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(a) Curly Hair scene (b) without our culling (c) with our culling (d)

Fig. 1. Visualization of the number of intersections on the primary rays with and without our culling, where
the number of bits on the voxel data structure for each AABB is 216. The intersection between a ray and the
voxels is accelerated by our look-up table-based approach. (a): The scene consists of 12.1 million triangles and
almost all of the triangle is thin and tilted. (b) and (c): The intersection count of triangles and internal nodes
is mapped to the color with a range of 0 - 512. Our method reduces the number of intersections by 37.5% and
decreases the rendering time by 13.1% for this scene.

Ray tracing is an essential operation for realistic image synthesis. The acceleration of ray tracing has been
studied for a long period of time because algorithms such as light transport simulations require a large amount
of ray tracing. One of the major approaches to accelerate the intersections is to use bounding volumes for
early pruning for primitives in the volume. The axis-aligned bounding box is a popular bounding volume for
ray tracing because of its simplicity and efficiency. However, the conservative bounding volume may produce
extra empty space in addition to its content. Especially, primitives that are thin and diagonal to the axis give
false-positive hits on the box volume due to the extra space. Although more complex bounding volumes such
as oriented bounding boxes may reduce more false-positive hits, they are computationally expensive. In this
paper, we propose a novel culling approach to reduce false-positive hits for the bounding box by embedding a
binary voxel data structure to the volume. As a ray is represented as a conservative voxel volume as well in our
approach, the ray–voxel intersection is cheaply done by bitwise AND operations. Our method is applicable to
hierarchical data structures such as bounding volume hierarchy (BVH). It reduces false-positive hits due to the
ray–box test and reduces the number of intersections during the traversal of BVH in ray tracing. We evaluate
the reduction of intersections with several scenes and show the possibility of performance improvement
despite the culling overhead. We also introduce a compression approach with a lookup table for our voxel data.
We show that our compressed voxel data achieves significant false-positive reductions with a small amount of
memory.
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1 INTRODUCTION
Ray tracing is a method widely used for various applications to find intersections with scene
primitives. Algorithms such as path tracing rely heavily on ray tracing for photo-realistic image
rendering. However, a vast number of ray queries consume significant computational resources.
Several data structures and algorithms such as grid traversal [Amanatides and Woo 1987], octrees
[Knoll et al. 2006], and the bounding volume hierarchy [Clark 1976] have been introduced and
studied in order to accelerate ray tracing. These approaches use one or more kinds of bounding
volumes to reduce the number of intersections by skipping the primitive tests that are assigned to
the volume if it does not hit. The axis-aligned bounding box (AABB) is one of the most popular
bounding volumes because of its simplicity and efficiency in ray traversal and data structure
building. However, AABB may not be able to tightly fit the primitives such as, hair and fur, that
are thin and diagonal to the axis. More spatially flexible bounding volumes, such as the oriented
bounding boxes (OBB), can be used [Woop et al. 2014]. Although its culling efficiency is better,
the computational cost and memory consumption are high. Instead, we propose a novel culling
technique subsequent to the AABB-ray test to reduce the number of false-positive intersections
produced by AABB.
Our method effectively reduces the total number of intersections by embedding a binary voxel

data structure for each node in the bounding volume hierarchy (BVH), as shown in Fig. 1. A ray is
represented as a binary voxel volume with the same resolution. The intersection is done by bitwise
AND operations. We also introduce using a lookup table (LUT) for voxel data compression, which
reduces the memory size without sacrificing a lot of culling efficiency and traversal performance.

2 RELATEDWORK
A voxel data structure can be used for ray tracing acceleration by skipping cells that are not along
the rays. Variants of a digital differential analyzer (DDA) was proposed for ray tracing [Amanatides
and Woo 1987; Fujimoto et al. 1986]. Fine voxels can fit primitives tightly even if they are concave;
however, the data structure requires iterative algorithms to find all intersected cells with a ray, and
the number of iterations is proportional to the voxel resolutions.

Intersections between a ray and a chunk of binary voxels can be accelerated by blockwise packing
[Gruen 2018]. Voxels along a ray are also packed as the same representation as the scene voxels,
and the intersection is efficiently done by bitwise AND operations.

The bounding volume hierarchy [Clark 1976; Meister et al. 2021] effectively reduces the number
of intersections by hierarchical culling with bounding volume such as AABB. Although AABB is
the most popular choice for the bounding volume, it suffers from false positive intersections due
to non-tightly fit primitives. OBB can be used for further reduction of the false positives [Woop
et al. 2014]; however, the computational overhead is higher, and larger memory space is needed.
Tessellating primitives into finer granularity also alleviates the false positives [Popov et al. 2009;
Stich et al. 2009], but the drawback is memory consumption due to the deeper bounding volume
hierarchy. Molenaar and Eisemann proposed another method using a proxy geometry represented
by a hierarchical voxel data structure to optimize out-of-core rendering [Molenaar and Eisemann
2020]. Our approach is similar to theirs but our method has a smaller overhead which makes it
possible to use at each step in the traversal, and it pays off for in-core rendering.
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Fig. 2. A triangle bounded more tightly than AABB by 4 × 4 × 4 voxels. Only 22 of 64 voxels are occupied by
the triangle.

We propose a novel culling that achieves a coexistence of culling efficiency, cheap computation,
and low memory cost. Our culling leverages voxels’ tightness and intersection efficiency to com-
pensate for the AABB weakness. The voxels can be compressed with LUT-based compression to
minimize the memory cost.

3 OUR CULLING APPROACH
AABB is a simple and efficient bounding volume; however, primitives such as a long, thin, and
diagonal triangle in the volume may not be tightly bounded. Our approach compensates for this
loose bound due to AABB by a uniform grid and storing occupancy of a triangle as shown in Fig. 2.
Since the voxel data structure can represent empty space for each cell individually, it can more
tightly enclose these kinds of primitives. We build a uniform grid data structure representing spatial
occupancy as binary for each AABB in a BVH, which we call an object mask. In order to determine
the voxel pattern along a ray in the same grid as the object mask, AABB-ray intersections are
needed, such as the DDA-based methods [Amanatides andWoo 1987; Fujimoto et al. 1986]. However,
such iterative algorithms for each AABB during BVH traversal may be impractical because the
grid traversal takes linear time complexity with respect to the grid resolution. Instead, we build a
LUT for the overlapped voxels with a ray in the grid. Accordingly, the voxel pattern is obtained
by looking up the LUT. We call the voxel pattern for a ray mask. The intersection between a ray
mask and an object mask can be executed by bitwise AND operations, as shown in Fig. 3. Thus, our
culling in subspace can reduce false positives due to AABB by simple arithmetic operations.

First, we describe our method with a simple case — triangles in an AABB in Sect. 3.1, then extend
it to BVH, a hierarchical case, in Sect. 3.2.

3.1 Subspace Culling for Triangle-Ray Intersection
3.1.1 Mask Creation. We create an object mask and a ray mask to test the overlap. In order to build
an object mask in an AABB containing a single triangle (or triangles), we conservatively voxelize
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Fig. 3. An example of Ray-AABB intersection by AABB mask and ray mask by a bitwise AND operation. If all
bits in the result are zero, there is no intersection.

Algorithm 1: Lookup ray mask Inputs: lower, upper: Minimum and maximum value of
the AABB. 𝑝0, 𝑝1: The hit locations by AABB-ray intersection. R: The mask resolution.
rayMasks: The LUT for a ray mask. Discretized begin and end location of the ray map to its
ray mask.
function lookupRayMask( lower, upper, 𝑝0, 𝑝1, R, rayMasks)

𝑒𝑥𝑡𝑒𝑛𝑡 ← 𝑢𝑝𝑝𝑒𝑟 − 𝑙𝑜𝑤𝑒𝑟 ;
𝑏𝑒𝑔←min(⌊ 𝑅

𝑒𝑥𝑡𝑒𝑛𝑡
(𝑝0 − 𝑙𝑜𝑤𝑒𝑟 )⌋, 𝑅 − 1) ;

𝑒𝑛𝑑 ← min(⌊ 𝑅
𝑒𝑥𝑡𝑒𝑛𝑡

(𝑝1 − 𝑙𝑜𝑤𝑒𝑟 )⌋, 𝑅 − 1) ;
return 𝑟𝑎𝑦𝑀𝑎𝑠𝑘𝑠 (𝑏𝑒𝑔,𝑒𝑛𝑑) ;

end

the triangles [Schwarz and Seidel 2010]. A chunk of binary occupancy can be densely packed as a
bit sequence.

We precompute ray masks as a LUT. We use two discretized positions of AABB-ray intersections
as the key of the LUT; thus, the table has six dimensions. The hit locations by AABB-ray intersection
are linearly mapped to a unit cube then the indices are determined as shown in Algorithm 1 to
reuse the LUT for all AABB. The two positions of AABB-ray intersections can be anywhere in
the AABB in cases where the ray origin or the end of the ray segment is inside the volume, as
long as the ray mask LUT includes masks corresponding to all combinations of the two positions.
We use AABB-AABB Sweep intersection test [Ericson 2004] to build the LUT because the sweep
represents all possible rays. Although the lookup-based ray mask is conservative, it may produce
extra false-positive intersections, which we evaluate in Sect. 4.2.

3.1.2 Culling by Ray Mask and Object Mask . Once the ray mask LUT and object masks are created,
the culling is straightforward. First, we compute the two intersection points of the ray on the AABB,
which are used to fetch a ray mask from the LUT. Then, we take bitwise AND between the ray
mask and the object mask. If all the bits are zero, there is no intersection between the ray and the
AABB. Therefore ray-triangle intersections can be culled by the masks further after AABB culling.

3.2 Hierarchical Subspace Culling for BVH
Our method can be trivially applied to every node in BVH because each node can be considered a
node containing all of the triangles in descendant nodes. However, calculating the occupancy with
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(a) Voxel filling in the parent (b) Two voxels are overlapped (c) Four voxels are overlapped

Fig. 4. The parent voxels are conservatively filled by their occupied voxels in children. Occupied voxels in the
parent and occupied voxels in the child are illustrated as blue and red cells, respectively. (a): Three voxels in
the parent are filled by two voxels in the child. (b) and (c): Two box-shaped filling patterns in the parent by a
voxel in a child. A child voxel fills one to eight parent voxels since a child voxel size is smaller than or equal to
the parent.

all primitives in a node is computationally expensive, especially for nodes in an upper level on a
BVH. Thus, we propose an approximation to accelerate object mask creation dedicated to BVH.
Additionally, object masks for each AABB can consume large memory. We also propose to use LUT
to compress object masks in a BVH to reduce the memory overhead.

3.2.1 Hierarchical Object Mask Creation. As a node may contain a large number of primitives
due to the hierarchical representation, voxelizing all the primitives to compute the occupancy
is redundant and computationally expensive. Instead, we introduce the use of an object mask
on a node as an approximation of the occupancy of its children. An occupied voxel in the child
conservatively fills its parent voxels as shown Fig. 4a. Fig. 4b and Fig. 4c show two filling patterns
in the parent from a child voxel. A child voxel’s min and max vertices are projected to the parent
grid. Their indices determine the box-shape filling pattern in the parent node. Because the pattern
is finite, we precompute a six-dimensional table for the box-shaped pattern. The table maps the
projected indices of the vertices to their filling pattern. Each occupied child voxel is mapped to a
pattern and they are combined by bitwise OR operations to get the conservative voxels in the parent.
Algorithm 2 shows an object mask creation from the approximated occupancy of its children. As
the approximation may produce extra false positives, we use a parameter 𝐿 to control the strength
of approximation, where we compute object masks from the node 𝐿 levels below to take tighter
occupancy. As 𝐿 increases, the computational cost increases as we need to propagate object masks
and primitives to many parents. 𝐿 = ∞ is equivalent to the tightest object mask built from all
primitives below the node while 𝐿 = 1 limits a node to take the occupancy only from its direct
children.

3.2.2 Object Mask Compression with LUT. The memory size of an object mask is proportional to
the cube of the resolution 𝑅. For instance, we need to store a 64-bit value for an AABB when we
use 𝑅 = 4. In order to reduce the memory footprint of object masks, we propose the use of a LUT
to compress them. Each mask data is replaced by an index of the LUT, which we call a compression
LUT. The tightness of the compressed masks depends on a set of object masks we store in the
compression LUT. We borrow the idea of surface area heuristic (SAH) [Goldsmith and Salmon 1987;
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MacDonald and Booth 1990] to define the optimal LUT. In SAH, the cost of BVH is described as
follows:

𝑆𝐴𝐻 (𝑁 ) = 1

𝑆𝐴(𝑁 )

(
𝐶𝑇

∑︁
𝑁𝑖

𝑆𝐴(𝑁𝑖 ) +𝐶𝐼

∑︁
𝑁𝑙

𝑆𝐴(𝑁𝑙 ) · |𝑁𝑙 |
)
, (1)

where 𝑁 is the root node, 𝑆𝐴(𝑁 ) is the surface area of the bounding box on the node, 𝑁𝑖 and 𝑁𝑙

are inner nodes and leaf nodes, 𝐶𝑇 and 𝐶𝐼 are intersection cost of an inner node and a primitive,
|𝑁𝑙 | is the number of primitives in the leaf.
We assume the number of occupancy in the object mask is proportional to the probability of the

intersecting ray. Then the SAH can be extended to take our culling into account as follows:

𝑆𝐴𝐻𝑚𝑎𝑠𝑘𝑒𝑑 (𝑁 ) =
1

𝑆𝐴(𝑁 )

(
𝐶𝑇

∑︁
𝑁𝑖

𝑆𝐴(𝑁𝑖 )
𝑂𝑚 (𝑁𝑖 )

𝑅3
+𝐶𝐼

∑︁
𝑁𝑙

𝑆𝐴(𝑁𝑙 )
𝑂𝑚 (𝑁𝑙 )

𝑅3
· |𝑁𝑙 |

)
, (2)

where 𝑂𝑚 (𝑥) is the number of occlusions in the object mask in a node 𝑥 . As a compression LUT
has a limited number of elements, the LUT that minimizes Eq. 2 is the optimal table.

However, it is prohibitively expensive to find the optimal LUT because of the vast search space.
Thus, we first choose the object masks from the original masks for a compression LUT. We use
𝑆𝐴(𝑁 )𝑂𝑚 (𝑁 )

𝑅3 as the importance of its object mask for creating a sub-optimal LUT. We take the top
important object masks as a compression LUT. Second, we find the conservative and the tightest
object mask from the LUT for each mask that is not found in the LUT.
Note that the intersection of the LUT for ray mask and compression LUT can be obtained by a

precomputed two-dimensional bit table. The table key consists of an index of the ray mask and
an index of the compression LUT. The table values are the intersection result represented as a bit.
Accordingly, fetching a ray mask and an object mask from each LUT and bitwise AND operations
can be replaced by fetching an intersection result as a bit from the precomputed bit table. This
replacement can improve the performance of the intersection if the bit fetching is cheaper despite
memory access to random locations in the large bit table.

3.2.3 Search Object Mask in the LUT . Some object masks may not be in the compression LUT
when the number of LUT elements is less than object masks in a BVH. We need to select an
alternative mask from compression LUT for such missing masks. The alternative mask needs to be
conservative; otherwise, it causes invalid culling. The alternative mask is preferred to be a tighter
one in the conservative masks to make Eq. 2 smaller. Accordingly, we extract masks that have all
set bits of the missing object mask out of compression LUT and choose the mask with the smallest
number of set bits. The brute-force algorithm can do this; however, we propose a search algorithm
with which we can search for the best mask in table look-ups and a few arithmetic operations. The
algorithm consists of conservative mask extraction and searching for the tightest one. The former
is done using precomputed tables, and the latter is done by presorting the compression LUT by
their set bit count.

Since the set bits in the object mask indicate the requirements, we precompute the list of masks
that satisfy the requirements in the compression LUT against each bit pattern. The list of the masks
is stored as a bit sequence where each bit represents whether the mask corresponding to its bit
location satisfies the requirements. However, the bit pattern is 2𝑅3 , which is impractically large
to compute. In order to reduce the size of the precomputed table, we separate the bit pattern into
smaller chunks, where each chunk has 𝑏 bits, and each precomputed table has 2𝑏 elements. We call
the table requirement LUT. Instead of building a single massive table, we create ⌈𝑅3

𝑏
⌉ requirement

LUTs built from compression LUT as we prepare a table for all bit chunks. A list of masks out of
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Algorithm 2: An object mask creation from the approximated occupancy. The indices
of the parent voxel grid are calculated individually per axis to reuse the result in the loop
for each voxel of the child mask. Inputs and Symbols: mask: AABB mask to update its
occupancy. pLower, pUpper : Minimum and maximum value of the parent AABB. childMask:
Approximated occupancy of the child. cLower, cUpper : Minimum and maximum value of the
child AABB. R: Mask resolution. fillingPatternTable: A table maps minimum and maximum
voxel indices in a parent grid to a box-shaped voxel pattern. ⊕: A bitwise OR.
function fillByApproximatedOccupancy( mask, pLower, pUpper, childMask, cLower,
cUpper, R, fillingPatternTable)
𝑐𝐸𝑥𝑡𝑒𝑛𝑡 ← 𝑐𝑈𝑝𝑝𝑒𝑟 − 𝑐𝐿𝑜𝑤𝑒𝑟 ;
𝑝𝐸𝑥𝑡𝑒𝑛𝑡 ← 𝑝𝑈𝑝𝑝𝑒𝑟 − 𝑝𝐿𝑜𝑤𝑒𝑟 ;
for 𝑖 ← 0 to 𝑅 do

𝑏𝑜𝑟𝑑𝑒𝑟 ← 𝑐𝐿𝑜𝑤𝑒𝑟 + 𝑖
𝑅
𝑐𝐸𝑥𝑡𝑒𝑛𝑡 ;

𝑖𝑛𝑑𝑒𝑥𝑃𝑎𝑟𝑒𝑛𝑡 ← ⌊𝑅 𝑏𝑜𝑟𝑑𝑒𝑟−𝑝𝐿𝑜𝑤𝑒𝑟

𝑝𝐸𝑥𝑡𝑒𝑛𝑡
⌋ ;

𝑥𝑠𝑖 , 𝑦𝑠𝑖 , 𝑧𝑠𝑖 ←min(𝑖𝑛𝑑𝑒𝑥𝑃𝑎𝑟𝑒𝑛𝑡, 𝑅 − 1);
end

// A Loop for each voxel of the child mask.

for 𝑥 ← 0 to 𝑅 - 1 do
for 𝑦 ← 0 to 𝑅 - 1 do

for 𝑧 ← 0 to 𝑅 - 1 do
if 𝑐ℎ𝑖𝑙𝑑𝑀𝑎𝑠𝑘𝑥𝑦𝑧 = 0 then

continue
end
𝑖𝑛𝑑𝑒𝑥𝑚𝑖𝑛 ← 𝑥𝑠𝑥 , 𝑦𝑠𝑦, 𝑧𝑠𝑧 ;
𝑖𝑛𝑑𝑒𝑥𝑚𝑎𝑥 ← 𝑥𝑠𝑥+1, 𝑦𝑠𝑦+1, 𝑧𝑠𝑧+1;
𝑚𝑎𝑠𝑘 ←𝑚𝑎𝑠𝑘 ⊕ 𝑓 𝑖𝑙𝑙𝑖𝑛𝑔𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑇𝑎𝑏𝑙𝑒 (𝑖𝑛𝑑𝑒𝑥𝑚𝑖𝑛,𝑖𝑛𝑑𝑒𝑥𝑚𝑎𝑥 ) ;

end
end

end
end

the requirement LUTs can be combined into a bit sequence by bitwise AND operations, where the
combined bit sequence indicates the list of masks that satisfy all of the bit requirements of an object
mask as shown in Fig. 5. The object mask can be conservatively replaced by any mask in the list.
Once the conservative mask list is obtained, the mask with the lowest set bit count in the list

is the tightest. Instead of the linear search, we use the least-significant bit (LSB) location to find
the tightest mask by sorting the masks in the compression LUT order by their number of set bits
before the requirement LUTs are built. Algorithm 3 shows our mask search algorithm.

3.2.4 BVH Node Structure. Fig. 6 shows memory layout visualization of 4-wide BVH nodes with
our object masks as examples, where 𝑅 = 4, the number of the compression LUT element is 256,
Fig. 6a is without the compression, and Fig. 6b is with the compression. Since the number of bits in
the object mask is 𝑅3, each mask in the uncompressed node is 8 bytes. The index of a mask in the
compression LUT can be stored in 1 byte, which is 1

8 of the uncompressed mask. The size of the
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Fig. 5. An example of requirement LUTs with 𝑏 = 2. A bit pattern of an object mask is separated into 𝑏 bits
elements, and a mask list that corresponds to its bit pattern from each requirement LUT is combined by
bitwise AND operations to get the conservative mask list for the object mask to search.

Algorithm3: Search the optimal objectmask in compression LUT. Inputs, Functions, and
Notations:mask: An object mask to search for. R: Themask resolution. b: The number of bits
in a chunk that corresponds to the requirement table. requirementTables: The precomputed
requirement tables. 𝐿𝑆𝐵(𝑥): Calculate least significant bit of x. ∧: A bitwise AND.
function indexOfOptimalMask( mask, R, b, requirementTables)

𝑛𝐵𝑎𝑡𝑐ℎ← ⌈𝑅3

𝑏
⌉ ;

for 𝑖 ← 0 to 𝑛𝐵𝑎𝑡𝑐ℎ − 1 do
𝑏𝑖𝑡𝑠 ← read 𝑏 bits from𝑚𝑎𝑠𝑘 at (𝑖 · 𝑏)-th bit ;
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑖 ← 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑏𝑙𝑒𝑠 (𝑖,𝑏𝑖𝑡𝑠) ;

end
𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝐿𝑖𝑠𝑡 ← 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡0 ;
for 𝑖 ← 1 to 𝑛𝐵𝑎𝑡𝑐ℎ − 1 do

𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝐿𝑖𝑠𝑡 ← 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝐿𝑖𝑠𝑡 ∧ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑖 ;
end
return LSB ( 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝐿𝑖𝑠𝑡 );

end

uncompressed node is 144 bytes compared to 112 bytes without masks. The size of a node with
compression is 116 bytes.

3.2.5 Traversal Algorithm. Our subspace culling algorithm can be added to an existing regular
BVH traversal algorithm. A pseudocode is shown in Algorithm 4 where the addition of the logic
for the proposed method is highlighted in red. Our method reuses the results of the AABB-ray
intersection.
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(a) Uncompressed (b) Compressed

Fig. 6. Visualization of memory layout for 4-wide BVH nodes with our object masks, where 𝑅 = 4. Each
rectangle cell indicates 4 bytes, and each square cell indicates 1 byte. (a): A BVH node without compression.
(b): A BVH node with our compression by the LUT.

Algorithm 4: BVH traversal with our culling. The red highlighted part is our culling
embedded in a traditional BVH traversal. Inputs, Functions, and Notations: root: A root
node of the BVH. ray: A ray to find intersections to the BVH. R: The mask resolution.
rayMasks: The LUT for a ray mask. Discretized begin and end location of the ray map to
its ray mask. lookupRayMask: LUT-based ray mask. Creation of the LUT is described in
Algorithm 1
function traverse( root, ray, R, rayMasks)

push (𝑟𝑜𝑜𝑡 );
while 𝑇𝑟𝑢𝑒

𝑛𝑜𝑑𝑒 ← pop () ;
if 𝑛𝑜𝑑𝑒 is empty then break ;
if 𝑛𝑜𝑑𝑒 is a leaf then

Find an intersection 𝑟𝑎𝑦 and triangles in 𝑛𝑜𝑑𝑒 ;
continue;

end
ℎ𝑖𝑡𝑠 ← find intersections AABBs in 𝑛𝑜𝑑𝑒 and 𝑟𝑎𝑦 ;
foreach ℎ𝑖𝑡𝑖 ∈ ℎ𝑖𝑡𝑠 do

𝐴𝐴𝐵𝐵, 𝑜𝑏 𝑗𝑒𝑐𝑡𝑀𝑎𝑠𝑘 , 𝑝𝑠← get an AABB, an object mask, and intersections of ℎ𝑖𝑡𝑖 ;
𝑟𝑎𝑦𝑀𝑎𝑠𝑘 ← lookupRayMask ( 𝐴𝐴𝐵𝐵𝑙𝑜𝑤𝑒𝑟 , 𝐴𝐴𝐵𝐵𝑢𝑝𝑝𝑒𝑟 , 𝑝𝑠0, 𝑝𝑠1, 𝑅, 𝑟𝑎𝑦𝑀𝑎𝑠𝑘𝑠 );
if 𝑜𝑏 𝑗𝑒𝑐𝑡𝑀𝑎𝑠𝑘 ∧ 𝑟𝑎𝑦𝑀𝑎𝑠𝑘 is not zero then

𝑐ℎ𝑖𝑙𝑑 ← get an child node that corresponds ℎ𝑖𝑡𝑖 ;
push (𝑐ℎ𝑖𝑙𝑑);

end
end

end
end

4 EVALUATION
We evaluate the culling efficiency in path tracing with several scenes shown in Fig. 7. All the
measurements are done with 960 × 540 resolution and 16 samples per pixel. We count the number
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(a) Bedroom (462.8 K tris) (b) San Miguel (9.9 M tris) (c) Ninja (1.3 M tris)

(d) Bistro (2.8 M tris) (e) Classroom (606.1 K tris) (f) Hairball (2.8 M tris)

(g) Curly Hair (12.1 M tris) (h) Straight Hair (7.3 M tris) (i) Victorian Trains (884.1 K tris)

Fig. 7. Test scenes used to evaluate our subspace culling.

of intersections of AABB-ray and triangle-ray to evaluate the culling efficiency. As we use 4-wide
BVH for all measurements in this paper, we treat four AABB-ray intersections and a triangle-
ray intersection as a measurement unit. The BVH for each scene is built by binned SAH BVH
construction algorithm [Meister et al. 2021]. Note that our method does not assume any branching
factor or BVH construction algorithm; therefore, it applies to a BVHwith any of them. Themaximum
culling efficiency with our method is achieved by ray masks created with iterative grid traversal
and object masks built without the approximation where an object mask is calculated by all of the
descendant primitives in the BVH. First, we show the maximum culling efficiency. Next, we evaluate
the increase of intersections and their rendering performance with the lookup table optimization
of the ray mask. The trade-off between the culling efficiency and the performance of object mask
building with approximated object masks is also shown. Finally, we show the culling efficiency of
the compressed masks and their object mask-finding performance. All measurements were done
with an AMD Ryzen™9 5950X CPU.

4.1 Ideal Culling
We use grid traversal proposed by Amanatides et al. for the maximum culling efficiency [Amanatides
and Woo 1987]. "Ideal Culling" column in Table 1 shows the ratio of intersections compared to
without our culling. The ideal intersection ratio is 75.4% on average, 56.5% on the best with 𝑅 = 4,
and 65.3% on average, 42.5% on the best with 𝑅 = 6. Significant intersection reductions are observed
in the "Curly Hair" and "Straight Hair" scene compared to the others. It emphasizes our method is
suitable for thin and tilted geometry. Despite the reduction of intersections, it is difficult to pay off
the culling overhead due to the ray mask creation by grid traversal as shown in Table 2.
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Ratio of intersections with resolution 𝑅 = 4

Scene No Culling Ideal Culling Ray mask LUT
𝑅𝑟𝑎𝑦 = 𝑅

Ray mask LUT
𝑅𝑟𝑎𝑦 = 2𝑅

Compressed with
LUT

Bedroom 100% 89.3% 90.0% 89.8% 90.7%
San Miguel 100% 79.3% 80.5% 80.2% 83.2%
Ninja 100% 84.2% 85.5% 85.2% 90.0%
Bistro 100% 72.3% 73.8% 73.4% 78.2%
Classroom 100% 87.4% 88.1% 87.9% 88.3%
Hairball 100% 67.0% 71.5% 70.6% 73.2%
Curly Hair 100% 57.5% 62.5% 61.5% 66.3%
Straight Hair 100% 56.5% 61.4% 60.3% 62.1%
VictorianTrains 100% 85.1% 86.2% 85.9% 86.9%
Average 100% 75.4% 77.7% 77.2% 79.9%

Ratio of intersections with resolution 𝑅 = 6

Bedroom 100% 83.8% 84.9% 84.5% 86.9%
San Miguel 100% 67.9% 70.6% 69.7% 76.5%
Ninja 100% 76.5% 78.8% 78.0% 87.7%
Bistro 100% 59.1% 61.8% 61.0% 71.5%
Classroom 100% 83.5% 83.3% 83.7% 85.1%
Hairball 100% 54.4% 61.1% 58.8% 74.3%
Curly Hair 100% 43.3% 50.6% 48.1% 60.4%
Straight Hair 100% 42.5% 49.3% 47.0% 53.6%
VictorianTrains 100% 77.0% 78.7% 78.1% 81.1%
Average 100% 65.3% 68.8% 67.6% 75.2%

Table 1. Ratio of AABB-Ray and AABB-Triangle intersections with and without our culling. Ideal culling case,
ray mask with LUT approximation, and compressed cases are shown. The underlined numbers are the best
ratio in the scenes.

4.2 Ray Mask Creation with LUT
Although the LUT for ray masks can be used to avoid the expensive grid traversal, extra false
positives are produced due to the use of the LUT. We evaluate the increase of intersections with ray
mask LUT and the rendering performance. The LUT resolution–𝑅𝑟𝑎𝑦 can be independent of mask
resolution–𝑅. However, a LUT cell can overlap with more than one cell in an AABB mask if 𝑅𝑟𝑎𝑦 is
not multiple of 𝑅 or 𝑅𝑟𝑎𝑦 is less than 𝑅. These misaligned grids reduce the method effectiveness
because it produces false positives which could be culled. Thus, we use 𝑅𝑟𝑎𝑦 = 𝑅 and 𝑅𝑟𝑎𝑦 = 2𝑅 for
the evaluation. The creation of ray mask LUT with 𝑅 = 4 and 𝑅 = 6 take 1.1 milliseconds and 29.6
milliseconds, respectively, if 𝑅𝑟𝑎𝑦 = 𝑅, while they take 54.2 milliseconds and 1791.7 milliseconds if
𝑅𝑟𝑎𝑦 = 2𝑅. The two intersection ratios and performance measurements are also shown in Table 1
and Table 2, respectively. Although the intersection ratio of ray mask LUT 𝑅𝑟𝑎𝑦 = 𝑅, 2𝑅 is slightly
worse than the ideal case, all scenes get faster than the ideal culling. Especially, over 10% render
time reductions from the baseline are observed in "Curly Hair" and "Straight Hair" scenes with
𝑅𝑟𝑎𝑦 = 𝑅. 𝑅𝑟𝑎𝑦 = 2𝑅 case is slower than 𝑅𝑟𝑎𝑦 = 𝑅 despite of the better tightness. This can be
explained latency penalty of the memory access to random locations in the larger size of the LUT.

4.3 Approximated Object Mask
We evaluate the approximation of the object mask construction in a BVH with different parameters
where 𝐿 = 1, 2, 3, 4, 5. As the tightness and its computational cost depend on the parameter 𝐿, we
measure the intersection and the creation time of the mask. Fig. 8 shows the trade-off between
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Relative rendering time with resolution 𝑅 = 4

Scene No Culling Ideal Culling Ray mask LUT
𝑅𝑟𝑎𝑦 = 𝑅

Ray mask LUT
𝑅𝑟𝑎𝑦 = 2𝑅

Bedroom 100% ( 73.89 seconds ) 117.2% 103.6% 103.0%
San Miguel 100% ( 180.03 seconds ) 138.0% 97.6% 99.3%
Ninja 100% ( 55.19 seconds ) 113.7% 101.0% 101.2%
Bistro 100% ( 97.01 seconds ) 124.8% 94.9% 97.1%
Classroom 100% ( 123.31 seconds ) 120.2% 106.0% 102.9%
Hairball 100% ( 54.11 seconds ) 132.1% 97.9% 98.0%
Curly Hair 100% ( 82.74 seconds ) 126.7% 86.9% 89.2%
Straight Hair 100% ( 54.34 seconds ) 120.0% 88.0% 91.1%
VictorianTrains 100% ( 129.19 seconds ) 124.4% 104.3% 107.2%
Average 100% ( 94.42 seconds ) 124.1% 97.8% 98.8%

Relative rendering time with resolution 𝑅 = 6

Bedroom 100% ( 73.89 seconds ) 119.7% 106.5% 107.9%
San Miguel 100% ( 180.03 seconds ) 140.0% 98.2% 108.4%
Ninja 100% ( 55.19 seconds ) 118.1% 104.5% 110.3%
Bistro 100% ( 97.01 seconds ) 127.1% 97.3% 105.7%
Classroom 100% ( 123.31 seconds ) 124.6% 107.1% 110.8%
Hairball 100% ( 54.11 seconds ) 132.5% 102.0% 110.9%
Curly Hair 100% ( 82.74 seconds ) 120.2% 87.1% 95.7%
Straight Hair 100% ( 54.34 seconds ) 114.6% 85.6% 90.5%
VictorianTrains 100% ( 129.19 seconds ) 128.4% 110.0% 115.8%
Average 100% ( 94.42 seconds ) 125.0% 99.8% 106.2%

Table 2. Rendering time comparison for ray mask LUT. The ratios are relative rendering times with respect to
without culling. The underlined numbers are the best performance in the scenes.

the intersection ratio and the mask creation performance. However, proper 𝐿 depends on the
performance gain from the reduction and the amount of ray-tracing cost. As the reduction of
intersection starts saturated around 𝐿 = 3 while the mask creation time increase near to linear with
respect to 𝐿 on almost all scenes, 𝐿 = 3 could be used as a default parameter before fine-tuning.

4.4 Compressed Object Mask
As the bit pattern of the object mask can be alternated by another object mask as long as it is
conservative, the number of the LUT elements can be arbitrary. We evaluate the compression with
256 for the LUT size for simplicity of the compression and decompression. The compression rate is
fixed, which is 1:8 for 𝑅 = 4 and 1:27 for 𝑅 = 6. Table 1 shows the intersection ratio as "Compressed
with LUT" column. Despite the compressed size being the same, 𝑅 = 6 case produces better culling
ratios with compression. 24.8% on average, 46.4% on maximum was reduced by just 8bits mask data
per AABB in 𝑅 = 6 case.

We also evaluate the performance of the object mask finding. We use 𝑏 = 8 for mask search for
efficient bit extraction from the target object mask and keeping the table size small. Table 3 shows
a performance comparison between the brute-force search and our search. The latter only takes
9.1%—11.1% with 𝑅 = 4, 10.7%—17.2% with 𝑅 = 6, compared with the former.

5 CONCLUSIONS AND FUTUREWORK
We proposed a novel culling technique using ray and object masks that can be embedded in a BVH
node. Our ray LUT-based approach reduces the number of intersections by 38.6% with 𝑅 = 4 and
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(a) Ratio of intersections with 𝑅 = 4 (b) Ratio of intersections with 𝑅 = 6

(c) Object mask creation time with 𝑅 = 4 (d) Object mask creation time with 𝑅 = 6

Fig. 8. (a) and (b): Ratio of intersections with object mask approximation with parameter 𝐿 = 1, 2, 3, 4, 5 and
the resolution 𝑅 = 4, 6. (c) and (d): Object mask relative creation time with the approximation with parameter
𝐿 = 1, 2, 3, 4, 5 and the resolution 𝑅 = 4, 6. The baseline of the ratio is 𝐿 = 1,

50.7% with 𝑅 = 6 as the maximums in our experiment. Additionally, the traversal performance with
the ray LUT approach shows performance improvement in certain scenes where AABB causes
too many false positive intersections due to the loose fit. Approximated object mask provides a
trade-off for object mask construction cost and culling efficiency. We also proposed compression of
object masks using LUT without sacrificing much culling efficiency.

Despite our algorithm’s simplicity and the intersection reduction, it is difficult to achieve a better
performance in all scenes, as we showed in Sec. 4, even though our computational overhead is small.
A dedicated hardware implementation may change the algorithm trade-off between computational
cost and culling efficiency. Optimal LUT creation for object mask compression in a practical time has
yet to be established. Fast and optimal compression LUT generation is important for the coexistence
of culling efficiency, cheap computation, and low memory cost.

As each object mask in a BVH is affected by all primitives in their children’s primitives, animated
primitives enforce updating parent object masks. Efficient update approaches in dynamic scenes
are left for future work. Another future work is an efficient object mask creation on the GPU and
performance evaluation of the proposed method on the GPU.
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Mask finding time 𝑅 = 4

Scene Naive (milliseconds) Our (milliseconds) Our (Relative)
Bedroom 216.6 20.3 9.4%
San Miguel 4923.2 446.6 9.1%
Ninja 569.6 63.1 11.1%
Bistro 1295.2 128.5 9.9%
Classroom 279.7 26.4 9.4%
Hairball 1396.5 132.2 9.5%
Curly Hair 5325.4 543.0 10.2%
Straight Hair 3132.5 326.7 10.4%
VictorianTrains 409.8 37.4 9.1%

Mask finding time 𝑅 = 6

Bedroom 371.2 46.8 12.6%
San Miguel 9181.5 983.7 10.7%
Ninja 1239.8 139.1 11.2%
Bistro 2646.1 305.9 11.6%
Classroom 515.4 60.9 11.8%
Hairball 2039.0 306.8 15.0%
Curly Hair 8768.3 1251.3 14.3%
Straight Hair 4522.9 777.2 17.2%
VictorianTrains 674.5 95.0 14.1%

Table 3. Time of searching the conservative and tightest object mask in a table for compression.

"Classroom" is by Christophe Seux from Blender Foundation’s demo files. "Curly Hair" and "Straight
Hair" are from Cem Yuksel’s web page. We also thank Oleksandr Kupriyanchuk for proofreading
and valuable suggestions. Additionally, we appreciate Prashanth Kannan for finding out a lot of
grammatical mistakes and inconsistencies.
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