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Data redundancy is ubiquitous in the inputs and intermediate results of Deep Neural Networks (DNN). It offers many significant
opportunities for improving DNN performance and efficiency and has been explored in a large body of work. These studies have
scattered in many venues across several years. The targets they focus on range from images to videos and texts, and the techniques
they use to detect and exploit data redundancy also vary in many aspects. There is not yet a systematic examination and summary of
the many efforts, making it difficult for researchers to get a comprehensive view of the prior work, the state of the art, differences and
shared principles, and the areas and directions yet to explore. This article tries to fill the void. It surveys hundreds of recent papers on
the topic, introduces a novel taxonomy to put the various techniques into a single categorization framework, offers a comprehensive
description of the main methods used for exploiting data redundancy in improving multiple kinds of DNNs on data, and points out a

set of research opportunities for future to explore.
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1 INTRODUCTION

Deep learning, primarily powered by Deep Neural Networks (DNN), has repeatedly demonstrated its success and
tremendous potential in revolutionizing the development of Artificial Intelligence and its applications in various
domains. At a high level, DNN has two pillars: algorithm and data. DNN models embody the algorithm, and data is
represented by DNN inputs and intermediate results (or called activation maps). Both algorithm and data are essential
for the quality of a DNN, determining its accuracy, speed, size, energy efficiency, robustness, and so on.

For DNNs, redundancy exists in both models and data. As many studies have shown, reducing some DNN layers
or parameters or precision often leaves the model accuracy intact. The observation has prompted a large body of
research in DNN compression, which tries to find effective ways to reduce the size of a DNN model and achieve
more compact models or/and faster speeds. Many of the efforts resort to model pruning and quantization, while some
compress models in the frequency domains [153] or optimize attentions in Transformer models [32, 113, 147]. We

call those efforts model redundancy exploitations. Several recent survey papers [9, 28, 31, 51, 61, 76] have provided

comprehensive overviews on the topic.
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Data redundancy exploitation is no less critical for DNN and has received much and increasing attention in recent

several years as well. Many studies have noticed similar patches within an image, activation maps, or between adjacent
video frames. Other studies have confirmed that some words in a sentence carry no significant meanings for the
sentence. These observations have prompted many recent efforts in creating methods for detecting and leveraging the
redundancy of various dimensions in all kinds of data. Hundreds of papers have been published, scattering in many
venues over several years. But unlike model redundancy, there is not yet a systematic examination and summary of the
many efforts, making it difficult for researchers to get a comprehensive view of the prior work, to learn about state of
the art, to understand the differences and common principles among the many published studies, or to find out the
areas and directions yet to explore.

To the best of our knowledge, this paper offers the first one-stop resource for people interested in learning about
studies on data redundancy for DNN. It provides a holistic view of the various techniques and their connections, offers
insights on the limitations of state of the art, and potential directions and opportunities for the future to explore. The
paper introduces the first known taxonomy on DNN data redundancy exploitation, putting the various topics’ various
techniques into a single categorization framework. It offers a comprehensive description of the main techniques used
for detecting and exploiting data redundancy in improving multiple kinds of DNNs, from CNNs to RNNs, Transformers,
and so on. It presents numerous data redundancy opportunities in images, videos, and texts and how existing studies
tap into them with various techniques at a spectrum of granularities and scopes. It discusses the commonalities among
the techniques, their differences, limitations, and promising research directions worth future explorations.

We organize the rest of the paper as follows. Section 2 provides a formal definition of data redundancy and defines the
scope of this survey. Section 3 presents a taxonomy of studies on DNN data redundancy. Sections 4, 5, and 6 describe the
practical techniques that prior work has developed in detecting and exploiting data redundancy for DNNs respectively
on images, videos, and text data. Section 7 discusses the limitations of existing explorations and points out several

future directions. Section 8 concludes the survey with a summary.

2 TERMINOLOGY AND SCOPE OF DISCUSSION

We start this section with clarifications of several terms essential for the rest of the paper, then define the scope of this

survey, and explain the relations with several relevant concepts to our focus.

2.1 Terminology

Activation Map. In the traditional terminology, an activation map (or called feature map) is the activations of filters
applied to the input of a DNN also to the output of the previous layer. For the visual representation of an image or a
single image frame in a video with RGB channels, it is a 3D tensor with Height X Width x Channel; for a video clip, it
is a 4D tensor with Height X Width X Channel X Depth, the Depth is the number of frames. For ease of explanation, in
this article, we extend the term activation map to include the inputs to a DNN (the values of the input layer neurons).
Hidden State. For text representation, before input to the first layer of the model, the text is transformed into word
vectors representation via a word embedding (the collective name for a set of language modeling and feature learning
techniques in natural language processing (NLP) where words or phrases from the vocabulary are mapped to vectors of
real numbers [43]). Multiplied with weights, the output activations of a layer are called a hidden state (which is also
called encoder state). It is represented as a 2D tensor with sequence length X dimensionality of word embedding.
Redundancy. According to the dictionary [117], redundancy is the state of being not or no longer needed or valuable.

It is hence a concept relative to a particular purpose. In the context of DNN, being useful usually refers to contributing
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to the quality of the DNN outputs, which is often measured by a certain kind of accuracy metric. Data redundancy in
DNN is hence defined as the data that is not or no longer useful for the quality of the outputs of DNN. Data redundancy
exploitation for DNN refers to techniques that try to avoid data redundancy while keeping DNN outputs meeting the

needs.

2.2 Scope

Data redundancy in DNN manifests in different kinds of forms. Regardless of the concrete structure, data redundancy
in DNN must fall into one of the following three categories: (1) Repeated information: Some part of the data conveys
the identical (or similar) information as some other parts do. (2) Irrelevant information: The information conveyed by
some part of the data is irrelevant to the targeted outputs of the DNN. (3) Over-detailed information: The information
is conveyed in an unnecessarily detailed manner (e.g., image resolution). So any technique that tries to make a DNN
avoid spending time and computations on any of the three types of information can be regarded as a technique for data
redundancy exploitation. However, this general definition would blur the boundary between DNN algorithm, model,
and data-centered optimizations. Some model optimizations (e.g., channel pruning [66, 70, 71, 101, 110, 148, 164, 170])
are fundamentally driven by data redundancy (e.g., redundancy across channels). There are already surveys, particularly
on model optimizations, but this survey focuses on data redundancy exploitation beyond model optimizations. These
techniques help DNN avoid data redundancy in its computations to efficiently execute DNN in inference or training or
eliminate noise to boost DNN accuracy.

There is a body of work on considering data redundancy in the hardware design of DNN accelerators, such as cache
buffer designs for data reuse in 2D CNNs [68, 82, 89, 111, 114, 128, 150] and 3D CNNs [19, 44, 67, 132, 149, 151, 152], or
integrating activation pruning into the hardware architecture designs [123, 129]. The techniques reduce the number of
computations and bring speed and energy benefits. In this survey, we mainly focus our discussion on software-based

techniques for exploiting data redundancy.

2.3 Relations with Relevant Concepts

Several concepts are closely related to data redundancy exploitation. We next describe the relations with these concepts
to further clarify our scope.

Model Redundancy Another aspect of redundancy in DNNs is model redundancy, referring to the redundancy
within the parameters and architecture of a DNN. Model compression [1, 9, 25, 28, 31, 51, 61, 76, 90], including knowledge
distillation [69, 146], parameter pruning, and weight quantization, are popular approaches to exploit model redundancy.
This article focuses on data redundancy of DNN, which refers to the redundancy within the input data of each DNN
layer (usually in the form of multi-dimensional tensors).

Data Preprocessing and Augmentation Before data are fed into a DNN model, they often go through a prepro-
cessing process. For training, that process is sometimes part of dataset augmentation [33, 136], increasing data variance
to increase the models’ generality. In computer vision, example operations include rotating, inverting, equalizing, Color
changes, brightness adjustment, etc. The samples created by the transformations naturally carry some redundancy with
the original data. For instance, with images inverted, two images contain the same set of pixel values, despite that the
positions of individual image patches differ in the images. Such redundancy is implicitly considered when a technique
exploits redundancy in input data. This survey exploits data redundancy and leaves data augmentation out of the scope.

Feature Extraction and Data Embedding. Feature extraction is a term in machine learning, referring to techniques

that select or derive some features from a set of data that are regarded as most relevant to a specific machine learning
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task. Therefore, theoretically speaking, feature extraction can be viewed as a kind of exploitation of data redundancy
as it reduces the raw data to an often smaller set of features. In a similar vein, data embeddings that map raw data to
vectors in a space smaller than the original data space could also be regarded as a kind of reduction of data redundancy.
Studies on these topics are usually considered as a separate research area named feature extraction and representation.
They are typically not designed explicitly to exploit data redundancy, even though they may sometimes show such
effects. We leave discussions on these studies out of the main focus of this paper.

Dataset Selection. In the learning phase of DNN, training data selection [45, 47, 163] is a process that tries to select
the training data appropriate for the learner to achieve the learning task. To a certain degree, it may also remove some
redundancy in the dataset (e.g., some data items in an over-sampled population). In this survey, we do not focus our
discussion on this direction but on how data redundancy is addressed during the execution of the model (after the

training dataset is selected or during inference).

3 TAXONOMY

Many studies detect or leverage data redundancy in DNN from several angles. A taxonomy that puts all the investigations
into one categorization framework is essential for a holistic view of their differences, tradeoffs and shared principles.
The taxonomy also offers a comprehensive view at the various dimensions of DNN data redundancy elimination, which
can potentially guide the design of new redundancy elimination techniques.

Figure 1 presents a taxonomy we build after surveying hundreds of papers on DNN data redundancy exploitation.
As far as we know, this is the first taxonomy on this topic. It shows the six most essential dimensions in DNN data
redundancy exploitation. Data redundancy exploitation is usually the combination of one or more items in each

dimension. We explain each of the dimensions next.

DNN Data Redundancy
Exploitation

Granularity / \ Types of Data
i « Image
Bit .
Neuron «  Video
Tile/Patch . Text
Activation Map . Others
Batch or Sequence

Scope
Ways to Leverage Redundancy,

Single Value
. Reuse

. Skipping
. Value Approximation

« Single Channel

« Multiple Channels
» Temporal Sequence
. Within-Batch

. Cross-Batch

. Cross-Layer

Ways to Detect Redundancy,

Value Similarity-based Grouping
Learning-based Methods
Projection
Implicit Detection
Other Heuristics

Types of Redundancy,

* Repeated Information
o lIrrelevant Information
« Over-detailed Information

Fig. 1. Taxonomy of data redundancy exploitation in DNN.



Survey: Exploiting Data Redundancy for Optimization of Deep Learning 5

3.1 Granularity

This dimension refers to the unit of the data examined for data redundancy, which we will call data unit in the following

discussions. There are five granularities listed below in increasing order in size.

o Bit: At this granularity, every bit in a value is the unit for examination. Data quantization and precision relaxation
to the shorter representation of a value are commonly seen strategies exploiting bit-level redundancy. Besides,
bit representation can also be used directly for pattern-based bucketing. In RNSNet [128], for instance, an input
value is transformed into its n-bits binary format and gets represented with a residue number system (RNS). The
multiplications in neural networks are simplified to only addition and memory lookup, allowing memory-friendly

operations.

Neuron: The unit at this granularity is the value of a single neuron. An image is a pixel value at one channel or

the value carried by a neuron in a DNN.

Tile/Patch: The values carried by a set of neurons, which correspond to a part of an activation map. It could be,
for instance, a bounding box or region of interest (RoI) or channel in an image; in the case of text, it could be one
or multiple sub-word embeddings.

e Activation Map: The values in an entire activation map.

Batch or Sequence: A set of activation maps that the DNN carries at a layer, either at once or in order. The
activation maps within the set can be either related or unrelated to each other. For example, sequential sentence
input in a paragraph to a DNN can be correlated, while in a randomly shuffled set of training images, image

activation maps are generally unrelated.

In general, the larger the granularity is, the less redundancy is there, but at the same time, the ratio between the
benefits from removing a redundancy and the overhead in finding the redundancy is larger: Avoiding processing a whole
batch of images saves more time than avoiding processing a neuron, but the chances in finding two identical batches
are generally smaller than finding two identical neurons. On the other hand, the removals of different granularities of

redundancy are not exclusive; one optimization could exploit redundancies at multiple granularities.

3.2 Scope of Consideration

This dimension is about the scope in which different data units are compared to identify similar units and hence
redundancy. This dimension is related to the previous extent, granularity, but differ: For a given data unit, such as
a patch of activation map, the comparisons for similar units can still vary (e.g., within one activation map, across

activation maps in a batch, or batches). Specifically, the scopes considered in prior studies fall into one or more following.

o Single Value: Redundancy within a single representation of a value—the corresponding granularity is a bit.

¢ Single Channel Activation Map: In the case of an image, it refers to redundancy within a single channel
activation map; in the case of text, it relates to redundancy within a single hidden state. The corresponding
granularity can be either neuron or tile/patch.

e Multiple Channels of Activation Map: This is for visual data (image and video) only. Redundancy across
multiple channels of an activation map between neurons, patches/tiles, or single-channel activation maps.

e Temporal Sequence of Activation Maps: In the case of video, it refers to redundancy across a single video

clip representation (4D tensor) between neurons, patches/tiles, single-channel activation maps, or activation

1Bit level is special, limited by the number of bits in one value, which is usually up to 32.
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maps. In the case of sequential text sequence input, it refers to redundancy across hidden states of the same
sentence label (token type id), between neurons, sub-word embeddings, or single-sequence hidden states.

e Within a Batch: Inputs to a DNN are often provided in a batch each time. The scope for data redundancy
consideration can be across inputs within a batch.

o Cross Batches: The scope can also cross the boundaries of batches of inputs.

o Cross Layers: All the earlier scopes typically assume that the comparisons are about activation maps at the
same layer of a Neural Network. Some studies even expand the scope to activation maps on different layers of a

Neural Network [38, 119].

In general, a large scope subsumes a smaller scope: Redundancy discoverable in a smaller scope must be discoverable

in a larger scope. But on the other hand, checking values in a larger scope also entails more overhead and complexity.

3.3 Types of Data Redundancy

Data redundancy exploitation techniques can also be categorized based on what types of data redundancy they exploit.
As earlier sections have mentioned, there are mainly three types of data redundancy. We list them here for the

completeness of the discussion on the taxonomy.

¢ Repeated Information: Similarity or duplication between data units. When the same operations operate on
either identical or similar data units (e.g., multiplications on the same values, convolutions on similar image
tiles), the results could be indistinguishable; the computations are redundant.

Irrelevant Information: Unnecessary data units; if they are removed, will not harm the DNN computation

results.

Over-detailed Information: High-precision representation is not always necessary. For example, high-resolution
images can be replaced with their low-resolution approximation in some application scenarios without causing
the DNN to lose accuracy. Activation maps with lower precision sometimes give the same results for a DNN. A
video with more frames than needed is another example. A sub-word vector with a higher-dimension representa-
tion (e.g., 1 X 512 versus 1 x 256 for a single word representation) or a higher precision value representation is

also an example.

The types of data redundancy define how redundancy appears. These different types of redundancy are complemen-
tary to each other; they require different ways to detect but at the same time can be capitalized together. Previous work
has each focused on one of the three types of redundancy; it remains yet to investigate how to effectively combine the
removals of multiple types of redundancy in one framework. Among the potential challenges, how to minimize the

overhead is one of them.

3.4 Ways to Detect Data Redundancy

The techniques can also be classified based on the ways they detect redundancy:

e Value Similarity-based Grouping: This includes all kinds of similarity-based data grouping methods (e.g.,
various data clustering methods).

e Learning-based Methods: These methods learn data redundancy on some data samples (often sampled from
the training or validation datasets) and apply the knowledge at runtime execution of the model. An example is

the learning-based quantization of activation maps.
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e Projection: These techniques project the data representation to another domain space (e.g., frequency domain)
and infer redundancy in that space.

e Implicit Detection: These techniques assume redundancy exists in a specific scope based on some prior
knowledge about the domain. One of the examples is the techniques that leverage similarities between neighboring
video frames.

e Other Heuristics: Methods that leverage some other domain-specific heuristics, such as the relative attentions

or the average number of zeros appearing at a specific pixel location.

The different ways apply to different domains and scenarios. The first two in the list are general, the third applies to
the domains where projection across certain spaces makes sense, the fourth and fifth apply to domains where there is

already certain prior knowledge about the redundancy in the domains.

3.5 Ways to Leverage Redundancy

The different techniques take different ways to leverage data redundancy. They, however, in principle fall into the

following three main categories.

e Reuse: This approach reuses computation results on some data items for other data items. It applies to a similar
kind of data redundancy. For example, Deep Reuse [116] applies Locality Sensitive Hashing (LSH) [56], a fast
unsupervised clustering scheme, to cluster data into similarity groups, and then uses the results computed on

the cluster centroids as the results for all data items in the same cluster.

Skipping: This approach skips computations on some data items. It applies to data redundancy caused by
irrelevant data items. For instance, in Perforated CNN [49], the authors deal with spatial redundancy by masking
some pixels in CNN feature maps. It also includes techniques that select a subset of data representations. Some
work does ad-hoc sampling, while some others make the selection in a more sophisticated way. In POWER-
BERT [58], for instance, a retention configuration is defined to observe that cosine-similarity between vectors
progressively increases as the layer goes deeper. Based on that setting, they employ strategies for word-vector

selection. The retention configuration is further designed into learnable hyper-parameters.

Value Approximation: This approach uses an approximation to generate data representation. It corresponds
to data redundancy caused by over-detailed information. Quantization and binarization on data items fall into
this category. Previous reviews [76, 124, 137] have provided comprehensive coverage on both research topics, so

we do not emphasize them in the following discussion.

These three ways to leverage redundancy are complementary. Even though only the third in the list carries "approxi-
mation" in the name, all three could cause accuracy loss: Reuse may reuse results across similar but not identical data,
and similarly, skipping may skip the computations of some similar but not identical data. These ways of leveraging
redundancy can be used together. Some prior studies have already done that. One of them [38], for instance, exploits a

layer selector ("skipping") and correlation clustering ("reuse") practice at the same time.

3.6 Types of Data

We can also classify the studies on data redundancy based on the types of data they deal with. Although there are many

kinds of data, most existing studies on data redundancy are on the following three types of data:

e Images. This type of data includes various kinds of images, including those generated from higher dimension

sensors (e.g., those collected through Lidar).
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e Videos. This type of data features an extra-temporal dimension than images, which provides special opportunities
for data redundancy exploitation.

o Texts. This type of data consists of texts from various kinds of sources, usually written in Natural Languages.

There are some other types of data that DNN has been applied to, such as graphs, genes, computer programs, and so

on. We will briefly discuss them in Section 7.

3.7 Use of the Taxonomy

As far as we know, this is the first taxonomy on data redundancy exploitation. It was created based on our survey of
hundreds of papers on data redundancy exploitation. The taxonomy can be used to position work in the big picture, to
recognize the possible missing opportunities yet to explore for a certain kind of data, to guide the designs of future
DNNes for efficiency, and to assist the possible creation of future automatic frameworks that may apply redundancy
exploitation for new Deep Learning tasks.

We categorize a set of representative papers listed in Table 1 using the taxonomy. We will discuss them in more
detail in the next several sections. Specifically, we organize the following discussions based on several layers of the
taxonomy. At the highest level, we divide the studies based on the types of data they handle into three sections, with
Section 4 on images, Section 5 on videos, and Section 6 on texts. We organize the various studies based on a dimension

that captures the most prominent differences among the studies in each area.

Table 1. Some representative papers on data redundancy exploitation.

Data Type | Paper Redundancy Type | Granularity Scope Detection Exploitation
116] Repeated Patch/Tile Multiple Channels, Within-Batch, Cross-Batch | Similarity Reuse
55] Irrelevant, Repeated | Bit, Neuron Single Value, Cross-Layer Learning, Similarity Value Approximation, Reuse
119] Repeated Activation Map Cross-Layer Similarity Reuse
39 Repeated Activation Map | Multiple Channels Similarity Reuse
18 Repeated Activation Map Single Channel Learning Value Approximation, Reuse
49 Irrelevant Neuron Multiple Channels Implicit Detection, Learning | Skipping
2,73, 135] Irrelevant Neuron Multiple Channels Heuristic Skipping
Image 22, 143] Trrelevant Neuron Multiple Channels Learning Skipping
54 Over-detailed Activation Map Multiple Channel Learning Skipping
78 Irrelevant Neuron Multiple Channels Heuristic Skipping (Subset Selection)
98 Irrelevant Neuron Cross-Layer Heuristic Skipping (Subset Selection)
75 Trrelevant Neuron Multiple Channels, Cross-Layer Learning Skipping (Subset Selection)
20, 24, 30] Over-detailed Activation Map Multiple Channels Projection Value Approximation
27] Over-detailed Activation Map Multiple Channels Implicit Detection Skipping (Ad-hoc Sampling)
52, 100] Irrelevant Patch/Tile Multiple Channels Learning Skipping (Subset Selection)
84] Irrelevant Activation Map Temporal Sequence Similarity Skipping
15, 16] Trrelevant Neuron Temporal Sequence Similarity Skipping
29] Over-detailed Patch/Tile Multiple Channels Learning Value Approximation
162] Irrelevant Patch/Tile Multiple Channels Implicit Detection Skipping (Subset Selection)
112] Repeated Patch/Tile Temporal Sequence Implicit Detection Skipping (Subset Selection)
Video 4, 94, 154, 156, 160] | Over-detailed Activation Map Temporal Sequence Learning Skipping (Subset Selection)
142] Over-detailed Batch or Sequence | Temporal Sequence Learning Skipping (Subset Selection)
167-169] Repeated Activation Map Temporal Sequence Implicit Detection Reuse (Temporal Propagation)
86, 87] Repeated Activation Map Temporal Sequence Implicit Detection Reuse (Temporal Propagation)
21] Repeated Activation Map Temporal Sequence Implicit Detection Reuse (Temporal Propagation)
165] Repeated Activation Map | Temporal Sequence Tmplicit Detection Reuse (Temporal Propagation)
35, 108] Over-detailed Patch/Tile Activation Map Implicit Detection Skipping (Ad-hoc Sampling)
58 Irrelevant Patch/Tile Activation Map Learning Skipping (Subset Selection)
Text 92 Repeated Patch/Tile Activation Map Similarity Reuse
38 Repeated, Irrelevant | Batch or Sequence | Temporal Sequence, Cross-Layer Similarity Reuse, Skipping (Subset Selection)

In Section 4, we divide studies on image data redundancy based on the types of redundancy they are dealing with,
as the number of works in the three sub-categories (Repeated Information, Irrelevant Information, and Over-detailed
Information) are relatively balanced and offers comprehensive coverage of the differences among the techniques. We
point out the discrepancies between the work in each group in other dimensions (e.g., data representations, redundancy
exploitation techniques) when necessary during the discussion. While many image redundancy exploitation techniques

could potentially be applied to each frame in a video, Section 5 focuses on the methods specially designed for videos.
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These efforts extend the work in Section 4 by exploring how redundancy is leveraged on the patch unit and the
temporal dimension. Section 6 discusses how data redundancy in the text is handled. Most of the work is based on
Transformer models. In both Sections 5 and 6, the primary dimension we use to group the various explorations is how

data redundancy is exploited.

4 LEVERAGE REDUNDANCY IN IMAGE DATA

Image data are generally presented as three-dimensional pixel values (height, width, and channel). The inherent locality
within data values provides opportunities for advanced optimizations. This section groups the relevant studies at a high
level based on the types of redundancy they mainly target: repeated information, irrelevant information, and over-detailed
information. The discussion in each kind then divides the techniques to detect and handle data redundancy. Table 2
presents these works by their applications (tasks) and reported performance for fast reference. The second column
(“Paper”) shows the references to the relevant papers; the third column (“Code”) shows the link to the source code of
the implementation; the fourth column ("Key Idea") briefly summarizes the key idea of each work. The fifth column

(“Performance”) summarizes the performance gains by the data redundant optimization techniques.

4.1 Repeated Information

Due to the common coherence of data values in an image, image data often show a certain degree of data locality along
the spatial dimensions. The most common optimizations take advantage of the value similarities among pixels. The
initial motivation is to minimize the storage space of CNN’s intermediate activation maps on a resource-constrained
platform and reduce the data movements between CPU and GPU and between processing units and memory. The
optimizations also reduce the number of computations and improve computation speeds.

Table (or cache) lookup [39, 68, 111, 114, 119, 125] and clustering [89, 116] are the most typical approaches taken to
discover and leverage repeated information in images.

To detect similarity among data points, the various techniques differ in the level of pixel units used for the similarity
detection, some at the level of bits [82, 111, 128], some at the level of pixels [125], patches (or tiles, sub-vectors) [68, 89,
116], or even entire feature maps as a whole [39, 82, 114, 119]. Some use clustering with predefined distance metrics and
thresholds to identify the similarity between units, while others use hash functions like locality sensitive hashing [116]
or bloom filters [82]. RNSnet [128] utilizes a unique bit-handling technique that maps the binary representation into
the Residue Number System (RNS). Each binary representation is divided by a modulus set; with the values represented
by the corresponding modules and reminders, the technique efficiently identifies similar values. The method could be
regarded as a kind of hashing function.

After gathering similar data points, each bucket (or cluster) of the data is represented by usually one or a few data
points in the bucket. The determination of such representatives depends on the tasks (e.g., image classification, object
detection) that the DNN performs. For a relatively simple image classification task, if the number of buckets is enough
to showcase the overall discrepancy between predicted classes without hurting the training or inference accuracy, the
representative can be simply an average of data values in that bucket. To the extreme, when the dataset contains a
significant proportion of identical data samples, a representative is sometimes set as an arbitrary data point taken from
a bucket. The representative is used in place of the other issues in the bucket during the CNN inference or training,
such that similar computations can be avoided.

Representative work in this category is the Deep Reuse work by Ning and others [115, 116]. As shown in Fig. 2,

the approach divides input images or activation maps into sub-vectors during runtime. Based on their similarities, it
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Table 2. Summary of works on image data redundancy
Application Paper Code | Key Idea Performance
image classification [115,116] | N/A | Deep Reuse clusters the sub-vectors | 2.41x-3.64Xx speedup for AlexNet
in activation maps by similarity and | and 2.26x-3.35x for VGG-16 on
reuses the cluster centroids’ compu- | GPU
tation results
[55] N/A | Sparsify the activation maps 2.32% speedup on LeNet-5, 1.61x
on MobileNet-vl, 2.12x on
Inception-v3, 1.77X on ResNet-18,
and 1.94% on ResNet-34

[119] N/A | Use a feature map cache to reuse | Evaluated on AlexNet, GoogLeNet,
similar feature maps’ computation | VGG-16, VGG-19, ResNet-50, and
results ResNet-101, giving 1.06X-1.34% av-

erage speedup

[49] [48] Perforated CNNs applies perforation | AlexNet with 2x-3.6Xx speedup on
masks to skip pixels or patches on | CPU and 2Xx-4X on GPU; VGG-16
activation maps with 2x-4x speedup on CPU and

2x-4x on GPU; NIN [103] with
2.2x-4.2x speedup on CPU and
2.1x-3.5x on GPU

(2] N/A | SnaPEA predicts the signs of activa- | 28% speedup and 16% energy
tion outputs earlier to skip poten- | reduction with no accuracy loss
tial zero values that appear after the | on CNNs (AlexNet, GoogleLeNet,
ReLU activations SqueezeNet, VGGNet), without ac-

curacy loss. 2.02x-3.59x speedup
and 1.89%-3.14X energy reduction
with 3% accuracy loss

[73] [72] Skip some neurons’ computation | 2x-3X less parameters with no ac-
based on Average Percentage of Ze- | curacy loss on LeNet and VGG-16
ros (APoZ)

[135] [134] | Zero activation predictor (ZAP) to | 38%-51% MAC reduction on
dynamically predict the zero-valued | AlexNet, 26.2%-44.5% on VGG-16,
outputs in the activation maps and 23.8%-34% on ResNet-18 on

GPU (Nvidia Titan V)

[22] N/A | Layer-by-layer neuron pruning 5.13x speedup on VGG-16 and
3% speedup on ResNet-50 on GPU
(Nvidia Titan X (Pascal))

[143] N/A | A spectral pruning method that | 32%-55% FLOPs reduction on

compresses the CNNs by using their
degrees of freedom

ResNet-50
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Application Paper Code | Key Idea Performance
[54] [53] Use feature boosting and suppres- | 5X speedup on VGG-16 and 2X
sion (FBS) to emphasize salient con- | speedup on ResNet-18
volutional channels and skip unim-
portant ones
(78] N/A | Select neurons by the magnitude of | 2x-3X training speedup by employ-
their average activations ing 6x-10x fewer parameters on
LeNet, AlexNet, and VGG-16 on
GPU (Nvidia Titan X (Pascal))
[98] [97] Apply ranking on the neurons of | 1x-6.7x speedup on LeNet-5,
DNNs based on their contribution | AlexNet, and KWS [127] on GPU
to the inference accuracy (Nividia RTX 2080Ti (Turing) and
Jetson Nano)/CPU (x86 and ARM)
[75] [74] Propose to add a sparsity regular- | ResNet-38 achieves 14% less FLOPs
ization on neurons that guides the | and 0.2% lower top-5 error than
selection of more informative neu- | DenseNet-121 on GPU
rons
[30] N/A | Propose splitting and overlap-and- | VGG-16 with single channel input
add operations for FFT-based CNNs | achieve over 3X speedup on FPGA
to eliminate computation redun- | (Xilinx XC6VLX240T)
dancy on activation maps
medical image segmen- | [20] N/A | Frequency Domain Compact 3D | 2x speedup ratio on 3D-ResNet-18
tation (3D-UNet) CNNs (FDC3D) eliminating redun-
dancy of 3D convolution filters and
feature maps by converting them
into the frequency domain
object detec- | [52] N/A | Use two networks to focus on the | reducing the number of processed
tion/recognition region of interest on the input data | pixels by 70% and the detection
time by over 50% on pedestrian de-
tection on GPU
[100] [99] The author implements a zoom net- | 78.1% mAP and 79.8% mAP com-

work with map attention decision
(MAD) unit that uses a selective vec-
tor to decide the attention on neu-

rons

pared to SSD baseline on PASCAL
with 76.8% mAP
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Application Paper Code | Key Idea Performance
[39] N/A | A software-based memoization | 3.5x speedup with YOLOv3-tiny
technique that groups CNN’s layer | and 22% energy consumption re-
output into range-based clusters | duction on CPU (Intel Core i5-7500,
and performs table lookup for | 4 cores, 3.40GHz)
similar computations
image classifica- | [27] [26] ViP leverages virtual pooling that | VGG-16 with 2.1x (5.23X com-
tion & object detec- applies larger strides in the convo- | bined model compression); Faster-
tion/recognition lution layer to reduce computation | RCNN with 1.8x on GPU (Nvidia
Titan X and Jetson TX1)
[18] N/A | Multi-LayerFeature Federation Net- | WORK ON small models (under
work (MuffNet) splits the activation | 45 MFLOPs); 0.3% better accuracy
maps of a layer into several groups | than MobileNet with half of its cost.
and shares the group information
with other layers only once
image classification & | [24] [23] OctaveConv factorizes the activa- | 82.9% top-1 classification accuracy
video action recogni- tion maps into high and low- | by ResNet-152 with 22.2 GFLOPs on
tion frequency groups and performs low- | GPU (Nvidia V100)

cost information exchange and up-

date

clusters them into several buckets through efficient online LSH-based clustering [56], with each cluster represented
by its centroid. Besides handling repeated information in a 2D scope, Deep Reuse also addresses the redundancy in
data batches. Based on the clustering results, Deep Reuse reduces a convolution to multiplications between a small
matrix formed by the clusters centroids and the filter matrix. The results are used to reconstruct the full activation map
through data duplications. Even with the online clustering overhead, the work shows that the reuse of computation
results yields an overall 1.77 — 2x speedup (up to 4.3x layer-wise) with negligible accuracy loss and without model
retraining. The method yields more speedups when applied to CNN training in an adaptive manner [115].

A fundamental tradeoff facing the methods in this category is the accuracy and the amount of computation reuse. It is
determined by the aggressiveness in similarity-based clustering. For instance, in the Deep Reuse work, the aggressiveness
is determined by two hyper-parameters, the length of a sub-vector in an activation map (granularity), and then the
number of LSH hashing vectors. As the appropriate values of the hyperparameters are data and model dependent, the
previous work [116] employs some offline tuning process to select the values such that the accuracy is not compromised.
One of the directions worth some future explorations is to adapt the clustering method to data and models. For instance,
in Deep Reuse, the hashing vectors are randomly generated. If they can be learned from data for a given CNN, more

aggressive clustering might be possible without causing accuracy losses.
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Fig. 2. lllustration of sub-vector clustering in Deep Reuse. In a convolution layer, the activation maps of 2D images are unfolded as x
and are multiplied by weights W of corresponding filters. With sub-vector clustering, x is first divided into sub-vectors and labeled
with corresponding cluster ids. In the matrix multiplication, only the representative of each cluster is used. Afterward, the output
activation maps are re-constructed with the representative results of each cluster. Figure adapted from reference [116].

4.2 Irrelevant Information

4.2.1 Feature Pruning. Image data or intermediate activation maps may have unnecessary information as well. For
example, most well-trained CNNs can still maintain their prediction accuracy when some pixels in the activation
maps are removed. Subsequently, the skipped portion of the data reduces the amount of computation and thus offers
acceleration during inference or training. We introduce some details about how the optimizations in this line identify
these irrelevant values at different scales and get rid of them while keeping the overall accuracy.

Hu et al. [73] identify many zeros in the activation of CNNs. They quantify the neurons to be pruned based on the
Average Percentage of Zeros (APoZ). APoZ is calculated on a per-layer basis to measure the probability each fixed position
appears to be zero-valued in validation data samples. With the same motivation, Akhlaghi et al. [2] and Piyasena et
al. [123] propose detecting zero pixels that may occur after the ReLU activations. It is by identifying the negative
activations earlier using a low-cost approximation scheme since the negative values turn into zeros after going through
the ReLU layers. In particular, Akhlaghi et al. [2] construct SnaPEA with a runtime technique to speculate on the
convolution outputs’ sign before going through negative weights. The aggressiveness of the speculation is controlled
by thresholding on parameters and the predefined associated number of MAC operations that can maintain accuracy.
The parameters are tuned offline within the search space. Piyasena et al. [123] augment the CNN implementation
with a lightweight approximation scheme that consists of ApproxConv and ReLupred stages. The two operations work
sequentially to handle the sign prediction on an approximate convolution computation.

A more direct way to remove irrelevant information is to assume the existence of redundancy based on domain
knowledge and prune the data or activation maps at different scales. Figurnov et al. [49] prunes the data at pixel and
patch level. The proposed mechanism inherits the idea of the loop perforation technique in code optimization to skip

certain spatial positions in images for CNN classification inference. The selection of pixels to prune is random within a
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predefined limited number of points. They exploit four input-independent perforation masks: Uniform mask, Grid mask,
Pooling Structure mask, and Impact mask, as shown in Fig. 3. These masks are used to confine the random point selected
into corresponding patterns. Afterward, perforated CNN uses interpolation to reconstruct the output feature maps. The

CNN wights are retrained to adapt to this optimization as well.
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Fig. 3. Input-independent perforation masks in PerforatedCNNs. According to the paper, the mass layout is for the AlexNet Conv2
layer. (a) Uniform perforation mask is N points chosen randomly without replacement from the set Q. (b) Grid perforation mask
is a set of points I = a(1), ...,a(Kx) X b(1), ..., b(Ky) the values of a(i), b(i) using the pseudorandom integer sequence generation
scheme [59]. (c) Pooling structure mask exploits the structure of the overlaps of pooling operators. Denote by A(x, y) the number
of times the convolutional layer output is used in the pooling operators. The pooling structure mask is obtained by picking top-N
positions with the highest values of A(x, y). (d) Impact mask estimates the impact of perforation of each position on the CNN loss
function and then removes the least important positions. When activation maps are computed, the coordinates of black pixels are
skipped. Figures and description adapted from reference [49].

Aside from the pruning technique within the scope of a single activation map, irrelevant information can be addressed
across the channel dimensions by, for instance, removing a set of outside 2D feature maps. Specifically, Gao et al. [54]
apply feature boosting and suppression by formulating a channel saliency predictor. The predictor serves as an indicator
to skip execution at some feature maps at runtime. Chakraborty et al. [17] show that in a simple handwritten digit
recognition task, directly discarding redundant feature maps randomly before the full connection does not affect the
prediction accuracy much. On the same axis, Singh et al. [140] conduct a comprehensive analysis on pruning redundant
activation maps in 1D CNN, SoundNet [5], at a per map level. The pruned feature map selection is based on the following
measurements: ANOVA-based method [120], Entropy-based (DE) method [121], Cosine-similarity (CS) based method,
and a greedy algorithm for selection of feature maps based on KL divergence. Gaikwad et al. [50] apply the L2 norm
to decide feature map importance in pruning feature maps of SqueezeNet [77]. Although the technique is not for
image data, the selection criteria are worthy of being noted under the context of irrelevancy elimination. Furthermore,
multiple granularities of redundancy can be handled at the same time. For example, Yu et al. [161] combine spatial
and channel-wise neuron pruning on activation maps. The criteria of what to be pruned are based on the attention
mechanism. The attention mechanism is trained with targeted dropout, enhancing inference time robustness without
accuracy loss after pruning.

Moreover, the optimizations can be classified by whether the irrelevancy is subject to the input datasets or not.
Namely, they are input-dependent or input-independent. Input-dependent irrelevant information removal can be
achieved by detecting data irrelevancy based on statistical [54, 73, 140] or learning-based heuristic [2, 161], or estimation
of values [123]. On the contrary, input-independent approaches [17, 49] get rid of those irrelevant values by implicitly

assuming them to appear randomly with a limit threshold in structural or non-structural manners.
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4.2.2  Neuron or Feature Subset Selection. Another granularity used in feature map pruning is the selection of neurons
(or activation). It could be regarded as a feature selection process at the value granularity. The neurons not chosen can
be interpreted as ones being pruned. A subset of activations is determined based on specific criteria in neuron selection.
Lee et al. [98] apply ranking on the neurons of DNNs based on their contribution to the inference accuracy. Huang et
al. [75] add a sparsity regularization on neurons to force some of them to become zeros and guide the selection of more
informative neurons without further tuning. Besides, Ibrokhimov et al. [78] propose the technique that selects neurons
based on the magnitude of their average activations and keeps only the exact amount of the most minor activated

neurons that work well. They report a reduction in the total number of operations and corresponding speedups.

4.2.3 Dynamic Region of Interest. In object detection, dynamic zooming in [52, 100] of a particular region of interest can
help reduce computations on irrelevant background information. Gao et al. [52] present such a technique. They employ
zoom-in accuracy gain regression network (R-net) and zoom-in Q function network (Q-net). The R-net learns the correlation
between coarse and fine detection and predicts the accuracy gain for zooming in to a specific region. The Q-net learns
via reinforcement learning. It sequentially selects the optimal zoom locations and scales them correspondingly by
analyzing the new output of R-net and its history. In the inference phase, a down-sampled image is input to the R-net and
predicts the accuracy gain. The gain serves as an indicator for the Q-net to select the target on regions to concentrate
sequentially. The workflow is illustrated in Fig. 4. The mechanism reduces the total pixels in computation by over 50%
and reduces the average detection time by 25% on the Caltech Pedestrian Detection dataset. It also reduces the pixels
by 70% and obtains over 50% detection time reduction on the YFCC100M dataset.
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Fig. 4. The workflow of R-net and Q-net. Given a down-sampled image as input, the R-net generates an initial accuracy gain (AG)
map indicating the potential zoom-in accuracy gain of different regions (initial state). The Q-net is applied iteratively on the AG
map to select regions. Once a region is selected, the AG map will be updated to reflect the history of actions. Two parallel pipelines
are used for the Q-net, each of which outputs an action-reward map that corresponds to selecting zoom-in regions with a specific
size. The map’s value indicates the likelihood that the action will increase accuracy at a low cost. Action rewards from all maps are
considered to select the optimal zoom-in region at each iteration. The notation 128 X 15 x 20 : (7, 10) means 128 convolution kernels
with size 15 X 20, and stride of 7/10 in height/width. Each grid cell in the output maps is given a unique color, and a bounding box of
the same color is drawn on the image to denote the corresponding zoom region size and location. Figure and description adapted
from reference [52].

4.3 Over-detailed Information

Yet another direction in image data redundancy exploitation is eliminating over-detailed information, represented by

adaption to variant image resolutions, especially resolution lowering. Chen et al. [24] propose Octave convolution
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(OctConv) (Fig. 5) to leverage the spatial redundancy and factorize the activation maps into high and low frequency
(resolution) groups to save both memory and computation cost. The operations at each layer enable the information
to be exchanged within both groups during computation. It is implemented as a portable plug-and-play convolution
unit and can be applied together with a compressed model or optimization that reduces channel-wise redundancy. An

OctConv-equipped ResNet-152 can achieve 82.9% top-1 classification accuracy on ImageNet with 22.2 GFLOPs.
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Fig. 5. lllustration of Octave Conv in the factorization of high and low spatial frequency. (a) Motivation. The spatial frequency
model for vision [11, 40] shows that raw images can be decomposed into a low and a high spatial frequency part. (b) The output
maps of a convolution layer can also be factorized and grouped by their spatial frequency. (c) The proposed multifrequency feature
representation stores the smoothly changing, low-frequency maps in a low-resolution tensor to reduce spatial redundancy. (d) The
proposed Octave Convolution operates directly on this representation. It updates the information for each group and further enables
information exchange between groups. Figures and descriptions adapted from reference [24].

ViP proposed by Chen et al. [27] also targets the spatial redundancy in feature maps. It takes advantage of virtual
pooling, as shown in Fig. 6, such that the larger stride is used to obtain a smaller feature map and at the same time save
convolution computation. To recover the output feature map dimension, linear interpolation is applied. ViP delivers
2.1x speedup with less than 1.5% accuracy degradation in ImageNet classification on VGG16, and 1.8% speedup with
0.025 mAP degradation in PASCAL VOC object detection with Faster-RCNN. ViP also reduces mobile GPU and CPU
energy consumption by up to 55% and 70%, respectively.

5 LEVERAGE DATA REDUNDANCY IN DNN FOR VIDEOS

Existing DNN frameworks for video analysis are built on well-developed CNNs such as VGG [139] or ResNet [65]
and image-based object detection algorithms such as Faster-RCNN [126]. They treat the video as a continuous input
of images. Intuitively, the data redundancy in this line of works, especially the duplication along the temporal axis,
provides much room for performance enhancement. DNN frameworks that leverage data redundancy in video data

can be categorized based on how they exploit redundancy. These techniques fall into the three categories listed in
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Fig. 6. lllustration of virtual polling [104]. By using a larger stride, it save computation in conv layers and, to recover the output size,
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it use linear interpolation which is fast to compute. Figure and description adapted from reference [27].

our taxonomy (skipping, reuse, and approximation); this section groups them more detailed to capture the more
complicated differences among the techniques. Table 3 shows the works with video data redundancy exploitation by

their applications.

5.1 Pruning

A way to avoid recomputing similar values across video frames is through skipping some of them along the temporal
dimension (or the batch dimension in 2D CNN). Kang et al. propose NoScope [84] to optimize the processing of video
querying. As shown in Fig. 7, they insert a difference detector and a specialized model with short-circuit evaluation

that allows computation reduction on almost identical neighboring frames in a video sequence.
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Fig. 7. lllustration of the NoScope framework. NoScope is a system for accelerating neural network analysis over videos via an
inference-optimized model search. Given an input video, target object, and reference neural network, NoScope automatically searches
for and trains a cascade of models—including difference detectors and specialized networks—that can reproduce the binarized outputs
of the reference network with high accuracy—but up to three orders of magnitude faster. Figure and description adapted from
reference [84].
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Table 3. Summary of works on video data redundancy
Application Paper | Code | Key Idea Performance
surveillance video pro- | [16] [13] CBlInfer utilizes change-based evalu- | Evaluated on a self-constructed 5-
cessing ation for CNNs to detect redundant | layer CNN with input image size
pixels on video tasks 871 x 541, provides speedup 8.6x
over the CUDA baseline. Energy ef-
ficiency 10x higher (328 GOp/s/W
on Nvidia Jetson TX1)

[15] [14]

video object detection | [29] N/A | AdaScale trains a object detector | Improve the speed by 25%; RFCN +
and a regressor to dynamically ad- | AdaS 20 fps; SegNMS [64] + AdaS 16
just the optimal detector scale for | fps; DFF [168] + AdaS 60 fps on GPU
video frames (Nvidia GTX 1080T1)

[21] N/A | Scale-Time Lattice performs expen- | On ImageNet VID, the approach
sive detection with fewer times and | achieves 79.6% at 20 fps or 79.0%
propagates the results across scale | at 62 fps on GPU
and time to balance the perfor-
mance and accuracy tradeoff

[165] [106] | A convolutional LSTM to assist Sin- | 15 fps with MobileNet-SSD on CPU
gle Shot Detector (SSD) on refining
feature maps and reuse history in-
formation

video object tracking [112] N/A | CaTDeT applies a tracker to assist | Constructed Res10a and Res10b as
refining intermediate feature maps | proposal net, ResNet50 as refine-
for better reuse ment net, giving 81.4% and 81.5%

mAP with MAC size 49.3 Gops
and 29.3 Gops respectively on GPU
(Nvidia Titan X (Maxwell))

[162] N/A | Kill Two Bird with One Stone ag-| SSD with 300 X 300 subframe size
gregates moving objects as patch- | at 13.7-24.2 fps and 500 x 500 sub-
of-interest to construct a compact | frame size at 23.8-25.7 fps on GPU
patch that skips duplicate image | (Nvidia Titan X)
patchs’ calculation

temporal action local- | [160] [159] | An end-to-end model for temporal | Requiring 2% or less frames.

ization action localization that generates
compact video representations

(4] (3] Action Search uses LSTMs to predict | Observing an average 17.3% of the
next search location from current | video 30.8% mAP on human activi-
frame’s location and the history ties recognition
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Application Paper | Code | Key Idea Performance

frame selection [156] N/A | AdaFrame uses memory- | On FCVID [81] and ActivityNet
augmented LSTM to adaptively | dataset, achieving the same per-
select relevant frames for fast | formance with only 8.21 and 8.65
prediction frames, respectively.

[94] N/A | SCSampler is a lightweight model | Improve the state-of-art 3D
for clip sampling that invokes recog- | CNN video classification models
nition on only the most salient clips | (ResNet3D (R3D), Mixed Con-

volutional Network(MC3), and
R(2+1)D [42]) on Sports1M by up
to 7% and reduces the computation
cost by more than 15X on GPU (32
Nvidia P100)

[84] [83] NoScope adopts a difference detector | YOLOv2 with more than 30 fps and
and short-circuit evaluation on the | less than 5% accuracy loss on GPU
model that allows skipping identical | (Nvidia P100)
neighboring video frames

action recognition [154] N/A | The authors use gated recurrent | 79.1% mAP for ActivityNet-v1.3
units (GRUs) and policy networks | on YouTube Birds and 79.77% on
in reinforcement learning to adjust | YouTube Cars on GPU (Nvidia Ti-
video sampling location per time | tan X)
step
streaming activ- | [142] N/A | An active mechanism that priori- | Achieving comparable accuracy on
ity  recognition & tizes frames and makes timely ac- | 32 fps and 64 fps CNN video classi-
untrimmed video tion prediction fication on CNNs
activity detection
video object detection | [169] [166] | deep feature flow network (DFF) | 20.25 fps and 73.1% mAP on
& video semantic seg- propagates neighboring frames in- | ResNet-101-R-FCN on GPU (Nvidia
mentation formation with a flow estimation | K40)
algorithm

[168] Assemble the appearance informa- | 74.0% mAP and 76.3% mAP on

tion in consecutive frames ResNet-50-R-FCN and ResNet-101-
R-FCN respectively on GPU (Nvidia
K40)

[167] A unified framework that includes | 77.8% mAP on ResNet-101-DCN on

the above two techniques GPU (Nvidia K40)
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Table 3 — Continued from previous page

Application Paper | Code | Key Idea Performance

video object detection | [86, 87] | [85] Use LSTMs for temporal informa- | Evaluated on DeepID-Net [118]

& video object localiza- tion propagation in order to im-| with CRAFT [157] (pretrained

tion prove video detection accuracy Faster-RCNN), offering 67.82%
mAP and 68.4% mAP on GPU (4
Nvidia Titan X)

The redundancy across continuous frames can also be addressed at the pixel level. Cavigelli et al. propose CBinfer [15,
16], a change-based evaluation of CNN for video data recorded with a static camera, to exploit the spatial-temporal
sparsity of pixel changes. As shown in Fig. 8, they modify each convolution layer to include an additional change
detection mechanism and change indexes extraction before the matrix multiplication. The output is updated with both
non-changed output pixels from the previous frame and changed output pixels calculated at this time. CBinfer achieves
an average speed-up of 8.6x over a cuDNN baseline on a realistic benchmark with a negligible accuracy loss of less
than 0.1% and no network retraining. The resulting energy efficiency is 10X higher than per-frame evaluation and

reaches an equivalent of 328 GOp/s/W on the Nvidia Tegra X1 platform.

5.2 Approximate Representation

Regional re-scaling is a type of approximate representation. Chin et al. propose AdaScale [29] that exploits the potential
benefit bought by adaptive image scaling. They resort to image down-sampling to realize performance improvement
on both accuracy and speedup for video object detection. To accomplish this, AdaScale adopts an object detector to
generate the optimal scale labels for images carried out by a learning-based method. The generated optimal scale is
later used to train the scale regressor that dynamically re-scales the image. The visualization of the effect is shown in
Fig. 9. When the images are down-sampled, they are supposed to reduce the number of false positives introduced by
overly detail-oriented messages, which in turn dismiss the redundancy. The image scaling increases the number of
true positives by turning the objects too large to smaller ones for the detector to be more confident. For ImageNet
VID and mini YouTube-BB datasets, AdaScale demonstrates 1.3% and 2.7% mAP improvement with 1.6x and 1.8x
speedup respectively. The framework can also work complementary with video acceleration work [169], of which they

experience a speedup gain by 25% and a slight mAP boost on the ImageNet VID dataset.

| v

input change ) A Y matrix
n, xhxw,fit change change map i change indexes X matrix X matrix matrix Ny X Ny fit output output
detect. hxw, bool Ny int gen. nkexn,, fit multipl. update N X hxw,fit
extract. Z 2
prev. input g prev. output

2

Fig. 8. Processing flow of the change-based convolution algorithm. Custom processing kernels are shown in blue, processing steps
using available libraries are shown in green, variables sharable among layers are shown in yellow, and variables to be stored per layer
are colored orange. The size and data type of the tensor storing the intermediate results is indicated below each variable name. Figure
and description adapted from reference [16].
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Fig. 9. AdaScale detection result visualization. Examples where down-sampled images have better detection results. Blue boxes are
the detection results, and the numbers are the confidence. The detector is trained on a single scale (pixels of the shortest side) of 600.
Column (a) and (c) are tested at scale of 600. Column (b) is tested at scale 240, and column (d) is tested at scale 480. Figures and
descriptions adapted from reference [29].

5.3 Subset Selection

Subset selection is for obtaining a subgroup of potentially representative video frames or corresponding feature maps.

These techniques adopt a variety of dimensions in preference, from the spatial to the temporal, batch, and streaming.
5.3.1 Selection in the Spatial Dimension.

Patch-of-Interest. Zhang et al. [162] propose Kill Two Bird with One Stone to aggregate patch-of-interest (usually the
moving object within images) for construction of a compact patch composition for video object detection as shown
in Fig. 10. In the detection steps, the parts of the spatial dimension data patches are eliminated to save unnecessary

computation. The set of patch-of-interest is mapped back by their numbers and location offsets to reconstruct the final

result.
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Fig. 10. Patch-of-Interest composition. (a) The input image. (b) Detected patches. (c) The patch composition (left) and sub-frames(right).
(d) Detection results on sub-frames. (e) Map back and get the final result on the original image. Figures and descriptions adapted
from reference [162].

Patch Refinement. Mao et al. [112] present CaTDeT (Cascaded Tracking Detector), which applies a tracker as assistance
for refining intermediate feature maps in video object detection. The illustration of the algorithm is shown in Fig. 11.
The tracker provides information on the region of interest based on historical detection. It reduces the operation count
by 5.1x to 8.7x with a slight delay.
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Fig. 11. Illustration of algorithm flow in CaTDeT. Compare the inference-time workflows of the standard Faster R-CNN model and
the refinement network. (a) Standard Faster R-CNN detector: the RPN takes the feature maps from the feature extractor. (b) Faster
R-CNN detector for the refinement network: the proposals from the proposal network and the tracker instruct the feature extractor
only to compute features on regions of interest. Regions of interest are a mask of all proposals over the frame. Figures and descriptions
adapted from reference [112].

5.3.2  Selection in the Temporal Dimension. Korbar et al. propose SCSampler [94], a lightweight model for clip sampling
that can invoke recognition on only the most salient clips. The paper targets scenarios where the videos are untrimmed
and long. They aim to reduce the high inference cost when every clip is executed on the clip classifier. They apply both
visual and audio samplers and combine their saliency for prediction. The visual sampler proposes a learning-based
clip-level saliency model that provides each clip a saliency score between [0,1]. In particular, the model takes the input
clip features that are fast to compute from the raw clip and have low dimensionality (lower than that of the classifier)
to analyze each clip very efficiently. The clips with top-K saliency scores are extracted with features by the classifier and
aggregated together to form the representation for prediction. The sampler learning phase labels a saliency score of
video with 1 if the action is contained in that clip; otherwise, it is labeled as 0. The approach elevates the accuracy of an
already state-of-the-art action classifier by 7% and reduces its computational cost by more than 15 times.

On the other hand, subset selection in the temporal dimension of the video can sometimes help improve task accuracy.
This work typically involves the addition of some sophisticated mechanisms into the DNN. As a result, they often slow
down the DNN rather than speed it up. But their goal is on the accuracy of the outputs rather than speed. A class of the
work uses recurrent Neural Networks, such as Long Short Term Memory networks (LSTM), for capturing long-term
dependencies in sequence data. They use them to generate compact video representations along with CNN activation
maps [4, 156, 160]. They mimic the behavior of humans viewing videos that often consist of a glimpse followed by
several refinements. In addition, some work [154] combines gated recurrent units (GRUs) and policy networks in

reinforcement learning to adjust video sampling location accordingly at each time step.

5.3.3 Selection in the Streaming Scenario. The selection in a streaming scenario is more challenging. For each selection,
the mechanisms need to make decisions on future frames based on historical records. Su et al. [142] introduce an active
mechanism that prioritizes "which feature to compute when" to make timely action predictions. The core idea is to
learn a policy that dynamically schedules the sequence of features to compute on selected frames of a given test video.
The selection procedure can be invoked for either batch or streaming dimension. They formulate the problem with a
Markov decision process (MDP) to learn the feature prioritization policy. The MDP sequentially selects frames with the
most promising bag-of-objects or CNN features that can improve accuracy when combined with accumulated history

results. Fig. 12 illustrates the action spaces explored in the mechanism. On two challenging datasets (Activities of Daily
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Living [122] and UCF-101 [141]), their method provides significantly better accuracy than previous techniques under
given computational budgets on two challenging datasets (Activities of Daily Living and UCF-101 ).
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Fig. 12. Action spaces. Top: In batch, the whole video is divided into sub-volumes, and actions are defined by the volume and object
category to detect. Middle: In streaming, the video is divided into segments by the buffer at each step, and actions are the object
category to detect in the buffer plus a “skip” action. Bottom: Our method learns a video-specific policy to select a sequence of valuable
features to extract dynamically. Figure and description adapted from reference [142].

5.4 Temporal Propagation

The neighboring frames in a video usually show some inherent continuity. In this type of optimization, the intermediate
computation results of adjacent video frames such as feature maps, bounding boxes, or classification probability and
confidence are propagated along the temporal dimension to reduce the need for re-computation on similar contents.
Usually, some key frames are chosen, and the results are propagated from them to other frames. The optimizations are
different in the representations used in propagation and update. The representations of frame features include Optical
Flow, Motion History Image (MHI), and Convolutional LSTMs. To clarify, in Convolutional LSTMs, frames are represented

in normal CNN feature maps, but the corresponding information is updated via LSTM networks.

5.4.1 Using Optical flow. Zhu et al. [169] propose a deep feature flow network (DFF). In DFF, neighboring frames are
propagated with feature maps via a flow field for partial updates. The updates are obtained by a flow estimation
algorithm like SIFT Flow [105] or FlowNet [41]. Fig. 13 shows how information is propagated within neighboring
frames. Compared to re-computing each frame through convolution layers, DFF is 10X faster with only a few percent
accuracy loss. Subsequently, the team comes up with the flow-guided feature aggregation (FGFA) [168] that associates
and assembles the rich appearance information in consecutive frames to improve feature representation and accuracy.
Afterward, the authors unify the solutions into a common framework [167], and achieve 77.8% mAP score at a speed
of 15.22 frame per second for video object detection.

Kang et al. [87] leverage motion-guided propagation for minor temporal information refinement across adjacent
frames. The assistance of temporal information reduces the potential false negatives prediction when frames are

processed per frame.
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Fig. 13. Illustration of temporal propagation in deep feature flow. (a) Video recognition using per-frame network evaluation (b) The
proposed deep feature flow. Figures and descriptions adapted from reference [169].

5.4.2  Using Motion History Image. Unlike previous approaches that propagate key frames information at fixed intervals,
Chen et al. [21] propose Scale-Time Lattice that selects the key frames adaptively. The Scale-Time Lattice is a directed
acyclic graph as shown in Fig. 14. Inside the graph, the node stands for the bounding box detection result at a particular
spatial resolution and time point; the edge represents an operation that performs temporal propagation or spatial
refinement. During the execution, given a video input, the framework first applies expensive object detectors to the key
frames selected sparsely and adaptively based on the object motion and scale. Next, within the lattice, those bounding
boxes are propagated to intermediate frames and refined across scales (from coarse to fine) via cheaper networks. A
Propagation Refinement Unit (PRU) takes the detection results of two consecutive frames as input, propagates them to
other frames, and re-scales them. The authors adopt Motion History Image (MHI) [10] since the motion representation
computation is relatively cheap than optical flows. Overall, the proposed method yields 79.6 mAP at 20 FPS and 79.0
mAP at 62 FPS on ImageNet VID dataset.

5.4.3 Using Convolutional LSTMs. Liu et al. [165] argue that temporal cues can be efficiently propagated through an
LSTM network. The LSTM serves as an augmented structure to assist in refining temporal context for the generated
features of each frame in the video. In the presented architecture in Fig. 15, a hypothesis feature map for each frame is
generated by the CNN feature extractor and then fed into the LSTM to be fused with temporal context from previous
frames. The output for that frame is a temporally-aware refined feature map. The experiment integrates the convolutional
LSTMs with Single Shot Detector (SSD) [109] and provides a quick inference speed with only 15 FPS on a mobile CPU.

Kang et al. [86] leverage LSTMs instead of bounding box proposal refinement in video object recognition. The
temporal information is propagated across each proposal tublet to improve accuracy. As shown in Fig. 16, an encoder-
decoder LSTM structure is placed after the Tublet Proposal Network. It generates the output probability of each class

label as a prediction result for each proposal.
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Fig. 14. The Scale-Time Lattice, where each node represents the detection results at a specific scale and time point, and each edge
represents an operation from one node to another. In particular, the horizontal edges (in blue color) represent the temporal propagation
from one time step to the next, while the vertical edges (in green color) represent the spatial refinement from low to high resolutions.
Given a video, the image-based detection is only done at sparsely chosen key frames, and the results are propagated along a
pre-defined path to the bottom row. The final results at the bottom cover all the time points. Figure and description adapted from
reference [21].
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Fig. 15. An example illustration of our joint LSTM-SSD model. Multiple Convolutional LSTM layers are inserted into the network.
Each propagates and refines feature maps at a particular scale. Figure and description adapted from reference [165].

5.5 Data Redundancy based Optimizations on 3D CNNs

So far, we have discussed how the performance of 2D CNN is advanced with works that exploit redundancy, especially
at the temporal dimension where contiguous frames involve much identical information. Most of the optimizations are
for the performance of video object detection, which is rather heavy on computation as the DNN has an additional

region proposal phase. Still, some DNNs enable the analytical capability for videos with either 3D CNN [80, 145] or
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Fig. 16. The proposed object detection system consists of two main parts. The first is a tubelet proposal network to generate tubelet
proposals efficiently. The tubelet proposal network extracts multi-frame features within the spatial anchors, predicts the object
motion patterns relative to the spatial anchors, and generates tubelet proposals. The gray box indicates the video clip, and different
colors indicate the proposal process of other spatial anchors. The second part is an encoder-decoder CNN-LSTM network to extract
tubelet features and classify each proposal box into different classes. The tubelet features are first fed into the encoder LSTM by
a forward pass to capture the appearance features of the entire sequence. Then the states are copied to the decoder LSTM for a
backward pass with the tubelet features. The encoder-decoder LSTM processes the whole clip before outputting class probabilities for
each frame. Figure and description reference adapted from reference [86].

two-stream models [88, 138]. Unlike how 2D CNN is operated on video data, 3D CNN can end-to-end training and
inference on videos. It is augmented with capturing semantics along the temporal dimension using stridden convolution
filters.

Redundancy removal on video data for 3D CNN has been less explored at software-based optimizations. Some
works [12, 93] propose to analyze the potential redundancy of the underlying network structures by progressively
expanding the operator dimension from a 2D CNN basis. For example, Feichtenhofer et al. [46] explore the 2D to 3D
extension by considering the necessity of parameters or data in multiple dimensions. These include frame rate under
fixed duration, temporal duration, spatial resolution, number of layers per residual stage, number of channels, and
inner channel width in a residual block. These initiatives introduce another angle of viewing data redundancy on video
DNNs. Future works offer prospective clues for advancing redundancy removal-based algorithms on deep models.

Still, existing works [19, 44, 67, 132, 149, 151, 152] have developed performance optimizations for 3D CNN that
extend the fruitful efforts on the 2D CNN counterparts in hardware-based optimizations. The promising outcomes lie in
that computation along the temporal dimensions is only required on the deltas (value differences) between adjacent
video frames. They effectively alleviate the memory consumption and inference time bottleneck on resource-constraint

devices.

6 LEVERAGE DATA REDUNDANCY IN TRANSFORMER OPTIMIZATION FOR TEXT

Text-based redundancy optimization can be applied to Recurrent Neural Networks (RNNs), the widely used deep
learning model for texts before the invention of the Transformer-based model. Guan et al. [60] propose to leverage

context-free grammar (CFG) and a hierarchical compression algorithm to squeeze the repeated contexts in sequence
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prediction tasks. The optimization accelerates RNN inference up to a thousand times and expends the prediction
scope without losing task accuracy. Similar optimization insights can be found in many recent Transformer models as
well. Aside from reducing model execution time or increasing task-specific accuracy, many data redundancy-based
optimizations in Transformer models are initially motivated by the need to scale up the capacity of the models. Each
time, the model can only process a sequence limited in length (the number of token representations) for token-level
text inputs, subject to the hardware capability. The problem is especially crucial when it is necessary to process the
representations of a paragraph or an extended sequence at once. As a result, researchers have systematically identified
redundancy within the raw data or intermediate data representations to scale the model correctly.

Unlike CNN optimizations which leverage data redundancy at input data or intermediate feature maps between
convolution layers, optimizations on Transformers can occur at different stages of interim data representations. A
sequence of text input to the transformer model goes through several encoding phases, each capturing an extra level of
meaning. The stages focus on the initial sentences or sub-words input, the sub-words embeddings, the hidden states
produced by positional encoding, multi-head attention, or the encoder layer as a whole (multi-head attention and
feed-forward layer together). Data redundancy can exist in each of the phases. Existing studies leverage the redundancy
of various insights.

For the first stage, sub-word segmentation algorithms have been carried out with the motivation to remove redundancy
in text data. Byte-Pair Encoding (BPE) [131] is one such case. For the second stage, redundancy may exist in input
embeddings. Compression at the vector representation of word embeddings was introduced long before the wide
use of Transformer models [1, 25, 90]. For the remaining stages, there are optimizations that leverage redundancy
at intermediate representation, "hidden state” (a single sample output of a transformer layer; the unit is the same as
activation map in CNN), of the model in general. Optimizations that leverage data redundancy in Transformer are
classified based on how they exploit redundancy: clustering for reuse, skipping, and other ad-hoc sampling techniques.

Table 4 lists the surveyed work by their applications for better reference.

6.1 Reuse via Clustering

Kitaev and Kaiser et al. propose Reformer [92] with two main contributions in improving the transformer model:
Locality-sensitive Hashing Attention and Reversible Transformer. In particular, Locality-sensitive Hashing Attention tackles
data redundancy with a specific function design. The function uses an approximation in the scaled dot-product attention
in a transformer model. The scaled dot-product attention is defined as %V, which Q, K, and V are the query, key,
and value matrices, respectively. The authors identify that the computation in the softmax function is dominated by
key-query pairs that are in proximity. It indicates the calculation can pay attention to only a small subset of the closet
key-query pairs. As exemplified in Fig. 17, locality-sensitive hashing (LSH) [56] is employed to first cluster the keys and
queries into hash buckets. Queries and keys in each bucket are sorted to form chunks to avoid sparsity in the attention
matrix. Afterward, the scaled dot-product attention is substituted by allowing multiplication only between pairs in
the same hash buckets (or in chunks in the attention matrix). Furthermore, the Locality-sensitive Hashing Attention
introduces a multi-round LSH attention that enables multiple rounds of hashing to alleviate the problems that similar
items may fall into different buckets after hashing. In the decoder of the transformer model, a masking mechanism is
implemented to re-order the position indices by the same permutations that were previously applied to sort the key

and query vectors.
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Table 4. Summary of works on text data redundancy
Application Paper | Code | Key Idea Performance
text summarization | [108] | [107] | T"-DMCA is a modified multi- | possible tolearn on sequence length
head self-attention structure to | of 12,000 on GPU (Nvidia P100)
reduce the memory footprint in
self-attention layers
text classification [35] [34] Funnel-Transformer augments the | 1.3x-1.5x speedup on GPU/TPU
transformer model with an encoder
to gradually pooled the representa-
tion to reduce the sequence-length
of the hidden states as the layer goes
deeper
[58] [57] PoWER-BERT applies extract layers | 4.5X speedup on BERT-base mod-
and learning-based retention config- | els (6.8 with ALBERT) on GPU
uration to retain only the key em- | (Nvidia K80)
bedding vectors in the transformer
model
[38] [36] Exploit LayerSelector (LS) and Cor- | Evaluated on BERT and XLNET. Re-
relation Clustering Feature Selection | duce forward pass parameters up to
(CCFS) to select the essence layers | 47%. Reduce feature set to 4% (se-
and features for transformer models | quence labeling), < 1% (sequence
classification) on GPU (Nvidia Titan
X)
question answering | [92] [91] Propose Locality-sensitive Hashing | Attention speed can maintain as
Attention and Reversible Trans- | low as 0.1-0.5 seconds per step
former to address data redundancy | when sequence length per batch
scale from 32 to 32768s (baseline is
0.2-5 seconds per step) on GPU/TPU

6.2 Skipping

Output representations from attention layers in Transformer models have been recognized as containing much redundant
information [113, 147]. They have been addressed through ways of attention head pruning [113, 147]. Recent studies
have investigated the criteria for pruning neurons (activations) in Transformer models. Specifically, Gupta et al. [63]
suggest neurons are to be pruned when either the importance of that neuron is low or when the same activation
multiplies with the same weights. The neuron importance function [130] is defined on entropy, output-weights norm,
or the input-weights norm.

The hidden state of a sequence of word vectors may contain repetitive information themselves. Goyal et al. [58]
identify that the pair-wise cosine similarity between word vectors in hidden states increases as layers go progressively
deeper (encode by more phases). They propose POWER-BERT to exploit the redundancy to reduce the inference time
of the BERT model in text classification and regression tasks. As illustrated in Fig. 18, POWER-BERT uses an Extract
Layer to manage the retention configuration after the Self-Attention Layer and before the Feed Forward Network (FFN) in
each encoder layer of the Transformer model. The retention configuration can be set manually or set with parameters
from training. The model is trained with a loss function proposed to obtain the learning-based design. This method

avoids the exponential search space in retention configuration. Furthermore, they employ two kinds of strategies to
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Fig. 17. Locality-sensitive hashing attention in Reformer. LSH Attention shows the hash-bucketing, sorting, and chunking steps and
the resulting causal attentions. (a-d) Attention matrices for these varieties of attention. Figures adapted from reference [92].

retain the word representations: static and the dynamic strategy. The static strategy keeps the word vectors at the same
positions across all input sequences in the dataset. The dynamic strategy retains the word vectors based on the attention
scoring and a soft-extract layer. In the experiment, they obtain a 4.5X inference time acceleration over the baseline
BERT model with less than 1% accuracy loss. The proposed technique is also compatible with the compression scheme
such as ALBERT [96]. The combination of both compression methods achieves a 6.8x inference time reduction with
less than 1% accuracy loss.

Dalvi et al. [38] propose an efficient transfer learning method that exploits LayerSelector (LS) and Correlation Clustering
Feature Selection (CCFS) to select the essence layers and features required during transformer model execution. There are
three main steps in the selection: (1) LayerSelector (LS) uses the layer-classifier to select the lowest layer that maintains
oracle performance. (2) Correlation Clustering filters out redundant neurons given the hidden state’s output of the
previous layer. (3) Feature Selection (FS) selects a minimal set of neurons required to reach optimum performance on the
given task.

For the first step, the authors analyze task-specific layer-level redundancy by training linear probing classifiers [7, 133]
on each layer [; as layer-classifier. They use the layer-classifier to select the lowest layer that maintains oracle performance
(maintaining 99% performance). In LS, a concentration of all layers until the chosen layer is used.

For the following two steps, the CCFS exploits data redundancy by a combination of clustering and subset selection:

e Correlation Clustering (CC) [6]: For every length-N sequence vector representation, the product-moment corre-
lation between each of the two features is calculated. This gives a N-by-N matrix corr(x,y) representing the
correlation between fx and fy. The correlation value ranges from —1 to 1, which provides a relative scale to
compare any two neurons. The distance metric cdist(x, y) between these two features is defined by 1—|corr(x, y)|.
A hyper-parameter ct defines the maximum distance between any two features to be considered as a cluster.

o Feature Selection (FS): It identifies a minimal set of neurons that match the oracle performance. The Linguistic

Correlation Analysis [37] ranks the neurons concerning a downstream task.



30 Jou-An Chen et al.

W; We
117 111
o :I ( Feed Forward Network (FFN) ) \‘.
x - o
8 b Extract Layer ) i
w :\ ( Self-Attention Layer ) !
_____ W, W, W, e,
11 - N Y |
- ," ( Feed Forward Network (FFN) ) \‘I
8 b Extract Layer ) |
Lz’ SR I 1 N e I e I I O
w :\ ( Self-Attention Layer ) ,:
-70"5"'15'5]_]_[_|"|"|"|"|_I_I_I_ﬂ"f_|"|_|"|"|"|"|"|"|T
INPUT W, W, W, W, W, W,

Fig. 18. lllustration of POWER-BERT. Word-vector selection over the first two encoders. Here, N = 6, I; = 4 and I = 2. The first
encoder eliminates two word-vectors w2 and w4 with least significance scores; the second encoder further eliminates word-vectors
wl and wb. Figure and description adapted from reference [58].

Overall, the work finds out that up to 85% and 95% neurons are redundant in BERT and XLNet [158] respectively.
In the experiment, the proposed method accelerates sequence labeling tasks by 2.8x and 6.2x on BERT and XLNet,

respectively. While for sequence classification tasks, the average speedups are 1.1x and 2.8x correspondingly.

6.3 Other Sampling

Humans implicitly use prior linguistic knowledge to merge nearby tokens or words in paragraphs. This, in turn, forms
more extensive semantic phrases or units to understand sentences or paragraphs in a general form. Inspired by that, Dai
et al. [35] have proposed Funnel-Transformer. As shown in Fig. 19, the Funnel-Transformer is equipped with an additional
encoder to gradually pool the representation to reduce the sequence length of the hidden states as the layer goes deeper.
The sub-modules have an extra residual connection and layer normalization operation in the Self-Attention Layer and
the Feed Forward Network (FFN) of the Transformer model. The decoder is applied to reconstruct the full-sequence of
representation when the token-level outputs are required, such as pretraining.

To achieve the generation of Wikipedia-styled summarization over multi-documents, Liu et al. [108] introduce a
compressive scheme for long text sequences. The Transformer Decoder with Memory-Compressed Attention(T-DMCA) is
a modified multi-head self-attention structure to reduce the memory footprint via limiting the dot product between
the query and key of a Self-Attention Layer. The mechanism consists of the Memory-Compressed Attention and the
Local Attention as shown in Fig. 20. The Memory-Compressed Attention reduces the number of keys and values by
using a stridden convolution (for sampling). The Local Attention divides a sequence of tokens into blocks of similar
length of tokens (they use 256 tokens) to allow constant attention memory cost per block regardless of sequence length.

After feeding the sub-sequence to their corresponding Multi-head Attention to capture local information, the method
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Fig. 19. Illustration of Pooling in Funnel-Transformer. The encoder on the left consists of several blocks of consecutive Transformer
layers. Within each block, the sequence length of the hidden states always remains the same. But when going from a lower-level
block to a higher-level block, the size of the hidden sequence is reduced by performing a particular type of pooling along the sequence
dimension. The right part showcases the up-sampling to re-construct the arrangement of the original length. Figure and description
adapted from reference [35].

merges the results to get the final output sequence. For both Local and Memory-Compressed Attention, masking is cast to
prevent the queries from attending to future keys and values. Finally, the design enables the model to process 3X-longer

sequences than the default model.
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Fig. 20. Transformer Decoder with Memory-Compressed Attention(T-DMCA). Every attention layer takes a sequence of tokens as
input and produces a sequence of similar length as the output. Left: Original self-attention as used in the transformer decoder. Middle:
Memory-compressed attention, which reduces the number of keys/values. Right: Local attention, which splits the sequence into
individual smaller sub-sequences. The sub-sequences are then merged to get the final output sequence. Figure and reference adapted
from reference [108].

7 FUTURE RESEARCH DIRECTIONS

The many previous studies have clearly shown the significant benefits of exploitation of data redundancy in Deep
Learning. In creating the summary of the many explorations from various aspects, we have recognized the broad
coverage of the existing innovations, but at the same, observed some open problems and several research directions

worth pursuing in the future.



32 Jou-An Chen et al.

(i) Principled understanding of the relations between data redundancy exploitation and accuracy. Data
redundancy exploitation could cause changes in the output of a DNN because the removed data are often not guaranteed
to be redundant. In most cases, it faces the risks of degrading the accuracy, but in some cases, as mentioned earlier [29,
94, 142], it may also improve the accuracy for its noise removal effects. There is a lack of principled understanding of
how data redundancy elimination affects model accuracy. The accuracy of a DNN model can be affected by existing
variance related to data. Dataset itself may already contain bias over DNN models [144]. Data preprocessing, such
as data augmentation [33, 136], makes the discussion even more complicated. Previous work has either resorted to
empirical tuning to reach a satisfying point or used some heuristic methods to rate the salience of some data. An open
question is how to achieve a principled understanding of the impact and transform the knowledge into principled data
redundancy exploitation techniques. Some rigorous studies may help.

(ii) Enhancing interpretability. Related to the first direction, the second direction that may be worth exploring
is interpretability, which refers to both the interpretability of neuron representation and the interpretability of DNN
in general. Utilizing evidence in data redundancy has led to some initial success in improving the interpretability of
CNN’s feature representation, contributing to the CNN model pruning processes. For example, Li et al. [102] propose a
kernel sparsity and entropy indicator (KSE) to quantify the importance of each pixel in the activation map to provide
feature-agonistic guidance in weight compression. Identifications of data redundancy also benefit the interpretation of
the importance of each word in text processing. For example, Dalvi et al. [37] present Linguistic Correlation Analysis
and Cross-model Correlation Analysis to recognize the relative importance of a neuron in a Transformer model. Their
method offers an ablation view on the saliency of words in the paragraphs to guide future representation development.
These several studies show some promise in exploring data redundancy for the interpretability of deep learning. As
interpretability is important for connecting Deep Learning with domain understanding, more efforts are worthwhile to
develop further.

(iii) Other data types and models. A large portion of the prior work on data redundancy is about image and
video data. There is still some room left for more explorations on these data types. An example is learning from point
cloud [62] where data redundancy has not yet been explored. But in comparison to images and videos, redundancy
in text data is much less explored, as Transformer is more recently developed than the more mature models used in
images and videos. More explorations are especially in demand to better understand data redundancy in texts. Moreover,
besides the three types of data, there are other types of data on which DNN is also playing an important role. These
data include graphs, scientific simulation results, genes, computer programs, and so on. Correspondingly, the special
properties of these data have prompted the development of some new DNN models, such as Graph Convolutional
Networks (GCN) [155]. The differences in data properties, DNN models, and learning tasks suggest that some research
could be fruitful in understanding and exploiting data redundancy in these areas.

(iv) Relations among optimizations and systematic solutions. One of the questions that have not received
much attention is the relations among the many kinds of optimizations on data redundancy elimination, as well as their
relations with model optimizations. On images, for instance, as Section 4 and Table 1 show, there are many ways to
exploit data redundancy from various angles. Can these optimizations be used together? Is it worth doing that? Would
there be some conflicts besides that they may all affect the model accuracy? How to use them together in the best way?
More ambitiously, is it possible to build up frameworks that automatically apply one or more kinds of data redundancy
exploitation techniques on a given dataset and learning task? How about the interplay with model optimizations?
Answers to these questions may significantly advance the current understanding of data redundancy exploitation and

tap into the potential better.
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(v) Synergy with DNN accelerator designs. Yet another direction worth looking into is the synergy between the
many data redundancy exploitation techniques and DNN hardware designs. In modern application-specific integrated
circuit (ASIC) design, dataflow analysis [8, 79, 95] has been recognized as a crucial consideration. Some work on edge
devices has tried to address memory capacity issues by exploiting data redundancy (e.g., through data compression) [44,
67, 68, 114, 128, 132, 149, 151, 152]. But in general, there is no systematic understanding of the relations of the many
data redundancy exploitation techniques and the designs of DNN hardware accelerators. On the one hand, do those
techniques stay profitable when DNN runs on hardware accelerators? On the other hand, can hardware accelerator
designs gain some efficiency benefits by adopting some of the ideas in those techniques? Answers to these questions

could lead to the novel synergy between the two strands of efforts.

8 CONCLUSION

Machine learning is based on two pillars, models and data. As an essential part of deep learning, data plays an important
role. Making the best use of data determines the quality, speed, efficiency, and interpretability of machine learning. This
survey summarizes the efforts in the research community in detecting and leveraging data redundancy in a variety
of dimensions, introduces the first known taxonomy to categorize the existing techniques, and points out a set of
directions yet to explore. As the landscape of machine learning evolves continuously at an unprecedented speed, we
hope that this survey can provide a one-stop resource for researchers to attain a quick understanding of state of the art
and open issues, and hence benefit the industry practitioners and research community in selecting existing solutions

for solving a problem at hands or creating new solutions to advance this critical field further.
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