2304.06232v1 [cs.DB] 13 Apr 2023

arxXiv

Conjunctive Regular Path Queries under Injective Semantics

Diego Figueira
diego.figueira@cnrs.fr
Univ. Bordeaux, CNRS,

Bordeaux INP, LaBRI, UMR 5800
F-33400, Talence, France

ABSTRACT

We introduce injective semantics for Conjunctive Regular Path
Queries (CRPQs), and study their fundamental properties. We iden-
tify two such semantics: atom-injective and query-injective seman-
tics, both defined in terms of injective homomorphisms. These
semantics are natural generalizations of the well-studied class of
RPQs under simple-path semantics to the class of CRPQs. We study
their evaluation and containment problems, providing useful char-
acterizations for them, and we pinpoint the complexities of these
problems. Perhaps surprisingly, we show that containment for CR-
PQs becomes undecidable for atom-injective semantics, and PSPACE-
complete for query-injective semantics, in contrast to the known
ExpSPACE-completeness result for the standard semantics. The tech-
niques used differ significantly from the ones known for the stan-
dard semantics, and new tools tailored to injective semantics are
needed. We complete the picture of complexity by investigating,
for each semantics, the containment problem for the main sub-
classes of CRPQs, namely Conjunctive Queries and CRPQs with
finite languages.
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1 INTRODUCTION

Graph databases are important for many applications nowadays
[2, 29]. In a nutshell, graph databases are abstracted as edge-labeled
directed graphs, where nodes represent entities and labeled edges
represent relations between these entities. A fundamental way to
query graph databases is by finding patterns on the interrelation
between entities. In this respect, a central querying mechanism for
modern graph query languages is that of regular path queries (RPQs).
RPQs provide a simple form of recursion tailored to discovering
entities linked by paths with certain properties. These are queries

of the form x 4 y, where L is a regular expression on the alphabet
of database edge labels. Such a query returns all pairs of nodes
(u,v) in the database such that there is a (directed) path from u to
v whose label matches L.

Diego Figueira is partially supported by ANR QUID, grant ANR-18-CE400031. Miguel
Romero is funded by Fondecyt grant 11200956, the Data Observatory Foundation, and
the National Center for Artificial Intelligence CENIA FB210017, Basal ANID.

Miguel Romero
miguel.romero.o@uai.cl
Faculty of Engineering and Science,
Universidad Adolfo Ibafiez
Chile

The closure under conjunction and existential quantification of
RPQ yields what is known as Conjunctive RPQs (CRPQs). Indeed, CR-
PQs can be understood as the generalization of conjunctive queries
with this simple form of recursion. CRPQs are part of SPARQL [20],
the W3C standard for querying RDF data (a widespread format
for graph databases). Some examples of RDF databases are well-
known knowledge bases such as DBpedia and Wikidata. For ex-
ample, (C)RPQs are popular for querying Wikidata [7, 23]. More
generally, CRPQs are basic building blocks for querying graph-
structured databases [2, 4]. They are part of G-core [1] and Cypher
[17], the latter being the query language of Neo4j, which is cur-
rently one of the most popular commercial graph databases. They
are also part of the ongoing standardization effort GQL for graph
query languages [13, 19].

Alternative semantics. The semantics for the evaluation of an

RPQ x L y as above often assumes that any, arbitrary, (directed)
path from u to v is allowed as long as it satisfies the regular property
L. However, there are alternative semantics in which one may
restrict the path to have no repeated vertices (a.k.a. simple path), or
no repeated edges (a.k.a. trail). In this way, only a finite number of
paths need to be considered. As a matter of fact, these alternative
semantics have received considerable attention both in practice
and from the database theory community. Indeed, they are part of
Neo4j’s Cypher query language and are included in GQL as possible
ways to evaluate RPQs. Furthermore, these alternative semantics
have been extensively studied in the literature from the late 80s
onwards [3, 12, 22, 24-26]. However, rather surprisingly, this body
of research has focused mainly on RPQs, leaving the case of CRPQs
under alternative semantics essentially unexplored.

Contribution. We introduce injective semantics for CRPQs, which
generalize the simple-path semantics for RPQs, and we investigate
the fundamental properties of CRPQs under these semantics. Con-
cretely, we identify two possible natural semantics:

(1) Atom-injective. The first semantics is to require that each
CRPQ atom is interpreted with the simple-path semantics of RPQs,

L
that is, atoms of the form x — y must be mapped to simple paths

L
and atoms of the form x — x must be mapped to simple cycles.
In particular, there is no requirement that paths from different

atoms be disjoint. Under this semantics, a Boolean CRPQ like Q =
at+b)* (b+c)*
yAx

Iy, z (x ( z) holds true in the graph database
consisting of a directed path of b’s by mapping x to the first node
of the path and y and z to the last node.

(2) Query-injective. The alternative is to consider a more restric-
tive semantics in which paths corresponding to different atoms
must be mapped to different nodes, and hence there cannot be re-
peated nodes neither in paths nor between paths. This semantics



generalizes both RPQ under simple path semantics and Conjunc-
tive Queries under injective semantics. In this case, the query Q
above may only be true if the database contains two simple paths
starting in the same node with the corresponding language which
are disjoint (except for the origin).

We call the former atom-injective semantics since the “no re-
peated nodes” condition is required separately for each atom, and
the latter query-injective semantics since injectivity is required for
the query as a whole. The three semantics (standard, atom-injective,
query-injective) form a hierarchy, where query-injective is the most
restrictive and standard semantics is the least.

We first consider the evaluation problem for CRPQs, that is, check-
ing whether a tuple o belongs to the results of a query Q over a
particular graph database G. For standard semantics, this problem
is NP-complete in combined complexity, that is, when both query
and database are part of the input, and NL-complete in data com-
plexity, that is, when the query is considered to be fixed. Under both
injective semantics, the evaluation problem remains NP-complete
in combined complexity, and becomes NP-complete in data com-
plexity. This follows straight from the fact that RPQ evaluation
under simple-path semantics is NP-complete, even for very simple
RPQs [4, 26].

We therefore turn our attention to the containment problem,
which is the main focus of this paper. This problem asks whether
every result of a query Q is also returned by a query Qo, indepen-
dently of the underlying database. Checking containment is one
of the most basic static analysis tasks, and it can be a means for
query optimization. The containment problem for CRPQs is known
to be ExpSpACE-complete [9, 16] under standard semantics, and the
study of containment has been extended to queries with restricted
shapes [14] or restricted regular expressions [15].

Rather surprisingly, as we show, the hierarchy of the three se-
mantics (standard, atom-injective, query-injective) is not reflected
in the complexity of the containment problem: the most restric-
tive semantics (query-injective) is PSPACE-complete, the least re-
strictive one (standard) is ExPSPACE-complete, and the middle one
(atom-injective) is undecidable. These results for atom- and query-
injective semantics are the main technical contributions of this
paper. We complete the picture with a thorough study on the con-
tainment problem for the two main subclasses of CRPQs: Con-
junctive Queries, and CRPQs with no Kleene star operator. We
provide complexity completeness results for all possible combina-
tions (c¢f. Figure 1). Our main results require the development of
novel techniques, which yield insights on the subtle difficulties for
handling static analysis under these semantics.

Organization. After a preliminary section §2, we define and char-
acterize the evaluation and containment problems in §3 and §4,
respectively. We study the containment problem for arbitrary CR-
PQs in §5, and for subclasses of CRPQs in §6. We conclude with §7.
Omitted or sketched proofs can be found in the Appendix.

2 PRELIMINARIES

We assume familiarity with regular languages, regular expressions
and non-deterministic finite automata (NFA). We often blur the
distinction between a regular expression and the language it defines;
similarly for NFAs.

Graph databases and paths. A graph database over a finite alpha-
bet A is a finite edge-labeled graph G = (V, E) over A, where V is
a finite set of vertices and E C V X A X V is the set of labeled edges

(or simply edges). We write u 2, vto denote an edge (u,a,0) € E.A
path from u to v in a graph database G = (V, E) over alphabet A is a
a;

ar
5 V1 —

(possibly empty) sequence 7 = vy o, 01, 0] —> 0, ..
vy of edges of G, where k > 0, u = vg and v = v. An internal node
of such a path is any node v; with 0 < i < k. The label of  is the
word aj ...ar € A*. When k = 0 the label of x is the empty word
e. We say that 7 is a simple path if all the nodes v; are pairwise
distinct, and a simple cycle if vg = v} and all the nodes v; (for i < k)

are pairwise distinct.

Conjunctive queries and homomorphisms. In the setting of graph
databases, a conjunctive query (CQ) Q over a finite alphabet A is
an expression Q(x1,...,xp) = A1 A -+ A A, for m > 0, where
(x1,...,%p) is a tuple of variables, and each A; is an atom of the

form x > y, for variables x and y, and a € A. We denote by vars(Q)
the set of variables appearing in Q. We often write Q(x) instead
of Q to emphasize the tuple x = (x1, ..., xp) of free variables of Q.
We assume that the free variables x; are not necessarily distinct.
The variables of Q which are not in {x3,...,x,} are (implicitly)
existentially quantified. As usual, if ¥ is empty, we say that the CQ
Q is Boolean. Note that every CQ can be seen as a graph database
(each atom is an edge), hence, by slightly abusing notation, we
sometimes use graph database terminology for CQs.

A homomorphism h from a CQ Q(%) to a graph database G =

(V,E) is a mapping from vars(Q) to V such that h(x) LN h(y)

belongs to E for each atom x 5 y of Q. We say that h is injective if
additionally we have h(x) # h(y) for all pairs of distinct variables
x and y. We write Q — G if there is a homomorphism from Q to G
and h : Q — G if his such a homomorphism. Similarly, for a tuple 3,
we write Q — (G, 0) if there is a homomorphism h from Q to G such
that h(x) =0 and h: Q — (G, 0) to make such h explicit. We use
similar notation for injective homomorphisms, replacing — by =,
Homomorphisms between CQs are essentially defined as before
with the difference that free variables are mapped to free variables.
That is, given two CQs Q1(x1), Q2(X2), we have h : Q1 — Qg if

h:01 — (Gx),and h: Q1 —> Qy if h: Q1 —5 (G, %2), where G
is the graph database denoted by Qs.

We also work with CQs with equality atoms, which are queries of
the form Q(x) = PAI where P is a CQ (without equality atoms) and
I is a conjunction of equality atoms of the form x = y (the variables
x and y may not belong to vars(P)). Again, we denote by vars(Q)
the set of variables appearing in Q. We define the binary relation
=g over vars(Q) to be the reflexive-symmetric-transitive closure
of the binary relation {(x,y) : x = y is an equality atom in Q}. In
other words, we have x =g y if the equality x = y is forced by
the equality atoms of Q. Note that every CQ with equality atoms
Q(x) = P A1 is equivalent to a CQ without equality atoms QF,
which is obtained from Q by collapsing each equivalence class of
the relation =¢ into a single variable. This transformation gives us
a canonical renaming, which we always denote by @, from vars(Q)
to vars(Q7), defined by ®(x) = C, where C is the equivalence class
containing x. In particular, the tuple of free variables of Q= is ®(x).



CQ/CQ  CQ/CRPQ CRPQ/CQ  CQ/CRPQf™  CRPQf/CQ

standard | NP-c [10] NP-c (%) f-c (%) NP-c (f) h-c (§,%)
query-injective | NP-c (F.2) ~ NP-c(F2) IX-c(6.1FE7)  NP-c(F2) IY-c(6.1,E7)
atom-injective | NP-c (F4) Ih-c (6.2F.10) II)-c (F.6F7) TIh-c (6.2F.10) IIh-c (F.6,F.7)

CRPQ/CRPQf"

CRPQ™M/CRPQ CRPQM/CRPQf

CRPQ/CRPQ

standard | PSpace-c (F.8,F.9)

atom-injective

115 -c (§.F.10)
query-injective | PSpace-c (F.8,5.1) Hg—c (6.1,F.10) Hg—c (6.1,F.10)
undec. (5.2) IT; -c (6.2,F.10) IT; -c (6.2,F.10)

H‘g—c (§,F.10) ExpPSpPACE-c ($,¢)
PSpace-c (F.8,5.1)

undec. (5.2)

+: [15, Thm 4.2] §: [15, Thm 4.3] #: [15, Thm 4.4] $: [9, Thm. 6] ¢: [16, Thm. 4.8]
Figure 1: Complexity of the containment problem under standard, query-injective, and atom-injective semantics. Numbers in
brackets reference proposition/theorem numbers (some of them in Appendix F).

Conjunctive regular path queries. A conjunctive regular path query
(CRPQ) Q over a finite alphabet A is an expression Q(x1,...,x,) =
A1 A -+ AN A, for m > 0, where each A; is an atom of the form

x L y, for variables x and y, and a regular expression L over A.
As before, we denote by vars(Q) the set of variables of Q and often
write Q(x) instead of Q where ¥ = (x1,...,xy,) is the tuple of (not
necessarily distinct) free variables of Q. If the tuple x is empty, we
say that Q is Boolean. The class of CRPQs extends the class of CQs
and the well-studied class of regular path queries (RPQs). Indeed,
each CQ can be seen as a CRPQ where the regular expressions are
single labels from A. On the other hand, an RPQ corresponds to a

CRPQ of the form Q(x,y) = x L y.

In this paper we shall consider three basic classes: the class CQ of
all Conjunctive Queries, the class CRPQ of all CRPQs, and the class
CRPQ" of CRPQs using regular expressions with no Kleene-star
(denoting finite languages). Observe that the latter corresponds to
the subclass of CRPQ without recursion.

2.1 Standard, atom-injective, and
query-injective semantics

We now define the standard semantics for CRPQs (i.e., the usual
semantics from the database theory literature) and we introduce
the two new sorts of injective semantics.

For simplicity of exposition, we first give the semantics for
CRPQ’s without ¢, and we then show how to expand the seman-
tics to languages that include ¢. Let Q be a CRPQ of the form

_ Ly Ln
Q(2) =x1 — y1 A+ Axp — yp and assume that no language L;
contains ¢ (the empty word). Given a graph database G, the evalua-
tion of Q over G = (V, E) under standard semantics (st-semantics for
short), denoted by Q(G)*?, is the set of tuples @ of nodes for which
there is a mapping p : vars(Q) — V such that p(z) = o and for
each i there is a path 7; from p(x;) to p(y;) in G whose label is in
L;. The evaluation under atom-injective semantics (a-inj-semantics
for short), denoted by Q(G)*™, is defined similarly, but we further
require that each ; is a simple path (if x; # y;) or a simple cycle
(if x; = y;). Finally, the evaluation under query-injective semantics
(g-inj-semantics for short), denoted by Q(G)?™, is similar to the
atom-injective semantics (i.e., each 7; must be simple), but we addi-
tionally require that 4 is injective and that for every i # j there are
no internal nodes shared by 7; and ;.

The semantics for a CRPQ Q with e-words is defined as expected:
the query Q is equivalent to a union of e-free CRPQs and hence

Q G e

(ab)* a b a b a
@, o&e

b

Figure 2: The CRPQ Q(x,y) and graph databases G and G’
from Example 2.1.

its evaluation is the union of the evaluation of these ¢-free queries.
More formally, for x € {st, a-inj, g-inj}, the semantics under -

L
semantics of Q(z) = x — y A Q’, where L contains ¢ and Q' is a
CRPQ, is the union of the set of tuples given by the x-evaluation

L
of Q(2) = x ﬂ y A Q' and by the x-evaluation of Q(z[x/y]) =

Q’[x/y], where X[x/y] is the result of replacing every occurrence
of variable x with variable y in X.

Remark 2.1. The three semantics form a hierarchy. In particular,
for every CRPQ Q and every graph database G, we have Q(G)4™ C
Q(G)%™ C Q(G)5t. The converse inclusions do not hold in general.

Example 2.1. Consider the CRPQ Q(x,y) = x ﬂ yAy Sx
and the graph database G from Figure 2. Observe that (u,w) €
Q(G)%™ but (u,w) € Q(G)4™. On the other hand, it is easy
to check that Q(G)S* = Q(G)* ™. The graph database G’ from
Figure 2 provides a separation of the three semantics. Indeed, as
before Q(G’)*™ ¢ Q(G’)%™, but additionally we have (u,0) €
Q(G")*" and (u,0) ¢ Q(G")*™M.

2.2 Characterizing evaluation
We state the semantics defined above in terms of restrictive notions
of homomorphisms based on injectivity. This is based on the key
notion of expansion of a CRPQ (a.k.a. canonical database), which will
become useful for the technical developments of the next sections.

L
For any atom x — y of a CRPQ Q and w € L, the w-expansion
L

of x — y is the Boolean CQ with equality atoms of the form (i)

a
P:xgzl A z1 2, Z2 A A Zp_q = y if w # ¢, such that
the z; are fresh new variables, or of the form (ii) P = (y = z) if
w = ¢&. We usually write x -, y to denote such a w-expansion,

L
with w = ay - - - ag. An expansion of x — y is a w-expansion for
some w € L. An expansion profile of the CRPQ Q is any function



¢ mapping each atom of Q to an expansion thereof. An expansion
of the CRPQ Q(x) = A1 A --+ A A, is a CQ E(7) for which there
is an expansion profile ¢ of Q such that E = E=, where E is the
CQ with equality atoms defined by E(x) = O(A) A A p(Am).
We denote by Exp(Q) the set of all expansions of the CRPQ Q.
Intuitively, an expansion of Q is obtained by expanding each atom
of Q and then collapsing equivalent variables. For example, one

*

by
possible expansion of the query Q(x,y) = x & YAy Sx
b
from Figure 2 is E1(x,x) = x LinzSx through the expansion
b)* *
profile mapping x & y to ab and y 2, x to ¢, and another

b
expansion Ez(x,y) = x LainzgD yAy Sx mapping the atoms
to ab and c respectively.

Standard and query-injective semantics. The standard and g-inj
semantics can be rephrased as follows.

ProrosITION 2.2. Let Q be a CRPQ and G be a graph database.
Then Q(G)S! [resp. Q(G)9™ ] is the set of tuples @ of nodes for which

there is E € Exp(Q) such that E — (G,0) [resp. E =, (G,0)].

Atom-injective semantics. The atom-injective semantics corre-
sponds to the less restrictive alternative that an arbitrary homo-
morphism can be allowed as long as it is injective when restricted
to the expansions of each atom. Let E(3) be an expansion of a
CRPQ Q(x), ¢ be an expansion profile producing E, and E(%) =
@(A1) A -+ A @(Ap) be the associated CQ with equality atoms (in
particular E = E=). Let @ : vars(E) — vars(E) be the canonical re-
naming. We say that two variables x, y € vars(E) are ¢-atom-related
if there is some atom expansion ¢(A4;) containing some x’,y" such
that ®(x’) = x and ®(y’) = y.

We now define a notion of injective homomorphism tailored to
CRPQ expansions. We say that h is an atom-injective homomorphism
from an expansion E of a CRPQ Q to a graph database G mapping
free variables to dif h : E — (G, 0) and there is an expansion profile
¢ producing E such that h(x) # h(y) for every pair of distinct ¢-

. . a-inj .
atom-related variables x and y. We write E — (G, 9) if suchan h
exists. Atom-injective homomorphisms from E to CQs are defined
in the obvious way.

PRrROPOSITION 2.3. Let Q be a CRPQ and G be a graph database.
Then Q(G)%™ is the set of tuples G of nodes for which there is E €

Exp(Q) such that E — (G, ).

3 THE EVALUATION PROBLEM

The decision problem associated to evaluation is the evaluation
problem for a class C of CRPQs and a semantics x € {st, a-inj, g-inj}.

ProBLEM Evaluation problem for C under *-semantics
GIvVEN A graph database G, a query Q(x) € C, and a tuple
o of nodes.
QuEesTION Isd € Q(G)*?
The evaluation problem is NP-complete under injective seman-
tics, as it is the case under standard semantics.

ProPosITION 3.1. The evaluation problem for CRPQ and CQ is
NP-complete in combined complexity, for all semantics.

Proor. The lower bound follows by an easy reduction from the
injective-homomorphism testing problem, also known as the sub-
graph isomorphism problem, which is a well-known NP-complete
problem. [11, 18]. Indeed, a Boolean CQ Q maps injectively to G iff
Q(G)T™ # O iff QT (GT)*™ # 0, where G* [resp. Q7] is the result
of adding, for a fresh symbol R, an R-edge between every pair of
vertices [resp. an R-atom between every pair of variables].

The upper bound is a consequence of the polynomial-sized wit-
ness property. That is, if 0 € CRPQ, and o € Q(G)*, then there
exists an expansion E of Q such that E -, (G,0) if x = g-injand
E Y, (G,0) if x = a-inj. In either case, E is linear in G and Q.
One can then guess such an expansion and check the existence of
the corresponding homomorphism. O

The data complexity for the alternative semantics (i.e., when the
query is considered to be of constant size) is also NP-complete, since
evaluation of RPQs under simple path semantics is NP-complete,
even for very simple regular expressions [26]:

ProPOSITION 3.2. The evaluation problem for CRPQ is NP-complete
in data complexity, for atom-injective and query-injective semantics.

The RPQs which can be evaluated efficiently in data complex-
ity have been characterized via a trichotomy result: they can be
either NP-complete, NL-complete, or in AC? [3, Theorem 2]. The
generalization of this result to CRPQs under injective semantics
seems highly non-trivial, and in particular it would necessitate a
comprehensive understanding of the query equivalence problem,
which is the focus of the next sections.

4 THE CONTAINMENT PROBLEM

A CRPQ Qj is contained in a CRPQ Q2 under *-semantics, denoted
by Q1 Cx Q2. if 01(G)* € Q2(G)™* for every graph database G.
We define the containment problem, which is parameterized by
classes C; and C of CRPQs as well as the semantics used (standard,
query-injective, or atom-injective).

PrROBLEM (j/C; containment problem under *-semantics
GiveN CRPQs Q1 € Cy and Q3 € Cs.
QUESTION Does Q1 S« Q2 hold?
Under standard semantics, all combinations among CQ, CRPQ
and CRPQf™" have been studied and are decidable. In particular:

THEOREM 4.1. [9, 16] The CRPQ/CRPQ containment problem un-
der standard semantics is EXPSPACE-complete.

We will dedicate the rest of the paper to study the situation
for injective semantics. We show that one injective semantics be-
comes undecidable while the other becomes better behaved compu-
tationally under standard complexity theoretic assumptions (cf. the
CRPQ/CRPQ column of Figure 1).

4.1 Characterizing containment
For the standard semantics, it is well-known that containment of

CRPQs can be characterized in terms of expansions:

ProprosSITION 4.2. [9] Let Q1 and Q2 be CRPQs. Then Q1 Cs; Q2
iff for every E1 € Exp(Q1) there is E; € Exp(Q2) such that E; — Ej.



A similar characterization holds for query-injective semantics:

PROPOSITION 4.3. Let Q1 and Q2 be CRPQs. Then Q1 Cy-inj Q2 iff
for every E1 € Exp(Q1) there is E2 € Exp(Q3) such that E; ﬂ) E;.

As it turns out, the previous characterization does not work for

atom-injective semantics (replacing -, by ﬂ). In this case, the
space of expansions of Q1 is not enough and we need to check Q2
against a larger space of expansions of Q; we define below.

An atom-injective-expansion (a-inj-expansion for short) of a CRPQ
Q(x) is a CQ F(y) for which there is a CQ with equality atoms
F(2) = E(2) A J such that (i) F = F=, (ii) E(Z) is an expansion of Q
produced by some expansion profile ¢, and (iii) J is a conjunction
of equality atoms x’ = y’, for variables x’,y” € vars(E), such that
for every pair of distinct ¢-atom-related variables x, y in E, we have
x #5 y. We denote by Exp4(Q) the set of all a-inj-expansions of
Q. The intuition is that these types of expansions are obtained from
an ordinary expansion of Q by identifying some pairs of variables
which are not atom-related (the identifications are given by J). We
use this for the following useful result:

LEMMA 4.4. Let Q be a CRPQ, E’ be a CQ, G be a graph database,
and @ be a tuple of nodes. The following are equivalent:

(1) ThereisE € Exp(Q) s.t. E o, (G,0) [resp. E 2, E’].
(2) There is F € Exp®™(Q) s.t. F 4, (G, 0) [resp. F 4, E’].

As a corollary of Lemma 4.4 we obtain an alternative definition
of atom-injective semantics:

CoroLLARY 4.5. Let Q be a CRPQ, G be a graph database and
0 be a tuple of nodes. Then & € Q(G)*™ if and only if there is

-inj inj _
F € Exp*™(Q) such that F — (G, 0).
We now give our characterization of atom-injective containment:

PROPOSITION 4.6. For every pair Q1, Q2 of CRPQs, the following
are equivalent:

(1) Q1 Ca-inj Q2. N

(2) For every F1 € Exp®"(Q1) there is E2 € Exp(Q2) such that

a-inj
E, — Fy.

(3) For every Fy € Exp® ™ (Q) there is Fy € Exp® ™ (Q,) such
that Fy ﬂ Fi.

From the characterizations above, for every pair of CRPQs Q1, Qo,
we have that Q1 Cg-inj Q2 implies Q1 Cs¢ Q2 and that Q1 Cg-inj Q2
implies Q1 Cg; Q2 (while the converse implications do not hold
in general). In contrast, and in spite of the hierarchy between the
semantics, there is no such implication between query-injective
and atom-injective containment, as the following example shows.

b
Example 4.7. Consider the Boolean CRPQs Q1 = x 5 YAy — z,
b b b
QZ:xa—>y,Q{ :xi>y/\x—>yandQé:xi>y/\x’—>y'.
We have Q] Cg-inj Qf (and Q] s Q7) but Q] Lg-inj Q5 as there
cannot be an injective homomorphism from the unique expansion
of Q7 to the unique expansion of Q7. On the other hand, we have

Q1 Cg-inj Q2 (and Q1 Sst Q2) but Q1 Zg-inj Q2. Indeed, we can

b
take the a-inj-expansion F of Q; obtained from x 4 YAy — z

by identifying x and z. Then, there cannot be an atom-injective
homomorphism from the unique expansion of Qy to F.

In view of the characterizations above, in the sequel we will
sometimes write st-expansions or g-inj-expansions to denote a (nor-
mal) expansion. For x € {st, g-inj, a-inj}, we say that E;(§) is a
counter-example for x-semantics if E1 is a x-expansion of Q1 such
that § ¢ Q2(E1)* (recall that any CQ, in particular Ej, can be seen
as a graph database). Note that the latter condition § ¢ Q2(E1)* is
equivalent to the non-existence of a (normal) expansion Ez of Q

such that either (a) E; — E; if x = st; (b) E2 =, Ej if % = g-inj; or

a-inj
(c) E2 o, Eq if x = a-inj. Hence, Q1 Z« Q2 if, and only if, there
exists a counter-example for x-semantics.

5 CONTAINMENT FOR UNRESTRICTED
CRPQS

In this section we study the CRPQ/CRPQ containment problem
under query-injective and atom-injective semantics. We show that
the former is in PSPACE while the latter is undecidable. Both proofs
are non-trivial and provide novel insights on how the semantics
can be exploited for static analysis problems: In the first case by
reducing the space needed from exponential to polynomial, and in
the second case by enforcing counter-examples to witness solutions
of the PCP problem, through an intricate encoding.

The CRPQ/CRPQ containment problem for standard seman-
tics is in ExpSpACE [16] and all proofs [9, 14, 16] of which we are
aware reduce the problem to test containment or universality on
exponentially-sized NFA’s, encoding the set of expansions or the set
of (non-)counter-examples. The PSpAcE bound for query-injective
semantics is, however, quite different in nature, and uses some ex-
ponential number of polynomial-sized certificates to ensure that
the containment holds.

THEOREM 5.1. The CRPQ/CRPQ containment problem under query-
injective semantics is in PSPACE.

PROOF SKETCH(FULL PROOF IN APPENDIX C). Let Q1, Q2 be CR-
PQs; we want to test Q1 Cg-inj Q2. We only give a high-level de-
scription of the proof due to space constraints. We will work with
polynomial-sized ‘abstractions’ of expansions of Q;. These abstrac-
tions contain, for each atom A of Q1, all the information on how the
languages of Q2 can be mapped into it. For example, it includes the
information “there is a partial run from state q to state q’ of the NFA
Ay of language L from Qo reading the expansion word of A”, or “there
is a partial run from the initial state of Ay, to q reading some suffix
of the expansion word of A”. Such an abstraction contains all the
necessary information needed to retain from an expansion to check
whether it is a counter-example. Indeed, any expansion having the
same abstraction as a counter-example will be a counter-example.

In order to test whether an abstraction « abstracts a counter-
example, we need to consider all possible ways of injectively map-
ping an expansion of Qy to an expansion of Q. We call this a
morphism type, which contains the information of where each atom
expansion of Qy is mapped to. For example, we can have the in-
formation that the path to which the expansion of atom A of Q;
is mapped starts at some internal node of the expansion of atom

L
Ay = x =5 y of Q; then arrives to variable y with state g and



Figure 3: Example of definition of G and morphism type (H, h)
from Q1, Q2. In this case, the injective morphism h from H to G
maps each node of H to the node in the same position on G (e.g.,
the lower-right node r of H maps to the lower-right node of G).

L
continues reading the full expansion of atom Ay = y — z arriving
to variable z with state ¢’, and it ends its journey by reading a prefix

of the expansion of atom A3 = z L, t arriving to a final state at
some internal node. For each morphism type, we can check if it
is compatible with an abstraction by checking, for example, that o
indeed contains the information of having a partial run from ¢’ to
a final state reading a prefix of the expansion of As.

More concretely, consider the directed graph G consisting of

L
replacing each atom A = x — y of Q; with a path ng’ of length 3
(i.e., adding two new internal vertices). A morphism type from Qo to

Q1 is a pair (H, h) such that h : H 2 GandHisa graph resulting

from replacing each atom A = x L y of Q2 with a path izf from x
to y. Figure 3 has an example of a morphism type. By injectivity,
the size of H in any morphism type is linearly bounded on Q;.

A morphism type (H, h) is compatible with an abstraction « if
there is a mapping A from the internal nodes of paths ﬁf to states

of A, such that for every atom A = x; i> xo of Q1, all the expected
properties must hold. For example, if there is an atom A’ of Q3 and
an infix 7 of the path #t with h(r) = 7[2, then the abstraction
a ensures that there is a run of Ay from A(sre(x)) to A(tgt(rx)),
where A 4 is the NFA of the language of A’, and src(r) and tgt ()
are the first and last nodes of 7, respectively. Or, as another example,
one must also check that if there is an atom A’ of Q; and a suffix
7 of ”IIL;I, with h(r) being a prefix of #C, then o ensures that there
is a run from A(src()) to some final state in A4/ on the prefix of
the expansion of A. There are actually many other possible cases
(17 in total), but each of these cases can be easily checked with the
information compiled in an abstraction.

The key property of compatibility is that it captures whether an
abstraction contains a Q1-expansion which is a counter-example:

Claim 5.1. The following are equivalent:

(1) There is a morphism type compatible with an abstraction a;
(2) for every expansion E; € Exp(Q1) with abstraction a there

; . inj
exists some expansion Ey € Exp(Q2) such that E; — Eq;
(3) there is an expansion E1 € Exp(Q1) with abstraction a and

an expansion Ey € Exp(Q2) such that E, b, E;q.

Q2

Figure 4: The general structure of Boolean CRPQs Q1 and Q2 from
the reduction.

Finally, the PSpAcE algorithm guesses a mapping « from the
atoms of Q1 to subsets of P, checks that « is an abstraction of Q1, and
checks that there is no morphism type (H, h) which is compatible
with a. Due to the Claim above, if the algorithm succeeds, then any
expansion E; of Q1 is a counter-example, and thus Q1 Z4-inj Q2;
otherwise, for every expansion E; with abstraction « there is a
compatible morphism type, which means that E; is not a counter-
example and hence Q1 Cg-inj Q2. m]

On the other hand, the CRPQ/CRPQ containment problem for
atom-injective semantics becomes undecidable. Remarkably, the
bound holds even when the right-hand side query has no infinite
languages, and both queries are of very simple shape (cf. Figure 4).

TueOREM 5.2. The CRPQ/CRPQ and CRPQ/CRPQfin contain-
ment problems under atom-injective semantics are undecidable.

PROOF SKETCH(FULL PROOF IN APPENDIX D). We reduce from the
Post Correspondence Problem (PCP), a well-known undecidable prob-
lem. An instance of the PCP is a sequence of pairs (u1,v1), . . ., (ug, v¢),
where u; and v; are non-empty words over an alphabet X. The goal
is to decide whether there is a solution, that is, a sequence iy, . . ., i
ofindices from {1, ..., £}, with k > 1, such that the words u;, - - - u;,
and v;, - - - v;, coincide.

We provide a high-level description of the reduction. The idea is
to construct Boolean CRPQs Q1 and Q3 such that the PCP instance
(u1,01), ..., (ug,v¢) has a solution if and only if Q1 Z4-inj Q2. In
particular, the PCP instance has a solution if and only if there exists
a counterexample for a-inj-semantics, i.e., an a-inj-expansion F of

. . R a-inj
Q1 such that there is no expansion E € Exp(Q;) with E — F.
The general structure of Q1 is shown in Figure 4. We have a “middle”
variable x, two “incoming” atoms and two “outgoing” atoms:

Ly Ea Ly L,
Y1 — XAY2 —m XAX — Z1AX — 22

Words in the languages Ly and ZI encode sequences of indices
from {1,..., ¢}, using special symbols from I := {I,...,I;} and
1= {E, . ,T[}, respectively. On the other hand, words from L, and
fa encode sequences of words from {uy,...,us} and {ovy,...,0¢},
using symbols from the PCP alphabet ¥ and S={a:a€3}
respectively. In the four languages, we have some extra symbols to
make the reduction work. We stress that the finite alphabet used
for the CRPQ Q; (and also for Q) depends on the PCP instance.
We are interested in a particular type of a-inj-expansions of
Q; that we call well-formed. The idea is that well-formed a-inj-
expansions correspond to solutions of the PCP instance. In particu-
lar, if there is a well-formed a-inj-expansion of Q; then there is a



Figure 5: Example of the I-I-condition of well-formed expansions

W, W,
of Q1. We show the expansions y; 2L xand x — z1 of the atoms

U1 L, x and x L, z1, respectively. The words wy = O# L O#Is5
and wy = EEETZ %8 encode the sequence of indices 5, 2. Dotted
blue lines indicate pairs of equal variables while red lines indicate
distinct variables. We have some extra symbols #, ¥ 0o,0

solution to the PCP instance and vice versa. We then construct Qs
such that an a-inj-expansion of Q1 is well-formed if and only if it
is a counterexample for Q1 Ca-inj Q2.

Let F be an a-inj-expansion of Qg such that F = F=for F =
E A J (here E € Exp(Q1) and J are the equality atoms). The
a-inj-expansion F is well-formed if it satisfies four structural con-
ditions we call I-I-, I-a-, @-I-, and @-a-condition. Intuitively, the
I-I-condition requires that the words w; € Ly and Te EI cho-
sen in the expansion E encode the same sequence of indices from
{1,...,£}. On the other hand, the I-a-condition ensures that the
word w, € Lg, chosen in the expansion E, encodes a sequence
of words from {uy,...,ur} according to the sequence encoded in
wy € Ly. Similarly, the a-I-condition requires that the chosen word
wg € fa encodes a sequence of words from {vy, ..., v} according
towy € L. Finally, the a-a-condition requires that the chosen words
wg € Ly and Wy € fa “coincide” after removing the ~ superscripts
from w, and focusing on the symbols from X. In other words, the
a-a-condition ensures that the sequence of indices chosen by wy
(and wy) is actually a solution to the PCP. In the four cases, we
additionally need to require some conditions on the equality atoms
J to make the reduction work (see Figure 5 for an example).

The key property of well-formedness is that it can be charac-
terized in terms of the non-existence of a finite number of simple
cycles and simple paths having certain labels. Let us illustrate this
for the case of the I-I-condition and the expansion F of Figure 5.
The forbidden labels for simple cycles are given by the finite lan-
guage K7 = IT. In the case of simple paths, these are given by
Mz = Yizj L1 +T# + %1 + #11% +00. We have that an a-inj-
expansion F of Q; satisfies the I -I-condition if and only if F does
not contain simple cycles with labels in K7 nor simple paths with
labels in M [T

To see the backward direction, note that ¢; and t{ cannot be
identified, otherwise we have a simple cycle from ¢ to itself with
label in IT C K7 Now, the symbols Is and T5 need to correspond
to the same index from {1, .. ., £}; otherwise we find a simple path
from t; to t{ with label in ;. j Iifj C My To see the identification
between s; and s{, note first that ¢t and s{ cannot be identified, as
this would imply a simple path from #] to x with label in #lc M7
Analogously, we have that t{ and s; cannot be identified. This
implies that s; and si are actually identified, otherwise we have a

simple path from s; to s; with label in # IT# C M7 Finally, ry and
r| are identified, otherwise there would be a simple path from r; to
r with label in O gc M7 Note that we can repeat this argument
from “left-to-right” starting from r; = r] instead of x, and obtain
the I-I-condition. In order to ensure that the words wr and wy have
the same length, we need to slightly modify the construction of
Q1, K;7and M ;(see Appendix D for details). The forward direction

follows directly from the definition of the I -I-condition.
Since all the four conditions can be characterized via forbidden
finite sets of simple cycles and paths, it is possible to write two

' 0
CRPQs from CRPQf" of the form Q2U =x X, x and Q;” =

y M, z such that for every a-inj-expansion F of Qq, F is well-
formed if and only if QY v Q;” (F)4™ = 0, where Q5 v Q5" is the
union of both CRPQs. In particular, there is a solution to the PCP
instance if and only if Q1 Zg4-inj Q;J Vv Q,”. We finally show how to
simulate the union QZU Vv Q,” with a single query Q> € cRpQfin
as in Figure 4. O

6 CONTAINMENT FOR CRPQ SUBCLASSES

With the two previous results in place for the containment of uncon-
strained CRPQs, we now explore the C;/C, containment problem
under all the possible semantics, where C; and/or C; belong to
simpler classes of queries, namely either Conjunctive Queries or
CPRQs with no Kleene star (and hence with finite languages).

In many cases one can apply or adapt previously established
techniques or reductions. There are, however, two noticeable ex-
ceptions: the lower bounds for CRPQf"/CQ under query-injective
semantics and for CQ/ CRPQﬁn under atom-injective semantics. We
highlight only these two results. The remaining proofs can be found
in Appendix F. In particular, as mentioned in Section 4, almost all
the results for the standard semantics follow from previous work
(in particular [9, 15, 16]).

TuEOREM 6.1. The CRPQf"/CQ containment problem under query-
injective semantics is H‘; -hard.

Proor. We show that even when the languages of the left-hand
query are unions of alphabet symbols, H‘;J hardness still holds. We
show a reduction from the following problem on graphs, which is
known to be Z‘g -complete [28, Theorem 5], to non-containment. For
a graph G let V(G) denote its sets of vertices and let G|y~ denote
the subgraph induced by V/ € V(G).

PrROBLEM  Generalized Two-Coloring Problem (GCP3)
GIVEN  An undirected graph G, a number n € N (in unary).
QuEesTION Is there a partition V3 UV, = V(G) s.t. neither Gly,
nor G|y, contains an n-vertex clique as subgraph?

We will produce two Boolean queries Q1, Q2 over the alphabet
A = {E, 1,2, #} such that: (1) Q1 Z4-inj Q2 iff the GCP; instance is
positive; and (2) Q2 is a CQ, and every language of Q; is a set of
one-letter words. Consider the input graph G, and the associated
CQ Qg on over the alphabet {E}, where for each edge {u,0} in G

E E
we have atoms u — v A v — u in Qg. Similarly, let K, be the CQ
associated to the n-vertex clique. Fora CQ Q and i € {1, 2}, let us



# # #
S S S
(19-eat(Qq) ;i (14+2)-eat(Qc)} i (12)-ewt(Qc) } Lleeat(Ky) B 2-eat(Ky)

Q1 Q>

Figure 6: Definition of Q; and Q in terms of G and n for the
reduction of Theorem 6.1. The #-labeled thick arrows denote that
there is an atom x y for each variable x from the source query
to each variable y of the target query.

define i-ext(Q) [resp. (1 + 2)-ext(Q); (12)-ext(Q)] as the extension
of Q by adding one atom x Sox [resp. one atom x 2, x; two

atoms x 4 xXAXx EA x] for every variable x € vars(Q). We define
Q1, Q2 as in Figure 6. On the one hand, if Q1 Zg4-inj Q2 there must
be some expansion E of Q7 which is a counter-example. From E
we can derive the partitioning V4 UV, of V(G) where V; is the
set of vertices labeled with an i-loop in the middle gadget of Q.
Now observe that, for every i, Kj is not injectively mapped to

Gly;, as otherwise we would have that i-ext(K) o, E, implying

Q2 2, Eand contradicting that E is a counter-example. This means
that the GCP; instance is positive. On the other hand, if there is a
partitioning Vi UV, of V(G) avoiding the n-clique as a subgraph,
then the corresponding expansion E of Q1 (by choosing to have an
i-loop for each node x € V;) is such that Q cannot be injectively
mapped to E; in other words showing that E is a counter-example
and thus Q1 Zg-inj Q2. o

THEOREM 6.2. The CQ/C RPQfin containment problem under atom-
injective semantics is Hg -hard.

PROOF SKETCH(FULL PROOF IN APPENDIX E). We show that even
when all languages on the right-hand side are of the form {w} with
|w| < 2 we have HIZJ -hardness for containment. For this, we show

how to adapt the proof of H‘g -hardness of [15, Theorem 4.3], which

shows H‘g -hardness for CRPQﬁ“/ CQ containment for the standard
semantics. We reduce from Y3-QBF (i.e., II;-Quantified Boolean
Formulas). Let ® = Vxy,...,%xp Jy1,...,yr (X1, . Xn, Y1s - - - Y1)
be an instance of V3-QBF such that ¢ is quantifier-free and in 3-CNF.
We construct boolean queries Q1 and Q2 such that Q1 Ca-inj Qs if,
and only if, @ is satisfiable.

The query Qg is defined in Figure 7, over the alphabet of labels
{a,x1,....xn, Y1, ..., Yo, t, f, r}. We now explain how we define Qo,
over the same alphabet. Every clause of ® is represented by a sub-
query in Qz, as depicted in Figure 7. All nodes with identical label
(y1¢ and y;  in gadgets D, E) in the figures are the same node.
Note that for every clause and every existentially quantified literal
yi therein we have one node named y; ;¢ in Q2. The E-gadget is
designed such that every represented literal can be homomorphi-
cally embedded, while exactly one literal has to be embedded in
the D-gadget.

The intuitive idea is that the valuation of the x-variables is given
by the a-inj-expansion E; of Q1, whether the two nodes under x
incident to t are equal or not: if they are equal this corresponds to a
false valuation, otherwise a true valuation. On the other hand, the

2 _ T5 f
Yie Yi.f Yot Yo f Ci=o © ©
: f
¢} = oto0——o0
Yaf

[6) Yt Yif Yo Ye,f

Figure 7: Left: Query Q; used in Theorem 6.2 and the gadgets D,
and E used in its definition. The 7 blue edges depict the edges of
the complement of r (i.e., the edges which are not in relation r) for
clarity. Right: Example of Qy for ¢ = (x2 V x5 V —yy).

valuation of the y-variables is given by the homomorphism of an
expansion of Qs into E; (i.e., whether the corresponding node is
mapped to the node y_; or y r). The homomorphism of y-variables
across several clauses has to be consistent, as all clauses share the
same nodes y ¢, which uniquely get mapped either into y s or y .
Hence, when the formula @ is satisfiable, for any assignment to
the variables {x;} (given by the choice of t/f edges in D), there is
a mapping from y ;¢ to one of y ¢ or y_;. This gives Q1 Ca-inj Q2.
Conversely, if an expansion of Q; can be mapped into K, then, for
a choice of t/f edges in D, we have an embedding of each clause
gadget of Qy in K. In particular, we can always map a literal in each
clause of Q; to D, ensuring that ¢ is satisfied. As this is true for any
expansion K obtained by any t/f assignment to {x;}, we obtain
that @ is satisfiable. O

Other results. The remaining results are summarized on Figure 1
and the following theorem, whose proofs can be found in Appen-
dix F.

THEOREM 6.3.

(1) The CQ/CRPQ and CQ/CQ containment problems are NP-
complete under query-injective semantics. (Proposition F.2 in
Appendix F.)

(2) The CQ/CQ containment problem under atom-injective se-
mantics is NP-complete. (Corollary F.4 in Appendix F.)

(3) The CRPQ/CQ and CRPQfin/CQ containment problems are
Hg -hard, under standard and atom-injective semantics. (Propo-
sition F.6 in Appendix F.)

(4) The CRPQ/CQ and CRPQfi"/CQ containment problems are
in Hg, under all semantics. (Proposition F.7 in Appendix F.)

(5) The CRPQ/CRPQf" containment problem is PSPACE-hard
under all semantics. (Proposition F.8 in Appendix F.)

(6) The CRPQ/CRPQfin containment problem is in PSPACE under
standard semantics. (Proposition F.9 in Appendix F.)

(7) The CRPQfi"/CRPQ containment problem is in I, under all
semantics. (Proposition F.10 in Appendix F.)



7 DISCUSSION AND OUTLOOK

We have defined two possible injective semantics for CRPQs, pro-
viding two ways to extend the simple-path semantics of RPQs to
the realm of CRPQs. On these semantics, we have shown that the
containment problem differs drastically from the standard seman-
tics, in some cases improving the complexity, and in some cases
making the problem directly undecidable.

Both of these semantics are natural generalizations of simple-
path semantics of RPQs. For instance, if we revert the role of edges
and nodes, CRPQs under atom-injective semantics is present in the
popular graph database Neo4j. While query-injective semantics is
less common in practice, we still believe that this semantics, and
in particular, looking for disjoint paths, may be useful for users
and may provide an interesting feature for graph query languages.
Further empirical investigation is needed to assess the practical
usefulness of these two semantics.

While the fragments of the class of CRPQs we have studied are
probably the three most fundamental subclasses, there are other
more fine-grained fragments based on the form of regular expres-
sions used in the CRPQs, which are practically very relevant (7, 8].
These fragments have been studied under standard semantics [15],
and it would be interesting to understand how they behave under
injective semantics. A different direction is to consider larger classes
of queries, understanding how injective semantics are extended,
and the impact on the bounds for containment — such as CRPQ
with two-way navigation and union (UC2RPQ) [9], Extended CRPQ
(ECRPQ) [6], or Regular Queries [27].

We have limited our investigation to (extensions of) the simple-
path semantics. Another possibility is to consider trail semantics,
which can be extended in a similar way to CRPQs, obtaining again
two alternative semantics: query-edge-injective and atom-edge-
injective, based on the notion of edge-injective homomorphisms.
Many of our results can be extended to these semantics, and we sus-
pect that complexities for query-edge-injective and query-injective
coincide on all studied fragments, and likewise for atom-edge-
injective and atom-injective. In particular, while neither the unde-
cidability nor the PSpACE upper-bound seem to go through when
simply reversing the role of nodes and edges, we believe that both
proofs can be adapted.

One possible research direction is on another fundamental static
analysis problem for CRPQs, namely the boundedness problem,
which checks whether a CRPQ is equivalent to a finite union of
CQs. This problem is decidable for standard semantics [5].
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A APPENDIX TO SECTION 2

PRrROOF OF ProPOSITION 2.2. The result is well-known for the
case of standard semantics so we focus on query-injective semantics.
Suppose G = (V,E) and Q is of the form Q(x) = A; A--- A Ap,. Re-
call Q(x) is equivalent to a union Q;_ sy of e-free CRPQs. Assume
first that 3 € Q(G)4™. Then 5 € Q’(G)9™ for some Q’ € Q;_free
of the form Q’(2) = A] A --- A Al Without loss of generality, as-
sume Ap,q,...,Am are precisely the atoms of Q collapsed in the
construction of Q’ (that is, we take the e-word on those atoms).
In particular, the language of the atom A] is the language of A;
minus ¢, for i € {1,...,k}. There exists then an injective map-
ping p from vars(Q’) to V (satisfying p(z) = 0), and for each atom

Al = x; i y;, a simple path 7; from p(x;) to p(y;) such that dis-
tinct paths do not share internal nodes. We can take the expansion
E € Exp(Q) produced by the expansion profile of Q that maps A;
to the word ¢, if i € {k +1,...,m}, and maps A; to the label of x;,
fori e {1,...,k}. We can define a homomorphism 4 : E — (G, )
by mapping the non-internal variables of E according to y and each
atom expansion to the corresponding simple path in G. As the paths
do not share internal nodes this is an injective homomorphism, and

hence E — (G,0).

For the other direction, suppose that h : E SN (G, 0) for some
expansion E € Exp(Q). Let ¢ be the expansion profile generating
E. We construct an ¢-free CRPQ Q' € Q;_free as follows: if ¢
assigns the word ¢ to A;, then collapse A;, otherwise, remove ¢
from its language. Suppose that 'Q" is of the form Q’(2) = A] A
A} We have that 0 € Q"(G)7". Indeed, define the mapping 4 :
vars(Q’) — V as the restriction of h to the non-internal variables
of E, and define the path 7; to be the image via h of the expansion of
the atom A/ in E. Since h is injective, the 7;’s are simple paths and
do not share internal nodes. Moreover, the mapping y is injective.
Hence 3 € Q’(G)7™, which implies that 3 € Q(G)9™ as required.

]

PRrRoOF oF ProPOsITION 2.3. The proof is analogous to the proof
of Proposition 2.2, replacing injective homomorphisms by atom-
injective homomorphisms. O

B APPENDIX TO SECTION 4

Proor oF ProrosITION 4.3. The proof is identical to the proof
of Proposition 4.2 replacing homomorphisms by injective homo-
morphisms. For the sake of completeness, we give the proof below.

Assume Q1 Cg-inj Q2 and take E1(f) € Exp(Q1). Recall that we
can see the query E1(7) as a graph database (of the same name)

where each atom is interpreted as an edge. We have E; SN (E1,9)
and hence § € Q1(E1)?". By hypothesis, § € Q2(E1)7", that is,
there is E2 € Exp(Q3) such that E, 5, (E1,7), i.e, Ep 4, E;. For
the other direction, assume & € Q1(G)?™" for some graph database
G and tuple 0 of nodes. There is an expansion E; € Exp(Q;) such
that E1 =z, (G, 0). By hypothesis, there ex1sts Ez € Exp(Q2) with

Es b, E;. By composition, we obtain E; b, (G,0), hence 0 €
Q2(G)T™. m

PrROOF OF LEMMA 4.4. We start with (1)=(2). Let h be a witness

for E —, (G, 8). Define the query F = EAJ where J is the conjunc-
tion of all equality atoms x = y withx, y € vars(E) and h(x) = h(y).
Since h is atom- 1njectlve we have F := F= € Exp?™/(Q). More-

over, thereis g : F 2, (G, 0) as required. Indeed, let @ : vars(E) —
vars(F) be the canonical renaming. For each x € vars(F), we set
g(x) = h(x’), where x’ is any variable in E with ®(x’) = x. By
construction, ¢ is an injective homomorphism. Conversely, suppose
F=F=forF = E A J with expansion E € Exp(Q) and let g be a

witness for F —2 (G, 0). Let @ : vars(E) — vars(F) be the canon-
ical renaming. Observe that ® is actually a homomorphism from
E to F. By definition of a-inj-expansions, ® is an atom-injective

homomorphism from E to F. By composing ® with g we obtain
a-inj

E — (G, ). The case of E’ instead of G is analogous. o

PROOF OF PROPOSITION 4.6. By Lemma 4.4 it suffices to consider
the equivalence between items (1) and (2). Suppose first Q1 Cg-inj
Q> and take F; € Exp®™(Q;). We can see Fi () as a graph database
(of the same name) where each atom is interpreted as an edge. We

have Fl (F1 i) and, by Corollary 4.5, we obtain § € Q1 (F;)4.
By hypothe51s y € Qa(Fp)%m, that is, there is Ez € Exp(Q2)

such that E, =, (F1,9), i€, Ez 2, F;. For the other direction,
assume & € Q1(G)*™ for some graph database G and tuple & of

nodes. By Corollary 4.5, there is F; € Exp®™(Q;) and g : F1 -,
(G, 0). By hypothesis, there is E; € EXP(Qz) and f : Ey “, F.

By composing f with g we obtain that E 2, (G,d). We conclude
that 5 € Qo (G)*™M. O

C FULL PROOF OF THEOREM 5.1

Let Q1(%1), Q2(x2) be CRPQs; we want to test Q1 Cg-inj Q2.

We often blur the distinction between a CRPQ and an edge-
labeled graph, whose edges are regular expressions. Hence, the
degree [resp. in-degree; out-degree] of a variable is the number of
atoms containing it [resp. as a second variable; as a first variable].

High-level idea. We first give a high-level description of the proof.
We will work with polynomial-sized ‘abstractions’ of expansions
of Q1. These abstractions contain, for each atom A of Q4, all the
information on how the languages of Q2 can be mapped into it. For
example, it includes the information “there is a partial run from
state q to state g” of the NFA A} of language L from Q, reading the
expansion word of A”, or “there is a partial run from the initial state
of Ay to q reading some suffix of the expansion word of A”. Such
an abstraction contains all the necessary information needed to
retain from an expansion to check if it is a counter-example. Indeed,
any expansion with the same abstraction as a counter-example will
be a counter-example.

In order to test whether an abstraction « abstracts a counter-
example, we need to consider all possible ways of injectively map-
ping an expansion of Q3 to an expansion of Q1. We call this mor-
phism type, which contains the information of where each atom
expansion of Q, is mapped. For example, we can have the informa-
tion that the path to which the expansion of atom A of Q3 is mapped

. . Ly
starts at some internal node of the expansion of atom A; =x — y
of Q1 then arrives to variable y with state q and continues reading



L.
the full expansion of atom Az =y 2z arriving to variable z with
state ¢’, and it ends its journey by reading a prefix of the expansion

of atom Az =z L, t arriving to a final state at some internal node.
For each morphism type, we can check if it is compatible with an
abstraction by checking, for example, that ¢ indeed contains the
information of having a partial run from q” to a final state reading
a prefix of the expansion of As.

The important property is that an abstraction « is compatible
with a morphism type 7 iff for every expansion E; of Q1 with
abstraction « there is an expansion Ez of Q2 with morphism type 7

inj . .
such that Ey — E;. Hence, the PSpAcE algorithm simply guesses «
and checks that «, 7 are not compatible, for every possible morphism
type 7. We now give some more details for these ideas.

Remark C.1. Any CRPQ is g-inj-equivalent to one in which there is
no variable y incident to two atoms, with in-degree and out-degree

I /

equal to one. This is because x — y Ay — x’ is equivalent (under
L-I’

g-inj or standard semantics) to x —— x’ (assumingy & {x, x’}).

Due to Remark C.1, we can assume that the mapping from the
expansion of Q; to the expansion of Q1 is such that no two variables
can be mapped to two internal nodes of an atom expansion.

Remark C.2. For every CRPQ Q one can produce an equivalent
union Q' of CRPQs such that (i) no language of Q' contains ¢ and

(ii) there are no two distinct atoms x L y and x LN y in Q" with
some single-letter word a € A in LN L’. Further, Q’ is an exponential
union of polynomial-sized CRPQs, and testing whether a CRPQ is in
the union is in PSPACE.

Terminology. By path (of an expansion or directed graph) we
mean a directed path, that is, a sequence of edges of the form
7 = (09,01)(01,02) - - - (Vp—1, V). An internal node of a path is any
node excluding the initial and final ones (i.e., vp and vy). For a
path 7z, and a morphism h, we denote by h(x) the path obtained by
replacing each vertex v with h(v). For a (directed) path 7, we denote
by src(r) [resp. tgt()] the first [resp. last] vertex. A subpath of a
path 7 as above, is a path of the form (v;,v+1) - - - (v, vj+1) Where
0 < i < j < n(inparticular oflength at least 1). An infix [resp. prefix,
suffix] of a path of r is a subpath which does not contain src(r) or
tgt () [resp. contains tgt () and excludes src(rr), contains src(rr)
and excludes tgt(7r)]. We often blur the distinction between regular
languages, regular expressions, NFA, and CRPQ atoms containing
a regular language. For instance, we may write “q is a final state of

atom x — y”, meaning that it is a final state of the NFA representing
L.

Restriction of queries. To simplify the proof, we will assume that
Q1, Q2 have the following properties:

e there is no ¢ in any of the languages;
L L .
e there are no two atoms x — y and x — y with some

single-letter worda € Ain LN L’;
o the queries are connected.

We will later show how to lift these assumptions.

Remark C.3. Asa consequence of Remark C.1, for the CRPQ/CRPQ

containment problem of Q1 Cg-inj Q2 under q-inj semantics, and
assuming the properties above, we can restrict our attention to injective

homomorphisms Eq b, Eq (where E; € Exp(Q;)) such that if two
distinct variables x,y € vars(Q1) are mapped to distinct internal
nodes of an atom expansion, then they must both be of degree 1. That is,
in view of the characterization of Proposition 4.3, Q1 Cg-inj Q2 iff for

every E; € Exp(Qq) there is Ey € Exp(Q2) such thath : E; 4, Eq,
where h has the property above.

Without any loss of generality, let us assume that all the NFA
of the languages of Q, have pairwise disjoint sets of states, and
that they are complete and co-complete (i.e., for every letter and
state there is an incoming and an outgoing transition with that
letter). Let us consider Ag, as an automaton having as transitions
the (disjoint) union of all the transitions for the automata of Q. In
this context we will denote by initial state [resp. final state] a state
which is initial [resp. final] in the automaton from which it comes.

An abstraction of an expansion E1 of Q1 is a mapping « from the
atoms of Q; to subsets of P, where

P ={{g-q") : q.q’ states of A, } U {{g+q) : q.q" states of Ap,} U
{{q1--kq") : q.¢" states of A, } U {(--g-¢’-) : ¢, ¢’ states of Ap, }

such that for every expansion x 2 y of an atom A we have:

e {g-q’) € a(A) if there is a partial run of Ay, from q to ¢’
reading w;

e {(q+q’) € a(A) if for some w = u - v with u,v # ¢ there is a
partial run of Ag, from q to a final state reading u, and a
partial run from an initial state to ¢’ reading v;

o (¢]-}q") € a(A) if for some w = u-s-v with s, u, v # ¢ there
is a partial run of Ag, from q to a final state reading u, and
a partial run of Ap, from an initial state to ¢’ reading o;

e (--g-q’--) € a(A) if for some w = u-s-v withs,u, v # ¢ there
is a partial run of Ag, from g to ¢’ reading s.

Observe that the size of any abstraction is polynomial in Q1, Q>.
The set of abstractions of Q1, is the set of abstractions of all its
expansions.

Claim C.1. Testing whether a mapping is an abstraction of Q1 is in
PSpAck.

Indeed, a standard pumping argument shows that if « is an ab-
straction of Q1, it has a witnessing expansion of at most exponential
size. Using this bound, an on-the-fly PSpAcE algorithm can guess
the expansion for each atom and check that each atom A has ab-
straction a(A). This is done by guessing one letter at a time while
keeping track of all possible partial runs it contains. The procedure
also keeps a poly-sized counter to keep track of the size of the
expansion being produced, and rejects the computation whenever
the size exceeds the exponential bound.

Consider the directed graph G consisting of replacing each atom

L
A =x — y of Q1 with a path ﬂ'g of length 3 (i.e., adding two new
internal vertices). A morphism type from Q2 (X2) to Q1(X1) is a pair

(H,h) such that h : H 2 G andHisa graph resulting from

replacing each atom A = x L y of Qy with a (non-empty) path
ﬁf from x to y. Further, we also ask that free variables are mapped
accordingly, that is, h(Xz) = %;. Figure 8 contains an example of a
morphism type (H, h). It follows that, by injectivity, the size of H
in any morphism type is linearly bounded on Q.
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3)  —
4 > >
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12) — e
13) —_—
14) > >
15) —_— D ——
16) D —
17) —_—

Figure 9: All the possible cases for compatibility. Observe
that there are no other cases due to Remark C.3.

@

Figure 8: Example of definition of G and morphism type
(H,h) from Q1,Q;. In this case, the injective morphism h
from H to G maps each node of H to the node in the same
position on G (e.g., the lower-right node r of H maps to the
lower-right node of G).

Claim C.2. Testing whether a pair (H, h) is a morphism type is in
PSpACE.

A morphism type (H, h) is compatible with an abstraction « if
there is a mapping A from the internal nodes of paths nf to states

of A, such that for every atom A = x; £> xy of Q1,

o if there is an atom A’ of Q3 and an infix subpath 7 of sz,
with h(x) = 78, then (A(sre(m))-A(tgt(m))) € a(A) (corre-
sponding to case 1 in Figure 9);

e if there is an atom A’ of Q3 and a suffix subpath 7 of 7l
with h(r) = 78, then (A(sre(7))-qF) € a(A) where gF is a
final state of A’ (case 2 in Fig. 9);

e if there is an atom A’ of Q2 and a suffix subpath 7 of piars
with h(r) being a prefix of 7%, then (A(src(7))+q) € a(A)
for some g (case 3 in Fig. 9);

if there are atoms A{,Aé of Q2, a suffix subpath 7; of Jrzl,l
and a prefix subpath m of 7t with tgt(m1) = src(my) and
2

h(mm) = n8, then (sre(my)+tgt(mz)) € a(A) (case 4 in

Fig. 9);

if there are atoms Ai, Aé of Q7 and a suffix subpath 7 of aa
1

with tgt () = sre(xfl) and h(ll) = 78, then (A(sre(m))+qF) €

2 2

a(A) where gF is a final state of A/ (case 5 in Fig. 9);

if there are atoms A, A} of Q2, a suffix subpath 7y of ng,
1

and a prefix subpath 1, of 7l with tgt(m) # src(m),
2

h(m) is a prefix of ﬁ/(;’ and h(m) is a suffix of #8, then
(A(sre(m))q--FA(tgt(m2))) € a(A) (case 6 in Fig. 9);
if there are atoms A7, A, of Oz, and a suffix subpath 7 of xH
1
where h(r) is a prefix of 78, h(7f) is a suffix of ﬂ/(;’ and
2
tgt(rr) # sre(rtl), then (A(sre(n))--Fgr) € a(A) for some
2
final state gr of A} (case 7 in Fig. 9);
if there is an atom A’ of Qz and a prefix subpath = of ﬂg
with k() = ng, then (qo-A(tgt(r))) € a(A) where qp is an

initial state of A” (case 8 in Fig. 9);
if there is an atom A” of Q3 with h(ﬁifl,) = Il'g, then (qo-qr) €

a(A) where qo/qF is an initial/final state of A’ (case 9 in
Fig. 9);

if there is an atom A’ of Q, with h(nf,) a prefix of 7[2, then
(qotq) € a(A) where qq is an initial state of A’ and q is any
state. (case 10 in Fig. 9);

if there are atoms A, A] of Qo and a prefix subpath 3 of 7[1{;[,2

with tgt(zfl) = sre(my), h(nf, M) = ﬂg,then (qotA(tgt(m2))) €
1 1

a(A) where g is an initial state of A] (case 11 in Fig. 9);

if there are atoms A7, A of Q2 with tgt(]rH,l) = src(nH,z),

h(ﬂf, ﬂf, ) = 25, then (go+qr) € a(A) where g is an initial

1 2

state of A] and gr a final state of A7 (case 12 in Fig. 9);

if there is an atom A’ of Qo and a prefix 7 of 71 with h(r)

a suffix of HS, then and (gq--FA(tgt())) € a(A) for some q

(case 13 in Fig. 9);

if there are atoms A7, A7 of Q2 and a prefix subpath 7, of JIH;

with tgt(xfl) # sre(m), h(nfl) is a prefix of 7[2 and h(sro)
1 1

is a suffix of Il'g, then (qo--FA(tgt(m2))) € a(A) where qo

is an initial state of A] (case 14 in Fig. 9);

if there are atoms A7, Aj of Q2 with tgt(]rH,l) # src(nH,z),

k() is a prefix of ﬂg and h(7tl) is a suffix of 78, then

{goq--FgF) € a(A) where q is an iznitial state of A] and gr
a final state of A} (case 15 in Fig. 9);

if there is an atom A’ of Q» with h(;rf,) being an infix of 712,
then (--qo-qr--) € a(A) for qo and g initial and final states
of A’ (case 16 in Fig. 9);

if there is an atom A’ of Q, where h(ll’;l,) is a suffix of HS,
then (q+qr) € a(A) for some state q and some final state
qr of A’ (case 17 in Fig. 9).



Figure 10: Example for proof of Claim C.4

The following statement is a direct consequence of H, h, A being
polynomially bounded and each of the conditions above being
polynomial-time testable.

Claim C.3. Testing whether a morphism type is compatible with an
abstraction is in PSPACE.

The key property of compatible abstractions, is that they allow
to capture whether an expansion of Q; with a given abstraction is
a counter-example for the containment problem Q1 Cg-inj Q2.

Claim C.4. The following are equivalent:

(1) There is a morphism type compatible with an abstraction a;
(2) for every expansion E; € Exp(Q1) with abstraction a there

inj
exists some expansion Ey € Exp(Q2) such that E 4, Eq;
(3) there is an expansion E; € Exp(Q1) with abstraction a and

an expansion Ey € Exp(Q2) such that Ey N E;.

ProOOF. 1= 2) Assume E; € Exp(Q;) has abstraction a, and
(H, h) is a compatible morphism type through the mapping A. Fore
every atom A of Q1, we replace every path z of H such that h(x) =
7[2 with the expansion of A in E;. The remaining edges of H are all
part of paths which map partially to some 7S, these are replaced
with paths according to the witnessing words for the elements of
the form {(g{--}q’) and (--g-q’--) in each a(A).

For example, in the case depicted in Figure 10, we know that
the expansion w € L of A is of the form w = u - s - v such that
there is a partial run of Ap, from g to some final state reading
u, and a partial run of Ag, from an initial state to ¢’ reading v.
Hence, we replace edge e; with a path reading u, and edge e; with
a path reading v. It follows that by the definition of abstraction
the resulting CQ (i.e., the query represented by the resulting edge-
labeled graph) is an expansion of Q; that maps to Ej through an
injective homomorphism.

2 = 3) This is trivial since an abstraction of Q7 is the abstraction
of an expansion thereof.
3 = 1) Take any E; € Exp(Q;) with abstraction @ and E; €

Exp(Q2) such that g : Ep 4, Eq. We now build a graph H from E;
as follows. In the sequel, whenever we say that we replace a path
7 with a path of length n, we mean that we (1) remove all internal
nodes of 7, and all edges incident to these and (2) we add n — 1
fresh nodes and n edges in such a way that there is a path of length
n from src() to tgt(m). For every path & in Ej corresponding to
the expansion of atom A :
o Ifthere is a prefix [resp. suffix] of 7 which has no g-preimage,
we replace the path g=! () with just one edge, and we send

the variable to the first internal node of 712. For the remain-
ing cases let us assume that every node of 7 has a g-preimage.

e If g71(x) is a path with no Q-variables as internal nodes,
then we replace it with an unlabeled path 7’ of length 3. We
define h to map the first [resp. second] internal node of 7’
to the first [resp. second] internal node of n'g.

e Ifg~!(1r) is a path that contains one variable x € vars(Q2) as
internal node, we replace the first half path of g~ () until
x with just an unlabeled edge, and the other half with a path
7’ of length 2. We set h to map the variable x to the first
internal node of rrg‘ and the internal node of 7 to the second
internal node of ﬂg’.

e If g1 () contains two variables and two disjoint paths, we
replace each of them with an unlabeled edge. We send the
variables (i.e., the endpoints of the paths) correspondingly
to the two internal vertices of rrg‘.

The resulting graph H and mapping h is a morphism type which is
compatible with a. O

Finally, the PSpAcE algorithm guesses a mapping a from the
atoms of Q1 to subsets of P, checks that « is an abstraction of Q1 (in
PSpACE due to Claim C.1), and checks that there is no morphism type
(H, h) which is compatible with & (in PSpACE, due to Claims C.2 and
C.3, and closure under complement of PSpAcE). Due to Claim C.4,
if the algorithm succeeds, then any expansion E; of Q is a counter-
example, and thus Q1 Z4-inj Q2; otherwise, for every expansion
E; with abstraction « there is a compatible morphism type, which
means that E; is not a counter-example and hence Q1 Cg-inj Q2.

First note that if Q is not connected, we can adapt the PSPACE
algorithm by testing that there are no morphism types for the con-
nected components of Qy such that all of them are compatible with
the guessed abstraction of Q;. Further, observe that the procedure
can be extended to an exponential union of polynomial-sized CR-
PQs: the PSpack algorithm first chooses one CRPQ Q; from the
left-hand side union, guesses an abstraction of Q1 and checks that
no CRPQ coming from the right-hand side union has a compatible
morphism type. For this reason, combined with Remark C.2, the
same argument extends to (unions of) arbitrary CRPQ’s. O

D FULL PROOF OF THEOREM 5.2

We reduce from Post Correspondence Problem (PCP), a well-known
undecidable problem. An instance of the PCP is a sequence of pairs
(u1,01), ..., (up,v¢), where u; and v; are non-empty words over an
alphabet X. The goal is to decide whether there is a solution, that
is, a sequence iy, ..., i; of indices from {1,..., ¢}, with k > 1, such
that the words u;, - - - u;, and v;, - - - v;, coincide.

For an alphabet A, we denote by A the alphabet A= {a:ae A}
Let (u1,01), ..., (up, vp) be a PCP instance and let 3 be its underlying
alphabet. Let I and A be the alphabetsI = {I3, ..., I} and A = ZUIU
{#,#,0,%,%’, $c0, m, ' }. We construct Boolean CRPQs Q and Q-
over alphabet AU A such that the PCP instance (u1,01), ..., (ug,vp)
has a solution if and only if Q1 Z4-inj Q2. In particular, the PCP
instance has a solution if and only if there exists a counterexample
for a-inj-semantics, i.e., an a-inj-expansion F of Q1 such that there

is no expansion E € Exp(Q3) with E 2 F



Figure 12: Example of the -I-condition of well-formed ex-

. . wy Wy
pansions of Q;. We show the expansions y; — x and x —

z1 of the atoms y; L, x and x L, z1, respectively. The words
wy = O#L0O#I5s and Wy = E—,?ﬁfg?ﬁ encode the sequence
of indices 5, 2. Dotted blue lines indicate pairs of equal vari-
ables while red lines indicate distinct variables. We have
some extra symbols # % 0O, 0.

The symbols in A are associated with the words u;, while the
symbols in A with the words v;. For each u; = aj - - - ag, we define
the word U; = a; $maz $m --- a; $’ w’. Similarly, for each v; =
ai---ap wedefine V; =W’ $’' a, m$a,_; --- m$ay. The CRPQ Q
is defined as follows (see Figure 11 for an illustration):

LI La EI a
Q=Y = XA —DXAX —Z]AX — 22
o, ., , O , n
Ax—=>x Ax—>x'Ax >xAx —x
) Heo , $e FF $0$
ANYp— I ANYy — Y2 Az21 —> 21 N2g — 2,
where:
L= (@#D)* I;=T#0)"
Lo=(Ui+---+Up*"  La=(Vi+---+V)"

Intuitively, a word from Lj corresponds to a choice of indices
from {1,..., ¢}, similarly for ZI. On the other hand, a word from
Lg [resp. La] corresponds to a choice of words from {uy,...,us}
[resp. {v1,...,v¢}].

We are interested in a particular type of a-inj-expansions of
Q; that we call well-formed and define below. The idea is that
well-formed a-inj-expansions correspond to solutions of the PCP
instance. In particular, if there is a well-formed a-inj-expansion of
Q1 then there is a solution to the PCP instance and vice versa. We
then show how to construct Q2 such that an a-inj-expansion of Q1
is well-formed if and only if it is a counterexample for Q1 Cg-inj Q2.

Let F be an a-inj-expansion of Q1 such that F = FEforF=EA]
(here E € Exp(Qq) and J are the equality atoms). We say that F is
well-formed if it satisfies the following four conditions:

~ L
(1) I-I-condition : This condition applies to the atoms y; Lx

L w, w,
and x — z1 of Q1. Let y; 2 xand x -5 z1 be the

. . Ly Ly
expansions associated to the atoms y; — x and x —

z1 in the expansion E. The condition requires the words
wr and wy to be of the form w; = O#I;, --- O#I;, and

Wy =1, %0 --- I, #0, for a sequence of indices iy, . . ., if. €
L
{1,...,¢}.In other words, the expansions of the atoms y; S

L
xand x =5 z1 correspond to the same sequence on indices.
The I-I-condition also requires a particular behavior on the
equality atoms J (see Figure 12). Suppose the expansion

U1 2, x is of the form:

o # Iy, o # Iy,
Y1 = Sk = b = T S 2 oy — T2
u] # I
e ™81 > — X

wr .
and x — z; is of the form:

Iil/;/allizlgla/
X =t D] o ol s, Dy

’ ik /3; /a
R A e A R |

Ehen the relation = produced by the equality atoms J satis-
es:

(@) t1 #:Ftl:,---,tk #:Ft]’;
(b) S1 =}?SI,~-~ s Sk =Fsk

’ ’
(c) n1 SETL Tk ST

where rg :=y1 and r = z1.

L
(2) I-a-condition : This condition applies to the atoms y; Lx

Ly w, Wq
and x — 2z of Qj. Let 3 2 x and x —% zy be the

L a .
expansions associated to the atoms y1 =L xandx =% z; in
the expansion E. The condition requires the words wr and w,
tobe of the form wy = O#1;, --- O#I;; andwg = Uj, - - Uy,

for a sequence of indices iy, ..., i, € {1,...,£}. Intuitively,
the word w, chooses words from {uj, ..., us} according to
the sequence iy, ..., ig. The I-a-condition also requires a

particular behavior on the equality atoms J. Suppose the
expansion yi %, x is of the form:

o # Iy, o # Iy,
Y = S b = T DSg—1 b — > T2

o # I
¥ /™81 D —X

. W, .
and the expansion x — zj is of the form:

where U; is the word obtained from U; by removing the last

symbol m’. Then the relation =z produced by the equality
atoms J satisfies:

(a) tj #5 t, for every internal variable ¢ of the expansion

rJ’._1

(b) s1=Fs{, .Sk =F S,

Y ,
— ] (here rj = x)



(C) =g l’” Tk = r]/c
where g := Y1 andr = 2.

(3) a-I T-condition : This is analogous to the I-a-condition and
La I

applies to the atoms y2 — x and x —> z; of Q1. Let

Y2 2, xand x -5 z1 be the expansions associated to

the atoms y; L—> x and x L—) z1 in the expansion E. The
COl’ldlthl’l requlres the words w, and Wy to be of the form
wy = I I ¥Tand W, = Viy - - - Vi, for a sequence of
indices i1, .05 0k € {1,...,¢}. That is, the word W, chooses
words from {v, ..., vp} according to the sequence iy, ..., i.
We also require some conditions on the equality atoms J.

w,
Suppose the expansion y; — x is of the form:

AL v Vies o
Yz — Sk Tk-1 = Sk-1 Tk—2" 71— 81 —>X

where V; is the word obtained from V; by removing the first

symbol ®’. Suppose also the expansion x BN z7 is of the
form:

Izl ;F\ ’ a I' ; o
x—>t1—>sl—>r1—>t2—>sz—>r2

I,k ¥ o
rk 1—>tk—>sk—>21

Then the relation = produced by the equality atoms ] satis-

fies:
(a) tJ’. #5 t, for every internal variable t of the expansion
sj — rj—1 (here ry := x)
(b) s1=Fs{, .5k =F 5y,
(© ri=pri e =gy
where ry :=y and 1y = z1.

— . PRy . L
(4) @-a-condition : This condition applies to the atoms y; — x
Lﬂ Aa a
and x — zy of Q1. Let y2 2,y and x -4, zy be the

expansions associated to the atoms y» L—a> x and x i
z in the expansion E. The condition requires the words
wg and w, to be of the form W, = #&a, --- #&a; and
wg=dai%& - ay, *& foraworda; ---a, € T* (recall T is
the alphabet of the PCP instance). Here, & is a placeholder
representing some symbol. Intuitively, the word W, and w,
represent the same word from X*. The a-a-condition also
requires some conditions on the equality atoms J. Assume

. Wa .

the expansion y; — x is of the form:

* & an * * an-1

Y2 = Sp =ty —> In-1 —S$p-1 > tp-1 —>In-2-"*
) * a
e ™81 D — X
. Wa .

and the expansion x — z3 is of the form:

VI NV N VI VL N
X =t — 8] >~y > Sy > Ty

’ an ’ *» ’ *»
CTpeg T by sy > 22

Then the relation =z produced by the equality atoms ] satis-

fies:
@t #Ft] - tn #5 by
(b) S1 = F 1,"~,Sn=1’58,/l
©n= ©aTn =F

where r,, =yg and 1), == z3.

The key property of well-formedness is that it can be charac-
terized in terms of the non-existence of a finite number of simple
cycles and simple paths having certain labels. In order to do this,
we need to define some finite languages. Recall U is obtained from
U; by removing the last symbol m’ and V; is obtained from V; by
removing the first symbol ®’. We define N to be the maximum
length of the words U;. We denote by e/, for i < j, the regular
expression (! + el + ... +¢/). We have:

K= IT+ #00 T+ T o
M, ;= ZIJ} +T#+F1+# 117 +00 + #00 T + 1 Fo0
i#)
Kig =124+ #0 2 + [ $0
Mpq = (Z+$+$/+I)H+(2+$+')1’N#+Zzliﬁf+
=

+#1(U ++Up) + O +#60 2+ $0o

K= ST+ B0 L+ 3 Foo
MATZE@*@*'@*'E)+¥§+i§(§+§+i)+ZZ‘~/JT1’+
T

(V4 +V)TF + WO+ P L+ 3 Foo

Kig =33 + 8003 +3 $oo

Mo =) @+ (5+5)+(5+8)S+(3+3)TD(5+8)+

a#b
+(E+E)(M+0) + 5002 +3 oo
Claim D.1. Let F be an a-inj-expansion of Q1. Then:

(1) F satisfies the I-T-condition iff F does not contain a simple cycle
with label in K7 nor a simple path with label in M,

(2) F satisfies the I-a-condition iff F does not contain a simple
cycle with label in K1, nor a simple path with label in Mj,.

(3) F satisfies the a-I-condition iff F does not contain a simple
cycle with label in K7 nor a simple path with label in M_.

(4) F satisfies the a-a-condition iff F does not contain a simple
cycle with label in K;, nor a simple path with label in M,

Proor. Suppose F = F= forl?= EAJ,where E € Exp(Q1) and J
. 1 wr wr
are equality atoms. We start with item (1). Let y; — xandx — z1

L L
be the expansions associated to the atoms y; L xand x =5

z1 in the expansion E. Suppose that wy = O#1I;, --- O#I;, and
wr :Ijﬁa ijga, for indices i1, ..., ik, j1,-- > jp € {1,..., £}.

Wi
Assume also that y; 2L, x is of the form:

[m] # Iik ] # Iik71
Y1 = Sk =t = T g1 ™ oy — T2

u} # I
crp sy — X



wr .
and x — z7 is of the form:

I; n g I; n O
Aoy #o 00 ,  , #0 ,O0
X——=t =S oy =Sy, DIy
’ I}'p l'/ ¥ o
. —_— e —
Tp-1 b sp z1

We consider first the backward direction of item (1). We have

I; I;
t1 #5 t;, otherwise there would be a simple cycle t; S t

with label in IT C K This implies that i; = j;. If this is not the

I T
case, we would have a simple path t; L> x -5 t; with a label in
Dizi i L T C M7 We claim that s1 == Note first that t; #

FS 51
and t #5 S1. Indeed ift] = then there would be a simple path
#

I
{ — s{ —1 x with label in #1 C M Ift =F St then there would

Fl’
t

I; -
be a simple path x =4 t LA t1 with label in I# C M7 It follows

1y I ¥

#
that s =% s/ as otherwise the paths; —» t; — x — t’ — s{

F 1
would be a simple path with a label in #IT# C M7 Fmally, we have

that rq =5 r{. If this is not true, then ry 5 S1 L=N r1 would be a
simple path with a label in 0T C My

We can iterate this argument, replacing in each step the “mid-
dle” variable x by the corresponding new “middle” variable r; (see

Figure 12). We obtain the following (¢ = min{k, p}):

® iy =j1,i2=j2,. ., la = Ja
ot FF ], by FF by
[ ] Sl :Fsi,‘..’sa :Fs&
e =1;r{,---,ra =F Ty

where ry. := y; and rl’, := z1. Note that to conclude the I-I-condition,
it suffices to show that « = k = p. Towards a contradiction, suppose
first that k < p. We know that y; =5 k’ and r # z1. In particular,
we have at least the following atoms:

) Foo s b,
Y17 T e
We have two cases. If y; =5 tk | then we have a simple cycle

. I; ~
Yy —y1 = tk with a label in #0 I € K7. On the other hand,

) . #oo I .
ify; #5 t,, glen we have a simple path y; — y1 — t/ | with
a label in #,1 C M 7 In either case, we obtain a contradiction.
Suppose now that k > p. We know that r, =5 z1, and rp # y1. We
have at least the following atoms:
I; ;00 12
tp+1 —Tp z1 — Z4
Again we have two cases. If tp+1 =7
I; Foo
tp+1 N rp — z ’ with a label in I%c C K . On the other hand,

7 21 then we have a simple cycle

I; %oo
if tpi1 5 i{’ then we have a simple path tp; — rp, — 2" with
a label in [#0 C M7 We obtain a contradiction in either case. We
conclude that k = p and hence the I -I-condition holds.
The forward direction of item (1) follows directly from the defi-
nition of the I-I-condition and inspection of the languages K and

M T

W W,
Now we turn to item (2). Let y; 2 xand x =% 2, be the

L L
expansions associated to the atoms 14 = xand x =% z in
the expansion E. Suppose that wy = O#1I;;, --- O#I;; and wg =
- Jjp €{L,...,€}. Assume that

Wi
the expansion y; 2L, x is of the form:

[m] # Iik ] # Iik71
Y1 = Sk =t = T g1 ™ g — T2

Uj - Ujp for indices i1, . . ., ig, j1, - -

u} # I
‘rp— 81— — X

. W .
and the expansion x —> zj is of the form:
Ujp [ 4

— s, —
sp z2

U, , w Ui, v v
x——>sl—>r1——>sz—>r2 Tpo
where Uj is the word obtained from U; by removing the last symbol

’

n.
We consider first the backward direction of item (2). Suppose

Uj,
the expansion x — s has the form:

* *
X — 01— 03"

* ’
“om — S
where & is a placeholder representing some symbol. We claim that
h #5 ¢, forallt € {o1,...,0m,0m+1}, where o471 == s . Note first

I -
that #5 01, otherwise there would be a simple cycle #; xS

01, where & € 3. In particular, the label would belong to IX C Kj,;
a contradiction. Now we argue by induction. Suppose i1 #5 op, for
some h € {1,...,m}. By contradiction, assume t; = op,1. We have

a simple path oy, 2, Oht1 i x, where & € S U {$,m,$’} (note that
& cannot be W’). Then the label belongs to (X +$ +$" +m) 1 C Mj,;
a contradiction.

We now claim that s; #5 L, forall ¢t € {o1,..
diction, suppose that s;

.,0m}. By contra-
=5t for some t € {01,...,0m}. Then there

is a simple path x Y, 5 t1, where U € (2 +$ +m)"Y (note how
we use the fact that #5 forall t € {01,...,0m}; otherwise the
path would not be necessarily simple). The label of the simple path
belongs to (= + $ + m)>N # C Mj,; a contradiction.

We have that i; = jj. If this is not the case, then we would have

I; U; —
the simple path t; —x i> s’ withalabelin }}; 3. ;4; [iUj € Mjq.
Moreover, we have s; =

I U;,
path s; AR t LN LN

=7 S{, otherw1se we would have the simple

i with a label in #1 (U1 +oe 4 [7{) C My,

Finally, we have rj =% 1. If this is not the case, then we have a

F
o L 4
simple path r; — s; — r{ with a label in Om’ C Mp,.
As in the case of item (1), we can iterate this argument, replacing
in each step the “middle” variable x by the corresponding new

“middle” variable r;. We obtain the following (o = min{k, p}):

i1 =j1,i2=Jj2, ..., la = Ja
e Forevery j € {1,...,a}, we have t; 5t for every internal

T,
. . j
variable ¢ of the expansion rj’._l — sj’. (here rj = x)

® 51 = ~F 1’.'.’805:FSU(

®ry= ~F 1a"'ar05=Fra



where ry := y; and rj, := z5. By using the same arguments as in the provide an expansion of Qo that maps to F. We start with the case

case of item (1) we obtain that k = p, and hence the I-a-condition wE M3

holds. . N . s I,
The forward direction of item (2) follows directly from the defi- e w = Il € Diz j I;I; : take expansion x — x Ay —

nition of the I-a-condition and inspection of the languages Ky, and XAy X

Mig.

= oo e w
. cl#: i — .
The cases of item (3) and (4) are analogous to cases (1) and (2). O o w € I#: take expansion x x /\Ay -X A;yl —F
-~ od
o w=+#l e#I[:takeexpansionx———)x/\y—p>x/\y—ui>z.
#1,

Let Qg) and Q;” be the following Boolean CRPQs in CRPQfin; S TF c 4177 - tak ) _— .
w = #lplg# € : take expansion x — x Ay —>

O K© N M XAy Dz
Qy =x > X Q =y >z _ . oo o#; w
O . e w € O0O: take expansionx — x Ay — x Ay — z, for
where K~ := KIT +Kjq +KET +Kfia and M™ = MIT +Mj, +Ma}* + a suitable ; € L.
Maa. i\ k . od #o00 w
From Claim D.1, we obtain the reduction for the case when the ® W € #oo | : take expansion x — x A 2 X ;\ y—z
right-hand side query is the union of the CRPQs on and Q,”, which e w= Ip’#w € [# : take expansion x o, XAy 2y Ay 2.
] —~ —~
we denote by Q;” Vv Q;- Note that OO € Kaummy € K and Ig,g, #I, #Ip, O#lj, #oo € L. For
Claim D.2. LetF be an a-inj-expansion of Q1. Then F is well-formed the case w € My, we have the following:
. s inj . . ’ sl
if and only if Q3 v Qy” (F)“™ = 0. More(;:/er, there is a solution to o w=al, € (3+$+$'+m)I: take expansion x o, XAy —0>
. . : -
the PCP instance if and only if Q1 Za-inj Q5 V Q5 - XAy AN
From Claim D.2, we obtain the undecidability of containment o we (2+$+.)1,N # : take expansion x o’ Ay I oAy w
under atom-injective semantics of a CRPQ in a union of two CRPQs 2.
from CRPQf". We conclude our proof explaining how to simulate ow’ I

the union QZU Vv Q" with a single query Q2 € CRPQM as in w= ngq € X Xji LiUj : take expansion x XAy —

Figure 11. XAy —z
We define the following languages:

w = #Ipﬁq € #1(U; + --- + Uyp) : take expansion x =

Kgummy = (O +8+0)(0+m+w) x/\y#Ip xny sz

’

% 4 . om o#l; w
Maummy =#+3$+3$ e w c OW :take expansion x — x Ay — x Ay —> z, for

L=e+I+#1+#[+0#[+#0+(C+$+$ +m) I+ a suitable [; € I.
~ e~ ~ ~ o~ - —~ . ow’ #oo w
SHHES+(Vi+--+ Vo) + W (V1 +-+ Vi) + $oot ® W € #y X : take expansionx — x Ay — x Ay — z.
PO - . o’ I
+(3+8)S+ G+ S+ @+m)($+9)3 o w=1I,$ € [$c : take expansion x — x Ay N XAy N
z.
Let Q, be the CRPQ defined as:
et Qa be the Q defined as Observe that OW’ € Kgymmy C K and &I, € L, for & € X+$+$"+m,
Qs =x L XAy i XAy i P and ¢, I, #I, O#l;, #0 € L. For the case w € Mafwe have:
where K = K" +Kgymmy and M := M + Mgy mmy- We conclude ewecI(Z+$+9$ +m) : take expansion x 25 XA y S
with the following claim: w
XAy — z.
. . . (SRS _ini - == =
Claim D.3. LetF bean a-inj-expansion of Q1. Then Q5" VQ,” (F) 4™ # o w=F7€¥% : take expansion x LRI y Ao y v
0 if and only if Q2 (F)*™ # Q. — o~ CG| e w
B o w e I#(Z+$+Mm): take expansion x — xAy — XAy — z.
ProOF. For the forward direction, suppose QZU VO (F)*™ £ 0. - . ‘ &5 v,
Assume first that QZU (F)4n £ (. We consider two cases for the e w= VPVIV‘I € X Xji Vjli - take expansion x XAy —
label w of the simple cycle mapping to F and provide an expansion XNy — z.
of Q2 that maps to F: R e w = 7,1;13 e (Vi +--+ 17[)@ : take expansion x .,
" £
. wEKITUKaf:takeexpansionx—vgx/\yix/\y—wz. x/\yix/\yl)z.
e w € K1 UK, : take either expansion x 2 XAy 5 XAy LA =)= . wd v w
v . , e w € WO take expansion x — x Ay — x Ay — z, for
orxX = XANYy—>xXAYy —z a suitable V; € (V1 +---+ V;).
Note above that ¢ € L and #,$,$’ € M, cM. = = w5 $oo
oteabove that ¢ € ari) ’$_$<€ dummy = ) owe$ool[:takeexpansionx:—m—>x/\y——>x/\yl>z.
Suppose now that Q,” (F)*™ # 0. Again, We consider all the &5 ~

PN =~ . O a w
possible cases for the label w of the simple path mapping to F and ® W =a#wn € T : take expansion x — xAy — XAy — z.



Note that ®’0 € Kiummy S K and ¢, %a, 17P, i’f/},@m, a € L. For the
case w € Mg, we have (4 € {N, B’} and & € {m,m’} are suitable
symbols in each case):

- . aa P
e w=pqe Zu¢bab:takeexpan31onx—)x/\y—»x/\y&
z.

~ = Fo
weZ($+$’):takeexpansionx—)x/\yix/\y—w%z.

—~ NS . &0 op w
w =op € ($+$’) 3 : take expansion x — xAy — xAy —
z.

e w = opgo € ($+$)E2($+9¢) : take expansion x 2,

op w
XANYy—xANYy— 2z

w= %%k € (w+u)(m+m) : take expansion x ha VN

y X A y 2 z, for suitable ¢ € (§+§’) andze 3.
-~ . LX) gm w
o w e $ X : take expansionx — x Ay — x Ay — =z
o W=7p$ € S $oo : take expansion x 2, XAy 2, XAy Sz
Note that %4 € Kgymmy € K, and p, ¢, $o0 € L,and op, op, *3a €L,
foro € (5+$),5€ ($+9), and % € (W +W).
For the backward direction, suppose that Qs (F)*™ # . If suf-

fices to show that the expansion of Q2 mapping to F cannot use
simultaneously words in Kgymmy and Mgymmy- It is possible to

7"

check that any mapping of an expansion x 2 xAx & YAy N
where w € Kgummy, w' € L and w” € Mgymmy, maps y to a vari-
able o such that the labels of all outgoing edges of e belongs to the
set . R
(OL4EE, 25,8, 0.1 m 0,3 #u, Foo, $oo, Soo }
However, this set of symbols is disjoint from Mgy;;nmy and hence z
cannot be mapped to any variable. O

E FULL PROOF OF THEOREM 6.2

We show that even when all languages on the right-hand side are
of the form {w} with |w| < 2 we have H‘g -hardness for contain-
ment. For this, we show how to adapt the proof of H‘g -hardness
of [15, Theorem 4.3], which shows H‘g—hardness for CRPQfi"/CQ
containment for the standard semantics.!

We use a reduction from V3-QBF. The main idea is to use sets
{t, f} in Q1 to encode true or false.

More precisely, let

O = Vxy,..oxn Jyn..ye (X, X0 Y1s -5 Ye)

be an instance of V3-QBF such that ¢ is quantifier free and in 3-CNF.
We construct boolean queries Q1 and Q2 such that Q1 Cg.inj Q2 if
and only if @ is satisfiable.

The query Q; is sketched in Figure 13 and built as follows: The
basis is an a-path of length 4. We add 4 gadgets E to the outer nodes
of the path and one gadget D at the innermost. The choice of 4
E gadgets surrounding the D gadget will be made clear once we
discuss Q2. Basically, the E-gadgets will accept everything while the
D-gadget will ensure that the chosen literal evaluates to true. The
1Actually, it shows hardness for the fragment where the left-hand side can only have

regular expressions of the form a; + - - - + a,. In some sense, we simulate disjunction
with the choice of an atom-injective expansion for a CQ.

gadgets are also depicted in Figure 13. The gadgets are constructed
as follows.

The gadget D is constructed such that the root node has one
outgoing edge for each variable in ®, that is, n+¢ many. Each edge is
labeled differently, that is, x1, ..., Xn, Y1, . . ., ye. After each x;-edge
we add a t-edges which leads to a different node. From each of these
nodes we have cycle of length 2 reading ¢ f. For each i € {1,...,¢}
we do the following. We add a t-edge to a node we name y; ; after
the y;-edge and an edge labeled f that leads to a node we name y; r.
We named these nodes because we need those nodes also in the
E-gadgets. Nodes with the same names across gadgets are actually
the same node.

Each gadget E is constructed similar to the D gadget. The root
node has one outgoing edge for each variable in ®, that is n+¢ many.
Each edge is labeled differently, that is x1, ..., xn, y1, . .., ye. After
each x;-edge we add path of length 2 reading ¢ t- and an f-edge.
Each of those edges leads to a different node. After each y;-edge
we add a t-edge and an f-edge to both y; s and to y; .

We now explain the construction of Q2. An example is given
in Figure 13. For each clause i, query Q2 has a small DAG, which
might share nodes (yx ; r) with the DAGs constructed for the other
clauses. For clause i, we construct C}, with an a-edge to the gadget
Cl.z, and from there again a a-edge to the gadget Ci3.

The gadget Clj represents the jth literal in the ith clause. Since
the QBF is in 3-CNF, we have j € {1, 2, 3}. If the literal is the positive
variable x., Clj is a path labeled xy t t. If it is the negative variable
Xk, Clj is a path labeled x. f. If the literal is the positive variable
Yk, C{ is a path labeled y;t and it ends in a node we call y ;¢ and,

if it is the negative variable -y, C{ is a path labeled yi f and it
ends in yi ; f, too.

This completes the construction. We will now give some intu-
ition. The gadget D controls via the {t, f} (simple) paths, which
variables x; are set to true and which to false. We will consider it
false whenever there is a (x; f)-path, meaning that the two nodes
non-related via r are equal in the a-inj-expansion of Qj. Otherwise,
x; is set to true. Observe that whenever x; is false, it is not possible

. - . Xi tt .
to map in an injective way any path v — v’ — v’/ coming from a
clause encoded from Qy. And vice-versa, whenever x; is true there
is no way to map a (x; f)-path. Hence, depending on this, we can
either map C{ into it or not. The E gadgets are constructed such that

every C{ can be mapped into it. The choice of the a-inj-expansion
of Qy determines which path should be mapped into D and, there-
fore, which literal should be verified. The structure of Q; where
two E gadgets each surround the D gadget aids in embedding the
clauses C}, Cl.z, C? for each i in a-inj-expansion E;. If the ith clause
is (x2 V —y1 V —x3), we have the assignment of f to xz, t to x3, then
we can embed C}, Ci3 in the second and third E’s, and —y; can be
embedded in y; ¢ in D. Embedding —y; in y, ¢ fixes the assignment
f to y; across all gadgets E, D, and all clauses in Q3. Likewise, for
a clause (x1 V =x4 V y5) in @, and an assignment f to x1, ¢ to x4
in the canonical model G, we can embed x1, —x4 in the first and
second E’s and ys to the node ys;.

We will now show correctness, that is: Q1 Cg-inj Q2 if and only
if @ is satisfiable. Let Q1 Cg-inj Q2. Then there exists an injective
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Figure 13: Query Q; used in Theorem 6.2 and the gadgets D, and E used in its definition. For the r edge relation (in blue) we
depict the edges of its complement (i.e., the edges which are not in relation r). Example of Q; for the formula ¢ = (x2V-x5V-ys).

homomorphism from Q3 to each a-inj-expansion of Q1. The a-inj-
expansions of Q1 look exactly like Q1 except that each some pairs
of vertices non-related via r may have been identified together.
Let B be an arbitrary a-inj-expansion of Q1 and Dp the gadget
D in B. We define 0g(x;) = 1 if there are two distinct vertices non-
related via r accessible via x;j, and 0g(x;) = 0 otherwise. Let h be
an injective homomorphism mapping an a-inj-expansion of Qz to
B. We furthermore define 0p(y;) = 1 if h maps y;;r to yir and
0p(yi) = 0 otherwise, i.e., if y; ;v is mapped to y; r. We now show

that 0p is well-defined and satisfies ¢. It is obvious that each Cj
will be mapped either to the gadget Dg or to E and that for each
i € {1,...,m} exactly one CJ is mapped to Dp. If C] corresponds
to xg, i.e., it is a path labeled xit, then it can only be mapped
into Dp if 6g(x;) = 1. Analogously, if C{ corresponds to —xy, it
is a path labeled x f, and can therefore only be mapped into Dg
if Og(xr) = 0. If C{ corresponds to yr or -y, it can always be
mapped into Dp, but since yi ;¢ can only be mapped either to yy.;
or Y f, We can either map positive y; into Dp or negative ones,
but not both. Therefore, the definition of 6p(yy) is unambiguous,
and it indeed satisfies ¢.

Since B is arbitrary, we obtain a choice yj, . . ., y, for all possible
truth-assignments to xi, . . ., x, this way. Therefore, ® is satisfiable.

For the only if direction let ® be satisfiable. Then we find for each
truth-assignment to x1, . . ., X, an assignment to y1, . . ., y¢ such that
o(X1, ..., Xn, Y1, - . ., Yp) is true. Let 6 be a function that, given the x;,
returns an assignment for all y; such that the formula evaluates to
true. We will show how to map Q> into an arbitrary a-inj-expansion
Bof Q.

Let B and 6 be given. Let Dg be again the gadget D in B. We
use 6 to obtain truth-values for yi,...,yr as follows. Since this
assignment is satisfiable, there is a literal that evaluates to true in
each clause. We map this literal to D and the others in this clause
to gadgets E. If this literal is x;, then we can map to the (x; ¢ t)-path
in Dg. If it is —x;, then we can map to the (x; f)-path in Dg. If
the literal is y;, we can map the (y; t)-path ending in y; ;¢ to Dp.

This also implies that each y; ; ¢ in %Z is mapped to y; ;, which is no
problem since each path mapped to E can choose freeiy between y; ¢

and y; ¢ and, since 0 is a function, we only have either 6(y;) = 1
or 0(y;) = 0. Analogously, if the literal is —y;, we can map the
(yi f)-path ending in y; ; 7 to Dp, which implies that each y; ;7 in
Q2 is mapped to y; f. O

Observe that under standard semantics, the right-hand query Q3
in the reduction of Theorem 6.2 above would be in fact equivalent
to a CQ, but under a-inj semantics this is not the case.

F OTHER RESULTS

The following theorem summarizes all other complexity results
which complete the picture of complexity results of Figure 1, whose
proofs can be found below.

THEOREM F.1 (RESTATEMENT OF THEOREM 6.3).

(1) The CQ/CRPQ and CQ/CQ containment problems are NP-
complete under query-injective semantics. (Proposition F.2)

(2) The CQ/CQ containment problem under atom-injective se-
mantics is NP-complete. (Corollary F.4)

(3) The CRPQ/CQ and CRPQfi"/CQ containment problems are
H'g -hard, under standard and atom-injective semantics. (Propo-
sition F.6)

(4) The CRPQ/CQ and CRPQﬁ”/CQ containment problems are
in H‘:, under all semantics. (Proposition F.7)

(5) The CRPQ/CRPQf" containment problem is PSPACE-hard
under all semantics. (Proposition F.8)

(6) The CRPQ/CRPQfi containment problem is in PSPACE under
standard semantics. (Proposition F.9)

(7) The CRPQﬁn/CRPQ containment problem is in Hg, under all
semantics. (Proposition F.10)

ProrosiTION F.2. The CQ/CRPQ and CQ/CQ containment prob-
lems are NP-complete under query-injective semantics.

Proor. For the upper bound, let Q1 (%) be a CQ and Q2(9) a
CRPQ. Remember that for any * € {a-inj, g-inj}, we have that
Q1 Cx Q7 iff ¥ € Q2(Q1)*, where Qj is seen as a graph database.
By Proposition 3.1 we then have NP-membership.



The lower bound follows by a direct reduction from the respec-
tive evaluation problem for CQ together with Proposition 3.1. O

Let us call a homomorphism h : A — B contracting if for some

x 2 y in A such that x # y, we have h(x) = h(y). Observe that
the composition of two non-contracting homomorphism is non-
contracting.

Lemma F.3. For any two CQ Q1, Q2, the following are equivalent:
(1) there is a non-contracting homomorphism Q2 — Q1,

(2) Q1 Sa-inj Q2-

ProoF. From top to bottom, let & : Q2 — Qj be anon-contracting

homomorphism, that is, such that for every atom x 4 y of Q7 we
have h(x) # h(y). Let E; € Exp®™™(Q;). Observe that there exists
g : Q1 — E; which is not contracting, and hence their compo-
sition g(h) : Q2 — E; is non-contracting either. Let U be the
conjunction of all atoms x = y such that g(h(x)) = g(h(y)), and
observe that E; = (Qy A U)= € Exp®™(Q,). Further, we have

g(h) : Ey -, E1. Summing up, for every E; € Exp4 W (Q;) there is

E, € Exp®(Q,) such that E, b, E1, which by the characteriza-
tion of Proposition 4.6 proves that Q1 Cg-inj Q2.

From bottom to top, observe that Q; € Exp*™¥((Q;), and hence
by Proposition 4.6 we have that there is some E; € Exp® W (Qs)

such that h : E, 5, Q1, which in particular means that h is non-
contracting. On the other hand, as argued before, there must be
a homomorphism g : Q2 — E; which is non-contracting. Since
the composition of non-contracting homomorphisms yields a non-
contracting homomorphism, we obtain that h(g) : Q2 — Qq is
non-contracting. O

CoroLLARY F.4. The CQ/CQ containment problem under atom-
injective semantics is NP-complete.

Proor. The upper bound follows from Lemma F.3 above. For
the lower bound, it is easy to see that the standard reduction from
3-colorability for CQ under standard semantics [10] still applies in
this setting. O

CoroLLARY F.5. The CQ/CRPQ(A) containment problem under
simple-path semantics is NP-complete.?

ProrosiTioN F.6. The CRPQ/CQ and CRPQﬁ”/CQ containment
problems are Hg -hard, under standard and atom-injective semantics.

Proor. The lower bound for standard semantics follows from
[15, Theorem 4.3]. Further, it is easy to see that the H‘g -hardness
proof of [15, Theorem 4.3] goes through for atom-injective seman-
tics. This is because, in the reduction, all atoms of queries contain
languages of words of length 1, and they have no self-loops. Indeed,
as a consequence of Lemma F.3, under such restrictive conditions
the a-inj and standard containment problems coincide. O

ProposiTion F.7. The CRPQ/CQ and CRPQf"/CQ containment
problems are in Hp, under all semantics.

%In the jargon of [15], CRPQ(A) are CRPQ whose regular expressions are of the form
a+---+ap.

PRrOOF. Let x € {st, g-inj, a-inj}. Given Q1, Q2, let N be the num-
ber of atoms of Q3. Consider the set S of all expansions of Q; where

w
every atom expansion x — y of size greater than 2N is replaced

with x 2% y, where # is a fresh symbol, and u [resp. v] is the
N-prefix [resp. N-suffix] of w. Observe that every element of S
is of polynomial size, and that we can check in polynomial time
whether any given polysized CQ is in S. Consider the following 2127
algorithm for non-containment. We check that there exists some
connected component Oy of O and element ET € S such that the
following two conditions hold:

i) EY Z Oy (which is in co-NP due to Proposition F.2 for q-inj

and [15, Theorem 4.2] for standard);
(ii) for each atom x Lo, y of Ef associated to an atom x L y

of Q1, there is no w such that (a) uwo € L and (b) E}Y Cyx Qz,
uwo

where E}’() =x — v.
Since Qs is connected it has to be mapped through a homomorphism
[resp. injective homomorphism, a-inj homomorphism] either to the
N-neighbourhood of a variable of Q, or entirely inside an atom
expansion. The two items above ensure that none of these cases
can occur, and hence that there exists a counter-example for the
containment Q; Cx Q2. Observe that in item (i), if a x-expansion
of Oy maps into a directed path, it means that Q5 is x-equivalent to
a directed path, and hence that w can be taken of polynomial size.
This, in turn, means that (ii) can be done in co-NP. O

ProrosiTION F.8. The CRPQ/CRPQﬁn containment problem is
PSpace-hard under all semantics.

Proor. First observe that for Boolean queries Q1, Q2 of the form
L; . .
Qi() =x — y, we have Q1 C5¢ Q2 iff Q1 Ca-inj Q2 iff O1 Cq-inj Qa.

In [15, Theorem 4.5] it was shown that the containment problem
(under standard semantics) for this kind of queries is PSpace-hard,
even when Lj is a star-free expression and the alphabet is of fixed
size. O

ProrosiTION F.9. The CRPQ/CRPQﬁn containment problem is
in PSPACE under standard semantics.

Proor. Given Q1, Q2, let N be the maximum number of atoms
of an expansion of Q2. Consider the set S of all expansions of Q1,

where every expansion x X y of an atom x 4 y thereof such that
|w| > 2N is replaced with u - # - v, where u [resp. v] is the N-prefix
[resp. N-suffix] of w, and # is a fresh symbol. The PSpAcE algorithm
then guesses an element E*f of S and checks whether there exists
some expansion E; of Q1 from which ET could be obtained such
that no expansion E; of Q2 can be homomorphically mapped to Ej.
For this, we check that there exists some connected component Qz
of Qy such that the following two conditions hold:

(i) E¥ ¢ Q2 (which is in co-NP [15, Theorem 4.2]);
(ii) for each path of the form x Lo, y in E¥ associated with the

L
expansion of an atom x — y of Qq, there is no w such that:
(2) uwo € L and (b) E}¥ C Oy, where E'() = x Ly



Since Q3 is connected it needs to be mapped either to the N-
neighbourhood of a variable of Q; (ruled out by item i), or entirely
inside an atom expansion (ruled out by item ii). On the other hand,
E1 & Q2 iff E1 ¢ Qz for some component Qz. These two items
hence ensure that none of these cases can occur, and that there
exists a counter-example for the containment Q; € Q3. Observe
that item (ii) can be seen as an instance of the intersection empti-
ness problem for regular languages, that is, the problem of whether

MNier Li = 0 for a given set {L;};¢s of regular expressions, which is
a PSpace-complete problem [21]. O

ProrosiTiON F.10. The CRPQﬁ"/CRPQ containment problem is
in H‘g, under all semantics.

Proor. Let x € {st, a-inj, g-inj} and let Q1(x), Q2(%) be an in-
stance. One can test non-containment by guessing a x-expansion
E1(%) € Exp*(Q1(%)) (of linear size) and test that ¥ ¢ Q2(E;)
under x semantics, which is in co-NP by Proposition 3.1. O
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