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Relating explicit psychological mechanisms and observable behaviours is a central aim of psychological and
behavioural science. One of the challenges is to understand and model the role of consciousness and, in
particular, its subjective perspective as an internal level of representation (including for social cognition) in
the governance of behaviour. Toward this aim, we implemented the principles of the Projective Consciousness
Model (PCM) into artificial agents embodied as virtual humans, extending a previous implementation of
the model. Our goal was to offer a proof-of-concept, based purely on simulations, as a basis for a future
methodological framework. Its overarching aim is to be able to assess hidden psychological parameters in
human participants, based on a model relevant to consciousness research, in the context of experiments
in virtual reality. As an illustration of the approach, we focused on simulating the role of Theory of Mind
(ToM) in the choice of strategic behaviours of approach and avoidance to optimise the satisfaction of agents’
preferences. We designed a main experiment in a virtual environment that could be used with real humans,
allowing us to classify behaviours as a function of order of ToM, up to the second order. We show that agents
using the PCM demonstrated expected behaviours with consistent parameters of ToM in this experiment. We
also show that the agents could be used to estimate correctly each other’s order of ToM. Furthermore, in a
supplementary experiment, we demonstrated how the agents could simultaneously estimate order of ToM
and preferences attributed to others to optimize behavioural outcomes. Future studies will empirically assess
and fine tune the framework with real humans in virtual reality experiments.

CCS Concepts: • Human-centered computing→Virtual reality; User models; • Computing methodolo-

gies→ Multi-agent systems; Multi-agent planning; Theory of mind; Intelligent agents; Cooperation

and coordination;
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1 INTRODUCTION

Human psychology entails highly complex information processing. This processing plays a causal
role in the generation of behaviours. Modelling such complexity to simulate human experience and
behaviours, and predict outcomes of experimental research, is important for the development of
psychological and behavioural science. An outstanding issue, and theoretical, methodological and
technical challenge, is to understand and model how consciousness, and in particular its subjective
perspective, may contribute to this process.

The approach developed in this report stems from the general rationale that computational
models of human psychology should, among other requirements, strive to be:

(1) Integrative, i.e., targeting a comprehensive model of the human mind, including simulations
of mechanisms related to consciousness and its subjective perspective, and their relations to
perceptual, affective and social cognitive processes,

(2) Generative of embodied states and behaviours that could be measured in human participants
in well-controlled and effective experimental and observation contexts, such as Virtual Re-

ality (VR);
(3) Capable of making inferences to assess internal psychological parameters in others based

on their behaviours and through interactions with them, as a function of model parameters;

Furthermore, our approach leverages the possibility of using computational models embodied
as Virtual Humans:

(1) to serve as artificial confederates interacting with other virtual and/or real humans in the
context of social psychology experiments;

(2) to explore and test hypotheses about the mechanisms underlying observable behaviours (the
question addressed with the approach would be, for instance: Which parameters can make
my model behave and perform in a task as human would?);

(3) to serve as a tool to generate model-based psychological profiles and assessments (the ques-
tion addressed with the approach would be, for instance: Can my model predict and explain
observed interindividual differences in behaviour and performance in a given task?).

One of our motivations is to work toward a modeling framework that could claim cognitive
plausibility, based on sound psychological and behavioural principles, in addition to demonstrate
predictive power (see also [1] about this issue).

Here, we present, in a preliminary manner, the approach we are developing for this purpose
based on the Projective Consciousness Model (PCM). The model of consciousness is used as
a level of processing and control for the generation of meaningful behaviours. Our goal in this
report is to present a proof-of-concept of the approach. We used a limited example targeting the
assessment of Theory of Mind (ToM) in a simple entry game, based on simulations of virtual
humans in three-dimensional environments that could be used to run experiments in VR. The
model implementation is based on a previously published implementation [2], which we extended
to incorporate new mechanisms of inference of others’ order of ToM, and combined inference
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of ToM order and preferences (see Section 3.2). We used a mock-up experiment designed for the
purpose of demonstrating: (1) that our model can generate behaviours that would be expected
from humans in a ToM task that could run in VR, and (2) that it is able to estimate the ToM
parameters driving the behaviours of another artificial agent in the same task, which could be
replaced by a real human in the context of an actual experiment. We also illustrates how the
approach can be extended to more challenging tasks in which both preferences of another agents
and its ToM parameters have to be inferred. Likewise, we show how parameters of preferences
influence behavioural outcomes, notably to illustrate the robustness of the model to variations in
parameters.

2 BACKGROUND AND RATIONALE

2.1 Immersive Environments and Virtual Agent Modeling for Psychological Research:
General Considerations

Immersive virtual environment technologies have been proposed as a promising tool for social
psychological research, capable of mitigating issues with experimental control-mundane realism
trade-off, lack of replication, and non-representative samples [3]. In this perspective, Virtual Con-
federates, e.g., real humans embodied as virtual avatars, have been used as a research tool for
overcoming limitations of real interactions with human confederates and paper-and-pencil de-
signs [4]. Likewise, virtual humans in gamified environments have been applied, sometimes in
combination with machine learning analysis of human participants’ responses, to the screening of
PTSD and other psychiatric disorders, through verbal interviews and the analysis of both verbal
and non-verbal cues [5, 6], as well as to practicing negotiations [7].

While certain approaches depart from game-theoretic frameworks [6], others have proposed
to leverage such frameworks combined with computational modeling of agents [8]. The resulting
models integrate social utility functions, reasoning about iterative thinking limits, statistical ap-
proaches, and consider situations in which a player choice affects the payoff of other players. This
payoff entails a complex process of mutual influence and inference. Among different challenges
for the development of models, a central one is the integration of simulations of mental represen-
tations that capture internal processes as they operate in human psychology: “Theorists analyze
games in the form of matrices or trees but players presumably construct internal representations
that might barely resemble matrices or trees” [8]. We hold that this issue also entails to understand
and model consciousness.

2.2 Consciousness Theories: The Problem of the Subjective Perspective

Much cognitive processing is unconscious and consciousness is only the tip of the iceberg [9–11].
Nevertheless, it remains a central component of human information processing, and it is thus
important to integrate models of consciousness and its impact on decision-making in models that
wish to mimic human processing.

Theories and models of consciousness developed over the past three decades encompass five
broad, non-mutually exclusive conceptual frameworks [12]: integrated information theories [13],
global workspace theories [14, 15], internal self-model theories [16], higher-level representations,
and attention mechanisms; the two first frameworks being the most prominent.

Overall, it can be said that consciousness operates as a global workspace [14, 15]. Such
workspace features limited capacity. It accesses multimodal information and integrates it with
information from memory. It integrates mechanisms of uncertainty monitoring and reduction,
and error corrections. It is used for non-social and social imaginary simulations and appraisal of
outcomes. Its overall function is to perform planning, decision-making and action programming,
in a serial manner. Along these lines, five “axioms” have been proposed for artificial models of
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consciousness by Aleksander [17]: (1) presence, including mechanisms for representing the situ-
ated individual within the world; (2) imagination, or internal simulations of action without sensory
input; (3) attention, to guide perception and modulate imagination; (4) planning, through the imag-
inary exploration of possible actions; (5) emotion as part of a mechanism of appraisal of plans and
behavioural outcomes (which could be related to the states of an agent or to states it infers in
others). Furthermore, consciousness integrates a representation of the body in space in relation to
its environment, playing a role in homeostasis, survival, and well-being, and relying on embodied
appraisal and emotion [16, 18, 19].

It remains largely unaddressed however, in particular from a modeling standpoint, how infor-
mation is accessed, shaped and exploited through the global workspace of consciousness to ac-
complish the functions ascribed to consciousness. The issue directly relates to another essential
axiom about models of consciousness that could be added to Aleksander’s list: its qualitative ex-
perience or subjective character [20, 21]. For long, consciousness research has emphasized the
phenomenologically pervasive and central role of a “subjective perspective,” conceived of as a non-
trivial, viewpoint-dependent, unified, embodied, internal representation of the world in perspec-
tive [13, 22–26]. In such representation, contents appears in a three-dimensional non-Euclidean
perspectival manner that could play a role in appraisal and departs from the more Euclidean ob-
jective environment in which consciousness is embodied (see Reference [2]). One of its functional
roles would be to enable conscious systems to take different perspectives through imagination or
action, to evaluate affordances and maximize utility in a context-dependent manner [26–28]. The
subjective structure in question would entail the combination of cognitive (spatial) and affective
representations, for action programming [29, 30]. In complex social animals, perspective taking is
also pivotal to perform ToM [31]. Understanding and operationalizing how such subjective per-
spective may participate in the process of information integration and behavioural control carried
out by consciousness is an important challenge for consciousness modeling [20, 21, 32–35]. While
acknowledging the importance of the issue, many have decided to set it aside [15, 36]. Others have
proposed to address the issue based purely on information theoretic concepts, but largely fail to
capture the phenomenon explicitly and in a specific manner as a result [13, 37].

2.3 The Projective Consciousness Model and Active Inference

The PCM [2, 26, 38–40] aims at explicitly tackling the problem of the subjective perspective of
consciousness and its role in active inference.

Active inference conceptualizes the operation of the mind as a recursive cycle, including two
main steps: (1) the inference of the causes of sensory information, (2) the planning of action. Re-
sulting action outcomes provide a new context for the next cycle [41]. For instance, an agent S
(the subject) perceiving anger on the face of another agent O while being looked at by O , might
infer that it is disliked by O . It might then consider that approachingO could be dangerous, while
avoiding it could be safer, and choose to move away. After moving away, S might realize that O is
actually smiling in a friendly manner while looking at the agent. In the next cycle, S might then
infer that the expression of anger was intended as a joke, and decide that it would actually be safe
and pleasant to approach O .

Active inference has been formulated within variational optimization approaches, such as the
Free-energy Principle (FEP), which approximates Bayesian inference based on the minimiza-
tion of a free energy acting as a cost function [41–45]. Free energy is an upper-bound on surprise
as a deviation between prior expectations and sensory evidence. Importantly, prior beliefs in an
agent performing active inference can include models of preferences and desires, encoded as ex-
pectations. In keeping with the example above, the expectation that O would not be pleased if S
approached it, would raise the expected free energy of S if it were to approachO . However, it would
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lower its free energy if S envisioned to move away instead. The approach has shown promise to
understand the emergence of affective, affiliative, and communicative behaviours [40, 46–50].

The PCM is based on two main principles. (1) Consciousness is central to active inference in
humans. (2) Consciousness integrates information in a viewpoint-dependent manner, within a
Field of Consciousness (FoC) in perspective. The concept is based on the fact that our integrative
conscious experience of space, as informed by multimodal sensory information and memory, is that
of a three-dimensional space in perspective, which depends on the adopted point of view, both in
perception and imagination (through imaginary perspective taking). The FoC is governed by three-
dimensional projective geometry [26], which is the geometry of perspective. It acts on this basis
as a global workspace [14, 15] for the integration of information and the planning of action.

We recently showed how the PCM could explain and predict perceptual illusions such as the
Moon Illusion, based on the calibration of a three-dimensional projective chart under free energy

(FE) minimisation, combining simulations and VR [39] (see also Reference [26]). But the FoC is
thought to play a much broader role beyond perceptual experience [2]. It corresponds to a three-
dimensional projective space, representing, within a subjective frame in perspective, an internal
world model. One of its function according to the theory is to assess the distribution of affective
and epistemic values ascribed to entities and actions in that world, as a function of perspectives
being taken. It orders entities according to a point of view, modulating their apparent size and thus
relative importance. For instance, back to the example above, after moving away, S would perceive
O as smaller from the distance, and thusO would occupy less of S’s FoC than if it were closer. That
difference would make the perceived negative attitude of O less important and impactful in terms
of affective value. (Of course, since relative apparent size depends on relative distances between
agents, ifO would have moved toward S , then its apparent size from the perspective of S would not
have decreased as much, and it would even have increased if it had gotten closer to S . In this case,
S would have to revise its understanding of the situation and its choice of behaviour, e.g., running
further away, or revising the preferences and intentions it attributes to O). At the same time, with
the increased distance of S fromO , there would be more sensory uncertainty for S about the state of
O , reducing the epistemic value of the current perspective (see Reference [2] for details). The FoC
can take multiple perspectives on the world model using projective transformations. For instance,
S could imagine that if it were closer to O than it actually is and could better see its face, it might
turn out that O’s face was not expressing anger but a state of concentration. Free energy can be
expressed as a function of the FoC and thus of perspective taking, and reflect perceived or expected
deviations from preferred values, as well as uncertainty with respect to sensory evidence. The
idea is that its minimization through recursive imaginary perspective taking should make agents
search for perspectives on the world that maximize their preferences and minimize uncertainty.
This process would provide the agents with possible paths of action, as perspective changes relate
to parameters of motion. We recently applied these principles to simulate complex adaptive and
maladaptive behaviours among artificial agents, in a robotic context [2]. The agents embedded
multi-agent models to infer the preferences of other agents based on their emotion expression
and orientation, and to simulate other agents’ FoC, according to projective transformations that
respected known psychophysical laws. The process enabled the agents to appraise and predict
other agents’ behaviours, to generate affective (valence-related) and epsitemic (curiosity-related)
drives toward preferred states, and plan their action accordingly.

2.4 Theory of Mind

One interesting issue is to undersand how the subjective perspective of consciousness could play
a role in ToM. ToM is the ability to infer others’ mental states, beliefs, and desires and to predict
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their behaviours, for instance, for strategic planning, and it relies on the integration and imaginary
manipulation of cognitive and affective information [30, 51–53].

ToM is often conceptualized within simulation theory, which entails that humans use their own
cognitive and affective appartus to imagine themselves in the position of others and simulate their
subjective experience and likely behaviours; a process that would underline empathy [54, 55]. ToM
through perspective taking is considered as important for emotion regulation and social-affective
development [56–62]. It entails a balance between reward-expectation and the cost of executive
function [63].

Different levels of ToM have been distinguished [64]. Level-1 and level-2, respectively, corre-
spond to what is also described in the literature as Visual perspective taking 1 (VPT1) and
Visual perspective taking 2 (VPT2) [65]: the ability to infer, respectively, whether an object
can be seen from a given point of view, and whether the object would look different from differ-
ent points of view. Level-3 concerns the understanding that knowing requires verification through
direct sensory evidence (or uncertainty reduction). Level-4 and level-5 concern the ability to under-
stand, respectively, true and false beliefs in others, to predict their behaviour. Level-6 concerns the
ability to understand that others can themselves perform ToM. Levels 1–5 correspond to so-called
f irst-order ToM, and Level-6 to second-order ToM. The notion of order of ToM can be generalized
recursively to third-order ToM, i.e., the ability to understand that others can perform ToM about
the ToM of others, and so on to n-order ToM, up to the maximal capacity of an individual.

ToM is often assessed through verbal tasks [66, 67], which may be susceptible to different biases,
and it is important to develop non-verbal tasks assessing ToM based on outcome behaviours [68].

Following these principles, we implemented ToM in PCM-agents using the FoC to simulate
others’ subjective states and demonstrated that a variety of meaningful adaptive and maladaptive
behaviours would ensue as a function of psychologically relevant parameters (see Reference [2];
see also Section 3 in this report).

2.5 Theory of Mind in Models of Agents and Game Theory: Perspectives for
Immersive Approaches

Concepts of ToM can be found in classical Belief-Desire-Intention (BDI) models of agents [69],
which themselves entail embedded appraisal models [70].

ToM has become of interest in game theory [71] to understand and model rationale and irrational
strategic planning in human and non-human competitive contexts [72, 73]. It relates to strategic
uncertainty in the face of social situations with dependence on others’ choices. It entails assessing
subjective probabilities based on others’ behaviours, and the interaction between processes of
decision-making under risk and higher order beliefs about others [74].

Models of rationale, multi-agent coordination in unpredictable environments, applied to two-
dimensional strategic games, have been introduced [75, 76]. These models incorporated infer-
ences about ToM, and took into account decision under uncertainty about others’ beliefs, based
on recursive nesting of models (or Recursive Modeling Methods). The aim was to maximize ex-
pected utility, with mechanisms of belief update maximizing predictive power about observed
behaviours of other agents. Likewise, simple Bayesian models of inferences of agents’ intentions
have been introduced to predict navigation in mazes, based on probabilistic inverse planning for
action understanding [77]. Recursive modeling of multi-agent interactions under uncertainty have
been investigated, with the overarching aim of exploring possible outcomes of intervention strate-
gies through simulations, e.g., in the context of bullying [78]. The approach used internal mod-
els of other agents that integrated models of their preferences, and a variety of social influence
factors and biases (such as consistency, self-interest, speaker’s self-interest, trust, likability, and
affinity).
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Of note, in practice, Bayesian models as such may be limited by the curse of dimensionality that
makes it difficult to compute exact posterior distributions. Variational methods exist to mitigate
this problem, which make it more tractable.

Models based on adaptive control theory and probabilistic learning of agents have been inves-
tigated, using classical game theory paradigms and game-theoretic metrics, as an alternative to
approaches such as Deep Learning [73]. The latter approaches may yield good predictive power,
but are based on distributed models that may be difficult to interpret, as they operate in practice
as a black-box. Models with parameters that can be interpreted along psychological dimensions
are warranted for many applications and psychological science. For instance, Yoshida et al. [79]
proposed an approach, confronting simulations and empirical data, to assess orders of theory of
mind implied by behaviours, in a two-dimensional competitive digital board game between two
agents. The simulations were based on a model inspired from Reinforcement Learning (RL), re-
cursively evaluating strategic predictions as a function of orders of ToM by maximizing expected
future reward. The approach was then used to assess ToM capacities in Autism Spectrum Disorder
participants [80].

One general issue is to devise innovative methods capable of adapting and performing in a
variety of situations and contexts, which are not always specifically designed for a given game
theoretical paradigm and associated metrics. Such methods should be able to simulate, predict and
assess behaviours, such as approach and avoidance, joint attention, emotion expressions, or more
generally, navigation in a three-dimensional world. They should do so as a function of cognitive
and affective processes such as ToM, in a more ecological manner than non-immersive approaches,
i.e., in a manner that is closer to real-world human behaviours as observed in the field. A promising
approach is to combine computational models of agents and virtual reality, for instance, to assess
ToM capacities through simulations and embodied interactions.

As hinted in Section 2.1 above, VR offers a promising framework to study social interactions
through immersive technologies [81]. Virtual environments may be shared by human participants
and virtual humans [82, 83]. Narang et al. [84] developed an approach combining a Bayesian model
of ToM applied to artificial agents and VR. This approach was used to infer the intention of action
of human participants in VR, and to control the navigation and approach-avoidance behaviours
of virtual humans in social crowds. The model was a simple model, making inferences based on
observed proxemics and gaze-based cues.

Importantly, none of the approaches reviewed above did aim at modeling internal mechanisms
of representation that would integrate a model of the subjective perspective of consciousness. Such
modeling is important for consciousness research and, more generally, for psychological and be-
havioural research in humans.

3 MODEL

3.1 Presentation of the Model

The model we present, as a proof-of-concept, is an implementation of the PCM principles close
to the implementation we introduced in Reference [2]. The approach has similarities with Refer-
ence [79], but instead of considering the expectation of a reward function for multiple agents, we
consider a mean of free-energy quantities within each agent that takes into consideration the sim-
ulation of active inference in other agents. In other words, each agent embeds a multi-agent model
or system [85] to simulate others. Agents must thus be able to reverse infer preferences and the
order of ToM of other agents, while in Reference [79], it was the policy of other agents that was in-
ferred. More generally, our approach is quite close to Recursive Modeling Methods that have been
proposed in similar contexts, and include mechanisms of inferences about preferences of others
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and factors of social influences [75, 76, 78]. The innovation is that we integrate an explicit model
of the three-dimensional subjective perspective of consciousness in the process, which performs
functions ascribed to consciousness based on view-point dependent subjective parameters (see
Section 2.2 above). The model entails affective and epistemic (curiosity) drives based on projective
geometrical mechanisms, and is applied to control virtual humans in virtual environments.

We extend the previous version of the model [2] with more advanced capacities of inferences, so
that agents can infer preferences and ToM capacities in others, based on retrospective or prospec-
tive simulations of their behaviours, in a recursive manner. Predictions yielding best predictive
power are used to update beliefs, in a manner that considers not only the emotion expression
and orientation of other agents but also their relative behaviours of approach and avoidance, as
indicators of interest labeled with affective valence (see Figure 1).

Each agent Ai computes projections about itself as subject S , and about other agents Aj , us-
ing the same basic processing pipeline. For a given state or move mt , evaluated by the agent, the
agent computes a projective chart ψ (mt ), corresponding to the FoC it attributes to a given agent,
including itself. Perceived value μ and uncertainty with respect to sensory evidence σ (given the
current state of the agent) are computed based on ψ (mt ) and the preferences attributed by Ai to
the agent under consideration. These parameters are used to define a parametric probability dis-
tribution P (μ,σ ), which is compared to an ideal distribution P (μ0,σ0) through the Divergence

of Kullback-Leibler (DKL). This yields a cost function that is sensitive to divergence from both
preferences and uncertainty. Emotions are also expressed by the agents accordingly (not indicated
in Figure 1). The process is repeated recursively to assess successive moves, according to the depth
of processing used by the agent (large round arrow, top right in Figure 1). The algorithm entails a
Multi-agent System (MAS) embedded within each agent. Multiple alternate sequences of moves
M are computed, to define a series of anticipated states. The sequence of moves that the agent
retains corresponds to that which minimizes its overall FE, taking or not into account anticipa-
tions about other agents states. The first move of the sequence is chosen by the agent as its actual
movem(S ). That actual move controls the state of the associated virtual humanVH (S ). The agent
then takes as inputs the observed states in the world, including of other agents (locations, orienta-
tions, emotion expressions). If those states diverge above a certain threshold θ from the anticipated
states, then a mechanism of reverse inference is triggered. Otherwise, the agent keep computing
projections based on its current beliefs, including preferences, ToM parameters, and more gener-
ally, states (locations, orientations and emotion expressions of others). The mechanism of reverse
inference tests different hypotheses about parameters such as preferences attributed to others and
order of ToM used by others. It runs the same recursive algorithm used by the agent to simulate new
projections, and retains the parameters that best explain the observed states to update its beliefs.

When referring to active inference, we mean the process of inferring and acting according to
inference recursively, which can be summarized as follows. Let S be the space of sensory inputs
and Γ the space of states that the agent can be in, and let M be the set of action the agent can
perform. In the inference step, a state γ ∈ Γ is induced by sensory input h by minimizing a cost
function c : S × Γ → R,

γ ∗ = argmin
γ ∈Γ

c (h,γ ), (1)

and during the action selection step, the subject chooses the action according to a second cost
function c1 : Γ ×M → R,

m∗ = argmin
m∈M

c1 (m,γ ∗), (2)

which in turn induces a change at the level of the sensory input, since the environment reacts to
this action.
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Fig. 1. Summary of the model architecture. Each agent computes representations of itself as subject S , and
of other agents, using the same basic processing pipeline. It entails perspective taking based on a projective
chart as a function of envisioned actions, and the computation of a Divergence of Kullback-Leibler (DKL),
based on estimated perceived value and uncertainty. The process is repeated recursively to assess successive
moves, according to the depth of processing used by the agent (large round arrow, top right). The sequence
of moves that the agent retains corresponds to that which minimizes its overall free energy (FE), taking or
not into account anticipations about other agents states. If the anticipated states and actual outcomes of
action diverge above a certain threshold, then a mechanism of reverse inference is triggered. It runs the
same recursive algorithm used by the agent to simulate new projections, and retains the parameters that
best explain the observed states to update its beliefs. Otherwise, the agent keeps computing projections
based on its current beliefs, including preferences, ToM parameters, and more generally, states (locations,
orientations, and emotion expressions of others). (See text for details.)

In our setting, we consider a collection of entities, E, constituted of objects and agents. Agents
express emotions and can infer and act according to their preferences and those ascribed to others,
with respect to a situation, while objects cannot act. When singling out an agent, for example, when
making explicit how active inference works for this agent, we will call it a subject. The space of
agents will be denoted A. An agent a ∈ A can express a positive emotion e+ ∈ [0, 1] and a negative
emotion e− ∈ [0, 1]. The space of sensory inputs of a subject is constituted of the configurations
of other entities in the ambient space and the emotions that agents express. The space of states is
the preferences it can have for other entities when the subject does only ToM-0 (that is no ToM in
our context), and preferences attributed to other agents for higher order of ToM. Subjects act in
two ways, they can move and express emotions.

The details of the following model we use are presented in Reference [2].
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The preference for an entity is a real number in [0, 1] denoted as p. Every subject, s , has an
embodied perspective on the Euclidean ambient space that corresponds to a choice of a projective
transformation that we denote as ψs ; we will call it the projective chart associated to the agent.
The quantity that links perspective taking and pleasantness of a situation is the perceived value μ
that is computed for each entity e ∈ E as

μ = pγ
v1/4

p

v1/4
tot

+ qn
�
�
1 − γ

v1/4
p

v1/4
tot

�
�
, (3)

where vp is the perceived volume of the entity in the total FoC of the subject of volume vtot . The
perceived value μ is an average of the preference for the entity and a reference preference qn

weighted by the relative perceived volume of the entity; the power 1/4 on the volume is taken
to match documented psychophysical laws (see Reference [2] for a psychophysical and computa-
tional justification of this variable).

The subject also computes an uncertainty with respect to sensory evidence, denoted σ , that is
greater with larger eccentricity with respect to the point of view of the subject, and the distance
of the entity. In other words, there is more certainty about entities that appear actually or would
be expected by imagination to be in front of and close to the subject.

The subject is driven toward an ideal with high perceived value and low uncertainty. To com-
pute the divergence from this ideal, the perceived value and uncertainty are associated with a
probability distribution, Q (.|μ,σ ) ∈ P([0, 1]), centered in μ and of “width” σ . This divergence is
computed with the Kullback-Leibler divergence of Q from the ideal distribution P narrowly cen-
tered on values close to 1. Let us recall that for any two probability distributions P ,Q ∈ P(Ω), over
a space Ω, with dQ = f dP ,

DKL(Q ‖P ) =

∫
f ln f dP . (4)

Let us now detail the active inference cycles of subjects with ToM of order 0 (ToM-0) to ToM

of order 2 (ToM-2). Here, we shall not focus on the inference part of the process nor on emotion
expression but rather on how agents select their moves, one can refer to Reference [2] for a detailed
presentation on how preferences are updated and emotion expressed.

The preferences of a subject for the other entities with ToM-0 is encoded in a vector (qe , e ∈ E).
The configuration of an entity, e , is a subset of R3 denoted as Xe ⊆ R3 and the collection of
configurations will be denoted as X . The subject chooses its move m from a set of moves M by
minimizing the following average of Kullback-Leibler divergences,

C0 (m,X ,q) =
∑
e ∈E
e�s

1

|E | − 1
DKL(Q (.|μψ (m),q (Xe ),σψ (m),q (Xe )‖P ). (5)

When the subject performs T0M-1 (ToM of order 1), it has a preference matrix (psae ∈ [0, 1],a ∈
A, e ∈ E) that encodes preferences that agents have with respect to other entities according to the
subject. The true preferences of the subject, i.e., the preference vector of s is pss . . Agents may be
influenced by other agents in the way they infer preferences and the way they act, this is encoded
by the influence vector on preferences (J

p
se , e ∈ E) and on moves (Jm

se , e ∈ E), respectively. Subjects
with ToM-1 can predict the move of the other agents assuming that they have order 0 ToM; in fact
they cannot assume that the other agents have a higher order of ToM or else it would contradict
the fact that the subject has ToM-1. The number of steps in the future up to which the subject
can predict the moves of the other agents is called the depth of processing and denoted as dp. At
step 0 of the prediction, the subject attributes to another agent, a, the preference vector q̃0

e = psae
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for entities e ∈ E; and the position of the entities is X 0. At step k < n the predicted position, Xk ,
expressed emotions ek and preference vectors q̃k are used to predict the displacement, preference
update and emotion expression of the others agents, by applying active inference for ToM-0 as
described in the previous paragraph. Furthermore, the subject has also an updated version of its
preference matrix pk . The subject then chooses its move at stepmk+1 by minimizing the following
cost function, form ∈ M ,

C1 (m,pk , J ,Y k ) =
∑
a∈A

∑
e ∈E
e�b

ωa,e DKL(Q (.|μa,ψa (m),pk
a .

(Y k
e,m ),σa,ψa (m) (Y

k
e,m )‖P ), (6)

where Y k is the configuration of the entities that are not the subject at step k + 1 and Y k
s is X k

s . Y k
m

is a mean to recall that the configuration of the entities depend on the move the subject decides to
make, through Y k

s,m . Here, for any agent a ∈ A and entity e ∈ E,

ωa,e = Jm
a

1

|E | − 1
. (7)

One can remark that C1 is in fact a weighted mean of several C0.
From this prediction n steps in the future, the subject chooses the best set of moves that we

assimilate to paths, (mk∗
s ,k ∈ [0,n]), in a set of paths, P, by minimizing

FE(m,p, J ) =
∑

k ∈[1,n]

akC1 (mk ,pk , J ,X k ), (FE)

where
∑

k=1...n ak = 1 and ak are chosen here to be ak =
1
n

. The best move to make for the subject
is the first move of the best path.

For a subject that has ToM-2, the same procedure as for a subject with ToM-1 holds. The subject
can simulate the behaviours of the other agents with respect to the degree of ToM it attributes to
them, (da , e ∈ A). From these simulations, it can decide what best sequence of moves to make. To
do so, one should consider that the subject has a preference tensor (hsabe ,a ∈ A,b ∈ A, e ∈ E)
and influence matrices (I

p

sab
,a ∈ A,b ∈ A), (Im

sab
,a ∈ A,b ∈ A). The case we consider is simpler,

as we restrict the preference tensor h to a preference matrix p, such as in ToM-1, by posing that
hsabe = psbe . When the subject starts its prediction of the behaviour of the other agents, i.e., at
step 0 of the prediction, the influence vectors of an agent a believed to have ToM-1 by the subject
are defined as J̃ 0

a . = Isa . . The cost functionC2 for the choice of the action of the subject at step k of
the prediction is a mean of the cost functions of the other agents depending on the degree of ToM
that is attributed to them. We do not enter into more details on how C2 is computed nor on the
cost function for higher dimensions of ToM; they are computed recursively. In the experiment we
consider, we assumed that the agents are not influenced in their action by how they believe other
agents would feel as a result; what makes the difference between a subject of ToM-1 and ToM-2
is how it predicts the behaviour of the agents, respectively, attributing to them order 0 or 0 to 1
of ToM. In the main experiment of this report, we only focus on inference about ToM order with
fixed preferences. In supplementary simulations, we illustrate (see Section 5.6) how our model can
tackle situations in which agents simultaneously perform inferences about others’ ToM order and
preferences.

3.2 Inverse Inference for ToM and Preferences

A subject with ToM-2 can attribute to another agent ToM-0 or 1 and for the subject to truly be
able to perform ToM-2, it must be able to attribute correctly to the other agent the order of ToM
it truly operates at. To do so, the subject must inverse infer the degree of ToM by analysing the
behaviour of the agent.
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When the prediction of the subject with respect to the actions of an agent diverges too much
from its observed actions, it can start doubting its beliefs on the parameter it previously used to
model the other agent’s behaviour. It can then find better suited parameters. Here the parameters
being considered are the preferences and the order of ToM attributed to the other agents. To do
so, the subject uses a measure of divergence from the predictions it made about the action of the
other agent, ap , with respect to the real action it has observed and memorized, a.

Let us consider the following example, at time t , the subject predicts the actionap (t ) with respect
to the information it holds about the preferences, p (t ), and order of ToM, d (t ), of the other agent. If
the divergence, f (ap (t ),a(t )), is too large, then the subject will update the parameters of its model
of the agent, i.e., p and d , to increase predictive power by minimizing a divergence,

(p∗,d∗) = argmin
p,d

f (ap (p,d ),a(t )). (8)

The experiment we use below as a proof-of-concept is a two-choice simulation scenario. In this
scenario, both the subject and another agent try to reach a vending machine among two, one being
intrinsically more attractive than the other. In the main experiment, both agents try at the same
time to avoid running into each other (they have negative preferences toward each other). In the
supplementary experiment, the other agent may have negative, neutral or positive preferences
toward the subject. The subject cannot see the other agent before the near end of the experimental
trial (except at the very beginning). The experiment is divided into two trials. At the first trial, in
both experiments, a subject with ToM-2 assumes by default that the other agent is also trying to
avoid the subject. It is expected that if the subject encounters the other agent, it will learn from its
mistake. In the main experiment, it will revise the order of ToM attributed to the other agent (the
only parameter it tries to infer in this experiment). In the supplementary experiment, it will revise
both the order of ToM attributed to the other agent, and the preference attributed to the other
agent toward the subject. Let us now explain how our agents revise their beliefs when confronted
with evidence of misprediction.

A subject s models the order of ToM of an agent by a random variable, that we denote as D, that
takes two values 0 and 1. It has as prior law, (p1,p0) ∈ P(D ∈ {0, 1}) forD, that can be parameterized
by p1. The probability distribution plays the role of the belief the subject has on the order of ToM
of the other agent. In the simulation scenario, the subject knows where the agent is at time 0, but
until the end of the trial, it does not have confirmation of its position. The subject speculates on
the position of the agent at each time until it sees it (or not), and gathers new information on its
position if it sees it eventually. To do so, it keeps in memory, the predicted position (x0

t ,x
1
t ) of the

agent at each times t , respectively, assuming that it performs ToM of order 0 or 1. At time t +1, if it
does not see the agent, then it predicts x0

t+1 using the predicted position of the agent x0
t assuming

that the agent acts as an agent with ToM of order 0, and it predicts x1
t+1 from x1

t assuming the
agent acts as an agent with order 1 ToM.

Therefore, at each time t the subject predicts two positions x0
t and x1

t for the agent. When the
subject can attest the real position of the agent, it can confront it to the predicted positions. For
example, if this assessment occurs at time t0, then the subject can confront its predictions with
the true position of the agent, by considering |x0

t0
− xt0 | and |x1

t0
− xt0 |, respectively, the distance

between the predicted position and true position of the other agent when the subject assumes that
the agent has an order of ToM of 0 versus 1.

The subject computes

Ep1 [|Xt0 − xt0 |] = (1 − p1) |x0
t0
− xt0 | + p1 |x1

t0
− xt0 | (9)

as a metric for consistency of predictions; This metric can naturally be extended to the case where
theory of mind and preferences are inferred. If this value is too high, then the subject starts to
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Fig. 2. Virtual Human control components.

doubt its priors and will look for p1 that minimizes the previous quantity,

p1
∗
t0
= argmin

p1

Ep1 [|Xt0 − xt0 |]. (10)

One shows that this problem is the same as finding the minimum d∗,

d∗ = argmin
d ∈D

(
|xd

t0
− xt0 |

)
(11)

as p1
∗
t0
= δ (d∗), where δ (d∗) equals 1 on d∗ and 0 on the complementary.

In the supplementary experiment, the subject also attempts to infer the preference the other
agent may have about it, by comparing predicted and observed outcomes in terms of position,
orientation, and emotion expression. For instance, if the subject encounters the other agent and
the other agent expresses more positive emotion than expected along with a different pattern of
approach versus avoidance, then the subject may infer that the other agent might actually have
positive preferences toward it and adjust its strategic behaviour accordingly. Note that in the sup-
plementary experiment, for the interest of the simulation, the subject was capable of up to ToM-3
and the other agent of up to ToM-2.

4 VIRTUAL HUMANS

Recently, we developed real-time simulations of virtual humans with emotional facial expressions,
combining physiological and musculoskeletal features [86]. The virtual human control system is
processing the data of our model simulations, to manage several facial expressions, including mus-
culoskeletal and physiological state (Figure 2). More generally, the virtual human control system
takes as inputs various information from simulations generated by the model, including the 3D
world position of the agents, their successive positions in the virtual environment, their emotional
states, the expected emotion during the next steps of the simulations, and their beliefs about other
agents (positions, perceived values). Based on this information, the virtual human system can pro-
cedurally generate a realistic visualization in which agents are moving and acting according to the
simulations produced by the model. A pathfinding system is used to apply smooth displacement
to the virtual human during its navigation in the virtual environment, based on the sequences
of positions and orientations outputted by the model. This system is based on a state-of-the-art
pathfinding method using Astar algorithm [87]. The body movements are animated accordingly to
be consistent with the overall movement of the virtual human. More precisely, the locomotion ani-
mations are blended based on the given direction and speed, which are passed as an input into a 2D
Cartesian mapping that controls animations’ transition. Regarding facial expressions, the virtual
human control system uses the emotion state of the agent, based on three main components: the
agent’s positive emotion intensity and negative emotion intensity (which when subtracted yield
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Fig. 3. Example of VH facial expressions including muskuloskeletal and physiological control. (a) “High sym-
pathetic” parasympathetic tone = 0, sympathetic tone = 100 (max), negative emotion expression; (b) “Neu-
tral”: parasympathetic tone = 0, sympathetic tone = 0, neutral facial expression; (c) “High parasympathetic,”
parasympathetic tone = 100 (max), sympathetic tone = 0, positive facial expression.

a parameter of valence), and a surprise coefficient. Using these parameters, realistic facial expres-
sions are generated and applied on the virtual human, including musculoskeletal control based
on the Facial Action Coding System (FACS) [88], and physiological control (skin tone, sweat,
pupil dilation, eye redness) (Figure 3) (see Reference [86] for theoretical and technical details). The
musculoskeletal system is based on vertex displacement (blendshapes) and joint animation, while
the physiological system is based on dedicated shaders developed for our virtual human system.
The mapping between emotional states and virtual human parameters are summarized in Table 1.
Of note, the virtual humans’ motion along trajectories outputted by the model simulations also
provided clues about the emotional state of the agents for inference, as they could be decoded by
the subject as behaviours of approaches or avoidance.

Figure 3 shows examples of facial expressions, generated using our virtual human control sys-
tem, including muskuloskeletal and physiological features.

5 SIMULATION-BASED EXPERIMENTS

We designed a social experiment using simulations to prove our concept. The experimental design
was chosen so that behavioural outcomes would imply specific orders of ToM in participants per-
forming the task. We implemented a main experiment focusing on ToM order estimation as a test
bed. We also implemented a supplementary experiment based on the first one, in which prefer-
ences of another agent toward self had to be inferred. Additionally, we assessed the robustness of
generated behaviours as a function of the preference values assumed by the agents.

5.1 Requirements for the Main Experiment

We considered the following design and simulation requirements for a preliminary validation. First,
the task’s behavioural outcomes should be unambiguous, and allow an experimenter to determine
the order of ToM used by a participant who would follow the instructions of the task. Second, the
agents simulating participants in the experiment should demonstrate clear adaptive behaviours
of navigation and emotion expression in a manner that is consistent with the task expectations,
reflecting their attempts to optimise task outcome as a function of the order of ToM used by the
agents to predict each other’s actions and act accordingly. Here, we considered agents that could
perform ToM of order 0 (no ToM), order 1 (ToM at the 1st order), and order 2 (ToM at 2nd order) at
most. Third, one agent in the experiment, the subject S , could be used as a virtual “psychologist”
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Table 1. Virtual Human Control Mapping

Physiological Musculoskeletal Value

Neutral

Skin tone � 0.5
Pupil dilation � 0.5
Eye sclera and cornea redness � 0.5
Skin sweat � 0
Facial expression � 0
Positive emotion with parasympathetic tone

Skin tone � 1
Pupil dilation � 0
Eye sclera and cornea redness � 1
Skin sweat � 0
Facial expression (Action Units) � 6,12
Negative emotion with sympathetic tone

Skin tone � 0
Pupil dilation � 1
Eye sclera and cornea redness � 0
Skin sweat � 1
Facial expression (Action Units) � 1,4,15
Surprise

Facial expression (Action Units) � 1,2,5,26

agent, and should demonstrate its capability to estimate the hidden ToM parameters of another
agentO , based on its predictions and task outcomes.O could then be conceived of, in this proof-of-
concept, as a potential participant in an interactive experiment, designed to assess ToM capacities
in the participant, and which could be implemented in VR.

We reasoned that if PCM-driven virtual human S could assess another PCM-driven virtual hu-
man O correctly according to the experiment expectations, then they would be able to assess real
humans in an experiment with real human participants, either by interacting with them or by ob-
serving them. Our motivation was to render the simulation sufficient to prove the concept without
actually running the experiment in real human participants, which was beyond the scope of this
report.

5.2 Experiments: Rationale and Design

We chose to design a rather simple and well-controlled entry-game, inspired by the common sit-
uations of having to choose between two stores or, more generally, destinations with different
cost-benefits, in which one destination is more attractive than the other but also more likely to
be crowded with other people, which can hinder the free exploitation of the destination. The ex-
periment was aimed to create a conflict of approach and avoidance based on non-social (intrinsic
attractiveness of a destination) and social (social distancing and competition) preferences. Two
agents, the subject S and another agent O , had to compete for reaching one of two vending ma-

chines (VM) selling coffee, on opposite sides of a building on a parking lot in a gas station. One of
them, VM1 was better with higher quality products, and thus was the most attractive one for both
agents. The other one, VM2, more mainstream, was not stocked with products of high quality, and
thus was less attractive for both agents.
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Fig. 4. Main experiment: setup and design. (a) Illustration of experimental setup. Two agents, a subject S and
another agent O are on opposite sides of a small building (middle rectangle). On each side of the building,
there is a vending machine, VM1 (right) and VM2 (left). Arrows arising from circles marking the initial
position of the agents O and S indicate fixed prior preferences towards entities: both S and O like (positive
signs) VM1 and VM2 but prefer VM1 (longer arrow), and dislike each other (negative signs). (b) The table
shows the expected behavioural outcomes for the different combinations of orders of ToM at Trial : 1 and
Trial : 2 for the subject S . O can either perform ToM-0 (no ToM) or ToM-1 (first order ToM). The table is
color coded to indicate the rank of the outcomes in terms of optimisation of perceived value as a function of
preferences (scale on the right), from best (rank 1) to worst (rank 4)(see text).

In the main experiment, another assumption was that agents would both prefer avoiding run-
ning into each other, which was operationalized as agents having negative preferences about each
other, and assuming such negative prior in each other. In the supplementary experiment, the sub-
ject had negative preferences toward the other agent, but the other agent could have negative,
neutral or positive preferences toward the subject, which always initially assumed that the other
agent had negative preferences against it. In all cases, both agents assumed that VM1 was most
attractive to the other agent and VM2 a secondary choice (see Figure 4(a)). The situation was de-
signed so that agents would have limited access to sensory evidence about the actual behaviour
of the others. Each agent could tell that the other was on the other side of the building at the
beginning through sliding doors, first opened and then closed, and also assumed that the other
agent was looking for a vending machine. However, a given agent would not be able to observe
the behaviour of the other after the doors closed, except when reaching the areas of the vending
machines on the side of the building. If both agents chose to go to the same vending machine, then
they could observe the other directly; if they chose to go to different vending machines, then they
could infer that the other was on the other side.

The task for the agents was to choose which vending machine to go to (approach versus avoid),
with the aim of maximising the satisfaction of their preferences. They had to use ToM to plan
their actions. Only when reaching their destination could they use sensory evidence to attempt to
infer the actual order of ToM used by the other agent. In the supplementary experiment, they also
had to infer preferences of the other agent toward self, depending on the outcome and the agents’
capacity for ToM. The distance of the two vending machines from the agents at initial condition
was equivalent to avoid a bias of distance on appraisal and the motivation of action, which would
be entailed by the model, as in real situations.

ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 2, Article 8. Publication date: May 2023.



Combining the PCM and Virtual Humans for Immersive Psychological Research 8:17

The main experiment always involved the same initial setup with fixed preferences. Section 5.4
summarizes the fixed parameters of the simulation. The possible outcomes of the experiment were
designed to correspond to decreasing levels of optimality in terms of satisfaction of preferences,
e.g., level of free energy or emotion expressed, for the agent under consideration, from best to
worst optimality rank. Thus, for rank1, S finds itself alone at VM1 (thus O went to VM2); for
rank2, S finds itself alone at VM2 (thusO went to VM1); for rank3, S finds itself in the presence of
O at VM1; and for rank4, S finds itself in the presence of O at VM2.

Figure 4(b) presents the combination of experimental conditions and outcomes for the main
experiment. The experiment combined three factors. The first factor, the Subject S ToM capacity,
corresponded to the maximum order of ToM for S , with three levels: ToM-0, ToM-1, ToM-2. When
an agent was capable of performing ToM-2, it was also capable of performing ToM-1. The second
factor, the other O ToM capacity, corresponded to the actual order of ToM used by O , with two
levels: ToM-0, ToM-1. This number of possible levels for factor two was prescribed by the fact
that the experiment assumed the subjects’ maximum order of ToM to be ToM-2. This is a logical
consequence of the very definition of ToM: an agent with a maximum order of ToM n (ToM-n)
can at most make inferences about another agent with maximum order of ToM of (n − 1) (ToM-
(n − 1)) (see Reference [79]). Since the experiment was designed to assess a subject’s maximum
order of ToM up to ToM-2, the experiment had two possible actual orders of ToM for agent O :
ToM-0 and ToM-1. This could be generalized to higher orders of ToM, which our model is capable
of performing, but we wanted to limit the number of conditions of the experiment for the sake of
the clarity of presentation. The third factor was the trial number, as the task was repeated twice
for each condition, with two levels: Trial : 1, the initial action, and Trial : 2, the second attempt,
so that subjects with sufficiently high capacity for ToM (ToM-2) could infer the ToM order of the
other agent O , and adapt their behaviour for the second trial, to reach a more optimal outcome.

This design guaranteed that we could estimate the order of ToM of an agent following the task
instructions by comparing outcomes as a function of condition. It is important to note that during
both trials, the order of ToM of O is assumed to be fixed, in both the main and supplementary
experiment.

The expected outcomes of the main experiment are derived from the behaviour expected from
a real human conforming to the task and are presented in Figure 4(b).

If O performs ToM-0, then it should necessarily go to the preferred VW1, and if it performs
ToM-1, then it should necessarily go to the less preferred VM2 (to avoid S that it should expect
at VM1). There are three possibilities of capacity for ToM for agent S : ToM-0, ToM-1, or ToM-2
(second order ToM). If S is able to perform ToM-2, then it can also perform ToM-1, and adjust
the order of ToM it uses to optimize outcomes. Outcomes at Trial : 1 will depend on whether S
assumes initially thatO performs ToM-0 or ToM-1. AtTrial : 2 agent S should be able to revise its
priors about the order of ToM of O , and optimise outcome on this basis. The experimental design
is such that each row in the table is different from the other so that, when considering the different
conditions of actual ToM order forO (ToM-0 and ToM-1), and the two trialsTrial : 1 andTrial : 2,
the order of ToM which S is capable of, as well as the order of ToM that S attributes to O , can be
determined.

Let us explain how these outcomes are derived when S can have a ToM of order 0, 1, 2, andO of
order 0, 1. If an agent performs ToM-0, then it goes toward its preferred machineVM1. If an agent
performs ToM-1, then it is expected to go to the VM opposite to the one the predicted agent with
ToM-0 would go to. The left-tier of the table corresponds to the case in which O performs ToM-0
and therefore always goes to VM1. The right-tier corresponds to the case in which it performs ToM-
1 and goes to VM2. The experiment is divided into two trials Trial : 1 and Trial : 2. If S does not
perform ToM-2, then it cannot learn from its mistakes and the outcome of both trials is the same;
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it is reported in the first two lines of the table. If S performs ToM-2, then it may initially assume
that O has ToM-0 (the less greedy hypothesis on O). Then, we expect that after one trial of the
experiment, S would confront its expectations to the outcome of the trial. If it predicted correctly
the outcome and does not meet O , then it does not have to change its beliefs and therefore may
assume that O had ToM-0 and is located around VM1, for both Trial : 1 and Trial : 2. Thus, S
should go to VM2 in both trials. However, if the beliefs of S were false during the first trial, then
both agents should arrive at VM2, and S is expected to change its belief about the ToM order of
O , from ToM-0 to ToM-1. In the next trial, S should go to VM1 and O to VM2. A second possible
case is if S initially assumes thatO has ToM-1, in which case, similarly, S would have to update its
beliefs to account for the false prediction. The expected results of the experiment for a subject with
ToM-2 are reported in the last two lines of the table, the first one corresponding to the situation
in which the subject believes at first that O has ToM-0 and the second one ToM-1.

The supplementary experiment derives from the main one. The general setup is the same, but
only a subset of relevant conditions is explored to demonstrate how the subject can simultaneously
make inferences about both ToM order and preferences about itself in the other agent, to optimize
outcomes. The specific details of this experiment are presented in the corresponding result section.

5.3 Virtual Humans Simulation Procedure

At the beginning of each simulated case, the positions of the agents, the divider between the two
virtual humans and the coffee machine were procedurally set based on the given simulation. The
visualization was created using Unity (v2021.1), with the High-definition Rendering Pipeline

(HDRP). The virtual humans’ model was designed using Character Creator. The virtual human
control was handled by the Geneva Virtual Humans toolkit [86], managing the locomotion, facial
musculoskeletal and physiological parameters, as described in Section 4. A preview window allows
the real-time visualization of simulations, and the offline rendering of the simulation with a multi-
view system. The system allows the creation of 4K videos from various point of views, a radar
view that shows the path of the agents, a general viewpoint of the simulation, a camera focusing
on the facial expressions of each virtual human, and the first-person views for each virtual human.
The scene is designed to run both in real-time desktop and VR applications and offline with up
to 4K rendering. The scene is VR ready, for future real-time experiments in which a real human
participant could be part of the scenario. The scene can already be observed by an experimenter
within VR (see Figure 5).

5.4 Main Experiment Simulation Parameters

The subject is labelled 1, the agent 2, VM1 is 3, and VM2 is 4. In the experiment, the preference
matrix for the subject, p1, is the following:(

0.5 0.01 0.6 0.55
0.01 0.5 0.6 0.55

)
. (12)

The preference matrix of the other agent is(
0.5 0.01 0.6 0.55
0.01 0.5 0.6 0.55

)
. (13)

These matrices contain more information than necessary when the subject or agent performs
ToM-0 and the preference vectors in these cases are the true preferences extracted from the previ-
ous matrices.

The influence matrix of the subject for preferences and action (see above and Reference [2]) are
reduced to self influence, only Isaa � 0 and similarly for the influence vector of the other agent.
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Fig. 5. Overview of the scene. Screenshot of the simulation viewer.

5.5 Results of Main Experiment

We focus on the results regarding S . The results are consistent with the design. Agents behave as
expected as a function of their relative ToM order. Their end state FE and expressed valence are
consistent with the corresponding outcome ranks. Figure 6 shows results of basic behaviours of
the agents as a function of ToM contingencies, without S performing inverse inference to learn
the order of ToM of O .
S succeeds in inferring O ToM order after the first trial (Trial : 1), and optimises outcome ac-

cordingly. Figure 7 shows results of the behaviour of the agents as a function of ToM contingencies,
when S performs inverse inference to learn the order of ToM of O at the second trial (Trial : 2).

5.6 Results of Supplementary Experiment

In this supplementary experiment, our aim was to illustrate complex interactions between param-
eters, and demonstrate how the subject could correctly or wrongly infer both the other agent’s
ToM order and its preferences about the subject, by leveraging both behavioural outcomes and
emotion expressions to perform ToM; the correctness of the perception of the subject is defined
by the compatibility of its inference with the setting of the simulation. We considered five illus-
trative scenarios, which would illustrate, on the one hand, cases in which the situation was in-
trinsically ambiguous and thus the problem undecidable, but yielded interesting results, and, on
the other hand, cases in which the conditions were compatible with partial or complete successful
inference.

In all these scenarios, the subject S had negative preferences toward the other agent O , and
thus would try to avoid it. It also initially assumed that the other agent had negative preferences
about the subject, and thus that the other agent would also tend to avoid it. In fact, the other
agent always had positive preferences toward the subject, and thus would tend to go to places that
would offer the best trade-off between reward at the level of the VM, and social reward through
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Fig. 6. Basic behaviours of the agents as a function of ToM. For each situation, s1, s2, s3, s4, images of virtual
environment. Left : view from above. Orange traces are S , blue traces areO , green traces are predictions about
O according to S , red traces are predictions about S attributed toO by S (if S uses ToM-2). Upper-right : female
virtual human face close-up. Lower-right : first person perspective of S onO (male virtual human). (s1) S andO
perform ToM-0. Agents run into each other at VM1. S emotion expression is rather unhappy. (s2) S performs
ToM-1 andO ToM-0. Agents do not run into each other. S goes to VM2. S emotion expression is rather happy.
(s3) Both S and O perform ToM-1. Agents run into each other at VM2. S emotion expression is unhappy.
(s4) S performs ToM-2 andO ToM-1. Agents do not run into each other. S goes to VM1. S emotion expression
is happy. See free energy (FE), valence, and outcome rank in the charts on the right, corresponding to each
situation as labeled.

the proximity of the subject. In situations in which S would run intoO , S could try to infer whether
O had negative (p = 0.1), neutral (p = 0.5) or positive (p = 0.8) preferences toward it. For these
simulations, S was able to perform up to ToM-3, and O up to ToM-2.

In scenario 1, the subject S initially assumed correctly that the other agent O was performing
ToM-0. In this case, even though the negative preference attributed by S to O was incorrect, the
two agents ended up at opposite VM. Thus, S , lacking sensory evidence, had no reason to revise its
beliefs and continued wrongly to attribute negative preferences toO , with little impact on outcome.

In scenario 2, S initially assumed wrongly (with respect to the task) thatO was performing ToM-
0, whereas it was actually performing ToM-1. In this case, even though the negative preferences
and ToM order attributed by S to O were incorrect, the two agents also ended up at opposite VM.
Indeed, since S was performing ToM-1, and thus assumed O was performing ToM-0, S went to
VM2 to avoid O , which it predicted would go to VM1. But in fact, since O was performing ToM-1,
and thus assumed S was performing ToM-0, O predicted that S would go to VM1. Moreover, since
O actually had positive preferences toward S , it was all the more driven to go to VM1. Thus, here
again, S , lacking sensory evidence, had no reason to revise its beliefs and continued wrongly to
attribute negative preferences to O , with little impact on outcome.

In scenario 3 (see Figure 8(S3)), S initially assumed wrongly that O was performing ToM-0,
whereas it was actually performing ToM-2. In this case, since O correctly predicted that S would
go to VM2 to avoid it, and since O had positive preferences toward S , O went to VM2 as the trade-
off ended up being better in terms of free-energy minimization. As a result, both S and O found
themselves at VM2, S could use sensory evidence (both in terms of overt approach-avoidance
behaviours and emotion expressions) to revise its priors, and was motivated to do so because of
its level of surprise. On this basis, S used ToM-3 to revise its priors, and correctly attributed ToM-2
and positive preferences of p = 0.8 toward it to O . With these updated parameters, in a second
trial, S then chose to go to VM1, both maximizing reward in terms of VM and avoiding O , which
resulted in minimal free energy.
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Fig. 7. S performs inverse inference about O ToM order. For each situation, s5 and s6, images of virtual
environment at Trial : 1 and Trial : 2. Orange traces are S , blue traces are O , green traces are predictions
about O according to S , red traces are predictions about S attributed to O by S (if S uses ToM-2). Left : view
from above at Trial : 1. right : view from above at Trial : 2. (s5) Trial : 1: S performs ToM-2 (and attributes
ToM-1 to O) while O actually performs ToM-0. Agents run into each other at VM1. Trial : 2: S has inferred
O ToM order, and obtains a better outcome, finding itself alone at VM2. (s6) Trial : 1: S performs ToM-1
(and attributes ToM-0 to O) while O actually performs ToM-1. Agents run into each other at VM2. Trial : 2:
S has inferred O ToM order, and obtains the best outcome, finding itself alone at VM1. See free energy (FE),
valence, and outcome rank in the charts on the right, corresponding to each situation as labeled, forTrial : 1
and Trial : 2.

In scenario 4 (see Figure 8(S4)), S initially assumed correctly that O was performing ToM-1.
In this case, S predicted that O would go to VM2 to avoid running into it, and S thus chose to
go to VM1. However, S was still wrong about the negative preference of O toward it. In fact, O
being attracted to S , O also chose to go to VM1. As a result, both S and O found themselves at
VM1, S could use sensory evidence to revise its priors, and was motivated to do so because of
its level of surprise. S ended up correctly inferring that O had in fact positive preferences of p =
0.8 toward it. However, the choice between attributing ToM-1 and ToM-0 to O was intrinsically
ambiguous, as both attributions lead to the same behavioural outcome. In practice, because of
the ambiguity of sensory evidence, S chose to attribute ToM-1 to O because of its initial prior
that O was performing ToM-1. However, if S had been wrong regarding the prior, it could have
wrongly inferred that O performed ToM-0, but the predicted outcome would have been the same.
The problem is undecidable in this condition. In a second trial, S then chose to go to VM2, to
avoid O .

In scenario 5, S initially assumed wrongly that O was performing ToM-1. In fact, as S , O was
performing ToM-2. S expected that O would try to avoid it by going to VM2. Thus, S went to
VM1. The outcome was optimal for S but based on the wrong rationale. In fact, O , which actually
performed ToM-2, also expected that S would go to VM2 to avoid running intoO . SinceO , contrary
to what S believed, was attracted to S , it chose to go to VM2 to be near S . In this case, the situation
was intrinsically ambiguous, and the wrong parameters of ToM order and preference attributed to
O by S compensated each other in generating an outcome for S that was optimal. Since the two
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Fig. 8. S performs inverse inference about both O ’s ToM order and preference about S . Results for scenarios
3 (S3) and For scenarios 4 (S4). Views from above of virtual environment for Trial : 1 (left) and Trial : 2
(right). Orange traces are S , blue traces areO , green traces are predictions aboutO according to S , red traces
are predictions about S according to O . See text.

agents did not run into each other, S was not in a position to make further inference to revise its
beliefs.

5.7 Results on Robustness of Outcome Behaviours

We investigated, in an exploratory manner, how behavioural outcome between going to VM1 and
VM2 depended on values of preference to assess the robustness of the behavioural outcome, and
the existence of sharp bifurcations between outcomes. We used the following setup. S performed
ToM-1 and O ToM-0. Thus, S correctly predicted that O would go to VM1. We varied:

(1) the preference of S toward VM1 (red trace on Figure 9), from 0.5 (neutral) to 0.8 (quite posi-
tive), fixing its preference toward VM2 at 0.58 (slightly positive), and toward O at 0.1 (quite
negative);
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Fig. 9. Outcome robustness to preference values. Outcomes of the experiments with respect to the variation
of the preference of S toward VM1 (red curve), VM2 (the green curve), andO (the blue curve); for more details
see the first paragraph of Section 5.7.

(2) the preference of S toward VM2 (green trace on Figure 9), from 0.5 (neutral) to 0.6 (moder-
ately positive), fixing its preference toward VM1 at 0.6 (moderately positive), and toward O
at 0.1 (quite negative);

(3) the preference of S toward O (blue trace on Figure 9), from 0.4 (moderately negative) to 0.5
(neutral), fixing its preference toward VM1 at 0.6 (moderately positive), toward VM2 at 0.58
(slightly positive).

Figure 9 shows that it took a strong increase in preference toward VM1 from neutral for S to
overcome its negative preference toward O and approach VM1 instead of VM2 in spite of that
negative preference (red trace). Conversely, it did not take a strong increase in preference toward
VM2 from neutral for S to switch from VM1 to VM2, given its negative preference towardO (green
trace). Finally, as the preference of S toward O moved from negative toward neutral, S switched
from VM2 to VM1 (blue trace).

6 DISCUSSION

Our main objectives in this report were:

(1) to demonstrate that we could integrate an explicit model of the subjective perspective of
consciousness in a recursive, multi-agent model (PCM-driven agents) that could be combined
with virtual humans;

(2) to simulate behaviours of approach-avoidance, which could be expected to result from con-
figurations of preferences and orders of ToM in real humans;

(3) in a main experiment that could classify these behaviours in terms of underlying generative
models as a function of orders of ToM, based on clear behavioural outcomes;

(4) that could be implemented in VR in the future for actual experiments with real humans;
(5) and to demonstrate that our PCM-driven agents could correctly infer parameters such as

ToM order used by other agents, as a basis for the future use of such approach to assess real
humans in immersive experimental contexts such as VR.

In a supplementary experiment, we showed how a PCM-driven agent could infer simultaneously
order of ToM and preference parameters, based on behavioural outcomes and emotion expression,
when the problem was decidable. Furthermore, we showed that the overall behaviour of the agents
was robust to changes in preferences up to a certain threshold beyond which agents would switch
their choices of approach-avoidance.

We emphasize that the aim of this contribution was to offer a proof-of-concept, which still
needs developments and empirical validations. One originality of the approach is to leverage active
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inference and projective mechanisms to enable artificial agents to interact with each other in a
three-dimensional virtual environment.

6.1 Killing three Birds with One Stone

There are three complementary points of view that can be taken on the main experiment we pre-
sented as a proof-of-concept of an approach to the problem of integrating computational models,
artificial agents, and virtual humans, in a unified framework for psychological science.

First, the main experiment was a way of assessing whether PCM-driven agents would be ca-
pable of demonstrating behaviours that would be expected in the task according to their order
of ToM (as could be expected from a real human performing the same task and following its in-
structions). Indeed, we have built an experiment that was adapted a priori for distinguishing real
human behaviours. We have shown that our virtual humans show rational behavior with respect
to conditions on preferences and ToM considered in this experiment. Even though we did not ex-
plicitly compare our results to empirical data in this contribution, generally speaking, our results
are consistent with results from comparable approaches [75, 76, 78]. However, these approaches
did not aim at modeling consciousness explicitly. They were not particularly constrained by the
aim of capturing internal processes as they operate in human psychology [8].

Second, we have also shown that the experiment is a good classifier for the behaviours of the
virtual humans. Different parameters of the model generating the behaviours of the virtual humans
could be distinguished by the experiment.

Third, the approach used agents that could make inferences about psychological parameters
driving others, as a human experimenter or psychologist might do to assess the determinants of
observed behaviours in humans. The results of the main experiment demonstrated that the target
parameters of the model, the order of ToM, could be well discriminated by the virtual human that
we called subject S in the experiment. Indeed, S was able to discriminate the order of ToM of the
other agent (ToM-0 or ToM-1) consistently, based on its own internal mechanics of inverse infer-
ence, as embedded within its recursive multi-agent architecture. Importantly, S would be able to do
so, even if the agent was a real human in a VR experiment leveraging motion tracking information
from the human participant.

In other words, the same model that could be used to control artificial agents embodied as virtual
humans in a VR task, could be used in the future to make inferences about the behaviours of real
humans that would participate in the same task. The rationale is that such agents could then
assist investigators with assessing and reporting hidden psychological parameters and profiles of
different groups and individuals based on the PCM. Although very preliminary, this is in line with
a research program with the overarching goal of building synthetic psychology, i.e., the rebuilding
of human psychology into artificial systems. Indeed, if successful, such a program should yield
artificial agents that can interact with, and interpret each other as well as real humans, as one
would expect from real humans toward each other, because artificial and human agents would
share similar internal representations and processing mechanisms.

For simplifying the presentation and discussion, we limited the simulations in the main exper-
iment to agents with at most ToM of order 2. However, the framework can be used to simulate
agents with higher-order ToM capacities. In the supplementary experiment, we illustrated how
agents could use ToM of order 3. We could envision in the future the incorporation of agents
capable of ToM of order n. Results in this direction are promising but beyond the scope of this
report.

We used simulations of a simple entry-game, i.e., a very controlled and somewhat narrow task.
In the main experiment, it was used to demonstrate our proof-of-concept, i.e., by showing that the
model could infer the order of ToM in others through interactions in a three-dimensional virtual
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environment. In the supplementary experiment, we extended the demonstration by having the
model infer both order of ToM and preferences in others. We chose to focus on this particular
illustrative example using simulations only, as a more systematic application to a variety tasks, as
well as systematic comparison with empirical data, were beyond the scope of this theoretical and
technical, preliminary contribution.

But the same model could be used to perform a variety of tasks in which agents would have to
infer preferences in other agents based on their behaviours, which currently include their orien-
tation or move towards or away from objects and others, and corresponding emotion expressions.
Likewise, assuming adequate experimental and task design, the model could be used to infer a
combination of parameters (preferences and order of ToM in others, or any other parameters that
the model include). We showed preliminary results in that direction with the supplementary ex-
periment. More generally, PCM-driven agents have the potential to be used to simulate behaviours
in a variety of contexts (see, for instance, our recent work on simulating adaptive and maladaptive
behaviours relevant to developmental and clinical psychology [2]).

6.2 Comparison of the Model with Other Models Leveraging Behavioral Game
Approaches

In a multi-agent setting, agents do not have direct access to the way other agents act (policies) [89].
To predict other’s action they must estimate their policies based on parameters that characterize
the behavioural profile of the agent. One of these parameters is the order of ToM of the agent.
Multi-agent reinforcement learning [90, 91] and in particular recursive reasoning for multi-agent
reinforcement learning [92] offer a framework to model how ToM influences strategy elaboration
through beliefs about others’ beliefs (and entails Interactive Partially Observable Markov Deci-
sion Process). In particular, such approach yields good results when fitting human behaviour in
low complexity controlled games [1], and generate strategies under fixed order of ToM that are
compatible with behavioral patterns related to that order. We used a simple game to show that
our model also generates strategies compatible with given orders of ToM, following the same core
ideas present in (inverse) multi-agent reinforcement learning, which are recursive reasoning and
inference of behaviourally relevant parameters.

The inverse inference of preferences and ToM with our model is an improvement with respect
to previous work [2], but we acknowledge that the types of agent personalities modeled are lim-
ited, and that we lack empirical data from experiments for further fitting our model to human
behaviours. However, we believe that the strength and novelty of our model is that strategic plan-
ning is made directly on a space of desires (what we call preferences) that inherits geometrical
structure from the space of representation the agent has on its environment (a projective space).
When changing from one context to another, one game to another, the underlying model of mo-
tivation and decision making does not have to change. What changes are the initial conditions
(initial preferences) and the representation of the environment in the inner world of the agent. We
hope that doing so will allow for a robust generation of behaviours irrespective of the context. The
actions being driven by the (intrinsic) dynamics of the desires (motivations), one does not need
to define an explicit reward function. Furthermore, the geometric structure of the representation
space captures perspective taking, which allows an agent to make the points of view of other agents
comparable to its own. These constructions are psychologically motivated, and aim to model key
aspects of consciousness, which are absent from standard approach to multi-agent dynamics.

6.3 Limitations and Perspectives

As this point, without tailored restrictions limiting computational load, the PCM algorithm does
not run in real-time. It cannot be used in practice for many real-time interactive VR experiments.
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Optimisation approaches both at the software and hardware levels are currently being pursued to
mitigate the problem. To close the loop of interactions between real humans and virtual humans
in VR, parameters need to be extracted from VR participants to serve as inputs to the model, so
that PCM-driven agents will interpret VR participants as they interpret other PCM-driven agents.
This can be achieved by leveraging VR technology, including motion capture, eye-tracking and
smart interfaces for emotion expression capture, but this important issue is beyond the scope of
this contribution.

Another interest of the approach we develop is that it could be used to assess and optimize
the capacity of different immersive experimental designs to discriminate psychological parame-
ters and mechanisms based on behaviours (see also Reference [78]). Different designs could be
explored through mass simulations of PCM-driven agents along a variety of parameters, indepen-
dently assessed or in combinations, e.g., preferences and orders of ToM. If target parameters can
be well distinguished based on behavioural outcomes, then the design would appear sufficient as
a classifier. On the contrary, if different sets of parameters would predict the same outcome be-
haviours in an ambiguous manner, that would mean that the design of the experiment is not fully
discriminant. Designs could then be revised and retested by adding conditions. For instance, if sub-
sets of parameters could not be reliably inferred simultaneously by agents due to the ambiguity of
behaviours, as illustrated in the supplementary experiment, then the experiment could introduce
different phases of estimations in which the parameters could be assessed independently, e.g., by
observing first the behaviours of agents without interacting with them to infer their mutual pref-
erences, and then, based on this prior, attempting to infer their order of ToM through interactions
with them.

In this proof-of-concept, we used fixed preferences that were identical between the two agents.
This lead to perfect predictions of the trajectories of the other agent by a given agent, when the
order of ToM was adequate. Using different values of preferences between those attributed to an
agent and those actually used by the agent may induce some error of prediction. Manipulating
such differences and studying their impact on fine grained behaviours is interesting but beyond
the scope of this contribution. However, we showed preliminary robustness results in Section 5.7
that suggest that the algorithm is robust. Slight randomizations of the preferences did not lead to
qualitatively different behaviours that would have impacted the results of the experiments.

Let us note that the way a subject predicts the action of the other agent several steps in the
future, and uses this prediction to choose its best move, can be seen as an optimal control problem
with a cost function depending on time. It might be possible to consider that the whole simulated
situation is itself a control problem. Optimal policies might give a more optimal update rule for
simulating the action of the other agent by the subject. However, the approach we chose focused on
modeling agents as subjective systems, who model and predict others’ actions based on their own
internal mechanisms of action selection, as prescribed by simulation theory [54, 55]. The approach
assumes that agents may not always have the possibility of developing a full representation of the
problem for more globally optimal solutions.

We wish to comment on how non-verbal behaviours express affective states in our current im-
plementation of the agents and virtual humans. Here our virtual humans were expressing affective
cues through: facial expressions (across both musculoskeletal and physiological channels; see Ref-
erence [86] for motivation and details), gaze/body direction, and approach-avoidance behaviours.
In the future, other non-verbal behaviours such as gestures and posture could be integrated and
recognized by the model just like facial expressions. They could be expressed by the virtual hu-
mans, for instance, by using animations corresponding to typical affective gestures and postures.
Likewise, motion speed could be modulated by affective parameters, for instance, through the ex-
pected increase or decrease of free energy as a function of time. Such modulation could then be
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used by the model for inference as further indication of affective states, e.g., arousal. Furthermore,
affective vocalizations could also be integrated in the emotion expression repertory of the model.
These developments are in the pipeline but beyond the scope of this report.

Finally, considering longer term perspectives, such framework could be adapted for applications
to multiple use-cases. For instance, it could be applied to fully automated, model-based assessments
and training of social cognition and soft-skills, leveraging non-verbal behaviours in VR. This would
be relevant in clinical settings, e.g., for diagnostic, prognostic, and treatment response monitoring
in neurological and psychiatric patients, including kids with Autism Spectrum Disorders. This
would also be relevant for the general population, e.g., in relation to ageing, and for professional
training, in any trade that would benefit from assessing and training social cognition and soft
skills.

6.4 Conclusion

The approach we developed combines PCM-driven agents, which integrate a three-dimensional
model of the subjective perspective of consciousness, and virtual humans. Its overarching aim is
to study human behaviours and their psychological determinants in virtual reality experiments.
At this point, our implementation remains preliminary and calls for applications in more tasks
and contexts than the narrow illustrative entry-game example we chose, as well as empirical val-
idations. We believe, however, that the proof-of-concept we presented offers a promising ground
toward that aim.
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