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ABSTRACT

Learning With Errors (LWE) is a hard math problem underpinning

many proposed post-quantum cryptographic (PQC) systems. The

only PQC Key Exchange Mechanism (KEM) standardized by NIST

[13] is based on module LWE, and current publicly available PQ

Homomorphic Encryption (HE) libraries are based on ring LWE

[2]. The security of LWE-based PQ cryptosystems is critical, but

certain implementation choices couldweaken them.One such choice

is sparse binary secrets, desirable for PQ HE schemes for efficiency

reasons. Prior work Salsa [51] demonstrated a machine learning-

based attack on LWE with sparse binary secrets in small dimen-

sions (= ≤ 128) and low Hamming weights (ℎ ≤ 4). However, this

attack assumes access to millions of eavesdropped LWE samples

and fails at higher Hamming weights or dimensions.

We present Picante, an enhanced machine learning attack on

LWE with sparse binary secrets, which recovers secrets in much

larger dimensions (up to= = 350) andwith larger Hammingweights

(roughly =/10, and up to ℎ = 60 for = = 350). We achieve this dra-

matic improvement via a novel preprocessing step, which allows us

to generate training data from a linear number of eavesdropped

LWE samples (4=) and changes the distribution of the data to im-

prove transformer training. We also improve the secret recovery

methods of Salsa and introduce a novel cross-attention recovery

mechanism allowing us to read off the secret directly from the

trained models.While Picante does not threaten NIST’s proposed
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LWE standards, it demonstrates significant improvement over Salsa

and could scale further, highlighting the need for future investi-

gation into machine learning attacks on LWE with sparse binary

secrets.

CCS CONCEPTS

• Security and privacy→ Cryptanalysis and other attacks; •

Computing methodologies→Machine learning.

KEYWORDS

machine learning, post-quantum cryptography, cryptanalysis

ACM Reference Format:

Cathy Yuanchen Li, Jana Sotáková, EmilyWenger,MohamedMalhou, Evrard

Garcelon, François Charton, and Kristin Lauter. 2023. Salsa Picante: A

Machine Learning Attack On LWE with Binary Secrets. In Proceedings of

the 2023 ACM SIGSAC Conference on Computer and Communications Secu-

rity (CCS ’23), November 26–30, 2023, Copenhagen, Denmark. ACM, New

York, NY, USA, 16 pages. https://doi.org/10.1145/3576915.3623076

1 INTRODUCTION

The race for post-quantum cryptography (PQC) is well underway.

A large-scale quantum computer could solve the hard math prob-

lems underpinning most deployed public-key cryptographic sys-

tems, like RSA [42], in polynomial time. Small-scale quantum com-

puters have already been built. Consequently, new post-quantum

cryptographic systemswere proposed and considered for standard-

ization byUSNational Institute of Standards andTechnology (NIST)

in the 5-year PQC competition. In July 2022, NIST standardized 4

schemes from the PQC competition [13]. The only key encapsu-

lation mechanism selected—CRYSTALS-Kyber [6]—and one of the

three signature schemes—CRYSTALS-Dilithium [25]—are based on

the mathematical hardness assumption known as Learning With

Errors (LWE) [41]. LWE is also used in proposed PQ homomorphic

encryption schemes [2].

LWE works as follows: given an integer modulus@, a dimension

=, and a secret vector s ∈ Z=@ , the LearningWith Errors problem is to

http://arxiv.org/abs/2303.04178v4
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recover s given many random vectors and their noisy inner prod-

ucts with s. These noisy inner products are computed by taking

random vector a ∈ Z=@ and producing 1 := a · s + 4 mod @, where

4 is an “error” term sampled from a narrow discrete Gaussian dis-

tribution (i.e. taking small values). The adversary is then given the

samples (a, 1) and attempts to use these to recover s.

The basic LWE problem is assumed to be hard for both classical

and quantum adversaries [9, 32, 35, 40, 41]. Variants of LWE, like

module-LWE or ring-LWE—on which the NIST-standards and HE

schemes are based—add structure to the basic LWE problem, mak-

ing them potentially easier than LWE. Classical attacks on LWE

and its variants typically rely on algebraic techniques for lattice re-

duction to recover the secret s from pairs (a,1) [14, 30]. The error 4
added to a · s to compute 1 adds noise, making algebraic solutions

difficult. Fundamentally, the LWE hardness assumption is that it

is hard to learn from noisy data, rendering LWE secret recovery

computationally expensive.

On the other hand, the whole field of machine learning (ML) de-

pends on the fact that it is possible to train machines to learn from

noisy data. Recent advances in model architectures (e.g. [49]) and

training techniques have allowed ML models to glean meaningful

trends even from noisy unstructured data. Although LWE samples

(a, 1) are noisy, they are highly structured, a fact that ML mod-

els can exploit for learning. Thus, it is worthwhile to investigate

whether ML-based attacks can enable LWE secret-recovery.

Prior work, Salsa [51], provided an initial proof-of-concept for

ML-based LWE attacks. Salsa demonstrated the feasibility of re-

covering sparse binary secrets, attractive for example in HE appli-

cations, for LWE problems with relatively small parameters. Given

many LWE samples, Salsa trains ML models to learn the under-

lying structure of the LWE problem, then leverages the trained

model to recover the LWE secret. If the models learn to predict

1 from a (even with low accuracy), Salsa can recover the secret s.

Although promising, Salsa has significant limitations. For the

largest dimension= = 128, Salsa can only recover Hammingweight

ℎ ≤ 3. In comparison, real-world LWE schemes with binary se-

crets (for homomorphic encryption) start at dimension = = 512 or

= = 1024. Salsa also requires millions of LWE samples (a, 1) for
model training, but a real-world attacker would likely only have ac-

cess to a few samples. Making Salsa’s approach realistic requires

scaling up the parameters of solvable LWE problems (=,ℎ, andmod-

ulus @) while reducing the number of required samples.

Contributions. In this work, we propose Picante, an enhanced

ML-based attack on the LWE hardness assumption. Picante lever-

ages basic principles of the original Salsa attack [51]—transformer

training, secret recovery—while introducing several novel techniques.

This enhanced attack allows recovery of high-dimensional binary

secrets with Hamming weight roughly =/10 or beyond, requiring
only 4= samples for training. Table 1 shows the largest Hamming

weights we recover for each dimension.

As in Salsa [51, Table 4], we observe that it is easier to learn

from vectors with a skewed distribution on the entries. Therefore,

we introduce a data preprocessing step that uses lattice-reduction

methods to produce samples with smaller coefficients. In contrast

to Salsa, Picante starts with a linear number of samples,< = 4=,

and uses a novel subsampling procedure to generate many more

Dimension 80 150 200 256 300 350

log @ 7 13 17 23 27 32

highest ℎ 9 13 22 31 33 60

# possible secrets 232 261 297 2133 2147 2227

Table 1: Salsa Picante’s highest recovered secret Hamming

weights ℎ. The bottom row lists the approximate number of pos-

sible secrets for each =/ℎ combination, for comparison with brute

force guessing attacks.

LWE matrices for model training, deduplicated by the aforemen-

tioned preprocessing step. These design choices produce numer-

ous non-duplicate samples with skewed entries, and we show that

transformers can learn from such data better than from a large set

of LWE samples without preprocessing. We also show that, com-

pared to using data preprocessed on independent LWE pairs, the

model learns equally well or better using preprocessed data on ma-

trices subsampled from a linear number of LWE pairs.

Specifically, this work makes the following contributions:

• Linear number of samples: our method only requires a linear

number of samples,< = 4= in practice.

• Data preprocessing: we preprocess data with classical lattice

reduction techniques (e.g. LLL [30] or BKZ [14]), using small

block size. This helps transformers learn.

• Novel secret recovery:we recover secret bits from the trained

transformer, using its cross-attention mechanism.

We also improve the data encoding method, introduce rounding

to reduce the size of the vocabulary the transformer must learn,

improve the distinguisher secret recovery method, and introduce

novel combined secret recovery methods. Finally, we compare Pi-

cante’s performance to classical LWE attacks.

Problem complexity. Instances of cryptographic problems like

LWE fall broadly into three buckets:

• easy (solvable via exhaustive search);

• medium-to-hard (requiring significant/unrealistic resources even

for best known attacks);

• standardized (believed secure).

Picante considersmedium-to-hardproblems and outperforms

some lattice reduction attacks such as uSVP. For example, Picante

recovers secrets when = = 256 and ℎ = 31. In this setting, there are

2133 possible binary secrets, so brute force attacks are impossible.

Picante succeeds in 70 hours with simple parallelization, while

uSVP attacks run on the same machines succeed in 230−240 hours
(see Table 15). In dimension = = 350, ℎ = 60 (2227 binary secrets),

Picante recovers sparse binary secrets in ≈ 250 hours, whereas

the uSVP attacks did not recover secrets.

Overall, Picante demonstrates a significant improvement over

Salsa, further validating the possibility of ML-based attacks on

LWE with sparse binary secrets. Picante cannot (yet) break LWE

schemes standardized byNIST,which use larger dimension, smaller

moduli @, and more general secret distributions. But it has the po-

tential to scale to these. Further research should explore and ex-

pand this line of work.
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2 BACKGROUND AND RELATED WORK

Before presenting Picante, we first provide an overview of lattice

cryptography and LWE, existing attacks on LWE, and information

relevant to the machine learning techniques used in our attack.

2.1 Lattice-based cryptography

Lattice-based cryptography is a major field in post-quantum cryp-

tography. Three out of the four schemes selected by NIST [13] are

lattice-based, and two are based on a variant of LWE [41].

Lattices. An =-dimensional integer lattice is the set of all inte-

ger linear combinations of = linearly independent vectors in Z= .

More formally, given = vectors v1, . . . , v= ∈ Z=, a lattice is the in-
teger span Λ = Λ(v1, ..v=) := {

∑=
8=1 08v8 | 08 ∈ Z}. The vectors

v1, . . . , v= are called a basis for the lattice Λ. The lattice Λ inherits

a norm simply by restriction of the Euclidean norm from R= to Λ:

any vector v ∈ Λ has norm ‖v‖ =
√
v · v.

Hard Lattice Problems. Lattices give rise to several hard prob-

lems—problems for which the best known algorithms require ex-

ponential time in the dimension = for both classical and quantum

computers. The most famous and widely-studied is the Shortest

Vector Problem (SVP): for a lattice Λ, find a nonzero vector v ∈ Λ

with minimal norm. Currently, the best algorithms for SVP take

exponential space and time in = [33]. This makes lattices attractive

building blocks for post-quantum cryptography.

Learning with Errors (LWE).Many lattice-based cryptographic

schemes leverage the “Learning with Errors" problem, which is de-

fined as follows. Fix a lattice dimension =, modulus @, number of

samples< and a narrow Gaussian probability distribution j . The

“Learning with Errors” (LWE) problem is to recover a secret vec-

tor s ∈ Z=@ given a collection of < noisy samples (ai, 18), where
a1, . . . , am ←' Z

=
@ are random vectors, and 18 = ai · s + 48 mod @

are noisy inner products. The 48 ∈ Z@ are sampled independently

from the error distribution j . A LWE instance is given by a matrix

(A, b) ∈ Zm×nq × Zmq , where A is uniformly random in Z<×=@ and

b = A · s + e mod @ is a column vector. The vector s ∈ Z=@ is the

secret vector, and e ∈ Z<@ is an error vector with entries sampled

from the probability distribution j . We call any of the pairs (a8 , 18 ),
or equivalently any row of the matrix (A, b), an LWE sample.

Hardness of LWE. In 2005, Regev demonstrated aworst-case quan-

tum reduction from the SVP to LWE [41]. Regev also showed that

LWE-based cryptographic schemes were far more efficient than

existing lattice cryptography methods. Later work demonstrated

that LWE is classically as hard as worst-case SVP-like problems

[9, 32, 35]. Hence, LWE is considered a solid foundation for (post-

quantum) lattice cryptography.

Real-world LWE-based cryptographic schemes. LWE-based

schemes are not only standardized for Post-Quantum Cryptogra-

phy [6, 25] and Homomorphic Encryption [2], but also allow for

a range of cryptographic constructions beyond key exchange and

signatures, including group signatures, secret sharing, and multi-

party computation.TheNIST standardization competition received

23 entries proposing schemes based on lattice assumptions such as

LWE. In CRYSTALS-Kyber [6], the dimension is = = : × 256 for

: = 2, 3, 4, where : is a parameter of Kyber’s module-LWE scheme.

The LWE-based signature scheme CRYSTALS-Dilithium [25] uses

similar size of =. Both use secret vectors with small integer coor-

dinates, centered around 0. Another LWE-based NIST submission,

LIZARD, suggests LWE dimensions = from 544 to 736 [17, Table

2].

Homomorphic encryption schemes in publicly available libraries

such as SEAL use dimension = = 512 only for small computa-

tions, and generally require dimensions = = 1024, 2048 and other

powers of 2 up to 215. HE implementations commonly use binary

or ternary secrets for efficiency (see [2]), and many implementa-

tions propose using a sparse (binary) secret with Hamming weight

ℎ << =. For instance, HEAAN uses = = 215, @ = 2628, ternary se-

cret and Hamming weight 64 [15]. For more on the use of sparse

binary secrets in LWE, see [3, 16, 20]. We focus on the case of a

binary secret with Hamming weight ℎ and error distribution j , a

centered Gaussian with f = 3. f = 3.2 is the typical choice for

homomorphic encryption [2, 16, 20, 48].

2.2 Attacks on LWE

The LWE problem is assumed to be exponentially hard to solve

with classical [9, 32, 35] or quantum [40] algorithms. Due to LWE’s

prominence as a hard problem in post-quantum cryptography, a

significant body of work has been devoted to attacking it.

Classical Attacks. Most existing classical attacks on LWE lever-

age lattice reduction techniques, which reduce the problem to re-

covering the shortest vector in a lattice. The LLL [30] algorithm

runs in polynomial time in the dimension of the lattice (the opti-

mized fplll [22] implementation runs in time$ (=4 log(@)2)), but it
recovers an exponentially bad approximation to the shortest vec-

tor. LLL can be improved using the block Korkine-Zolotarevmethod

(BKZ) by Schnorr [45] and Schnorr-Euchner [46]. The BKZ algo-

rithm finds shortest vectors in projected lattices of dimension : <

=, where : is referred to as the block size. The BKZ approach relies

on an exponential time sub-algorithm applied for increasing block

sizes, but can recover shorter vectors than LLL. The main 3 attacks

used to estimate secure parameters for lattice-based cryptography

are: the uSVP, dual, decoding attacks, all of which require finding

a short vector in a particular lattice arising from the LWE instance.

The uSVP attack uses Kannan’s embedding [26] to embed the prob-

lem into a lattice such that the (unique) shortest vector reveals the

secret B . For concrete choices for this embedding, see [12]. The Ho-

momorphic Encryption Standard [2, Section 2.1.2] describes the

uSVP, dual, and decoding attacks in detail.

Salsa: a machine learning based attack. Salsa [51] demon-

strated the possibility of training machine learning (ML) models

to attack LWE for sparse binary secrets. Salsa trained universal

transformers to predict 1 from input a and developed secret recov-

ery techniques to extract the secret that is implicitly learned by

the model. Salsa successfully recovered secrets for LWE problems

with dimension = ≤ 128 and Hamming weight ≤ 4.

2.3 Machine learning preliminaries

Here we provide a brief background and intuition behind the ML

techniques used in our attack, Picante.

ML basics. The generic goal of machine learning is to compute

a modelM that maps an input G ∈ X to an output ~ ∈ Y. The
model M is computed via a supervised training process, during
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which it is shown samples (G′, ~′) such that G′ ∈ X′ ⊂ X and

~′ ∈ Y′ ⊂ Y. During this training process, the parameters \ of

M are iteratively updated to minimize a predefined loss function,

; (M, G′, ~′, ~̃), where ~̃ is the model’s predicted output given in-

put G′ (e.g.M(G′) = ~̃), and ~′ is the ground truth output.

In Picante, a model M is trained using LWE samples (a, 1)

as (G,~) pairs. Hence, models are given an input vector a and asked

to predict the LWE output 1, where 1 = a · s + 4 . We use the cross-

entropy loss function, a common choice in ML model training. For

our model, we use the well-known transformer architecture.

Transformers. Transformers were introduced in [49] for natu-

ral language processing (NLP) and machine translation. In recent

years, they have been applied to a wide range of problems, from

text and image generation [37–39] to image processing [10] and

speech recognition [23], where they now achieve state-of-the-art

performance [24, 50]. Transformers have also been proposed for

problems in mathematics, like symbolic integration [29], theorem

proving [36], and numerical computations [11]. Transformers pro-

cess sequences of tokens (in NLP, sequences of words, making

up sentences). They combine a multi-head attention mechanism

[7] that takes care of relations between different tokens in the se-

quence, essentially “decorrelating” it, and a fully-connected neu-

ral network (FCNN), which processes the decorrelated sequences.

More details about our transformers are in §4.2.

3 INTRODUCING SALSA PICANTE

Before diving into the details of Picante’s methodology, we first

present a high level overview of the attack. Salsa Picante builds

upon Salsa and progresses in three stages: (1) data preprocessing,

(2) model training, and (3) secret recovery (see Figure 1).

Each run of Salsa Picante targets LWE for a fixed dimension

=, modulus @, binary secret B with Hamming weight ℎ, and er-

ror distribution j with f = 3. Salsa Picante requires< original

LWE pairs, sharing the same secret B . These are of the form (ai, 18 ),
with 18 = ai · s+48 . In real world situations, these samples must be

collected. In experimental settings we choose < = 4= and gener-

ate these samples randomly. After these parameters are fixed, the

attack proceeds via the following three stages:

(1) Data preprocessing. During this step, = LWE pairs are ran-

domly selected from the set of original samples and stacked into

an = × = matrix A and vector b of length =. The matrix A is pro-

cessed using a basis-reduction algorithm (BKZ), and the same lin-

ear operations are performed on b. This creates reduced LWE pairs

with smaller norms but larger errors. This step is repeated to pro-

duce 222 reduced LWE pairs.

(2) Model Training. The reduced LWE samples (a, 1) are encoded
as sequences of numbers, represented in base �, and used to train

a transformer modelM . The modelM learns to predict 1 from a.

Model training proceeds in epochs, each using 2 million samples.

The 4 million training data are shuffled randomly every 2 epochs.

(3) Secret Recovery. At the end of each epoch, Salsa Picante

attempts to recover the secret using 3 techniques: direct, distin-

guisher, and cross-attention. The methods are used separately and

can be combined to provide more secret guesses. Secret guesses

are evaluated. Model training stops if the secret is recovered; else,

another epoch begins.

4 ATTACK METHODOLOGY

Now, we provide a detailed description of Picante, which pro-

gresses in the three stages outlined above.

4.1 Stage 1: data preprocessing

(1.1) Collect LWE samples. The Picante attack begins by col-

lecting a set of LWE samples with fixed parameters, as described

in §3. Salsa assumed the attacker had access to 4, 000, 000 ≈ 222

LWEpairs (A, b) with the same secret, since transformers, themodel

architecture used in both Salsa and Salsa Picante, typically train

on millions of examples. However, access to this many samples is

unrealistic in practice. Tomitigate this, Picante introducesTinyLWE,

a technique that only requires < = 4= LWE pairs – linear in the

dimension =. Thus, the attack collects the 4= pairs and then runs

TinyLWE.

(1.2) Recombine to expand LWEsample set.The goal of TinyLWE

is to produce the large set of 4 million samples required to train our

models, from a small initial set of< = 4= LWE pairs. Prior work [5,

51] observed that a set of< LWE pairs (a1, 11) . . . (a<, 1<) can al-

ways be expanded by considering the linear combinations (a, 1) =
(∑8 28a8 ,

∑

8 2818 ), with 28 ∈ Z and
∑

8 |28 | small. We could, there-

fore, generate a large set of samples from a small initial set of LWE

pairs by creating many such linear combinations.

Unfortunately, LWE error is amplified by linear combinations:

4′ = 1 − a · s =
∑

8 2848 , with 48 the error in the original LWE

sample. Assuming that the 28 are centered, the standard deviation

of error grows as the square root of the number of terms in the

combination (
√
< in the general case) times the standard deviation

of the distribution of 28 (which is
√

�/3 if we assume the 28 are

uniformly distributed in [−�,�]). In addition, the initial LWE error

is further amplified by the data reduction step. So although the

transformers used in Picante can handle noisy data, generating

samples via linear combinations would bring error to a level where

training and secret recovery becomes very difficult.

Instead of linear combinations, Picante uses subsampling. Sub-

sets of= out of the< original LWE samples, (a91 , 1 91 ), . . . (a9= , 1 9= ),
are randomly selected, and arranged in a matrix A, with rows a91
to a9= . Because the original LWE pairs are merely copied into A,

the associated noisy inner products have the same error distribu-

tion as the original samples. This technique produces up to
(4=
=

)

unique matrices (≈ 9.48= · 0.46/
√
=)). In Picante, we use subsam-

pling to generate about 221/= matrices, which, after the reduction

step described next, results in about 222 reduced LWE pairs. Sub-

sampled matrices often have rows in common, but we experimen-

tally observe that, after reduction, there are almost no duplicate

vectors. For = = 80, we counted one duplicate in 50, 000 examples;

for = ≥ 150, we found no duplicates in 4 million examples.

Note that subsampling is different from batching. Subsampling

allows us to generate a training set of 4 millions examples from

only 4= LWE samples. This is accomplished in the preprocessing

step, which performs data reduction on subsets of the 4= original

samples. Batching, on the other hand, takes place during training,

when computing the gradients of the loss function, that are then

used to optimize the model. Instead of computing gradients on a
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Figure 1: An end-to-end overview of Salsa Picante’s attack methodology.

single training example, batching averages them over many exam-

ples, allowing for faster training and better estimate of gradients.

Picante uses batches of 128 examples.

(1.3) Reduce samples. After sampling and recombination, the

attack runs a final reduction step to make the LWE samples more

amenable to model training. The motivation for this step comes

from experimental observations in Salsa. Salsa could only recover

binary secrets with low Hamming weights: up to 4 non-zero bits

in the secret. However, the Salsa authors observed [51, Table 4]

that, if the coordinates of the samples a used to train the model

were bounded by U@, with U < 0.6, binary secrets with Hamming

weights up to 15 could be fully or partially recovered for= = 50.We

confirmed this result for larger dimensions, and different restric-

tions on a (e.g. 08 ≤ U@ for different U). Unfortunately, in practical

settings, the coordinates of a are sampled from a uniform distribu-

tion over Z@ , making this technique useless for real world attacks.

Picante turns this observation into a practical attack technique

by leveraging existing lattice reductionmethods. Such methods re-

duce the size of the coordinates of LWE samples naturally, yielding

the same effect as the Salsa a-limiting technique. We find exper-

imentally that reducing LWE samples via these methods before

model training allows recovery of secrets with much higher Ham-

ming weights. The reduction technique proceeds as follows.

Given = LWE samples, stored as the rows of a = × = matrix A,

and a corresponding vector b of noisy inner products with a fixed

secret s, we can create a matrix A′ with smaller entries than A

by applying standard basis-reduction algorithms like LLL [30] and

BKZ [45] to Λ, the =-dimensional lattice defined by the rows of

A. In Picante, we run BKZ (from the fplll package [22]) on the

matrix:
[

l · I= A=×=
0 @ · I=

]

,

withl ∈ Z an error penalization parameter, discussed below. Since

the BKZ reduction is a change of basis, it is a linear transformation,

which we can represent as
[

R2=×= C2=×=
]

. The BKZ reduction

can be written as a matrix multiplication

[

R2=×= C2=×=
]

[

l · I= A=×=
0 @ · I=

]

=

[

l · R RA + @C
]

,

with matrices R and C chosen so that
[

l · R RA + @C
]

has 2=

rowswith small norms. Thematrix@C adds an integer multiple of@

to each entry in RA, so that all entries are in the range (−@/2, @/2).
Applying the linear transformation R to b, we create a new

LWE instance (RA,Rb) with the same secret s and smaller coor-

dinates RA but a different error distribution. Let e = b − A · s

be the initial LWE error. After reduction, the error becomes e′ =
Rb − (RA) · s = R(b − A · s) = Re. Thus, as R entries grow, LWE

error is amplified. All computations are performed mod @.

Error amplification can be controlled by the error penalization

parameter l . Recall that BKZ computes R and C so that the norms

of the rows of
[

l · R RA + @C
]

are small. A large l encourages

small entries in the rows of R but hinders the norm reduction of

RA + @C, and therefore limits the reduction of A coordinates. The

choice of l controls a trade-off between the amount of reduction

of awe can achieve, and the amount of additional noise which gets

injected in the transformed samples. In practice, we set l = 15.

When more than = pairs are available (e.g. the million of pairs

produced by Step 1.2), they are divided into batches of = and pro-

cessed as above. Thus, = LWE pairs are transformed into a matrix

RAwith 2= rows, which produces ≈ 2= reduced LWE samples (for

= ≥ 256, we observe about 1% zero rows; this fraction is larger for

smaller =).

Note on reduction algorithm choice. We experimented with two

standard basis-reduction algorithms: LLL and BKZ. Note that our

objective is not to find the shortest vector in the lattice defined

by A (the traditional goal of LLL/BKZ), but to transform A into a

matrix with smaller coefficients. Experimentally, we find that BKZ

with small block size (V = 16 − 20) achieves better reduction than

LLL. BKZ speed-ups, such as BKZ2.0 [14], do not seem to result

in improved reduction. For BKZ, the block sizes needed to achieve

reduction in Picante are significantly smaller than the block sizes

that would be required to perform a lattice-reduction attack on

problems of the same dimensions (see also § 7).

4.2 Stage 2: model training

After the data is prepared, the attack enters the model training

stage. Although there are no sub-stages to model training, here

we break down the model training step into several components:

data encoding, model architecture choice, and the training itself.

EncodingLWEpairs. Prior to training, Picante encodes the LWE

samples (i.e. (a, 1) pairs) as sequences of tokens that the trans-

former can process. After encoding, the integer coordinates of a

and1 are represented as two digit numbers in base � (with� ≥ √@).
Our experiments with different values of � (see § 6.2) suggest that

large values of �, which limit the most significant digit of 08 and 1

to a small number of values (i.e. � ≈ @/: with : small), allow

for better performance. In our experiments, we use � = ⌊@/:⌋
with : = 2 · ⌈ =100 ⌉ + 2.

This creates a problem for large dimensions. The large values

of @ and � (for = ≥ 20 we have @ > 100, 000 and � > 16, 600)
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result in large token vocabularies, which are difficult to learn for a

transformer trained on 4 million LWE pairs only. To mitigate this,

we encode the lowest digits of a and 1 into �/A buckets of size A (i.e.
integer divide them by A ). The value A is chosen so that the overall

vocabulary size �/A < 10, 000 (see Table 2). The use of buckets

helps train models for large = but it also causes a loss of precision

in the values of a and 1. We believe the impact on performance

is limited, because the low bits of a and 1 that are rounded off by

buckets are those most corrupted by LWE error.

Model architecture. As noted previously, Picante uses a trans-

former model architecture. This architecture, summarized in Fig-

ure 2, is strongly inspired by SALSA [51]. Following [49], it uses

a sequence-to-sequence (seq2seq) model [18], composed of two

transformer stacks – an encoder and a decoder – connected by

a cross-attention mechanism. The encoder processes the input se-

quence, the coordinates of a, represented as sequences of digits.

The discrete input tokens are first projected over a high-dimensional

space (we use dimension 3 = 1024) by a Linear Embedding Layer

with trainable weights (i.e. embedding is learned during training).

The resulting sequence is then processed by a single-layer trans-

former: a self-attention layer with 4 attention heads, and a FCNN

with one hidden layer of 4096 neurons.

The decoder is an auto-regressive model. It predicts the next

token in the output sequence, given already decoded output and

the input sequence processed by the encoder. Initially, the decoder

is given a beginning of sequence token (BOS), and predicts 1∗1 , the
first digit of 1. It is then fed the sequence BOS, 1∗1 , and decoding

proceeds until the end-of-sequence token (EOS) is output.

Decoder input tokens are encoded as 512-dimensional vectors

via a trainable embedding (which also decodes transformer out-

put). The decoder has two layers. First, a shared layer (as in [21]),

which is iterated through 8 times, feeds layer output back into its

input. This recurrent process is controlled by a copy-gate mecha-

nism [19], which decides whether a specific token should be pro-

cessed by the shared layer or just copied as is, skipping the next

iteration. After 8 iterations, the output of the shared layer is fed

into a “regular” transformer layer. Finally, a linear layer processes

the decoder output and computes the probabilities that any word

in the vocabulary is the next token. The largest probability is se-

lected via a softmax function (a differentiable counterpart of the

max function).

Decoder layers are connected to the encoder via a cross-attention

mechanism with 4 attention heads. In each head, the output of

the encoder � = (�8 )8∈N; (with ; the input sequence length) is

multiplied by two trainable matrices, , and ,+ , yielding the

Keys  = , � and Values + = ,+ �. The 512-dimensional vec-

tor to be decoded, � , is multiplied by a matrix,& , yielding the

Query & = ,&� . The ; scores are calculated from the query and

keys:

scores(�, �) = Softmax((,&�)(, �)) ).
The scores measure how important each encoder input element

is when decoding � (i.e. computing 1). The cross-attention value

for this head is the dot product of scores and values. The values

of different heads are then processed by a final linear layer. Cross-

attention scores quantify the relation between input positions and

output values. Picante uses them to recover the secret bit by bit.
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to 8 times.

Figure 2: Our transformer architecture.

Model training. After encoding the samples, the attacker trains

the transformerM to predict 1 from a. Picante frames this as a

supervised multi-classification problem, i.e. minimizing the loss:

min
\ ∈Θ

#
∑

8=1

 
∑

9=1

+
∑

:=1

1[~8 [ 9] = : − 1]
4M(G8 ) [ 9,: ]

∑+
:′=1 4

M(G8 ) [ 9,:′ ]
, (1)

whereM(G8) ∈ R ×+ are model logits evaluated at G8 , \ ∈ Θ are

themodel parameters,# the training sample size, = 2 the output

sequence length and + = �/A the vocabulary size.
Solving (1) requiresminimizing the cross entropy betweenmodel

predictions M(a) and the ground truth 1, over all tokens in the

output sequence. Alternatively, one could define this as a regres-

sion problem, but we believe classification is better adapted to the

modular case. Prior works confirm that reformulating regression

as classification leads to state-of-the-art performance [1, 43, 44, 47].

Training proceeds via batches of =1 = 128 examples. The cross-

entropy loss L(M, a, 1) is computed over all batch examples, and

gradients ∇L are calculated with respect to the model parameters

(via back-propagation). Model parameters are then updated using

the Adam optimizer [27], by lr∇L. The learning rate, lr is set to

10−5, except during the 1000 first optimizer steps, where it is in-

creased linearly from 10−8 to 10−5. Every 2 million examples (an

epoch), model performance is evaluated on a held-out sample, and

Picante attempts to recover the secret. If it fails, another epoch

begins.
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4.3 Stage 3: secret recovery

After every training epoch, Picante attempts secret recovery. The

intuition behind secret recovery is that if a modelM can predict

1 from a with higher-than-chance accuracy, then M must some-

how “know” the secret key s, and we can recover s fromM . Salsa

Picante uses 3 methods—cross attention, direct recovery, and dis-

tinguisher —for recovery. These can be combined for greater accu-

racy.

In this section, we assume that the attacker knows theHamming

weight ℎ of the secret to be recovered. This is the only part of the

attackwhere this assumption ismade. Ifℎ is not known, then secret

recovery is run for increasing values of ℎ until the secret is found.

Cross-Attention. In this novel recoverymethod,Picante guesses

the secret from the parameters ofM by leveraging the cross-attention

scores of the first decoder layer (see Figure 2 and § 4.2). Intuitively,

the cross-attention score measures the relevance of input tokens

(i.e. coordinates of a) for the computation of 1. Since 1 = a · s + 4 ,
the coordinates of a that correspond to the 0 bits of s have no im-

pact on 1. On the other hand, the coordinates associated to the 1

bits in s have an impact proportional to their value. Therefore, high

cross-attention scores should be found for the input positions that

correspond to 1s in the secret.

To run this method, Picante evaluates the trained transformer

on a test set of 10, 000 reduced LWE samples and sums the cross-

attention scores of all heads. Since a has = coordinates encoded

on 2 tokens, this produces a 2=-dimensional vector, from which

the odd positions are kept (i.e. the high digits of a coordinates),

generating an =-dimensional score vector + . A secret guess s′ is
then produced by setting the ℎ largest coordinates of+ to one, and

the rest to 0.

Direct recovery. Picante uses the same direct recovery method

as Salsa. This technique leverages trained transformers’ ability to

generalize on inputs not seen during training. The trained model

is evaluated on special vectors awith one non-zero coordinate: a =

 e8 with e8 the i-th standard basis vector and  ∈ Z@ . For these
vectors, since 1 = a · s + 4 , and 4 is small, 1 ≈ 0 if the i-th bit in the

secret B8 = 0, and 1 ≈  if B8 = 1 (see [51] for details). In practice,

different  9 are chosen, and the transformer is run on  9 · e8 for
8 = 1, . . . , =, identifying potential 1-bits in the secret as above and

producing a secret guess for each  9 .

To obtain a score for each bit to be used in combination meth-

ods, for each index 8 , we sum the resulting values ofM( 9 · e8 )
(or, equivalently, take the mean). We then guess the secret s′ by
assuming that the ℎ largest coordinates are 1 and the rest are 0.

Distinguisher. Picante’s version of distinguisher recovery im-

proves upon that of Salsa. The general idea is that if the 8-th bit

of the secret B8 = 0 and e8 is the 8-th standard basis vector, then

the model should predict close values for a and a +  · e8 . Salsa’s
distinguisher took a LWE sample (a, 1) and compared 1 with the

model prediction 1′ = M(a +  · e8 ) for some random  ∈ Z@ .
This presupposed relatively high model accuracy, i.e. M(a) ≈ 1,
which rarely happens in practice. In Picante, 1′ =M(a +  · e8 )
is compared toM(a) instead of to 1. The rest of the method is un-

changed, other than implementation improvements. The secret is

guessed by setting the ℎ highest-scoring secret bits to 1, and the

rest to 0.

This improved method has two benefits. First it exploits trained

model consistency without requiring prediction accuracy. In prac-

tice, this means recovery can happen earlier during training, when

model prediction accuracy is low. Second, it does not need addi-

tional LWE samples (a, 1) (as was the case in Salsa), and can be

run from randomly generated a. This reduces the number of LWE

samples necessary for the attack.

This recovery method relies on a large number of model infer-

ences, which can make it very slow for large dimension. To in-

crease its speed, we use the same a across all secret bits B8 , halving

the number of inferences relative to those required in Salsa.

Combined secret recovery.Each recovery methodoutputs a score

for every bit in the secret. The secret guess is computed by setting

the ℎ bits with the largest scores to 1 (and the other bits to 0). By

combining the scores from different methods, we create four addi-

tional techniques, which can sometimes can recover secrets when

individual methods fail. The combined methods are as follows:

• Aggregated rank. The bit scores produced by each method are

sorted from largest to smallest, and replaced by their rank. The

ℎ bits with the highest ranks (Highest Rank) or highest summed

ranks (Sum Rank) are set to 1.

• Aggregated normalized scores. The bit scores produced by each

method are normalized to [0, 1]. The ℎ bits with the maximum

normalized scores (Max Normalized) or the highest sum of nor-

malized scores (Sum Normalized) are set to 1.

These combination rules essentially amount to setting secret bits

to 1 for bit positions where all, some, or any of the secret recov-

ery methods have a high score. We use aggregated scores from all

subsets of the secret recovery methods. Other combination rules

could be considered. These mixing techniques are cheap to imple-

ment, because they do not require additional model inferences.

Checking correctness. Recovery methods make guesses s′ about
the (unknown) secret s. The test for whether s′ = swas introduced

in Salsa. On a test sample of#test LWE pairs (a8 , 18 )1≤8≤#test , com-

pute 1′8 = a8 · s′ , and consider the distribution A of A8 = 1′8 − 18
mod @. If s′ = s, then A ≈ 4 , the LWE error, with standard devia-

tionf . If s′ ≠ s, then A will be approximately uniformly distributed

over Z@ , with standard deviation f′ = @/
√
12. By estimating f′ on

a large set of samples, one can verify s′ = s to any confidence level.

This test can be performed on the original set of LWE samples

collected by the attacker, e.g. with #test = < = 4=. In §A.2 we

statistically analyze this verification technique and demonstrate

that this sample size is sufficient for all lattice dimensions = ≥ 80.

5 SALSA PICANTE’S PERFORMANCE

We now evaluate Picante’s performance over a variety of param-

eter settings for lattice dimension, modulus size, Hamming weight,

and number of samples. All Picante experiments are based on the

following choices, with the exact parameters used in our experi-

ments listed in Table 2. Other details are in §4.

5.1 Experimental settings

• For each =, the modulus @ is selected after consulting Table 1 in

[12]. We set our @ such that log2@ is smaller than the smallest

successful lattice-reduction attack reported there (see Table 2).

A smaller @ makes attacks more difficult.
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• The error in the original LWE samples is sampled from a discrete

Gaussian distribution, centered at 0, and with f = 3, a common

choice when LWE is used in homomorphic encryption [2, 3].

• Weconsider binary secrets with sparsityℎ/= ≈ 10% or larger. For

each = where we evaluate Picante, we show results for seven

different Hamming weights ℎ ≈ =/10 to confirm repeatability.

• The attack starts with a set of 4= randomly generated samples

(a, 1) with fixed =, @, sparse binary s, and f .

• For the BKZ reduction step (Picante stage 1.3), we use l = 15

as the error penalization parameter for all =. Block size and the

LLL parameter X in fplll are set to 20 and 0.99 for all = ≤ 200. To

keep preprocessing times reasonable, we decrease these values

for = = 256, 300 and 350 (see Table 8).

• For each = and @, we perform the preprocessing step on random

matrices� once and use that reduced data for experiments with

different secrets.

= @ log2 @ X V base A

80 113 7 0.99 20 29 1

150 6421 13 0.99 20 1071 1

200 130769 17 0.99 20 21795 22

256 6139999 23 0.96 18 767500 27

300 94056013 27 0.96 16 11757002 211

350 3831165139 32 0.96 14 383116514 216

Table 2: Picante parameters. =: dimension, @: modulus, X : delta-

LLL (BKZ), V: block-size (BKZ), base: encoding base, A : bucket size

for encoding.

5.2 Overall Performance

A summary of Picante’s results is shown in Table 3, which records

Picante’s success for various dimensions =, modulus @, and Ham-

ming weight ℎ. We run multiple experiments for each parameter

setting, and report the number of successes/attempts, as well as

the model training epochs at which successful secret recoveries

occurred. For example, in dimension = = 350, we recovered a se-

cret with ℎ = 60 in one out of five trials (each trial has a different

secret). In that case, the recovery happened in training epoch 38.

Effect of dimension=. For dimensions up to 300, Picante consis-

tently recovers LWE secrets with sparsity ℎ/= ≈ 10%, a significant

improvement over Salsa. For = = 350, Picante can recover se-

crets with Hamming weight ℎ = 60, sparsity ≈ 17%. We believe

this improved performance is due to the preprocessing parameters

used for = = 350 (§6.1). This suggests that harder LWE problems,

with dimension = = 350 but smaller @, could be solved with this

architecture for ℎ ≈ 0.1=.

For all dimensions, Picante succeeds for smaller values of the

modulus @ than those for which the concrete, classical lattice at-

tacks in [12, Table 1] can recover secrets with BKZblocksize roughly

40. In our experiments, we use a fixed @ for each dimension, to

avoid running the costly preprocessing step multiple times. Eval-

uating performance at varying @ for a fixed = is important future

work.

Effect of Hamming weight ℎ. For each dimension =, we eval-

uate Picante on secrets with a range of Hamming weights. For

each =, there is a “cutoff” Hamming weight, above which Picante

=, log2 @ Hamming weight ℎ

80, 7 4 5 6 7 8 9 10

success 3/5 3/5 2/5 2/5 1/20 1/20 0/20

epoch 2,5,6 0,1,4 0,3 0,8 3 4

150, 13 9 10 11 12 13 14 15

success 4/5 2/5 3/5 1/5 1/20 0/20 0/20

epoch 1,1,3,6 2,2 8,8,11 9 13

200, 17 17 18 19 20 21 22 23

success 3/5 2/5 3/5 1/5 2/5 2/20 0/20

epoch 1,1,8 2,11 2,3,9 7 7,10 12,17

256, 23 26 27 28 29 30 31 32

success 4/5 1/5 1/5 3/5 3/5 4/20 0/20

epoch 2,3,4,7 10 5 5,9,11 17,20,32 6,12,26,27

300, 27 28 29 30 31 32 33 34

success 2/5 2/5 1/5 1/5 2/5 1/5 0/20

epoch 6,7 6,13 11 11 21,31 39

350, 32 54 55 56 57 58 59 60

success 2/5 1/5 1/5 1/5 1/5 1/5 1/5

epoch 10,20 10 46 42 39 18 38

Table 3: Success rates and number of epochs. Highest recovered

Hamming weight for each dimension = is in bold.

did not successfully recover the secret in these runs. This is ex-

pected, because increasing Hamming weight makes the problem

more difficult. Table 3 presents the cutoff value in bold, along with

the number of successfully recovered secrets for each Hamming

weight.

Required trainingduration. Figure 3 shows the number of epochs

needed for secret recovery for 80 ≤ = ≤ 300 and different values

of ℎ. Whereas 66% of successful secret recoveries occurred during

the first 10 epochs, the number of epochs before recovery increases

with = and ℎ. For = = 80, about 75% of successful experiments suc-

ceed by epoch 4. 8 epochs are needed for 75% of experiments to

succeed for = = 150, and 13 epochs for = = 200, 256, 300.

For a given dimension, the number of epochs required for se-

cret recovery varies a lot from one experiment to another. For di-

mension 256 and Hamming weight 31, different secrets need be-

tween 6 and 27 epochs. For dimension 350, a secret with Hamming

weight 59 is recovered after 18 epochs, while secrets with ℎ = 58

and 60 need 39 and 38.

We believe that, for a given secret s, certain distributions of the

coordinates of a help the transformer learn s. The proportion of

such points a in the training sample varies for different secrets,

making some harder to recover, and necessitating longer training.

Another explanation for the variations in training length is the

random initialization of transformer parameters, discussed in § 6.4.

For a given secret, running several experiments, with different ini-

tializations, may reduce the number of epochs required for recov-

ery.

Required LWE sample size. Picante relies on the TinyLWE

subsampling technique introduced in §4.1 to recover secrets from
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Figure 3:Number of training epochs before secret recovery for 80 ≤
= ≤ 300. For different dimensions and Hamming weights. We omit

= = 350 results for space reasons.

only 4= initial LWE samples. By comparison, Salsa used 4 mil-

lion LWE samples. Table 4 compares the performance of Picante

(using TinyLWE), with an equivalent attack using 2.2 million col-

lected LWE samples, which we call LWE. For both sampling ap-

proaches—TinyLWE and LWE—we run the reduction step described

in §4.1 (Stage 1.3) before performing model training and secret re-

covery.

Dimension 80 150 200 256 300

TinyLWE max ℎ 9 13 22 31 33

LWE max ℎ 9 12 21 32 32

Table 4: TinyLWE vs LWE. Values: highest ℎ recovered for each =.

There is little difference between the highest Hamming weight

of recovered secrets forTinyLWE and LWE (Table 4). In fact,TinyLWE

sometimes recovers larger Hamming weights than LWE. Thus, we

conclude that TinyLWE, while greatly reducing the LWE samples

needed for the attack, has no impact on performance. More de-

tailed comparisons can be found in Table 16 in Appendix A.1.

5.3 Resources needed for Picante

The total cost of Picante is the sum of the resources needed to

preprocess data, train the model, and recover the secret.

n 80 150 200 256 300 350

log2 @ 7 13 17 23 27 32

Cost per matrix 0.01 3 16 52 106 194

(CPU.hrs)

Matrices needed 34,800 14,600 10,800 8,300 7,100 6,000

Table 5: Resources needed for preprocessing. Total resources

needed to produce 222 reduced samples is the work required for pro-

cessing 221/=matrices. Processing can be fully parallelized, so total

time required is the number of CPU hours needed for one matrix.

Data preprocessing is the most resource intensive part of Pi-

cante. To generate 222 reduced samples, 221/= matrices must be

reduced (one = ×= matrix produces 2= reduced samples, see § 4.1).

As the dimension increases, the number of matrices needed scales

down linearly. To avoid the exponential cost of BKZ-reduction [45],

we fix the block size to at most V = 20 so that the preprocess-

ing step scales as a polynomial in = and log@. In practice, to save

resources, we choose smaller V for larger dimensions. Parameter

choices for preprocessing are discussed further in §6.1 below.

Table 5 reports the preprocessing resources (in cpu·hours) re-
quired for each =. It is important to note that our preprocessing

step is fully parallelizable. Using as many CPUs as the number of

matrices needed (221/=), the preprocessing step can be performed

in the time required to reduce one matrix (e.g. 194 hours for = =

350).

Model training and secret recovery. The cost of training and

recovery is proportional to the number of training epochs needed

to recover the secret. Table 6 reports the average duration of one

training epoch and associated secret recovery. All models use the

same number of parameters, batch size (128) and epoch size (2 mil-

lion examples), and are trained on one NVIDIA V100 GPU.

Training time increases with dimension. This is expected, as

the length of input sequences is 2=, i.e. linear in the dimension,

and training is slower on long sequences. For secret recovery, the

time required for each method is dominated by the number of

transformer inferences needed, multiplied by the time required for

each inference. The cross-attention method uses a constant num-

ber of inferences, direct recovery uses 15= inferences, and distin-

guisher recovery 200=. Like training, the time for a single inference

scales linearly with = because of increasing sequence length. Over-

all, cross-attention recovery scales linearly with =, and direct and

distinguisher scale quadratically. In our experiments, secret recov-

ery accounts for less than 10% of the total time. We report the cost

of training and recovery per epoch on one GPU, but both training

and recovery time could be significantly reduced by parallelizing

across many GPUs.

= 80 150 200 256 300 350

log@ 7 13 17 23 27 32

Training 42 52 68 82 92 105

Secret Recovery 1 2 3 5 7 8

Table 6: Training and recovery time per epoch (minutes). All mod-

els are trained on a single NVIDIA V100 GPU with batch size 128).

6 ADDITIONAL RESULTS

Now, we consider the effect of different experimental choices on

Picante’s performance. This enables us to better understand the

conditions under which Picante succeeds or fails.

6.1 Data preprocessing

Through extensive experimentation, we observed that data prepro-

cessing is critical to enabling the transformer to learn and allowing

recovery of secrets with larger Hamming weight. Preprocessing

changes the distribution of both the size of the entries of A mod-

ulo @ (shown for = = 150 in Figure 4) and the norm of its rows (see

Figure 5). Note that the goal of preprocessing is not to obtain the

shortest vector in the lattice like the classical uSVP, decoding, and

dual attacks. Rather, its goal is to skew the distribution to make it

more amenable to machine learning-based attacks.

Choosing preprocessing parameters. To determine the amount

of preprocessing needed for optimal Picante performance, we set

various targets for the standard deviation of the entries of the rows



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Cathy Yuanchen Li et al.
N

u
m

b
er

 o
f 
en

tr
ie

s

1e5

4e5

3e5

2e5

No reduction BKZ (0.96, 16)

BKZ (0.99, 20)

Entry values Entry values
0 2000 4000 6000

1e5

4e5

3e5

2e5

0 2000 4000 6000

N
u
m

b
er

 o
f 
en

tr
ie

s BKZ (0.96, 20)

Figure 4: Distribution of sample entry values as strength of norm

reduction increases (= = 150, @ = 6421). BKZ parameters: BKZ (V, X ) .

Sample norm

BKZ
BKZ
BKZ
No reduction

N
u
m

b
er

 o
f 
sa

m
p
le

s 3000

1000

1500

2000

2500

500

0
10000 15000 20000 25000

Figure 5: Distribution of sample norms as strength of norm reduc-

tion increases (= = 150). BKZ parameters listed as BKZ (V, X ) .

of A. For random matrices AA0=3 , the standard deviation of the

entries is std(AA0=3 ) ≈ @/
√
12 ≈ 0.29@. After preprocessing, the

standard deviation of the entries are smaller, e.g., for = = 256,

std(A) ≈ 0.1@. Empirically, we observed that reducing the ratio

std(A)/std(AA0=3 ) allows us to recover secrets with higher ham-

ming weights. In practice, we select parameters for our BKZ pre-

processing step in fplll by first processing a single matrix A with

various choices for V and X and observing the resulting standard

deviation. To prepare a whole dataset for training, we preprocess

the 221/= matrices with parameters that reach a low standard de-

viation in a reasonable time; when we did not recover secrets with

the target ≈ 10% density for = = 350, we repeated the data genera-

tion with stronger parameters.

Relationship between preprocessing and recovered ℎ. To ex-

amine how preprocessing parameters affect Picante’s secret re-

covery, we ran four sets of experiments with values of V and X rang-

ing from no preprocessing at all to the parameters used in Picante.

Table 7 shows statistics of the data distribution and the largest

ℎ recovered for these experiments. As preprocessing strength in-

creases, for dimension = = 150 (middle columns), the weight ℎ

of recovered secrets increases up to 12. As shown in the last two

columns of Table 7, for= = 350, stronger preprocessing parameters

decrease the standard deviation of the entries and enable recovery

of larger weight ℎ secrets (up to ℎ = 60).

=, log2 @ 150, 13 350, 32

X - 0.96 0.96 0.99 0.93 0.96

V - 16 20 20 14 14

highest ℎ - 5 8 12 25 60

std(A)/std(AA0=3 ) 1 0.667 0.578 0.526 0.331 0.253

norm(A)/norm(AA0=3 ) 1 0.669 0.581 0.528 0.332 0.253

cost / matrix (hours) 0 0.5 0.9 3.1 152 194

time out (hours) - 1 2 5.5 - -

Table 7: Highest weight ℎ secret recovered for varying X and/or

V (= = 150, 350). std(A): standard deviation of A’s coefficients post-

reduction; norm(A): average norm of A’s rows post-reduction.

= log2 @ X V std(A)/std(AA0=3 ) max ℎ

80 7 0.99 20 0.78 9

150 13 0.99 20 0.53 13

200 17 0.99 20 0.40 22

256 23 0.96 18 0.33 31

300 27 0.96 16 0.32 33

350 32 0.96 14 0.25 60

Table 8: Preprocessing parameters for BKZ in fplll for Picante’s

best secret recoveries. V : block size, X : LLL_DELTA.

base ℎ = 9 ℎ = 10 ℎ = 11 ℎ = 12

81 ≈ √@ 1/5 0/5 0/5 0/5

402 ≈ @/16 3/5 2/5 0/5 0/5

803 ≈ @/8 3/5 2/5 2/5 2/5

1071 ≈ q/6 4/5 2/5 3/5 1/5

1606 ≈ @/4 3/5 2/5 0/5 0/5

Table 9: Secret recovery rate for different bases �. = = 150, @ = 6421.

Picante parameters and results are in bold.

Relationship between preprocessing and =. Table 8 presents

the highest Hamming weight recovered and standard deviations

of reduced A for different =. We observe that, even though we de-

creased the block size and X to reduce preprocessing time for larger

dimensions (= = 256, 300 and 350), as long as the standard devia-

tion of the entries is low enough, Picante recovers secrets with

> 10% sparsity.

6.2 Encoding base

We explore how �, the base used to encode 1 and the coordinates

of a (§4.2) during model training, affects Picante performance. Ta-

ble 9 presents the impact of different base choices on secret recov-

ery for = = 150, @ = 6421. For a small modulus like this, no buckets

are needed, i.e. A = 1. To keep input sequences short, all integers

modulo @ should be encoded in two tokens, i.e. � ≥ √@. However,
values of � close to

√
@ result in worse secret recovery. Recovery

rates are highest when � = ⌊@/:⌋ with : = 6 or 8.

Table 10 presents a similar study of base � and bucket size A

for larger = = 256 and @ = 6139999. When @ is this large, using

base � = ⌊@/:⌋ would result in a vocabulary that is too large for

the transformer to learn efficiently. Hence, we tokenize the less

significant digits in buckets of size A , as described in §4.2. Small

values of � ≈ √@ and large values � = @/4 do not seem to result in

good secret recovery. For � = @/8 and @/16, bucket sizes A = 128

and A = 512 have comparable performance.
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Encoding Hamming weight ℎ

base � A 26 27 28 29

2478 ≈ √@ 1 0/5 0/5 0/5 0/5

383750 ≈ @/16
32 4/5 1/5 1/5 0/5

128 3/5 2/5 1/5 3/5

512 4/5 2/5 1/5 3/5

767500 ≈ q/8
32 4/5 1/5 1/5 1/5

128 4/5 1/5 1/5 3/5

512 4/5 2/5 1/5 3/5

1535000 ≈ @/4
32 0/5 0/5 0/5 0/5

128 0/5 0/5 0/5 0/5

512 1/5 0/5 0/5 0/5

Table 10: Secret recovery rates for different bases� andbucket sizes

A . = = 256, @ = 6139999. Picante parameters are in bold.

6.3 Model architecture

All Picante experiments use the samemodel architecture (see § 4.2

for details). However, Salsa reported improved performance for

larger = with larger models, specifically increased embedding di-

mensions. Also, the number of attention heads used in Picante,

4 in the encoder and decoder, is low, compared to common trans-

former architectures. Most transformerswith 512 dimensions use 8

heads. Thus, we explore the impact of larger dimensions and num-

ber of heads in the encoder and decoder, on secret recovery (Ta-

ble 11) for = = 350. As the table shows, increasing dimension and

heads do not result in better performance. This contrasts with re-

sults in NLP, where performance usually increases withmodel size.

We believe this is because the LWE problem differs from traditional

NLP tasks.

embedding size

encoder/decoder

number of attention heads

encoder/decoder/cross attention

4/4/4 4/4/8 4/4/16 8/8/8 8/8/16

1024 / 512 60 58 58 - -

1024 / 768 - 58 60 57 55

1280 / 512 - 60 58 58 58

Table 11: Effect of architecture on Picante’s performance. Data

shown is the highest Hamming weight recovered for = = 350. Pi-

cante’s parameters are in bold.

6.4 Model initialization

Transformer parameters are randomly initialized before training,

and these initial valuesmay impact the performance. This is known

as the “lottery ticket” phenomenon: models sometimes learn better,

or faster, with different initial parameter values. We explore this ef-

fect in 4 experiments for = = 200 and ℎ = 19. Each experiment in

Table 12 has a different secret; for each secret we train 20 trans-

formers, each initialized with a different seed. In experiment 1, the

secret is recovered for all 20 seeds, at epoch 2 to 7. For experiments

2 and 3, the secret is recovered about 3/4 of the time, between 6 and

25 epochs. In experiment 4, the secret is never recovered.

This sheds light on results from §5.2. There, we observed signif-

icant variance in the number of epochs needed for secret recovery,

for given = and ℎ. Initialization seems to be an important factor

and suggests a possible improvement to Picantewhen significant

Experiment Success Mean epoch Min, max epochs

1 20/20 4.2 2, 7

2 12/20 12.1 8, 25

3 15/20 9.1 6, 16

4 0/20 - -

Table 12: Effect of model initialization on secret recovery. = = 200,

ℎ = 19.

compute resources are available. By training several transformers

with different initializations on the same data, Picante’s chances

of secret recovery improve, as does training speed—training can

stop for all models once one recovers the secret.

6.5 Secret recovery methods

Picante leverages 4 secret recovery methods (§ 4.3): distinguisher,

direct, cross-attention, and combined. The first three methods out-

put bit scores and secret guesses s′ . The bit scores rank the like-

lihood of individual secret bits having value 1. The combined se-

cret recovery method allows Picante to create additional secret

guesses by aggregating the scores of the previous methods. Ta-

ble 13 reports the successes/attempts of all secret recovery meth-

ods for fixed =/@ and varying ℎ. We only report the method(s) that

succeed first: we terminate each experiment after successful recov-

ery. We say that the combinedmethod is successful if and only if it

recovered the secret when no individual method could. If an indi-

vidual method succeeds, the combined method typically succeeds

as well.

Two trends are evident in Table 13. First, the direct recovery

method is outperformed by other methods as = increases. It works

well at = = 80, but for = ≥ 256, it is either slower than other meth-

ods or fails to recover the secret. Recall that direct recovery works

when for every bit 8 of the secret, the model predictionM( · e8 )
corresponds to the secret bit: large when the secret bit is 1 and

small otherwise. This happens with lower probability as = grows.

Second, the combined recovery method performs better as = in-

creases. Probably for larger =, individual methods cannot glean

information about all secret bits, but each gains some informa-

tion about some bits. Thus, combining their scores may allow ad-

ditional recoveries.

7 COMPARISON TO EXISTING LWE ATTACKS

Finally, we compare Picante’s performance against classical lat-

tice attacks. This is a difficult task, given both the significant dif-

ferences in methodology between Picante and existing attacks,

as well as the lack of reported concrete running times for exist-

ing attacks. In practice, the training stage of Picante takes less

time than pre-processing the data (see Table 5 and Table 6 in § 5.3),

so we focus on comparing the cost of preprocessing with the cost

of classical lattice reduction attacks such as uSVP, decoding, and

dual attacks. As Picante uses the fplll package for lattice reduc-

tion algorithms, we compare the running times of Picante with

the uSVP attack, run using fplll.

The LWE Estimator software package [5] is used to estimate the

cost of classical lattice reduction attacks. The LWE Estimator uses

theoretical formulas and heuristic estimates to predict which block

size will be required for BKZ to recover the secret for a given lattice
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=, log2 @ Hamming weight ℎ

80, 7 4 5 6 7 8 9 10

success 3/5 3/5 2/5 2/5 1/20 1/20 0/20

Distinguisher 3/5 3/5 2/5 2/5 1/20 1/20 0/20

Direct 2/5 1/5 1/5 1/5 1/20 1/20 0/20

Cross-attention 3/5 1/5 2/5 0/5 1/20 0/20 0/20

Combined 0/5 0/5 0/5 0/5 0/20 0/20 0/20

150, 13 9 10 11 12 13 14 15

success 4/5 2/5 3/5 1/5 1/20 0/20 0/20

Distinguisher 2/5 1/5 2/5 0/5 0/20 0/20 0/20

Direct 2/5 0/5 0/5 0/5 1/20 0/20 0/20

Cross-attention 1/5 0/5 1/5 1/5 0/20 0/20 0/20

Combined 0/5 1/5 0/5 0/5 0/20 0/20 0/20

200,17 17 18 19 20 21 22 23

success 3/5 2/5 3/5 1/5 2/5 2/20 0/20

Distinguisher 2/5 1/5 2/5 1/5 0/5 0/20 0/20

Direct 0/5 0/5 1/5 0/5 0/5 0/20 0/20

Cross-attention 1/5 0/5 0/5 0/5 0/5 1/20 0/20

Combined 0/5 1/5 1/5 0/5 2/5 1/20 0/20

256, 23 26 27 28 29 30 31 32

success 4/5 1/5 1/5 3/5 3/5 4/20 0/20

Distinguisher 3/5 1/5 1/5 1/5 1/5 0/20 0/20

Direct 0/5 0/5 0/5 0/5 0/5 0/20 0/20

Cross-attention 2/5 0/5 1/5 3/5 2/5 2/20 0/20

Combined 1/5 0/5 0/5 0/5 0/5 2/20 0/20

300, 27 28 29 30 31 32 33 34

success 2/5 2/5 1/5 1/5 2/5 1/5 0/20

Distinguisher 2/5 0/5 0/5 0/5 0/5 0/5 0/20

Direct 0/5 0/5 0/5 0/5 0/5 0/5 0/20

Cross-attention 1/5 2/5 1/5 0/5 1/5 1/5 0/20

Combined 0/5 0/5 0/5 1/5 1/5 0/5 0/20

350, 32 54 55 56 57 58 59 60

success 2/5 1/5 1/5 1/5 1/5 1/5 1/5

Distinguisher 0/5 0/5 0/5 0/5 1/5 0/5 0/5

Direct 0/5 0/5 0/5 0/5 0/5 0/5 0/5

Cross-attention 0/5 1/5 0/5 0/5 0/5 0/5 1/5

Combined 2/5 0/5 1/5 1/5 0/5 1/5 0/5

Table 13: Secret recovery successes/attempts for Picante’s four re-

covery methods. For each (=, @, ℎ) setting, we report the number of

secrets Picante recovers out of attempted attacks (“success” row)

and the number of recoveries by each individual method (“Distin-

guisher” through “Combined” rows). If two methods succeed in the

same training epoch, we report both successes, so individual recov-

eries may exceed the number of total successes. Combined method

successes are only reported when all other methods fail.

parameter size. These estimates are widely used to set parameters

and estimate security at parameter sizes for which it is impossible

to actually run these classical attacks (they would not terminate in

our lifetimes). Concrete running times for actual successful attacks

can be found in a few places in the literature, e.g. in [4, 8, 12, 28],

and we find those useful for comparison here. In particular, for

dimensions = ≤ 200, we chose values of log@ strictly smaller than

those used in [12]; for dimensions = = 256, 300 and 350, we use

= @ best attack cost block size

80 113 BDD 248.0 V = 63

150 6421 BDD 242.7 V = 44

200 130769 BDD 241.8 V = 41

256 6139999 uSVP/BDD 241.8 V = 40

300 94056013 uSVP 241.9 V = 40

350 3831165139 uSVP 242.0 V = 40

Table 14: LWE Estimator [5] estimates for Picante’s most success-

ful recoveries (see Table 1). Cost: number of operations in Z@ .

much smaller values of log@ than [28]: for instance, for = = 350,

we use log@ = 32, much smaller than the value log@ = 52 in [28].

We present here 3 ways to quantify, estimate, and compare with

pure lattice reduction attacks: the LWE estimator, concrete tim-

ings for running the uSVP attack at small sizes, and theoretical

and heuristic formulas.

LWE Estimator. Table 14 presents the block size and estimated

cost for classical attacks, to compare against Picante’s successful

secret recoveries (using the highest ℎ achieved by Picante). LWE

Estimator [5] costs are listed in terms of the number of operations

in Z@ , the cost of which can be approximated by (log@)2. For exam-

ple, for = = 256, the LWE estimator predicts that the uSVP attack

should succeed with block size 40 and cost about 241.8 operations

in Z@ . Picante uses block size 18.

Concrete running times.Table 15 presents concrete running times

for the following attack: We run the primal uSVP attack, using

Kannan’s embedding and BKZ2.0 [14] with different block sizes.

The dimension for the Kannan’s embedding is determined as in

[12]. We choose block sizes close to the block size predicted by the

LWE Estimator and compare Picante against attacks with simi-

lar success probability. We ran the classical attacks for dimensions

up to = = 256 with the block size predicted by the LWE Estimator

(V = 40). For= = 300, 350, already the first loop in BKZ takes longer

than 3 days; the full attack was taking too long to run.

The uSVP attack was run using the fplll package on the same

machine as the norm-reduction step of Picante. We did not use

any optimization for either of the attacks. We see that for = = 80

and ℎ = 9, Picante with V = 20 achieves similar success to uSVP

with V = 60. The uSVP attack takes about 10 hours to succeed; for

this = = 80, ℎ = 9 setting, the time spent on data preprocessing for

Picante is negligible with enough parallelization and the training

(run on 1 GPU) for successful recoveries took 5 epochs of about 0.7

hours each. The time spent by Picante is therefore about 4 hours.

For = = 256 and ℎ = 31, the uSVP attack with block size V = 35

(smaller than predicted by the LWE estimator) took a minimum of

231 hours to succeed; Picantewith sufficient parallelization needs

52 hours for data pre-processing and a minimum of 10 hours for

training, so the total time is about 62 hours.

These timings are rough estimates. Optimizations to lattice-reduction

for the uSVP attack could also speed up the data preprocessing of

Picante. We did not include any possible savings from paralleliz-

ing training and secret recovery methods (see §5.3).

Theoretical analysis. Denote by � / (3, V) the (classical) cost of
BKZ reduction in dimension 3 with block size V . It can be esti-

mated [2] as 20.292V+2 << � / (3, V) < 83 · 20.292V+2 , where the
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=, log2 @ ℎ

PICANTE uSVP attack with BKZ 2.0 and early-abort

Preprocessing Training

V success CPU.hrs # matrices CPU.hrs V success success time fail time

per matrix per epoch (CPU.hrs) (CPU.hrs)

80, 7

6, 7 20 4/10 0.01 34800 0.7
60 2/10 8, 12 7.8

65 6/10 9, 10, 14, 18, 40, 85 72.1

8, 9 20 2/40 0.01 34800 0.7
55 0/10 — 2.4

60 1/10 12 6.9

150, 13

9,10 20 6/10 3.1 14600 0.9
50 5/10 26, 30, 31, 35, 35 22.9

55 8/10 19, 19, 23, 23, 23, 23, 28, 28 22.7

11, 12 20 4/10 3.1 14600 0.9
50 2/10 22, 39 9.5

55 4/10 14, 19, 24, 33 5.6

200, 17
18, 19 20 5/10 16 10800 1.2 45 6/10 12, 13, 18, 21, 21, 21 7.7

20, 21 20 3/10 16 10800 1.2 45 3/10 13, 21, 25 12.9

256, 23

26, 27 18 5/10 52 8300 1.5 40 4/10 203, 221, 243, 265 189.1

28, 29 18 4/10 52 8300 1.5 35 7/10 238, 246, 249, 269, 284, 303, 348 241.9

30, 31 18 4/10 52 8300 1.5 35 5/10 231, 255, 263, 330, 336 171.7

Table 15: Concrete running times (CPU.hrs) for uSVP attacks and corresponding Picante costs. Training cost includes secret recovery time.

Picante uses BKZ, the uSVP attack uses BKZ2.0 [14], see the discussion in § 4.1. In all uSVP attacks, we use l = A>D=3 (
√
2f ) = 4. Legend:

CPU.hrs: CPU hours. fail time: average time for the failed experiments.

cost (+% (V) = 20.292V+2 is the cost of the SVP oracle in dimen-

sion V (a major step in the BKZ-reduction algorithm). The constant

2 depends on the attack model—16.4 for sieving and 0 for others.

The upper bound arises from the estimated 8 runs (full loops) of

the BKZ-reduction, and hence 83 (+% (V) oracle calls, needed.
The uSVP attack solves the shortest vector problem in dimen-

sion 3 > =; Picante applies the BKZ-reduction to lattices of di-

mension 3 = 2= but keeps the block size close to constant (V = 20,

and decreases the block size in larger dimensions for efficiency).

We choose this because the cost of BKZ reduction scales exponen-

tially with the block size. While we do not know if we can use

constant block size V = 20 for all dimensions, we expect our block

size to grow slower than block sizes required for lattice-reduction

attacks.

High level comparison. Picante compares with classical lattice

reduction attacks as follows: Picante succeeds in recovering the

secret vector using much smaller block size than pure lattice reduc-

tion attacks, at the expense of processing many more matrices (2.2

million/n matrices). Because this step is run in parallel, Picante

recovers secrets faster than the uSVP attack but uses many more

CPUs for parallel processing. As the dimension increases and/or

log@ decreases, we expect the advantage of Picante to grow, due

to the exponential cost of the lattice reduction attacks based on

BKZ. Future work may produce a more efficient way to preprocess

the data or reduce the amount of data needed for training.

8 DISCUSSION

Our attack, Picante, demonstrates a dramatic improvement over

Salsa, the only prior work on attacking LWE with Machine Learn-

ing. Salsa pioneered the use of ML models in cryptanalysis of

LWE, but only recovered secrets for small LWE problems. In con-

trast, Picante successfully recovers LWE binary secrets with spar-

sity up to 10%, for dimensions up to 350. It does so using only 4=

LWE samples, a realistic assumption in practice. Picante’s perfor-

mance is competitive with that of known state-of-the-art attacks

on LWE, particularly when sufficient compute resources are avail-

able, as Picante’s novel data preprocessing step can be parallel-

lized.

Mastermind. One way to think about the role of our novel pre-

processing step is in analogy with the game Mastermind. In Mas-

termind, a secret made up of 4 pegs of 6 possible colors is hidden

from the guesser. The guesser makes queries of 4 pegs of differ-

ent colors, and query responses indicate how many pegs matched

the color and/or position of secret pegs. Binary secret LWE can be

thought of as Mastermind with = positions and 2 colors, ignoring

error.

In Picante, the trained model serves as an engine for answering

queries about the secret. Consider two extreme types of queries. If

you submit a vector with all entries constant, ( 5 , 5 , ..., 5 ), (i.e. very
low entropy), you only get the Hamming weight—no information

about the position of the 1s. On the other hand, the Direct secret

recovery approach makes queries of the form (0, ..., 0,  8 , 0, ..., 0),
which gives information only about the 8Cℎ bit of the secret. Sub-

mitting queries with random entries (maximal entropy) does not

clearly give any particular type of information.

Picante’s preprocessing step reduces the entropy of LWE sam-

ples, making it more likely that queries such as those in the Di-

rect secret recovery method bear some similarity to the training

samples. So in some sense our approach is ML for Mastermind (or

Wordle).

Scaling to larger Hamming weights. Salsa only recovered se-

crets with Hamming weights ℎ = 3 or 4. Picante recovers larger

ℎ (up to 31 for = = 256 and 60 for = = 350), but recovering even

larger ℎ (general binary secrets) is an important challenge for fu-

ture work. As it stands, the Picante attack can be countered by



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Cathy Yuanchen Li et al.

using general binary secrets. One way to scale to larger ℎ is to im-

prove the preprocessing step. Themore the variance of the training

set’s coordinates is reduced, the higher ℎ secrets Picante recovers.

Our intuition regarding the relationship between preprocessing

and recoverable ℎ is as follows (see [31] for a detailed analysis).

Given a secret s with Hamming weight ℎ and dimension =, and a

vector awith coordinates uniformly sampled over (−@/2, @/2), the
dot product a ·s is a sum of ℎ uniform random variables with mean

` = 0 and standard deviation f = @/
√
12. Thus, as ℎ grows, the dis-

tribution of a · s is roughly normal with ` = 0 and f = =@
√

ℎ/12.
Thus, in 68% of cases, the value of a · s will remain within one f

of ` = 0, i.e. span a range of 2@
√

ℎ/12 = @
√

ℎ/3. If ℎ = 3, this

range is @: a · s spans only one period of the modulus. This ex-

plains why Salsa has difficulty recovering secrets with ℎ ≥ 4: the

model must learn modulus wrapping. Let U be the reduction fac-

tor std(A)/std(AA0=3 ) achieved via preprocessing (see Section 6.1
and Table 7). Then a · s is a random variable with mean `=0, and

f = U@
√

ℎ/12. If ℎ < 3/U2, then a · s will span only one modu-

lus, enabling easier learning. This suggests that larger ℎ may be

recovered by improving preprocessing.

Ethical considerations. Although Picante demonstrates signif-

icant progress towards attacking real-world LWE problems with

sparse binary secrets, it cannot yet break problemswith real-world-

size parameters. In particular, the LWE schemes standardized by

NIST use smaller modulus @ and non-sparse secret distributions.

Hence, we do not believe our paper raises any ethical concerns.

Nonetheless, we shared a copy of the current paper with the NIST

Cryptography group, to inform them of our approach.

Future directions.More work is needed to better understand the

effect of the data preprocessing step, since we observe that we only

need a 5% reduction of data entropy to succeed (Table 7). Addition-

ally, there may be better ways to preprocess the data to improve

transformer learning, which are less costly than using BKZ. In the

future, the model training and secret recovery components of the

attack could benefit from parallel runs across multiple GPUs, given

our observation that different transformer initializations may re-

sult in different speeds of secret recovery (§ 6.4). Furthermore, im-

provements to transformer architecture and secret recovery meth-

ods may enable recovery of secrets with more complex parameter

settings. In particular, future work could explore the use of sim-

pler model architectures to reduce memory and time costs. For ex-

ample, prior work shows RNNs and LSTMs can perform modular

addition, but [34] suggests that this is difficult for FFNs. Finally,

cross-attention secret recovery suggests that useful information

can be gleaned from inspecting models’ intermediate representa-

tions. Better understanding of these would be interesting future

work.
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A APPENDIX

A.1 Comparison of TinyLWE and LWE

Table 16 compares secret recovery performance of models trained

using samples generated via Picante’s TinyLWE approach (4= ini-

tial samples) vs. a baseline approach (222 initial samples).

Setting Hamming weight ℎ

= = 80 4 5 6 7 8 9 10

TinyLWE 3/5 3/5 2/5 2/5 1/20 1/20 0/20

LWE 5/5 4/5 3/5 3/5 0/20 1/20 0/20

= = 150 9 10 11 12 13 14 15

TinyLWE 4/5 2/5 3/5 1/5 1/20 0/20 0/20

LWE 5/5 2/5 2/5 1/20 0/20 0/20 0/20

= = 200 17 18 19 20 21 22 23

TinyLWE 3/5 2/5 3/5 1/5 2/5 2/20 0/20

LWE 3/5 2/5 1/5 1/5 2/20 0/20 0/20

= = 256 26 27 28 29 30 31 32

TinyLWE 4/5 1/5 1/5 3/5 3/5 4/20 0/20

LWE 3/5 2/5 3/5 3/5 1/5 3/20 2/20

= = 300 28 29 30 31 32 33 34

TinyLWE 2/5 2/5 1/5 1/5 2/5 1/5 0/20

LWE 1/5 3/5 2/5 1/5 1/5 0/5 0/20

Table 16: Secret recovery performance: TinyLWE vs. LWE. Re-

ported values are successes/attempts across different =/ℎ settings.

A.2 Statistical properties of secret verification

At the end of the secret recovery phase, we are provided a se-

cret guess s′ , that we need to check. To do so, we use the origi-

nal < = 4= LWE samples (a8 , 18 ), and compute the < residuals

A8 = 18 − a8 · s′. If the secret is recovered, we expect the A8 to have
the same standard deviation as a LWE sample, i.e. f . Otherwise,

we expect the standard deviation to be that of the uniform distri-

bution, i.e. @/
√
12. The standard deviation of residuals is estimated

by the formula:

femp =

√

√

√

1

< − 1

<−1
∑

8=0

(A8 − A )2

Lower and upper confidence intervals, with level 100(1 − U)% are:

f4<?

√

< − 1
j2
U/2,<−1

, f4<?

√

< − 1
j2(1−U )/2,<−1

Since< > 100, we approximate the chi-square distributionwith

<−1 degrees of freedom by the normal distributionN(<−1, 2<−
2). Table 17 provides estimates of the confidence intervals at level

0.001% for different values of =, and around f = 3 and @/
√
12.

n m Right (f = 3) Wrong (@/
√
12)

80 320 [2.58, 3.72] [28.08, 40.45]

150 600 [2.68, 3.48] [1.65 × 103,2.15 × 103]

200 800 [2.71, 3.40] [3.42 × 104, 4.28 × 104]

256 1024 [2.74, 3.34] [1.62 × 106, 1.98 × 106]

300 1200 [2.76, 3.31] [2.50 × 107, 3.00 × 107]

350 1400 [2.78, 3.29] [1.02 × 109, 1.21 × 109]

Table 17: Confidence intervals (0.001%) for secret verification. Con-
fidence level 0.001%. Right: secret is correctly predicted (f = 3).

Wrong: secret is incorrectly predicted (f = @/
√
12). @ from Table 2.

For instance, for = = 80, we have < = 320 and @ = 113. The

0.001% level confidence interval for a correct secret prediction (i.e.

measuring f = 3) is [2.58, 3.72]. For an incorrect prediction (mea-

suring f = @/
√
12 = 32.62), it is [28.08, 40.45]. Since the two in-

tervals do not overlap, the sample size we use (<) is large enough

to verify secret guesses (with quasi-certitude). As dimension in-

creases, the confidence intervals grow. This proves our claim that

the original 4= LWE samples are sufficient to verify model predic-

tions.

A.3 Understanding secret recovery

Figure 6 shows Picante’s secret recovery for a successful = = 350

experiment, in which the combined method recovers the secret in

epoch 5. Figure 6 shows how the rankings of the 1-bits of the secret

change throughout training. Our recovery methods guess that the

ℎ top-ranked bits are the 1-bits, so successful recovery occurswhen

1-bits occupy the first ℎ slots on the G-axis.

Over time, distinguisher and CA methods learn better ranks for

true secret 1-bits. By epoch 5, the combined method, which sums

the ranks of distinguisher and CA methods, correctly guesses the

secret. We do not include direct secret recovery results because it

performs poorly for large =. Plotting Figure 6 requires knowledge
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Figure 6:Change in secret bit ranks as training progresses (= = 350).

of the secret B , leveraged here for illustrative purposes only. Picante

can validate secret guesses without knowledge of B , using verifica-

tion as in § 4.3.
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