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ABSTRACT
Transformer models have achieved remarkable success in sequen-
tial recommender systems (SRSs). However, computing the atten-
tion matrix in traditional dot-product attention mechanisms re-
sults in a quadratic complexity with sequence lengths, leading
to high computational costs for long-term sequential recommen-
dation. Motivated by the above observation, we propose a novel
L2-Normalized Linear Attention for the Transformer-based Sequen-
tial Recommender Systems (LinRec), which theoretically improves
efficiency while preserving the learning capabilities of the tradi-
tional dot-product attention. Specifically, by thoroughly examining
the equivalence conditions of efficient attention mechanisms, we
show that LinRec possesses linear complexity while preserving
the property of attention mechanisms. In addition, we reveal its
latent efficiency properties by interpreting the proposed LinRec
mechanism through a statistical lens. Extensive experiments are
conducted based on two public benchmark datasets, demonstrating
that the combination of LinRec and Transformer models achieves
comparable or even superior performance than state-of-the-art
Transformer-based SRS models while significantly improving time
andmemory efficiency. The implementation code is available online
at https://github.com/Applied-Machine-Learning-Lab/LinRec.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
In recent years, sequential recommender systems (SRSs) have be-
come an increasingly popular and widely-applied technology [7,
17, 22, 41, 49, 55, 57, 64, 74], with applications in various practi-
cal scenarios such as social media, e-commerce, and online movie
platforms [14, 15, 34, 37, 44, 82–85]. In practice, users’ historical in-
teraction sequences are typically long-term, which contain valuable
yet unequal information (i.e., different interactions’ importance), in-
cluding more and less recent interactions, for revealing users’ actual
preferences [67, 71, 72, 76, 77, 79, 86–90, 92]. Therefore, identifying
important interactions while not losing valuable information from
a sequence [6, 57], thus learning better sequence representation
for making next-item recommendations, leads to the problem of
long-term sequential recommendation.

Towards this purpose, the Transformer architecture [53] has
gained significant attention since its capabilities for learning infor-
mative long-term sequential patterns among historical user-item in-
teractions. The core component of Transformer-based models is the
dot-product attention mechanism [53], which computes the corre-
sponding attention matrix for distinguishing items’ importance by a
dot-product operation between the query and key matrices (Query
and Key for short), thus learning sequence representations. For
example, BERT4Rec [48] uses multi-head self-attention and simul-
taneously calculates the attention score of all positions. FDSA [75]
introduces multiple attention blocks to depict the potential features.
SASRec [24] controls the predictions based on only a small amount
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of actions by adopting an attention mechanism. However, a signifi-
cant limitation of these models arises when dealing with long-term
sequences, where the sequence length 𝑁 is far greater than the item
embedding size 𝑑 (𝑁 ≫ 𝑑). Due to the dot-product operation in
the attention layer, the computational and memory complexity of
transformers are O(𝑁 2), resulting in the complexity could be dra-
matically increased with the problem scale (i.e., sequence lengths)
for long-term sequential recommendation [30–32, 80].

In view of the above limitations, several approaches have been
proposed to address the high computational costs of Transformer
models, including Fixed Patterns (FP), Combination of Patterns
(CP), Learnable Patterns (LP), Neural Memory, Low-Rank Methods,
Kernels, and Recurrence [51]. Some of these categories, such as FP,
LP, and low-Rank, are theoretically less complex than the standard
dot-product attention and have been shown to effectively reduce
memory and time costs in practice [4, 8, 25, 27, 38, 40, 58, 59].
Notably, there are several efficient transformer models with linear
complexity, such as Linformer [58], Linear Transformers [25], and
Big Bird [70]. However, these methods may not be well-suited
for SRSs, particularly when dealing with long-term sequences, as
they often introduce additional steps to improve efficiency while
sacrificing accuracy and stability. For instance, to reduce the rank
of the attention matrix, Linformer [58] introduces the projection
for both Query and Key, which results in additional complexity and
impairs accuracy, jeopardizing recommendation performance.

In this paper, we propose an efficient attention mechanism to
address the issue of high complexity transformers with linear com-
plexity, called L2-normalized Linear attention for long-term se-
quential Recommender systems (LinRec). Our proposed method
aims to create a method for the long-term sequential recommender
that not only retains the advantages of attention (such as high
accuracy) but also significantly reduces the computational com-
plexity. Additionally, LinRec can be conveniently transplanted to
any transformer for sequential recommendation systems, providing
flexibility and compatibility. Moreover, LinRec does not introduce
additional steps, but directly enhances the attention layer to im-
prove efficiency, preserving both effectiveness and stability. To be
more specific, the proposed LinRec mechanism involves three key
modifications compared to standard attention: (i) changing the
dot-product order of the attention mechanism, (ii) using row-wise
and column-wise normalization methods for Query (𝑸) and Key
(𝑲 ) respectively, and (iii) adding an activation layer to 𝑸 and 𝑲 .
These modifications enable LinRec to reduce the complexity from
O(𝑁 2) to O(𝑁 ), while still preserving the attention property and
providing sparsity.

The major contributions to our work are four-fold:
• We develop a novel L2 normalized linear attention (LinRec) for
long-term sequential recommendations, which reduces the com-
plexity of the attention mechanism from O(𝑁 2) to O(𝑁 ), while
preserving the high accuracy of the attention mechanism;

• We theoretically analyze the proposed LinRec mechanism, in-
cluding its effectiveness and efficiency, justifying the correctness
of our design choice. Moreover, we explain and factorize the
attention operation from a statistical perspective, demonstrating
the inherent relation of efficient Transformer with probabilities;

• The proposed LinRec mechanism is generally applicable to most
transformer models for SRSs, as it can be easily incorporated

Figure 1: The standard process of Dot-Product Attention.
into existing transformers by replacing the standard dot-product
attention, providing flexibility and compatibility;

• Empirical evaluations are conducted on two public benchmark
datasets (ML-1m and Gowalla), which demonstrates that LinRec
possesses competitive or superior performance than represen-
tative Transformer-based SRS models, while greatly reducing
computational and memory costs.

2 PRELIMINARY
In this section, we briefly introduce and discuss the widely used
dot-product attention mechanism in Transformer-based models
and the long-term sequential recommendation.

2.1 Dot-Product Attention
The critical part of transformers is the attention layer. The central
concept underlying the attention mechanism is that each element
in the sequence should learn to collect information from other
tokens. Below is a standard dot-product attention. First, we define
𝑁 as sequence length and 𝑑 as hidden size. The standard attention
mechanism can be written as:

𝑨 = softmax(𝑸𝑲T
√
𝑑

)𝑽 ,

𝑤ℎ𝑒𝑟𝑒 𝑸 = 𝑿𝑾𝑄 ,𝑲 = 𝑿𝑾𝐾 , 𝑽 = 𝑿𝑾𝑉 ,

where 𝑿 ∈ R𝑁×𝑑 is the input sequence matrix, 𝑾𝑄 ,𝑾𝐾 ,𝑾𝑉

are weight matrices for the projections that are learned from the
training process, 𝑸,𝑲 , 𝑽 ∈ R𝑁×𝑑 are Query, Key and Value ma-
trices which represent all 𝑁 positions’ queries, keys, and values,
softmax(·) is row-wise softmax. 𝑸𝑲T is usually divided by

√
𝑑 for

scaling, and 𝑨 is the output of attention mechanism.
Figure 1 shows that the standard attention mainly includes two

dot-product operations, where Cross represents matrix multiplica-
tion. One of the highlights of the attention mechanism is that after
the dot-product operation of Query, Key, and Value, the dimension
of the output matrix will not vary. The dimensional invariance can
convey the attention information to the sequence smoothly.
Advantages and Disadvantages. The attention matrix 𝑸𝑲T is
vital for the attention mechanism. Firstly, this 𝑁 × 𝑁 attention
matrix provides scores between elements in the sequence, which
helps learn the latent self-correlation in the sequence. In addition,
using a matrix that consists of all sequence information reduces
sequence operations and alleviates the gradient vanishing problem
compared to RNN. However, the disadvantage of attention is often
about the complexity problem. The main complexity is generated
by the dot-product operation of attention matrix, and the complex-
ity is O(𝑁 2𝑑), quadratic to the sequence length 𝑁 . The quadratic
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Figure 2: The overall architecture of the proposed model.

complexity will bring great memory and time costs when 𝑁 is big
enough. And the complexity is simplified to O(𝑁 2) when 𝑁 ≫ 𝑑 .
Therefore, utilizing a standard attention mechanism when dealing
with long-term sequences is impractical. Besides, softmax layer ag-
gregates attention scores on a few positions, which is not conducive
to mastering more information from long-term sequences.

2.2 Long-term Sequential Recommender
Systems

Long-term sequential recommender systems, i.e., Long-term SRSs,
are defined mathematically as systems that take into account a
user’s historical interactions over an extended period rather than
just their recent interactions. The definition of “long-term” can vary
depending on the specific application and context. In general, long-
term SRSs are characterized by the number of historical interactions
that are considered when generating recommendations, denoted as
𝑁 . A common way to define the threshold between short-term and
long-term SRSs is based on the ratio 𝑁 /𝑑 , where 𝑑 is the dimension
of the user or item embeddings, typically 64 to 128. In practice,
a ratio of 𝑁 /𝑑 greater than 1.5 is considered long-term, meaning
that the number of historical interactions is at least 1.5 times the
dimension of the embeddings. For example, if 𝑑 = 64, a long-term
SRS would consider at least 100 historical interactions.

3 METHODOLOGY
Given a set of user U = {𝑢1, 𝑢2, · · · , 𝑢 |U | } and a set of item V =

{𝑣1, 𝑣2, · · · , 𝑣 |V | }. Suppose that 𝑢𝑖 ’s historical interaction sequence
is 𝑠𝑖 = [𝑣𝑖1, · · · , 𝑣

𝑖
𝑡 , · · · , 𝑣𝑖𝑛𝑖 ], where 𝑣

𝑖
𝑡 is the 𝑡-th item interacted by

user 𝑢𝑖 , and 𝑛𝑖 represents the sequence’ length. For each user 𝑢𝑖 ,
LinRec takes 𝑢𝑖 ’s interaction sequence 𝑠𝑖 as input, and outputs the
top-𝑘 items from V that are most likely to be interacted with in
the next time step. As illustrated in Figure 2, our proposed architec-
ture consists of three major components, including the embedding
layer to generate item embeddings, the transformer layer to learn
sequence representation, and the final prediction layer. In particu-
lar, to improve efficiency and applicability for Long-term SRSs, we
propose a novel attention mechanism in the transformer layer. In
the following, we detail each component.

3.1 Embedding Layer
To jointly train LinRec with other Transformer-based backbones,
we build two parameter matrices (i.e., 𝑬𝑠 and 𝑬𝑝 ) as embedding
look-up tables for items’ embedding initialization in a sequence via

𝑬 = [𝑬𝑠1 + 𝑬
𝑝

1 , 𝑬
𝑠
2 + 𝑬

𝑝

2 , · · · , 𝑬
𝑠
𝑁 + 𝑬

𝑝

𝑁
]T, (1)

where 𝑬𝑠 , 𝑬𝑝 ∈ R𝑁×𝑑 are trainable matrices mapping items’ IDs
and position in sequence into 𝑑-dimension dense vectors.

3.2 Transformer Layer
With the above embedding layer, we are ready to integrate LinRec
into existing Transformer-based recommenders to learn sequence
representations. As mentioned in Sec. 2, traditional dot-product
attention methods are inherently sub-optimal since they typically
need high computational costs (i.e., O(𝑁 2𝑑)) to calculate the atten-
tion matrix. To preserve dot-product attention’s learning capabili-
ties while reducing its computational cost, we consequently propose
the LinRec mechanism for long-term SRSs. Specifically, we first
analyze dot-product attentions’ properties to derive equivalence
conditions that inspire our method design. We then propose an
efficient L2 Normalization method to modify the mapping (i.e., Soft-
max) of the dot-product, thus switching the calculation order (i.e.,
compute 𝑲T𝑽 first) to reduce computational complexity. Moreover,
we theoretically analyze the proposed LinRec, justifying its correct-
ness and computational efficiency. Besides, we interpret LinRec’s
superiority from a statistical perspective attached in Appendix A.

3.2.1 Equivalence Conditions. Generally, dot-product attention
mechanisms [53] calculate the corresponding attentionmatrix could
be formulated as follows:

𝑨 = 𝜌 (𝑸𝑲T)𝑉 ; 𝑩 = 𝜌 (𝑸𝑲T), (2)

where 𝜌 (·) means the scaling and row-wise Softmax operators. Ac-
cordingly, the attention matrix 𝑩 satisfies the following two prop-
erties: (1) Normalized Property. Each row of 𝑩’s elements sums up
to 1. (2) Non-Negative Property. Each element of 𝑩 is non-negative.
Each row of 𝑩’s elements is constrained into a range as [0, 1] to
easily distinguish the importance of different positions (i.e., element
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value is proportional to the corresponding item importance) in a
sequence and ensure numerical stability.

In practice, the computational complexity of computing 𝑩 first
could be dramatically increased with the problem scale (i.e., se-
quence length) [33, 40], which harms dot-product attentions’ appli-
cability for long-term sequences. Besides, 𝜌 (·) makes 𝜌 (𝑸𝑲T)𝑽 ≠

𝜌 (𝑸)𝜌 (𝑲T)𝑽 , which renders a non-trivial technical challenge (i.e.,
compute 𝑩 last) for simplifying Eq. (2)’s complexity. To tackle such
a challenge, we could devise another mapping instead of 𝜌 (·) to
decompose Eq. (2). Thus we could compute 𝑲T𝑽 first to reduce
computation complexity without jeopardizing attention’s learning
capabilities. Formally, we define such a mapping as follows:

𝑨′ = 𝜌1 (𝑸)𝜌2 (𝑲 )T𝑽 ; 𝑩′ = 𝜌1 (𝑸)𝜌2 (𝑲 )T, (3)

where 𝜌1 (·) and 𝜌2 (·) are different mappings from R𝑁×𝑑 to R𝑁×𝑑 ,
decomposing the original derivation (i.e., 𝜌 (𝑸𝑲T)) into two parts
(i.e., 𝜌1 (𝑸)𝜌2 (𝑲 )T) for subsequent calculation. Therefore, we could
specify the 𝑖-th row of 𝑩′ via

𝑩′
𝑖 =

( 𝑑∑︁
𝑗=1

𝑸
𝜌

𝑖 𝑗
𝑲
𝜌

1𝑗 ,
𝑑∑︁
𝑗=1

𝑸
𝜌

𝑖 𝑗
𝑲
𝜌

2𝑗 , · · · ,
𝑑∑︁
𝑗=1

𝑸
𝜌

𝑖 𝑗
𝑲
𝜌

𝑁 𝑗

)
, (4)

where 𝑸𝜌 = 𝜌1 (𝑸),𝑲𝜌 = 𝜌2 (𝑲 ). Ideally, to satisfy the above re-
quirements, we could derive two equivalence conditions as follows:

Condition (1).
𝑁∑︁
𝑚=1

𝑑∑︁
𝑗=1

𝑸
𝜌

𝑖 𝑗
𝑲
𝜌

𝑚𝑗
≤ 1, ∀𝑖 = 1, 2, · · · , 𝑁 ;

Condition (2).
𝑑∑︁
𝑗=1

𝑸
𝜌

𝑖 𝑗
𝑲
𝜌

𝑚𝑗
≥ 0, ∀𝑖,𝑚 = 1, 2, · · · , 𝑁 .

Ultimately, an appropriate design of the above mappings could en-
able us to compute (𝑲𝜌 )T𝑽 first and achieve 𝑶 (𝑁𝑑2) complexity.
This is because 𝑲 and 𝑽 are both 𝑁 × 𝑑 matrices. Besides, omitting
𝑑 (𝑁 >> 𝑑) and utilizing linear complexity mappings (i.e., 𝜌1 (·) and
𝜌2 (·)) for long-term SRSs, we could achieve approximated linear
complexity (i.e., 𝑶 (𝑁 )). However, linear complexity mappings are
hard to satisfy the above conditions strictly. Toward this end, we
further relax the above conditions and design the two mappings
for approximating dot-product attention’s learning capabilities (i.e.,
generate a comparable attention matrix for identifying items’ im-
portance) while significantly reducing complexity. Functionally
speaking, such a proper mapping design should have the follow-
ing requirements: (1) 𝜌1 (·) and 𝜌1 (·) do not introduce additional
computational costs, and (2) they have to maintain attention’s iden-
tifying capabilities and the numerical stability, thus learning better
sequence representations to make recommendations for long-term
SRSs efficiently and effectively.

3.2.2 L2 Normalized Linear Attention Mechanism (LinRec).
According to the above conditions, we further derive an equivalent
condition to provide theoretically designing insights. Mathemati-
cally, Condition (1) is equivalent to the following formulation:

𝑑∑︁
𝑗=1

𝑸
𝜌

𝑖 𝑗

𝑁∑︁
𝑚=1

𝑲
𝜌

𝑚𝑗
≤ 1, (5)

and its sufficient condition is straightforward:

Condition (3).
𝑑∑︁
𝑗=1

𝑸
𝜌

𝑖 𝑗
≤ 1,

𝑁∑︁
𝑚=1

𝑲
𝜌

𝑚𝑗
≤ 1.

Therefore, it is formally equivalent to L𝑝 Normalization families,
which constrains the summations in a small range. The L𝑝 Nor-
malization families represent a trade-off between the performance
and computational cost of serving as mapping functions: a small
value of 𝑝 could introduce fewer computational costs with rela-
tively inaccuracy approximation. Specifically, we leverage row- and
column-wise L2 Normalization methods to perform the two map-
pings. This is because L2 Normalization is more efficient than L1
Normalization and more effective than others (e.g., 𝑝 = ∞). For 𝑖-th
row of 𝑸 (i.e., 𝑸𝑖 = (𝑸𝑖1, · · · ,𝑸𝑖𝑑 )) and the 𝑗-th column of 𝑲 (i.e.,
𝑲 𝑗 = (𝑲1𝑗 , · · · ,𝑲𝑁 𝑗 )T), we have:

𝜌1 (𝑸𝑖 ) =
𝑸𝑖√

𝑑 ∥𝑸𝑖 ∥2
=

1
√
𝑑 ∥𝑸𝑖 ∥2

(𝑸𝑖1, · · · ,𝑸𝑖𝑑 ),

𝜌2 (𝑲 𝑗 ) =
𝑲 𝑗√

𝑁 ∥𝑲 𝑗 ∥2
=

1
√
𝑁 ∥𝑲 𝑗 ∥2

(𝑲1𝑗 , · · · ,𝑲𝑁 𝑗 )T,
(6)

where ∥ · ∥2 represents the L2 Normalization.
Proof: by Cauchy-Schwarz inequality [61], we obtain:

(𝑸𝑖1 + · · · + 𝑸𝑖𝑑 )2 =
(√︃

1 · 𝑸2
𝑖1 + · · · +

√︃
1 · 𝑸2

𝑖𝑑

)2
≤ (1 + · · · + 1) (𝑸2

𝑖1 + · · · + 𝑸2
𝑖𝑑
)

= 𝑑 (𝑸2
𝑖1 + · · · + 𝑸2

𝑖𝑑
)

= 𝑑 ∥𝑸𝑖 ∥22,
then we can have:

𝑸𝑖1 + · · · + 𝑸𝑖𝑑 ≤
√
𝑑 ∥𝑸𝑖 ∥2 . (7)

Therefore, 𝜌1 (·) and 𝜌2 (·) satisfy Condition (3), ensuring the nor-
malized property of the generated attention matrix 𝑩′.

However, such normalization methods do not necessarily satisfy
the non-negative condition. We consequently incorporate the Recti-
fied Linear Unit (ReLU) [16] function families to eliminate negative
values’ influence. Although utilizing the standard ReLU function
could strictly satisfy non-negativity, such an activated function may
meet zero-gradient error [18, 28, 66], which leads to an unstable
training process. Besides, the ReLU function could meet inevitable
information loss issues by fully setting negative elements to zero
since each item should contribute to representation learning in a
sequence. Therefore, we use a variation of the ReLU families, ELU
function [10], to perform activation and control negative values.
Specifically, we formulate such a function via

elu(𝑥) :=
{
𝑥, if 𝑥 ≥ 0,
𝑒𝑥 − 1, if 𝑥 < 0.

(8)

Accordingly, utilizing the elu(·, 𝛼 = 1) on a matrix 𝑥 (i.e., 𝑸 and
𝑲 ), most elements of 𝑥 are non-negative, and others would be
constrained to be smaller as compared to linear mappings, while
improving negative value robustness and ensuring linear complex-
ity. Furthermore, leveraging the proposed L2 Normalization and
ELU activation for traditional dot-product attention mechanisms
satisfies the aforementioned requirements:
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• It reduces the computational complexity of traditional dot-product
attention mechanisms to O(𝑁 ) for long-term SRSs.

• It does not introduce additional computational costs since both
the L2 Normalization and elu(·, 𝛼 = 1) are linear complexity
operators that do not require other trainable parameters.

• It could distinguish different items’ importance in a sequence by
comparing attention scores. This is because items’ importance is
still proportional to the corresponding element values in 𝑩′.

• It could ensure a relatively stable learning process. Since the L2
Normalization decreases the variance of attention scores by con-
straining the matrix’s row-wise summations less than or equal to
1. Besides, the ELU function could prevent the calculation process
from zero-gradient errors, thus ensuring numerical stability.

Towards this end, we formulate the final architecture of the pro-
posed L2 Normalized Linear Attention (LinRec) mechanism to
learn sequence representations as follows:

𝐴′ (𝑸,𝑲 , 𝑽 ) = 𝜌1
(
elu(𝑸)

) (
𝜌2

(
elu(𝑲 )

)T𝑽 ), (9)

where the row-wise mapping is defined as 𝜌1 (𝑸𝑖 ) = 1√
𝑑 ∥𝑸𝑖 ∥2

𝑸𝑖

for ∀𝑖 ∈ [𝑁 ], and the column-wise mapping is defined as 𝜌2 (𝑲 𝑗 ) =
1√

𝑁 ∥𝑲 𝑗 ∥2
𝑲 𝑗 for ∀𝑗 ∈ [𝑑], where 𝑸𝑖 is 𝑖-th row of 𝑸 and 𝑲 𝑗 is

𝑗-th col of 𝑲 . Therefore, we could integrate Eq. (9) into existing
Transformer-based recommenders [12, 13, 35, 68] to generate se-
quence representations as follows:

head𝑖 = 𝑨′ (𝑯 𝑙𝑾 (𝑖 )
𝑄

,𝑯 𝑙𝑾 (𝑖 )
𝐾

,𝑯 𝑙𝑾 (𝑖 )
𝑉

),

MH(𝑯 𝑙 ) = Concat(head1, · · · , headℎ)𝑾𝑂 ,

𝑺𝑙−1 = LayerNorm(𝑯 𝑙−1 + Dropout(MH(𝑯 𝑙−1))),

𝑯 𝑙 = LayerNorm(𝑺𝑙−1 + Dropout(FNN(𝑺𝑙−1)))),

𝑯 1 = 𝑬 ; 𝑯 = 𝑯𝐿𝑾𝐿 + 𝒃𝐿,

(10)

where 𝑾 (𝑖 )
𝑄

,𝑾 (𝑖 )
𝐾

,𝑾 (𝑖 )
𝑉

∈ R𝑑×𝑑 are weight matrices at head 𝑖 ,
𝑾𝑂 is weight matrix at multi-head (MH) block, LayerNorm refers
to layer normalization function [3], 𝑯 𝑙 is hidden value at layer
𝑙 (𝑙 = 1, · · · , 𝐿) which is iteratively generated until 𝐿, FNN(· · · )
is Feed-Forward Network, 𝑾𝐿 ∈ Rℎ𝑑×𝑑 , 𝒃𝐿 ∈ R𝑑 are weight
and bias respectively. Eventually, we get sequence representation
𝑯 ∈ R𝑁×𝑑 .

3.3 Prediction and Model Optimization
After obtaining item representations (i.e.,𝑯 ∈ R𝑁×𝑑 ) in a sequence,
wemake the next-item recommendation by calculating a probability
distribution of the next-item of the whole item set. At time 𝑡 , for
each candidate item 𝑣𝑖 , we can calculate its recommendation score:

𝒛𝑖 = 𝑯 𝑡 (𝒆𝑠𝑖 )
T, (11)

where 𝑯 𝑡 it the 𝑡-th item’s representation in a sequence, perform-
ing the sequence representation, 𝒆𝑠

𝑖
∈ R𝑑 is 𝑣𝑖 ’s embedding. Conse-

quently, the recommended probability of that the next-item being
𝑣𝑖 , 𝑦𝑖 , could be computed as follows:

𝑦𝑖 =
exp(𝑧𝑖 )∑

𝑣𝑗 ∈V exp(𝑧 𝑗 )
. (12)

Table 1: Statistics of the datasets.

Datasets # Users # Items # Interactions # Sparsity

ML-1M 6,041 3,884 1,000,209 95.74%
Gowalla 64,116 164,533 2,018,421 99.98%

Therefore, we formulate the sequential recommendation task as
minimizing the cross-entropy of the recommendation results 𝑦 to
measure the difference between the prediction and ground truth as

L(𝑦,𝑦) = 𝑦 log(𝑦) + (1 − 𝑦) (1 − log(𝑦)) . (13)

The training target is to obtain the best parameters of the network
(including𝑾𝑄 ,𝑾𝐾 ,𝑾𝑉 and other parameters outside the attention
layer). We will use Adam [26] optimizer to optimize the network, a
stochastic method using moment estimation.

3.4 In-depth Analyses
In this section, we theoretically analyze the proposed LinRec in
terms of its advantages and complexity.

3.4.1 Comparison with Other Normalization Methods. An
intuitive way to implement Eq. (3) is to leverage the Softmax func-
tion twice (i.e., row- and column-wise) to perform mapping func-
tions 𝜌1 (·) and 𝜌2 (·) via

𝜌1 (𝑸) = 𝜌 (𝑸) ; 𝜌2 (𝑲 ) = 𝜌 (𝑲 ), (14)

where 𝜌 (·)means the row- and column-wise Softmax for generating
𝜌1 (𝑸) and 𝜌2 (𝑲 ), respectively. The Softmax function contains an
exponential operation and a weight distribution operation for a R𝑑
(or R𝑁 ) sequence(vector). For a vector 𝒙 = (𝑥1, · · · , 𝑥𝑛), we could
formulate it as follows:

𝜌 (𝑥𝑖 ) =
𝑒𝑥𝑖∑𝑛
𝑗=1 𝑒

𝑥 𝑗
. (15)

It is evident that 𝜌 (·) can satisfy Condition (3). Nevertheless, a
fundamental property of 𝜌 (·) is that the exponential function ag-
gregates the weight into only a few positions of the sequence, which
may exaggerate importance (i.e., long-tailed attention scores) of a
few items in a sequence ignoring the others, thus loss useful infor-
mation from the entire sequence for long-term SRSs. In contrast
to such a method, the proposed L2 Normalization could generate
relatively smooth attention scores to better capture information.

3.4.2 Model Complexity Analysis. We analyze the computa-
tional complexity of the LinRecmechanism (i.e., Eq. (9)) from several
key components: (i) Firstly, the computational cost of elu(·, 𝛼 = 1)
function is activating elements in 𝑸 and 𝑲 , which are two 𝑁 × 𝑑

matrices. Thus ELU’s complexity is O(𝑁𝑑); (ii) Secondly, 𝜌1 (·) and
𝜌2 (·) perform L2 Normalization. Therefore, their total complexity is
O(𝑁𝑑); (iii) Thirdly, the matrix multiplication operator’s complex-
ity is O(𝑁𝑑2). Towards this end, the time complexity of LinRec is
O(𝑁𝑑2). For long-term SRSs, it could significantly reduce the time
complexity of Transformer-based recommenders (we omit 𝑑 since
𝑁 >> 𝑑) from O(𝑁 2) to O(𝑁 ). In conclusion, our model could
achieve comparable efficiency with state-of-the-art lightweight
Transformer-based sequential recommendation techniques (e.g.,
Linformer [58], Linear Transformers [25], and Big Bird [70]).
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Table 2: Overall performance comparison.

Datasets Metrics
Bert4Rec CORE FDSA SASRec SASRecF

w/o w w/o w w/o w w/o w w/o w

ML-1M
Recall@10 0.6975 0.6997 0.5406 0.6088 0.7166 0.7159 0.7212 0.7209 0.7099 0.7113

MRR 0.3700 0.3699 0.2051 0.2792 0.4272 0.4299 0.4282 0.4301 0.4230 0.4249
NDCG@10 0.4483 0.4488 0.2835 0.3570 0.4964 0.4983 0.4974 0.4997 0.4921 0.4933

Gowalla
Recall@10 0.8717 0.8739 0.9190 0.9242 0.8981 0.8987 0.9174 0.9171 0.9077 0.9072

MRR 0.5886 0.5907 0.6948 0.7031 0.6247 0.6358 0.6690 0.6723 0.6179 0.6400
NDCG@10 0.6567 0.6589 0.7492 0.7569 0.6907 0.6995 0.7293 0.7317 0.6880 0.7048

Results of backbone models with (w) and without (w/o) LinRec mechanism have been shown. All improvements are
statistically significant (i.e., two-sided t-test with 𝑝 < 0.05) over backbone models, except Recall of SASRec. In each
row, the best result is bold, while the second-best result is underlined.

4 EXPERIMENTS
In this section, we aim to answer the following research questions:

• RQ1: How does integrating LinRec into Transformer-based rec-
ommenders perform compared with the original ones?

• RQ2: Does LinRec outperforms other state-of-the-art efficient
Transformer variants for sequential recommendation?

• RQ3: How is the scalability of the LinRec mechanism?
• RQ4: How do different components contribute to LinRec?
• RQ5: How is the interpretation ability of LinRec?

4.1 Experimental Settings
4.1.1 Datasets and Evaluation Metrics. To evaluate the effec-
tiveness of the proposed LinRec, we conduct experiments on two
publicly available datasets: (1) ML-1M: it contains users’ ratings
(about one million) on movies, and is a popular dataset for sequen-
tial recommendation. (2) Gowalla: it contains users’ check-ins
collected by SNAP group. The statistical information is presented
in Table 1. Identical to the previous studies [1, 24, 43, 63, 69], we
group user interactions in chronological order on all datasets and
split data by the leave-one-out strategy. For example, for an in-
put sequence 𝑠𝑖 = [𝑣𝑖1, · · · , 𝑣

𝑖
𝑡 , · · · , 𝑣𝑖𝑛𝑖 , 𝑣

𝑖
𝑛𝑖+1, 𝑣

𝑖
𝑛𝑖+2, 𝑣

𝑖
𝑛𝑖+3], we use

([𝑣𝑖1, · · · , 𝑣
𝑖
𝑛𝑖
], 𝑣𝑖

𝑛𝑖+1) for training, ([𝑣
𝑖
1, · · · , 𝑣

𝑖
𝑛𝑖+1], 𝑣

𝑖
𝑛𝑖+2) for valida-

tion, and ([𝑣𝑖1, · · · , 𝑣
𝑖
𝑛𝑖+2], 𝑣

𝑖
𝑛𝑖+3) for testing. Moreover, a variety of

common evaluation metrics, including Recall,Mean Reciprocal Rank
(MRR), and Normalized Discounted Cumulative Gain (NDCG), are
used for top-𝑘 (𝑘 = 10) recommendations performance evaluation.

4.1.2 Baselines. To demonstrate the effectiveness of our proposed
method, we compare LinRec with a wide range of representative
state-of-the-art Transformer-based recommenders, including tra-
ditional (i.e., O(𝑁 2𝑑) complexity) and efficient (i.e., O(𝑁𝑑2) com-
plexity) Transformer-based methods.
Traditional Transformer: (1) BERT4Rec [48] uses bidirectional
Transformer to fuse sequence information and a mask & fill self-
supervised task to enhance sequence representations. (2)CORE [20]:
leverages a simple yet efficient framework to unify representation
space, thus generating better representations bridging the inconsis-
tency between items and sessions. (3) FDSA [75]: equips different
self-attention blocks to learn item- and feature-wise representations,
thus enhancing sequence representation learning. (4) SASRec [24]:

uses the traditional self-attention block (i.e., multi-head attention)
for generating sequence representation. (5) SASRecF1: improves
the learning capabilities of SASRec by introducing item features as
additional contextual information.
Efficient Transformer: (1) Linear Transformer [25]: rearranges
the computational operation of the dot product in the self-attention
mechanism. The authors find that the modified process contains a
repetitious operation that they can reuse to reduce complexity. (2)
Efficient Attention [47]: separates the dot-product attention into
two processes conducted by different scaling mappings.

4.1.3 Implementation Details. Identical to previous studies [20,
24, 48], the trainable parameters are initialized with a Gaussian dis-
tribution.We optimize LinRec with other Transformer-based recom-
menders with Adam [26] and use the default learning rate of 0.001
and default mini-batch size of 2,048 (we decrease the mini-batch size
on Gowalla to 512 to avoid GPU memory errors). Suggesting by the
original papers [20, 24, 25, 47, 48, 75], we set the hyper-parameters
for all models, including Transformer layer as 𝐿 = 2, attention head
as ℎ = 8, and inner size (e.g., FNN layers) as 256. In particular, we
set dimension size as 𝑑 = 128, 64 and maximum sequence length
𝑁 = 200, 100 on ML-1M and Gowalla datasets, respectively. We
further pad short-term sequences (i.e., those with 𝑛𝑖 < 𝑁 ) by zero
to ensure 𝑛𝑖 > 𝑑 for long-term sequential recommendation. The
maximum number of training epochs is 100. Moreover, we adopt
the early-stopping training strategy if the NDCG@10 performance
on the validation set decreases for 10 continuous epochs. We im-
plement our model2 in PyTorch 1.13, Python 3.7.15, and RecBole
1.1.1 [81].

4.2 Traditional Transformer Comparison (RQ1)
To demonstrate the effectiveness of LinRec for improving recom-
mendation performance, we integrate LinRec into other represen-
tative Transformer-based recommenders (e.g., BERT4Rec and SAS-
Rec). We report the main experimental results in Table 2, where we
can draw a few interesting observations as follows:
• Generally, integrating with LinRec, Transformer-based recom-
menders perform significantly better than the original ones in
most cases, demonstrating the effectiveness of the proposed
1https://www.recbole.io/docs/index.html
2https://github.com/Applied-Machine-Learning-Lab/LinRec

https://github.com/Applied-Machine-Learning-Lab/LinRec


LinRec: Linear Attention Mechanism for Long-term Sequential Recommender Systems SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Table 3: Performance comparison with state-of-the-art effi-
cient Transformer-based methods.

Datasets Model Recall@10 MRR NDCG@10

ML-1M

LT+SASRec 0.6575 0.3359 0.4124
EA+SASRec 0.6873 0.4094 0.4760

LinRec+SASRec 0.7209 0.4301 0.4997

Imprv. 7.1%∼9.6% 9.6%∼28.0% 8.8%∼21.7%

Gowalla

LT+SASRec 0.9113 0.6627 0.7230
EA+SASRec 0.9139 0.6577 0.7198

LinRec+SASRec 0.9171 0.6723 0.7317

Imprv. 0.4%∼0.6% 1.4%∼2.2% 1.2%∼1.6%

All improvements are statistically significant (i.e., two-sided t-test with
𝑝 < 0.05) over baseline. In each row, the best result is bold.

method. We attribute such improvements to LinRec could im-
prove the long-term information capturing capabilities of Trans-
former by generating a relatively smooth attention matrix.

• Comparing with other recommenders, integrating LinRec into
SASRec (LinRec+SASRec) consistently yields best performance
on ML-1M, while LinRec+CORE resulting the best performance
on Gowalla. Such results present that CORE is more suitable for
sparse datasets (i.e., short-term sequences), while equipping with
the proposed LinRec could significantly improve the performance
on both ML-1M and Gowalla datasets, again demonstrating the
superiority of LinRec.

4.3 Efficient Transformer Comparison (RQ2)
To demonstrate the superiority of LinRec over state-of-the-art effi-
cient Transformer methods, we take the SASRec as a backbone, and
report the experimental results on ML-1M and Gowalla datasets
in Table 3. All improvements are statistically significant by per-
forming two-sided 𝑡-test with 𝑝 < 0.05. Accordingly, we have a few
observations as follows:
• In general, the proposed LinRec+SASRec consistently outper-
forms other approaches on ML-1M and Gowalla datasets. In
particular, LinRec+SASRec obtains an average of about 10% im-
provement over other baselines on ML-1M dataset. Such results
generally demonstrate the superiority of the proposed LinRec.

• Comparing the other methods (i.e., LT+SASRec and EA+SASRec)
with the original SASRec model, integrating with such meth-
ods does not achieve consistent improvements. It is because
these methods do not satisfy traditional dot-product attention
conditions, which harms Transformer’s learning abilities. In con-
trast, the proposed LinRec satisfies the properties and generates
relatively smooth attention scores for sequence representation
learning, which can yield better performance.

4.4 Scalability Study (RQ3)
To investigate the model efficiency, we evaluate the computational
cost, including GPU memory and Time, of the proposed LinRec as
compared to traditional Transformer baselines.
Efficiency of Different Backbones. In Table 4, we observe that
LinRec mechanism exactly reduces the GPUmemory and Time cost,

Table 4: Efficiency comparison.

Datasets Model
GPU memory (GB) Time cost (s/epoch)

Training Evaluation

w/o w w/o w w/o w

ML-1M

BERT4Rec 20.74G 10.42G 246s 157s 56s 37s
CORE 19.49G 6.79G 109s 33s 38s 16s
FDSA 35.22G 13.87G 270s 99s 79s 36s
SASRec 21.07G 8.72G 121s 44s 41s 20s
SASRecF 22.71G 10.33G 141s 64s 46s 23s

Gowalla

BERT4Rec 20.10G 19.46G 483s 455s 516s 454s
CORE 3.75G 2.59G 126s 94s 570s 377s
FDSA 4.81G 3.48G 209s 116s 834s 550s
SASRec 3.75G 2.68G 112s 90s 434s 384s
SASRecF 3.85G 3.22G 117s 93s 445s 400s
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Figure 3: Parameter sensitivity.

demonstrating the high efficiency of LinRec. For example, LinRec
performs extraordinarily to improve efficiency on ML-1M, which
reduces the GPUmemory and Time cost to approximately one-third
for most baseline models. Such a result generally conforms to the
theoretical analysis of linear complexity (i.e., LinRec could reduce
complexity from O(𝑁 2𝑑) to O(𝑁𝑑2)).
Efficiency of Different Sequence Lengths. To investigate the
training cost of different sequence lengths for long-term SRSs, we
tune maximum sequence lengths in {140, 160, · · · , 240} according
to the hidden size (i.e., 𝑑 = 128, the lengths of long-term sequences
typically larger than such a dimension size) settings. From Figure 3,
we see the LinRec+SASRec considerably reduces the computational
complexity of SASRec consistently in all cases. This is highly desir-
able in practice, especially for long-term sequential recommenda-
tion, where user historical interaction sequences are stored for a
long time, thus learning user preferences comprehensively.

4.5 Ablation Study (RQ4)
To verify the contribution of each component of the proposed
LinRec, we conduct an ablation study with two variants of the Lin-
Rec+SASRec (i.e., Eq. (9)) over the Gowalla dataset, including (1)
w/o L2 norm: without the L2 normalization layer, and (2) w/o ELU :
without the ELU activation layer. Figure 4 shows the performances
of different variants in terms of Recall@10, MRR, and NDCG@10. It
can be observed that each component contributes to performance.
The L2 normalization is particularly crucial for LinRec, justifying
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Figure 4: The results of ablation study.

that satisfying the normalized property (i.e., attention score summa-
tions less than or equal to 1) is the most critical part of preserving
the learning capabilities of attention mechanisms. Besides, the ELU
activation layer is indispensable for achieving encouraging results.
Furthermore, LinRec+SASRec consistently improves performance
in all cases, confirming the correctness of our design choice.

4.6 Case Study (RQ5)
Finally, we conduct a case study to visualize the attention scores
and illustrate how the attention matrix learned in LinRec can help
to capture more information in long-term sequences. In Figure 5,
we show a user whose historical interaction sequence length is 50
from the ML-1M dataset, where the darker the color is, the higher
the attention score is. Moreover, we pad the sequence with zero
to ensure its length is larger than the embedding dimension, and
we omit the padded part for simplicity. Comparing the heatmaps
generated by SASRec and LinRec+SASRec, the proposed LinRec
tends to generate relatively smooth attention scores, which can
capture more information, including more recent or less recent
items. In contrast, SASRec tends to attend to a few items, which
may exaggerate such items’ importance and leads to an inevitable
information-losing issue for long-term sequence learning.

Specifically, comparing with Figure 5(a) and Figure 5(b), SASRec
assigns larger attention scores on recent items, which is consistent
with the observations in the original paper [24], showing its limited
capabilities of learning long-term sequential patterns. In contrast,
comparing with Figure 5(c) and Figure 5(d), LinRec can gradually
attend to both short- and long-term patterns with increasing Trans-
former layers. In conclusion, this case aligns with our motivation
that LinRec can further improve traditional Transformer-based
recommenders’ learning capabilities for long-term SRSs.

5 RELATEDWORKS
In this section, we concisely review the Transformer-based SRSs
and efficient Transformers to discuss the differences between the
proposed LinRec mechanism and the related ones.

5.1 Transformer-based SRSs
In view of the Transformers’ superior capabilities of learning se-
quence representations, various studies [5, 20, 24, 48, 62, 73, 75]
leverage Transformers to learn sequence representation. The key
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(a) The long-tailed attention scores gener-
ated by SASRec, layer 1.
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ated by SASRec, layer 2.
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(c) The relatively smooth attention scores
generated by LinRec+SASRec, layer 1.
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Figure 5: Heatmap of attention scores of different methods.

idea is that Transformers can distinguish different items’ impor-
tance, capturing users’ long- and short-term preferences to learn
better sequence representations. Specifically, ATTRec [73] applies
attention mechanism and metric embedding to absorb users’ long-
and short-term information, respectively. SASRecc [24] captures
long- and short-term sequential dynamics based on a multi-head
attention mechanism. BERT4Rec [48] is proposed to address the
issue that a unidirectional model is hard to discover latent features
of interaction sequences. In addition, the Cloze objective is used to
improve the efficiency of the training process. FDSA [75] utilizes
additional feature-level sequences in Transformer to better extract
sequential patterns. BST [5] uses the Transformer model to learn
the sequential nature of users’ behaviors. SSE-PT [62] applies a
personalized Transformer into self-attentive neural network ar-
chitectures to improve ranking performance. CORE [20] utilizes
a representation-consistent encoder and a robust distance mea-
suring method to improve traditional sequential encoders’ (e.g.,
self-attention mechanism) capabilities of learning representations.

While these methods are effective, they often employ traditional
dot-product attention mechanisms, which result in an inefficient
learning process, particularly when calculating attention matrices.

5.2 Efficient Transformers
To tackle the high complexity issue of Transformers, a new line
of research has started to analyze and propose various efficient
methods to reduce the inherently computational complexity. Such
methods mainly aim to leverage approximated algorithms to sim-
plify the attention matrix computing process (e.g., sparse matrix
computing) in self-attention mechanisms [51].

The earliest research line of efficient Transformers, named fixed
patterns [2, 4, 8, 11, 36, 40], designs attention matrices’ sparse ar-
chitecture based on specific patterns such as blocks and strides.
The block-wise models [38, 40], one approach of fixed patterns,
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separate the attention matrix into several blocks and use a random
masking matrix to decide whether to retain each block. Another fa-
mous method of fixed patterns concerns striding approaches [4, 8],
where several strides separate the masking matrix in equal intervals.
Moreover, the Axial transformers [19] provides a new view of ap-
plying attention mechanisms for multidimensional tensors. Unlike
fixed patterns, learnable patterns [27, 45, 50, 54, 59] consider the
masking matrices can be learned. Cluster-Former [59] uses the clus-
tering method to learn the classes of positions in the sequence and
separate the sequence into chunks. Then they perform the trans-
formers in each short chunk to obtain efficiency. Reformers [27]
improve the efficiency by utilizing the LSH attention, where they
use locality-sensitive hashing at each round.

Neural memory [4, 23, 29, 36, 42, 46, 52] method tries to utilize
information about multiple positions in the sequence and their rele-
vant connections. Set Transformer [29] detects and utilizes the inter-
actions of positions in the sequence. They apply the inducing points
to derive their particular attention mechanism. Longformer [4] uses
the sliding window to capture the local context, meanwhile intro-
ducing global attention to aggregate valuable information from
selected positions. Another recently famous approach of efficient
Transformers introduces low-rank approximations to reduce the
complexity and simplify models [9, 21, 25, 39, 47, 58, 60, 65, 91].
Based on the spectrum results and theoretical analysis that self-
attention is a low-rank matrix, the Linformer [58] derives a brief
attention mechanism for reducing complexity. They use linear pro-
jections matrix to reduce the dimension of Key and Value matrices.
The Linear transformers [25] introduce a kernel-like method. Specif-
ically, the authors disassemble and reassemble the dot-product
operation of attention mechanisms. Then they find a part of the op-
eration repeated in each round that can be reused for efficient com-
puting. Besides, some studies further explore leveraging efficient
model retraining [78] or sequence chunking [56] approaches to
enhance computational efficiency for long-term SRSs. They mainly
focus on transferring knowledge or editing data-level structures,
which do not undermine our technical contributions of reducing
the computational complexity of traditional Transformer-based
SRSs (e.g., dot-product attention mechanisms) when calculating
attention matrices.

Despite existing efficient Transformer methods decreasing the
computational complexity, they either need to sacrifice more accu-
racy or perform low efficiency. In contrast, the proposed LinRec ef-
fectively preserves attention mechanisms’ advantageous properties
and reduces computational costs without jeopardizing performance.

6 CONCLUSION
In this paper, we studied the problem of long-term sequential rec-
ommendation from a new perspective–how to reduce the compu-
tational complexity of traditional Transformer-based SRSs models
raised by the dot-product operations. We theoretically analyze
the core properties of the dot-product attention mechanism for
distinguishing items’ importance in sequences. Accordingly, we
propose a novel LinRec mechanism possessing linear complexity
O(𝑁 ) while capturing more information from long-term sequences,
thus generating better sequence representations for making recom-
mendations efficiently and effectively. Comprehensive experiments

demonstrate that LinRec has the excellent capability of improving
efficiency while keeping accuracy. Significantly, LinRec outper-
forms two state-of-the-art efficient Transformer-based methods. In
addition, we provide adequate theories and discussions to support
our LinRec mechanism, where two highlights are the equivalence
conditions and the statistical interpretation. The equivalence con-
ditions provide theoretical insights for our design choice and can
assist us in generating other efficient attention mechanisms for
tasks other than long-term SRSs. The Statistical Interpretation that
all elements have statistical meaning provides a solid foundation
for the proposed LinRec mechanism.

A STATISTICAL INTERPRETATION
Statistically, Condition (1) means the probabilities of all positions
in a row add up to no more than 1, while Condition (2) means the
probabilities of all positions are more than or equal to 0. Therefore,
similar to dot-product attention, the attention scores of LinRec
satisfy the corresponding probability properties. Considering each
position 𝑖 in a sequence, we denote 𝑖’s attention to position 𝑘 as
A𝑖𝑘 , and the corresponding independent probability as Pr (A𝑖𝑘 ).
Then Conditions (1) and (2) can be rewritten in probability format:∑︁𝑁

𝑘=1
Pr (A𝑖𝑘 ) ≤ 1 ; Pr (A𝑖𝑘 ) ≥ 0, ∀𝑘. (16)

Then we instead consider separating attention into 𝑑 sub-events
by 𝑑 latent features, e.g., B𝑖1, · · · ,B𝑖𝑑 , which respect to the hidden
states of attention mechanism. And we assume that the sub-events
B𝑖 𝑗 are independent. In this way, we can define the probability
Pr (B𝑖 𝑗 ) and the conditional probability Pr (A𝑖𝑘 |B𝑖 𝑗 ). Therefore,
we could rewrite the probability applying Bayes theorem as follows

Pr (A𝑖𝑘 ) =
∑︁𝑑

𝑗=1
Pr (B𝑖 𝑗 )Pr (A𝑖𝑘 |B𝑖 𝑗 ) . (17)

We then substitute probabilities by elements of 𝑸𝜌 and 𝑲𝜌 as

Pr (B𝑖 𝑗 ) = 𝑸
𝜌

𝑖 𝑗
; Pr (A𝑖𝑘 |B𝑖 𝑗 ) = 𝑲

𝜌

𝑘 𝑗
,

Pr (A𝑖𝑘 ) =
∑︁𝑑

𝑗=1
𝑸
𝜌

𝑖 𝑗
𝑲
𝜌

𝑘 𝑗
= 𝑩′

𝑖𝑘
,

(18)

where 𝑩′
𝑖𝑘

(in Eq. (3)) is the attention score of position 𝑖 to position
𝑘 . Also, we can rewrite Condition (3) as∑︁𝑑

𝑗=1
Pr (B𝑖 𝑗 ) ≤ 1 ;

∑︁𝑁

𝑘=1
Pr (A𝑖𝑘 |B𝑖 𝑗 ) ≤ 1. (19)

Thus, all components of LinRec have statistical meaning. In addi-
tion, we observe that Eq. (18) holds for any 𝑖 . Then we reveal an
interesting property of the LinRec mechanism:

Pr (A𝑖1𝑘 |B𝑖1 𝑗 ) = Pr (A𝑖2𝑘 |B𝑖2 𝑗 ) = 𝑲
𝜌

𝑘 𝑗
. (20)

Accordingly, such a shared conditional probability can significantly
reduce parameter numbers, resulting in high-efficiency computing.
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