed using the full node available. For all cases except the A64FXwe use the
OpenMP configuration as OMP_PLACES=cores and OMP_PROC_BIND=close. We run all tests using
numactl using the –membind=all configuration and set –physcpubind to bind distinct physical
cores. The Fujitsu runtime in FUGAKU imposes a slightly different binding process than other
machines. Spawning a single process per CMG (i.e. one process per 12 cores) is the recommended
configuration for using all NUMA nodes with strictly local access. Thus, we run 4 MPI processes
per node for the A64FX tests.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

20 Deshmukh, Yokota and Bosilca.

AMD Fujitsu Intel
CPUs 2 x AMD EPYC 7502 1 x A64FX 2 x Intel Skylake-X 6148

Memory 2 x 256 GiB 1 x 32 GiB (HBM) 2 × 192 GiB
NUMA

configuration 4/CPU 4/CPU 1 NUMA node/CPU

Compiler g++ 7.5.0 FCC 4.5.0 tcsds-1.2.31 g++ 7.4.0

Compile
options

-Wall -fopenmp -O3
-Ofast -mavx2
-funroll-loops
-masm=intel

-O3 -Nfjomplib
-fopenmp
-Kfast,zfill
-Kopenmp

-Ksimd_reg_size=512

-Wall -fopenmp -O3
-Ofast

-march=skylake-avx512
-masm=intel

Math library AMD BLIS 3.0.0 Fujitsu SSL-2 Intel MKL 2020.4

Math library
linking options

libblis-mt.a -lgomp
-lpthread -lm -ldl

-Kopenmp -Nfjomplib
-lfjlapacksve

-lmkl_intel_ilp64
-lmkl_gnu_thread
-lmkl_core -lgomp
-lpthread -lm -ldl

TRIAD
peak (Gb/s) 195 840 150

DGEMM
peak (GFLOPS) 2184 2828 2621

Table 11. Machine architecture and the corresponding configuration used in our experiments. The Intel
node is a single node of the ABCI supercomputer and the Fujitsu node is a single node of the FUGAKU
supercomputer. The AMD node is a stand-alone SMP machine.

0 10 20 30 40 50
THREADS

0

100

200

300

400

500

G
F

L
O

P
S

OUR CODE 8

OUR CODE 16

OUR CODE 32

SSL 8

SSL 16

SSL 32

(a) Block size 512

0 10 20 30 40 50
THREADS

0

200

400

600

G
F

L
O

P
S

OUR CODE 8

OUR CODE 16

OUR CODE 32

SSL 8

SSL 16

SSL 32

(b) Block size 1024

0 10 20 30 40 50
THREADS

0

100

200

300

400

500

600

G
F

L
O

P
S

OUR CODE 8

OUR CODE 16

OUR CODE 32

SSL 8

SSL 16

SSL 32

(c) Block size 2048

Fig. 10. Comparison of performance in GFLOPS vs. non-batched SSL-2 routines for Fujitsu A64FX. The batch
size is kept constant at 20,000 for all the tests. The legend indicates the rank for each plot.

7.1 Evaluation on the Fujitsu node
The utilization on the Fujitsu A64FX is shown in Fig. 10. It can be seen that our code outperforms
Fujitsu’s SSL-2 library by a wide margin except for one case using rank 32 and block size 2048
when not using all the cores in the CPU. The bandwidth utilization plots in Fig. 11 show that,
although the GFLOPS utilization for rank 32 is consistently higher than other ranks, the bandwidth
utilization is lower. This result indicates that the rank 32 case is in fact compute bound and not
memory bound when using smaller ranks.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors 21

0 10 20 30 40 50
THREADS

0

50

100

150

200

250

B
A

N
D

W
ID

T
H

(G
B

/s
)

OUR CODE 8

OUR CODE 16

OUR CODE 32

SSL 8

SSL 16

SSL 32

(a) Block size 512

0 10 20 30 40 50
THREADS

0

100

200

300

B
A

N
D

W
ID

T
H

(G
B

/s
)

OUR CODE 8

OUR CODE 16

OUR CODE 32

SSL 8

SSL 16

SSL 32

(b) Block size 1024

0 10 20 30 40 50
THREADS

0

50

100

150

200

250

B
A

N
D

W
ID

T
H

(G
B

/s
)

OUR CODE 8

OUR CODE 16

OUR CODE 32

SSL 8

SSL 16

SSL 32

(c) Block size 2048

Fig. 11. Bandwidth utilization for varying ranks and block sizes on Fujitsu A64FX. The legend shows the rank
for each plot. The bandwidth is calculated using Eq. 5. The peak STREAM TRIAD bandwidth for the A64FX is
about 840 GB/s.

𝐵𝑊 (𝐺𝑖𝐵/𝑠) = 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × (2 × 𝑟𝑎𝑛𝑘2 + 2 × 𝑟𝑎𝑛𝑘 × 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒) × 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑑𝑜𝑢𝑏𝑙𝑒) × 2−30
𝑡𝑖𝑚𝑒 (𝑠) (5)

Lack of linear strong scaling can be seen when using rank 8 and block size 512 in Fig. 10, which
gradually improves as the block size is increased. This effect is not observed for other ranks that
show almost uniform linear scaling. The reason for this can be seen from the bandwidth utilization
plot in Fig. 11, where the usage of the bandwidth is proportional to the GFLOPS utilization. The
bandwidth is calculated as shown in Eq. 5. The bandwidth utilization is lesser than for rank 16 for
the same block sizes since packing smaller skinny matrices individually into the L1 cache does not
lead to optimal bandwidth utilization. Increasing the number of skinny matrices that are packed
into the L1 cache during a single iteration of Loop 1 in Algorithm 2 might be a way to solve this
problem.

When using rank 32 and block size 2048 in Fig. 11(c), it can be seen that the bandwidth utilization
of SSL-2 and our code is almost the same unless all 4 NUMA nodes within the CPU are active, which
happens after 36 threads are active. Fig. 12 shows the variation of the performance in GFLOPS
as the number of threads is kept constant at 48 and batch size is varied. Our code consistently
outperforms SSL-2, and there is minimal variation in the GFLOPS as the batch size is changed.
Some results for the Fujitsu node could not be reported due to the limited 32 GiB HBM. However, it
can be seen that each plot plateaus before we run out of memory, and therefore we can assume
that performance will not degrade if there were more memory.
Fig. 13 shows the performance breakdown for each kernel of the computation on the A64FX

when using 48 physical cores.
Table 12 shows that as the rank increases beyond 96, we can observe SSL showing better

performance than our code. This can be attributed to the fact that the algorithm becomes more
compute bound. The performance actually drops below that of rank 32, which can be attributed to
the fact that better bandwidth utilization as shown in Fig. 11 becomes harder as a lesser number of
small matrices can be packed into the L1 cache. This is one of the drawbacks of relying on packing
intermediate products into the SIMD registers.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

22 Deshmukh, Yokota and Bosilca.

0 20000 40000 60000 80000
BATCH SIZE

0

100

200

300

400

G
F

L
O

P
S

OUR CODE 8

OUR CODE 16

OUR CODE 32

SSL 8

SSL 16

SSL 32

(a) Block size 512

0 20000 40000 60000 80000
BATCH SIZE

0

100

200

300

400

500

G
F

L
O

P
S

OUR CODE 8

OUR CODE 16

OUR CODE 32

SSL 8

SSL 16

SSL 32

(b) Block size 1024

0 20000 40000 60000 80000
BATCH SIZE

100

200

300

400

G
F

L
O

P
S

OUR CODE 8

OUR CODE 16

OUR CODE 32

SSL 8

SSL 16

SSL 32

(c) Block size 2048

Fig. 12. Performance for various block sizes and ranks when the number of threads is constant at 48 for
varying batch sizes for Fujitsu A64FX.

8 16 32
RANK

0

100

200

300

T
IM

E
(m

s)

BLOCK SIZE = 512

8 16 32
RANK

BLOCK SIZE = 1024

8 16 32
RANK

BLOCK SIZE = 2048

Micro Kernel Pack AV T Pack BU Pack BS Pack AS

Fig. 13. Performance breakdown for various parts of the computation for the Fujitsu node using 48 threads
and a constant batch size of 20000.

Batch size Block size Rank SSL OUR CODE
20000 512 96 370.62 207.55
20000 1024 96 598.93 343.912
20000 2048 96 851.74 521.93

Table 12. Performance of our code vs. SSL for larger rank on the Fujitsu node using 48 physical cores reported
in GFLOPS. SSL shows better performance as the computation becomes more compute bound.

7.2 Evaluation on the Intel node
Fig. 14 shows the utilization in GFLOPS when the batch size is kept constant at 20,000 for a varying
number of threads, block sizes, and ranks. It can be seen that our approach shows almost perfect
scaling with respect to the number of threads whereas batched MKL routines stop scaling after
approximately 10 physical cores have been utilized for all problem cases. We do not report findings
for non-batched MKL routines since they show the least competitive performance for all problem
cases.
The improved strong scaling can be attributed to the fact that our approach is able to saturate

the maximum available bandwidth much better than batched MKL, as can be seen in Fig. 15, which

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors 23

0 10 20 30 40
THREADS

0

100

200

300

400

500

G
F

L
O

P
S

OUR CODE RANK=8

OUR CODE RANK=16

OUR CODE RANK=32

MKL BATCH RANK=8

MKL BATCH RANK=16

MKL BATCH RANK=32

(a) Block size 512

0 10 20 30 40
THREADS

0

100

200

300

400

500

G
F

L
O

P
S

OUR CODE RANK=8

OUR CODE RANK=16

OUR CODE RANK=32

MKL BATCH RANK=8

MKL BATCH RANK=16

MKL BATCH RANK=32

(b) Block size 1024

0 10 20 30 40
THREADS

0

100

200

300

400

G
F

L
O

P
S

OUR CODE RANK=8

OUR CODE RANK=16

OUR CODE RANK=32

MKL BATCH RANK=8

MKL BATCH RANK=16

MKL BATCH RANK=32

(c) Block size 2048

Fig. 14. Comparison of performance in GFLOPS vs. batched MKL routines for Intel Skylake-X. The batch size
is kept constant at 20,000 for all the tests.

0 10 20 30 40
THREADS

0

25

50

75

100

125

150

B
A

N
D

W
ID

T
H

(G
B

/s
)

OUR CODE 8

OUR CODE 16

OUR CODE 32

MKL BATCH 8

MKL BATCH 16

MKL BATCH 32

(a) Block size 512

0 10 20 30 40
THREADS

0

25

50

75

100

125

150

B
A

N
D

W
ID

T
H

(G
B

/s
)

OUR CODE 8

OUR CODE 16

OUR CODE 32

MKL BATCH 8

MKL BATCH 16

MKL BATCH 32

(b) Block size 1024

0 10 20 30 40
THREADS

0

50

100

150

B
A

N
D

W
ID

T
H

(G
B

/s
)

OUR CODE 8

OUR CODE 16

OUR CODE 32

MKL BATCH 8

MKL BATCH 16

MKL BATCH 32

(c) Block size 2048

Fig. 15. Comparison of bandwidth utilization for varying ranks, threads and block sizes on Intel Xeon Gold
6148 (Skylake-X) for a constant batch size of 20,000. The black dashed line denotes the STREAM TRIAD
bandwidth for the given number of threads.

0 20000 40000 60000 80000
BATCH SIZE

0

100

200

300

400

500

600

G
F

L
O

P
S

OUR CODE 8

OUR CODE 16

OUR CODE 32

MKL BATCH 8

MKL BATCH 16

MKL BATCH 32

(a) Block size 512

0 20000 40000 60000 80000
BATCH SIZE

100

200

300

400

500

600

G
F

L
O

P
S

OUR CODE 8

OUR CODE 16

OUR CODE 32

MKL BATCH 8

MKL BATCH 16

MKL BATCH 32

(b) Block size 1024

0 20000 40000 60000 80000
BATCH SIZE

100

200

300

400

G
F

L
O

P
S

OUR CODE 8

OUR CODE 16

OUR CODE 32

MKL BATCH 8

MKL BATCH 16

MKL BATCH 32

(c) Block size 2048

Fig. 16. Performance for various block sizes and ranks when the number of threads is constant at 40 for the
Intel Xeon Gold 6148 (Skylake-X).

shows the bandwidth utilization in GiB/second with a constant batch size of 20,000 and varying
number of threads, block sizes and ranks. This is as a result of our unique packing strategy.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

24 Deshmukh, Yokota and Bosilca.

8 16 32
RANK

0

100

200

300

T
IM

E
(m

s)

BLOCK SIZE = 512

8 16 32
RANK

BLOCK SIZE = 1024

8 16 32
RANK

BLOCK SIZE = 2048

Micro Kernel Pack AV T Pack BU Pack BS Pack AS

Fig. 17. Performance breakdown for various parts of the computation for the Intel node using 40 threads and
a batch size of 20000.

Batch size Block size Rank MKL BATCH OUR CODE
20000 512 128 262.281 339.849
20000 1024 128 400.602 361.89
20000 2048 128 554.721 319.161

Table 13. Performance of our code vs. MKL batched for larger rank on the Intel node using 40 physical cores
in GFLOPS. Batched MKL shows better performance as the computation becomes more compute bound.

The bandwidth numbers shown in Fig. 15 are calculated as shown in Eq. 6. We use the term
3 × 𝑟𝑎𝑛𝑘2 in order to account for the write of the result matrix and reads of two small matrices.
As the ECM model for Intel Skylake-X proves in Sec. 5.3, the reads and writes for this CPU are
completely non-overlapping and the write term must be added into the bandwidth calculation.

𝐵𝑊 (𝐺𝑖𝐵/𝑠) = 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × (3 × 𝑟𝑎𝑛𝑘2 + 2 × 𝑟𝑎𝑛𝑘 × 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒) × 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑑𝑜𝑢𝑏𝑙𝑒) × 2−30
𝑡𝑖𝑚𝑒 (𝑠) (6)

Fig. 16 shows the performance when changing the batch size, block size and rank and keeping
the number of threads constant at 40. It can be seen that both our implementation, and batched
MKL show almost constant performance irrespective of the batch size. This, combined with Fig. 14
shows that the scaling of the method is primarily limited by the available bandwidth, rank and
block size. Additionally, increasing the batch size does not have any effect on the performance.

Fig. 17 shows the time spent in the micro kernel (i.e. performing actual computation) vs. the time
spent in packing data into the caches. This graph is a snapshot of the experiment with a batch size
of 20,000 from Fig. 16.
As the rank increases beyond 128, we can observe MKL batched showing better performance

than our code. Table 13 shows the difference in performance as the computation becomes more
compute bound than memory bound.

7.3 Evaluation on the AMD node
As shown in Table 2, the vector length of the AMD CPU is 4, whereas that of the Intel and Fujitsu
CPUs is 8. Therefore, we show benchmarks for rank 4 in case of the AMD chip as well as for
rank 8, 16 and 32 as shown for the others. Fig. 18 shows the utilization as calculated using Eq. 4,
which shows that our implementation is able to outperform the vendor optimized AMD BLIS 3.0.0

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors 25

0 10 20 30 40 50 60
THREADS

0

100

200

300

G
F

L
O

P
S

OUR CODE 4

OUR CODE 8

OUR CODE 16

OUR CODE 32

BLIS 4

BLIS 8

BLIS 16

BLIS 32

(a) Block size 512

0 10 20 30 40 50 60
THREADS

0

100

200

300

400

G
F

L
O

P
S

OUR CODE 4

OUR CODE 8

OUR CODE 16

OUR CODE 32

BLIS 4

BLIS 8

BLIS 16

BLIS 32

(b) Block size 1024

0 10 20 30 40 50 60
THREADS

0

100

200

300

400

G
F

L
O

P
S

OUR CODE 4

OUR CODE 8

OUR CODE 16

OUR CODE 32

BLIS 4

BLIS 8

BLIS 16

BLIS 32

(c) Block size 2048

Fig. 18. Comparison of performance in GFLOPS vs. non-batched AMD BLIS routines for AMD EPYC 7502.
The batch size is kept constant at 20,000 for all the tests. The legend indicates the rank for each plot.

BLAS implementation by a wide margin when a sufficient number of physical cores are active. The
performance improves as we increase the rank, as expected, since memory bandwidth becomes
less of a bottleneck as more data becomes available to keep the FMA units of the CPU busy.

0 10 20 30 40 50 60
THREADS

0

50

100

150

200

B
A

N
D

W
ID

T
H

(G
B

/s
)

OUR CODE 4

OUR CODE 8

OUR CODE 16

OUR CODE 32

BLIS 4

BLIS 8

BLIS 16

BLIS 32

(a) Block size 512

0 10 20 30 40 50 60
THREADS

0

50

100

150

200

B
A

N
D

W
ID

T
H

(G
B

/s
)

OUR CODE 4

OUR CODE 8

OUR CODE 16

OUR CODE 32

BLIS 4

BLIS 8

BLIS 16

BLIS 32

(b) Block size 1024

0 10 20 30 40 50 60
THREADS

0

50

100

150

200

B
A

N
D

W
ID

T
H

(G
B

/s
)

OUR CODE 4

OUR CODE 8

OUR CODE 16

OUR CODE 32

BLIS 4

BLIS 8

BLIS 16

BLIS 32

(c) Block size 2048

Fig. 19. Bandwidth utilization for varying ranks and block sizes on AMD EPYC 7502. The legend shows the
rank for each plot. The black dashed line shows the STREAM TRIAD bandwidth for the given number of
threads.

Fig. 19 shows the bandwidth utilization of our code vs. AMD BLIS for a variety of problem
sizes. The bandwidth is calculated as shown in Eq. 5. For ranks 4 and 8, the bandwidth increases in
proportion to the performance for all block sizes, as shown in Fig. 18. However, for rank 16 and
32, we observe that the total utilized bandwidth does not saturate the available bandwidth of the
system, even though the corresponding GFLOPS utilization in 18 shows that the utilization for
ranks 16 and 32 is much higher than that for 4 and 8. This phenomena can be explained by the fact
that the AMD EPYC CPU implements fully overlapping caches as pointed out in Sec. 5.3. Therefore,
the computation for rank 16 and 32 is more compute bound than memory bound when a sufficient
number of physical cores are active. Compared to the bandwidth behaviour of the Intel node in Sec.
7.2, we can see that even though the AMD chip has similar bandwidth, it is able to use the available
memory bandwidth much more efficiently as a result of the overlapping design of the caches.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

26 Deshmukh, Yokota and Bosilca.

0 20000 40000 60000 80000
BATCH SIZE

0

100

200

300

400

500

G
F

L
O

P
S

OUR CODE 4

OUR CODE 8

OUR CODE 16

OUR CODE 32

BLIS 4

BLIS 8

BLIS 16

BLIS 32

(a) Block size 512

0 20000 40000 60000 80000
BATCH SIZE

0

100

200

300

400

500

G
F

L
O

P
S

OUR CODE 4

OUR CODE 8

OUR CODE 16

OUR CODE 32

BLIS 4

BLIS 8

BLIS 16

BLIS 32

(b) Block size 1024

0 20000 40000 60000 80000
BATCH SIZE

0

100

200

300

400

500

G
F

L
O

P
S

OUR CODE 4

OUR CODE 8

OUR CODE 16

OUR CODE 32

BLIS 4

BLIS 8

BLIS 16

BLIS 32

(c) Block size 2048

Fig. 20. Performance for various block sizes and ranks when the number of threads is constant at 64 for
varying batch sizes for AMD EPYC 7502.

4 8 16
RANK

0

20

40

60

80

100

T
IM

E
(m

s)

BLOCK SIZE = 512

4 8 16
RANK

BLOCK SIZE = 1024

4 8 16
RANK

BLOCK SIZE = 2048

Micro Kernel Pack AV T Pack BU Pack BS Pack AS

Fig. 21. Performance breakdown for various parts of the computation for the AMD node using 64 threads
and a batch size of 20000.

Batch size Block size Rank BLIS OUR CODE
20000 512 96 197.056 237.441
20000 1024 96 373.555 283.175
20000 2048 96 559.075 348.566

Table 14. Performance of our code vs. BLIS for larger rank on the AMD node using 64 physical cores reported
in GFLOPS. Our code can consistently beat AMD-BLIS until rank 96 is reached.

Fig. 20 shows the performance when keeping the number of threads constant at 64 (i.e. using the
full node) and changing the batch sizes for variety of block sizes and ranks. While the AMD results
differ from the Intel results in the fact that the batch size has a non-trivial effect on the utilization,
our implementation still outperforms the AMD BLIS by a wide margin for every problem size. Fig.
21 shows the performance breakdown for each part of the execution for the AMD node.

Table 14 shows the performance of our code vs. BLIS as the problem gets more compute bound
than memory bound. As shown for the Intel and Fujitsu nodes, the higher performance of AMD-
BLIS can be attributed to the fact that larger sizes of small matrices leads to less optimal bandwidth
utilization for our method.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors 27

16384 32768 65536
N

0.0

0.2

0.4

0.6

0.8

1.0

T
IM

E
(N

O
R

M
A

L
IZ

E
D

)

MKL BATCHED OUR CODE

Fig. 22. Multiplying multiple right hand sides with a weakly admissible block low rank matrix of various
sizes using batched MKL vs. our code for the batched multiplication routine. The rank and number of right
hand sides are kept constant at 8 for all tests.

7.4 Evaluation of Block Low Rank matrix vector multiplication
Fig. 22 shows the comparison of run time for multiplying multiple right hand sides using batched
MKL vs. our implementation of batched low rank multiplication on the Intel node. A gain of about
15% can be observed. While the multiplication of just the low rank blocks and vectors shows a
performance gain of about 50%, adding the intermediate vectors and multiplication of the dense
blocks takes up more time, which reduces the performance gain to about 15%.

Since we show in the previous sections that our batching methodology is about twice as fast as
vendor optimized libraries, we expect similar performance gains for other nodes too.

8 CONCLUSION AND FUTUREWORK
In this paper we have shown that performance of batched low rank multiplication can be improved
with an alternative batching methodology based on improved data reuse and bandwidth utilization.
Our results indicate better CPU utilization than vendor optimized libraries for a variety of thread
counts and batch sizes on 3 major CPUs architectures, and for problem sizes critical to low rank
operations. Specifically, we are able to achieve more than twice the performance of vendor optimized
matrix multiplication routines when using the entire node for most problem cases. While most
cases are memory bound, a larger rank of 32 actually results in a compute bound process. Thus
our batching technique is able to keep the SIMD units busy enough that bandwidth is no longer
the bottleneck, which is not true for vendor optimized libraries even for larger ranks. We run
the same algorithm on all the CPUs, thus the cache misses generated by the data accesses would
be proportional for the different libraries, thus the performance improvement comes from our
optimization.
It is important to note that the constraints placed by the limited number of registers in SIMD

architectures places limitations on the scalability of our method. However, hierarchical matrix
factorization and vector multiplication typically involves low rank multiplication with block size
up to 2048 and batch sizes not exceeding 20,000 – ranges where our approach is highly competitive
with state of the art implementations, yielding significantly better results for this specific problem.

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

28 Deshmukh, Yokota and Bosilca.

In the future we plan to use our technique for building fast factorization routines that run on
distributed supercomputers. Distributed hierarchical factorization is challenging due to irregularity
of communication patterns and computation. Cao et. al. [10] report better load balance by using an
alternate process distribution and prioritization of the critical path using the PaRSEC [8] runtime
system. A more analytical approach [36, 52] leads to better understanding of the trade-off between
replication and communication of data for determining the data distribution on multiple nodes,
which can possibly lead to more efficient process distribution and replication methodologies for
minimization of communication overhead.

ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant Number JP18H03248, JP20K20624, JP21H03447.
This work is conducted as a research activity of AIST - Tokyo Tech RealWorld Big-Data Computation
Open Innovation Laboratory (RWBC-OIL). This work is supported by “Joint Usage/Research Center
for Interdisciplinary Large-scale Information Infrastructures” in Japan (Project ID: jh210024-NAHI).

Many thanks to colleagues from Tokyo Institute of Technology, AIST, RIKEN-CCS and University
of Tennessee at Knoxville who provided their valuable feedback for the improvement of this
manuscript. Special thanks to Mohamed Wahib, Jens Domke and Chen Peng for their valuable
feedback on performance models and optimization of Fujitsu A64FX benchmarks.

REFERENCES
[1] A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, Tz. Kolev, I. Masliah, and S.

Tomov. 2016. High-Performance Tensor Contractions for GPUs. Procedia Computer Science 80 (Jan. 2016), 108–118.
https://doi.org/10.1016/j.procs.2016.05.302

[2] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. 2016. On the Development of Variable Size
Batched Computation for Heterogeneous Parallel Architectures. In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, Chicago, IL, USA, 1249–1258. https://doi.org/10.1109/IPDPSW.2016.
190

[3] Ayesha Afzal, Georg Hager, and Gerhard Wellein. 2020. An Analytic Performance Model for Overlapping Execution of
Memory-Bound Loop Kernels on Multicore CPUs. arXiv:2011.00243 [cs] (Oct. 2020). arXiv:2011.00243 [cs]

[4] Christie Alappat, Nils Meyer, Jan Laukemann, Thomas Gruber, Georg Hager, Gerhard Wellein, and Tilo Wettig. 2021.
ECM modeling and performance tuning of SpMV and Lattice QCD on A64FX. arXiv:2103.03013 [hep-lat] (March 2021).
http://arxiv.org/abs/2103.03013 arXiv: 2103.03013.

[5] Christie L. Alappat, Jan Laukemann, Thomas Gruber, Georg Hager, Gerhard Wellein, Nils Meyer, and Tilo Wettig. 2020.
Performance Modeling of Streaming Kernels and Sparse Matrix-Vector Multiplication on A64FX. arXiv:2009.13903 [cs]
(Sept. 2020). arXiv:2009.13903 [cs]

[6] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Hammarling, J. Demmel, C. Bischof, and
D. Sorensen. 1990. LAPACK: A Portable Linear Algebra Library for High-Performance Computers. In Proceedings of
the 1990 ACM/IEEE Conference on Supercomputing (Supercomputing ’90). IEEE Computer Society Press, New York, New
York, USA, 2–11.

[7] M. Bebendorf and W. Hackbusch. 2007. Stabilized Rounded Addition of Hierarchical Matrices. Numerical Linear
Algebra with Applications 14, 5 (June 2007), 407–423. https://doi.org/10.1002/nla.525

[8] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas Herault, and Jack J. Dongarra. 2013.
PaRSEC: Exploiting Heterogeneity to Enhance Scalability. Computing in Science & Engineering 15, 6 (2013), 36–45.
https://doi.org/10.1109/MCSE.2013.98

[9] Michael Brazell, Na Li, Carmeliza Navasca, and Christino Tamon. 2011. Tensor and Matrix Inversions with Applications.
arXiv:1109.3830 [math] (Sept. 2011). arXiv:1109.3830 [math]

[10] Quinglei Cao, Yu Pei, Thomas Herauldt, Kadir Akbudak, Aleksandr Mikhalev, George Bosilca, Hatem Ltaief, David
Keyes, and Jack Dongarra. 2019. Performance Analysis of Tile Low-Rank Cholesky Factorization Using PaRSEC
Instrumentation Tools. In 2019 IEEE/ACM International Workshop on Programming and Performance Visualization Tools
(ProTools). 25–32. https://doi.org/10.1109/ProTools49597.2019.00009

[11] Marc Casas and Greg Bronevetsky. 2014. Active Measurement of Memory Resource Consumption. In 2014 IEEE 28th
International Parallel and Distributed Processing Symposium. IEEE, Phoenix, AZ, USA, 995–1004. https://doi.org/10.
1109/IPDPS.2014.105

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.1016/j.procs.2016.05.302
https://doi.org/10.1109/IPDPSW.2016.190
https://doi.org/10.1109/IPDPSW.2016.190
https://arxiv.org/abs/2011.00243
http://arxiv.org/abs/2103.03013
https://arxiv.org/abs/2009.13903
https://doi.org/10.1002/nla.525
https://doi.org/10.1109/MCSE.2013.98
https://arxiv.org/abs/1109.3830
https://doi.org/10.1109/ProTools49597.2019.00009
https://doi.org/10.1109/IPDPS.2014.105
https://doi.org/10.1109/IPDPS.2014.105

Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors 29

[12] Calin Cascaval and David A. Padua. 2003. Estimating Cache Misses and Locality Using Stack Distances. In Proceedings
of the 17th Annual International Conference on Supercomputing (ICS ’03). Association for Computing Machinery, San
Francisco, CA, USA, 150–159. https://doi.org/10.1145/782814.782836

[13] Ali Charara, David Keyes, and Hatem Ltaief. 2018. Batched Tile Low-Rank GEMM on GPUs. (2018), 12.
[14] Ali Charara, David Keyes, and Hatem Ltaief. 2019. Batched Triangular Dense Linear Algebra Kernels for Very Small

Matrix Sizes on GPUs. ACM Trans. Math. Software 45, 2 (June 2019), 1–28. https://doi.org/10.1145/3267101
[15] Jieyang Chen, Nan Xiong, Xin Liang, Dingwen Tao, Sihuan Li, Kaiming Ouyang, Kai Zhao, Nathan DeBardeleben,

Qiang Guan, and Zizhong Chen. 2019. TSM2: Optimizing Tall-and-Skinny Matrix-Matrix Multiplication on GPUs.
(2019), 11.

[16] Jack J. Dongarra, Sven Hammarling, Nicholas J. Higham, Samuel D. Relton, and Mawussi Zounon. 2017. Optimized
Batched Linear Algebra for Modern Architectures. In Euro-Par. https://doi.org/10.1007/978-3-319-64203-1_37

[17] Nils-Arne Dreier and Christian Engwer. 2019. Strategies for the Vectorized Block Conjugate Gradients Method.
arXiv:1912.11930 [cs, math] (Dec. 2019). arXiv:1912.11930 [cs, math]

[18] Toshio Endo. 2020. Integrating Cache Oblivious Approach with Modern Processor Architecture: The Case of Floyd-
Warshall Algorithm. In Proceedings of the International Conference on High Performance Computing in Asia-Pacific
Region (HPCAsia2020). Association for Computing Machinery, Fukuoka, Japan, 123–130. https://doi.org/10.1145/
3368474.3368477

[19] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. 2012. Cache-Oblivious Algorithms.
ACM Transactions on Algorithms 8, 1 (Jan. 2012), 4:1–4:22. https://doi.org/10.1145/2071379.2071383

[20] Gianluca Frison, Dimitris Kouzoupis, Tommaso Sartor, Andrea Zanelli, and Moritz Diehl. 2018. BLASFEO: Basic
Linear Algebra Subroutines for Embedded Optimization. ACM Trans. Math. Software 44, 4 (Aug. 2018), 1–30. https:
//doi.org/10.1145/3210754

[21] Gianluca Frison, Tommaso Sartor, Andrea Zanelli, and Moritz Diehl. 2020. The BLAS API of BLASFEO: Optimizing
Performance for Small Matrices. ACM Trans. Math. Software 46, 2 (June 2020), 1–36. https://doi.org/10.1145/3378671
arXiv:1902.08115

[22] Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj Kalamkar, Greg Henry, Hans Pabst, and Alexander
Heinecke. 2018. Anatomy Of High-Performance Deep Learning Convolutions On SIMD Architectures. arXiv:1808.05567
[cs] (Aug. 2018). arXiv:1808.05567 [cs]

[23] Kazushige Goto and Robert A. van de Geijn. 2008. Anatomy of High-Performance Matrix Multiplication. ACM Trans.
Math. Software 34, 3 (May 2008), 1–25. https://doi.org/10.1145/1356052.1356053

[24] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. 2001. FLAME: Formal Linear Algebra
Methods Environment. ACM Trans. Math. Software 27, 4 (Dec. 2001), 422–455. https://doi.org/10.1145/504210.504213

[25] Tobias Gysi, Tobias Grosser, Laurin Brandner, and Torsten Hoefler. 2019. A Fast Analytical Model of Fully Associative
Caches. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2019). Phoenix, AZ, USA, 816–829. https://doi.org/10.1145/3314221.3314606

[26] Wolfgang Hackbusch. 2015. Hierarchical Matrices: Algorithms and Analysis 1st Edition. Springer Publishing Company,
Incorporated ©2015.

[27] Azzam Haidar, Tingxing Dong, Piotr Luszczek, Stanimire Tomov, and Jack Dongarra. 2015. Towards Batched Linear
Solvers on Accelerated Hardware Platforms. ACM SIGPLAN Notices 50, 8 (Jan. 2015), 261–262. https://doi.org/10.1145/
2858788.2688534

[28] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. 2009. Finding Structure with Randomness: Probabilistic
Algorithms for Constructing Approximate Matrix Decompositions. 53, 2 (Sept. 2009), 217–288. https://doi.org/10.
1137/090771806 arXiv:0909.4061

[29] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. 2016. LIBXSMM: Accelerating Small Matrix
Multiplications by Runtime Code Generation. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’16). IEEE Press, Salt Lake City, Utah, 1–11.

[30] Torsten Hoefler, William Gropp, William Kramer, and Marc Snir. 2011. Performance Modeling for Systematic Perfor-
mance Tuning. In State of the Practice Reports (SC ’11). Association for Computing Machinery, Seattle, Washington,
1–12. https://doi.org/10.1145/2063348.2063356

[31] JohannesHofmann, Christie L. Alappat, GeorgHager, Dietmar Fey, andGerhardWellein. 2020. Bridging theArchitecture
Gap: Abstracting Performance-Relevant Properties of Modern Server Processors. Supercomputing Frontiers and
Innovations 7, 2 (June 2020). https://doi.org/10.14529/jsfi200204 arXiv:1907.00048

[32] Johannes Hofmann and Dietmar Fey. 2016. An ECM-based energy-efficiency optimization approach for bandwidth-
limited streaming kernels on recent Intel Xeon processors. arXiv:1609.03347 [cs] (Sept. 2016). http://arxiv.org/abs/1609.
03347 arXiv: 1609.03347.

[33] Jianyu Huang, Leslie Rice, Devin A. Matthews, and Robert A. van de Geijn. 2016. Generating Families of Practical Fast
Matrix Multiplication Algorithms. arXiv:1611.01120 [cs] (Nov. 2016). arXiv:1611.01120 [cs]

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.1145/782814.782836
https://doi.org/10.1145/3267101
https://doi.org/10.1007/978-3-319-64203-1_37
https://arxiv.org/abs/1912.11930
https://doi.org/10.1145/3368474.3368477
https://doi.org/10.1145/3368474.3368477
https://doi.org/10.1145/2071379.2071383
https://doi.org/10.1145/3210754
https://doi.org/10.1145/3210754
https://doi.org/10.1145/3378671
https://arxiv.org/abs/1902.08115
https://arxiv.org/abs/1808.05567
https://doi.org/10.1145/1356052.1356053
https://doi.org/10.1145/504210.504213
https://doi.org/10.1145/3314221.3314606
https://doi.org/10.1145/2858788.2688534
https://doi.org/10.1145/2858788.2688534
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://arxiv.org/abs/0909.4061
https://doi.org/10.1145/2063348.2063356
https://doi.org/10.14529/jsfi200204
https://arxiv.org/abs/1907.00048
http://arxiv.org/abs/1609.03347
http://arxiv.org/abs/1609.03347
https://arxiv.org/abs/1611.01120

30 Deshmukh, Yokota and Bosilca.

[34] Jianyu Huang, Tyler M. Smith, Greg M. Henry, and Robert A. Van De Geijn. 2016. Strassen’s Algorithm Reloaded. In
SC ’16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis.
690–701. https://doi.org/10.1109/SC.2016.58

[35] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. 2004. Sparsity: Optimization Framework for Sparse Matrix Kernels.
The International Journal of High Performance Computing Applications 18, 1 (Feb. 2004), 135–158. https://doi.org/10.
1177/1094342004041296

[36] Dror Irony, Sivan Toledo, and Alexander Tiskin. 2004. Communication Lower Bounds for Distributed-Memory Matrix
Multiplication. J. Parallel and Distrib. Comput. 64, 9 (Sept. 2004), 1017–1026. https://doi.org/10.1016/j.jpdc.2004.03.021

[37] Lijuan Jiang, Chao Yang, and Wenjing Ma. 2020. Enabling Highly Efficient Batched Matrix Multiplications on
SW26010 Many-Core Processor. ACM Transactions on Architecture and Code Optimization 17, 1 (March 2020), 1–23.
https://doi.org/10.1145/3378176

[38] Kyungjoo Kim, Timothy B. Costa, Mehmet Deveci, Andrew M. Bradley, Simon D. Hammond, Murat E. Guney, Sarah
Knepper, Shane Story, and Sivasankaran Rajamanickam. 2017. Designing Vector-Friendly Compact BLAS and LAPACK
Kernels. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’17). Association for Computing Machinery, Denver, Colorado, 1–12. https://doi.org/10.1145/3126908.3126941

[39] Jan Laukemann, Julian Hammer, Johannes Hofmann, Georg Hager, and Gerhard Wellein. 2018. Automated In-
struction Stream Throughput Prediction for Intel and AMD Microarchitectures. 2018 IEEE/ACM Performance
Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS) (Nov. 2018), 121–131.
https://doi.org/10.1109/PMBS.2018.8641578 arXiv: 1809.00912.

[40] Tze Meng Low, Francisco D. Igual, Tyler M. Smith, and Enrique S. Quintana-Orti. 2016. Analytical Modeling Is Enough
for High-Performance BLIS. ACM Trans. Math. Software 43, 2 (Aug. 2016), 12:1–12:18. https://doi.org/10.1145/2925987

[41] Ian Masliah, Ahmad Abdelfattah, A. Haidar, S. Tomov, Marc Baboulin, J. Falcou, and J. Dongarra. 2016. High-
Performance Matrix-Matrix Multiplications of Very Small Matrices. In Euro-Par 2016: Parallel Processing, Pierre-
François Dutot and Denis Trystram (Eds.). Vol. 9833. Springer International Publishing, Cham, 659–671. https:
//doi.org/10.1007/978-3-319-43659-3_48

[42] R.L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. 1970. Evaluation Techniques for Storage Hierarchies. IBM Systems
Journal 9, 2 (1970), 78–117. https://doi.org/10.1147/sj.92.0078

[43] John D. McCalpin. 1995. Sustainable Memory Bandwidth in Current High Performance Computers.
[44] Tan M. Nguyen, Vai Suliafu, Stanley J. Osher, Long Chen, and Bao Wang. 2021. FMMformer: Efficient and Flexible

Transformer via Decomposed Near-field and Far-field Attention. arXiv:2108.02347 [cs, math] (Aug. 2021). http:
//arxiv.org/abs/2108.02347 arXiv: 2108.02347.

[45] Rajesh Nishtala, Richard W. Vuduc, James W. Demmel, and Katherine A. Yelick. 2007. When Cache Blocking of Sparse
Matrix Vector Multiply Works and Why. Applicable Algebra in Engineering, Communication and Computing 18, 3 (May
2007), 297–311. https://doi.org/10.1007/s00200-007-0038-9

[46] Flame Working Note and Robert A Van De Geijn. 2016. BLISlab : A Sandbox for Optimizing GEMM Lec 6. (2016), 1–16.
arXiv:1609.00076v1

[47] Yu Pei. 2019. Evaluation of Programming Models to Address Load Imbalance on Distributed Multi-Core CPUs: A Case
Study with Block Low-Rank Factorization. (Nov. 2019), 12.

[48] Cody Rivera, Jieyang Chen, Nan Xiong, Shuaiwen Leon Song, and Dingwen Tao. 2021. TSM2X: High-Performance
Tall-and-Skinny Matrix-Matrix Multiplication on GPUs. J. Parallel and Distrib. Comput. 151 (May 2021), 70–85.
https://doi.org/10.1016/j.jpdc.2021.02.013 arXiv:2002.03258

[49] S Rjasanow. 2002. Adaptive Cross Approximation of Dense Matrices. In International Association for Boundary Element
Methods. UT Austin, TX, USA.

[50] François-Henry Rouet, Xiaoye S. Li, Pieter Ghysels, and Artem Napov. 2015. A distributed-memory package for dense
Hierarchically Semi-Separable matrix computations using randomization. 42, 4 (2015). https://doi.org/10.1145/2930660
arXiv: 1503.05464.

[51] Tyler M. Smith, Robert van de Geijn, Mikhail Smelyanskiy, Jeff R. Hammond, and Field G. Van Zee. 2014. Anatomy of
High-Performance Many-Threaded Matrix Multiplication. In Proceedings of the 2014 IEEE 28th International Parallel
and Distributed Processing Symposium (IPDPS ’14). IEEE Computer Society, USA, 1049–1059. https://doi.org/10.1109/
IPDPS.2014.110

[52] Edgar Solomonik and James Demmel. 2011. Communication-Optimal Parallel 2.5D Matrix Multiplication and LU
Factorization Algorithms. In Euro-Par 2011 Parallel Processing (Lecture Notes in Computer Science), Emmanuel Jeannot,
Raymond Namyst, and Jean Roman (Eds.). Springer, Berlin, Heidelberg, 90–109. https://doi.org/10.1007/978-3-642-
23397-5_10

[53] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Giacomo Gabrielli, Matt Horsnell, Grigorios
Magklis, Alejandro Martinez, Nathanael Premillieu, Alastair Reid, Alejandro Rico, and Paul Walker. 2017. The ARM
Scalable Vector Extension. IEEE Micro 37, 2 (March 2017), 26–39. https://doi.org/10.1109/MM.2017.35 arXiv:1803.06185

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.1109/SC.2016.58
https://doi.org/10.1177/1094342004041296
https://doi.org/10.1177/1094342004041296
https://doi.org/10.1016/j.jpdc.2004.03.021
https://doi.org/10.1145/3378176
https://doi.org/10.1145/3126908.3126941
https://doi.org/10.1109/PMBS.2018.8641578
https://doi.org/10.1145/2925987
https://doi.org/10.1007/978-3-319-43659-3_48
https://doi.org/10.1007/978-3-319-43659-3_48
https://doi.org/10.1147/sj.92.0078
http://arxiv.org/abs/2108.02347
http://arxiv.org/abs/2108.02347
https://doi.org/10.1007/s00200-007-0038-9
https://arxiv.org/abs/1609.00076v1
https://doi.org/10.1016/j.jpdc.2021.02.013
https://arxiv.org/abs/2002.03258
https://doi.org/10.1145/2930660
https://doi.org/10.1109/IPDPS.2014.110
https://doi.org/10.1109/IPDPS.2014.110
https://doi.org/10.1007/978-3-642-23397-5_10
https://doi.org/10.1007/978-3-642-23397-5_10
https://doi.org/10.1109/MM.2017.35
https://arxiv.org/abs/1803.06185

Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD,
and Fujitsu Processors 31

[54] Field G. Van Zee and Robert A. van de Geijn. 2015. BLIS: A Framework for Rapidly Instantiating BLAS Functionality.
ACM Trans. Math. Software 41, 3 (June 2015), 14:1–14:33. https://doi.org/10.1145/2764454

[55] R. Vuduc, J.W. Demmel, K.A. Yelick, S. Kamil, R. Nishtala, and B. Lee. 2002. Performance Optimizations and Bounds
for Sparse Matrix-Vector Multiply. In SC ’02: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing. 26–26.
https://doi.org/10.1109/SC.2002.10025

[56] R.C. Whaley and J.J. Dongarra. 1998. Automatically Tuned Linear Algebra Software. In Proceedings of the IEEE/ACM
SC98 Conference. IEEE, Orlando, FL, USA, 38–38. https://doi.org/10.1109/SC.1998.10004

[57] Karl-Robert Wichmann, Martin Kronbichler, Rainald Löhner, and Wolfgang A Wall. 2019. Practical Applicability of
Optimizations and Performance Models to Complex Stencil-Based Loop Kernels in CFD. The International Journal of
High Performance Computing Applications 33, 4 (July 2019), 602–618. https://doi.org/10.1177/1094342018774126

[58] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An Insightful Visual Performance Model
for Multicore Architectures.

[59] Markus Wittmann, Georg Hager, Thomas Zeiser, Jan Treibig, and Gerhard Wellein. 2016. Chip-Level and Multi-Node
Analysis of Energy-Optimized Lattice-Boltzmann CFD Simulations. Concurrency and Computation: Practice and
Experience 28, 7 (May 2016), 2295–2315. https://doi.org/10.1002/cpe.3489 arXiv:1304.7664

[60] Weiling Yang, Jianbin Fang, Dezun Dong, Xing Su, and Zheng Wang. [n.d.]. LibShalom: Optimizing Small and
Irregular-Shaped Matrix Multiplications on ARMv8 Multi-Cores. ([n. d.]), 13.

[61] K. Yotov, Xiaoming Li, Gang Ren, M.J.S. Garzaran, D. Padua, K. Pingali, and P. Stodghill. 2005. Is Search Really Necessary
to Generate High-Performance BLAS? Proc. IEEE 93, 2 (Feb. 2005), 358–386. https://doi.org/10.1109/JPROC.2004.840444
Conference Name: Proceedings of the IEEE.

[62] Chenhan D. Yu, Severin Reiz, and George Biros. 2019. Distributed O(N) Linear Solver for Dense Symmetric Hierarchical
Semi-Separable Matrices. In 2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip
(MCSoC). IEEE, Singapore, Singapore, 1–8. https://doi.org/10.1109/MCSoC.2019.00008

[63] Field G. Van Zee, Tyler M. Smith, Bryan Marker, Tze Meng Low, Robert A. Van De Geijn, Francisco D. Igual, Mikhail
Smelyanskiy, Xianyi Zhang, Michael Kistler, Vernon Austel, John A. Gunnels, and Lee Killough. 2016. The BLIS
Framework: Experiments in Portability. ACM Trans. Math. Software 42, 2 (June 2016), 12:1–12:19. https://doi.org/10.
1145/2755561

J. ACM, Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.1145/2764454
https://doi.org/10.1109/SC.2002.10025
https://doi.org/10.1109/SC.1998.10004
https://doi.org/10.1177/1094342018774126
https://doi.org/10.1002/cpe.3489
https://arxiv.org/abs/1304.7664
https://doi.org/10.1109/JPROC.2004.840444
https://doi.org/10.1109/MCSoC.2019.00008
https://doi.org/10.1145/2755561
https://doi.org/10.1145/2755561

	Abstract
	1 Introduction
	2 Low Rank Multiplication
	3 Performance optimization on multi-processors
	3.1 Software methodologies for optimal hardware utilization
	3.2 Optimization with performance modeling
	3.3 Performance modeling of LLC misses

	4 Batching Methodology
	4.1 Looping order of Low rank multiplication
	4.2 Locality optimization for low rank multiplication
	4.3 Packing techniques for minimization of latency

	5 The ECM performance model
	5.1 Building the machine model
	5.2 Building the application model
	5.3 Building the overlap hypothesis

	6 Single threaded optimization using the ECM performance model
	6.1 Overall comparison of analytical and empirical kernel performance
	6.2 Optimization on the Fujitsu A64FX with the ECM model
	6.3 Optimization on Intel Xeon Gold 6148 with the ECM model
	6.4 Optimization on AMD EPYC 7502 with the ECM model

	7 Experimental Evaluation
	7.1 Evaluation on the Fujitsu node
	7.2 Evaluation on the Intel node
	7.3 Evaluation on the AMD node
	7.4 Evaluation of Block Low Rank matrix vector multiplication

	8 Conclusion and Future Work
	Acknowledgments
	References

