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Abstract
Modern programmable network switches can implement cus-
tom applications using efficient packet processing hardware,
and the programming language P4 provides high-level con-
structs to program such switches. The increase in speed and
programmability has inspired research in dataplane program-

ming, where many complex functionalities, e.g., key-value
stores and load balancers, can be implemented entirely in
network switches. However, dataplane programs may suffer
from novel security errors that are not traditionally found
in network switches.

To address this issue, we present a new information-flow
control type system for P4.We formalize our type system in a
recently-proposed core version of P4, and we prove a sound-
ness theorem: well-typed programs satisfy non-interference.
We also implement our type system in a tool, P4BID, which
extends the type checker in the p4c compiler, the reference
compiler for the latest version of P4. We present several case
studies showing that natural security, integrity, and isolation
properties in networks can be captured by non-interference,
and our type system can detect violations of these properties
while certifying correct programs.

CCS Concepts: • Security and privacy → Information
flow control; Logic and verification; Network security.
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1 Introduction
The last two decades have seen an ongoing shift in how
networks are programmed. The task of programming a net-
work once consisted of manually setting configurations in
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specialized switch hardware that provided limited customiza-
tion; low-level programming was the only way to achieve
performance. Today, switches are highly programmable and
provide rich functionalities for processing network packets.
This increased programmability is enabling complex network
functionalities, which traditionally run on slower dedicated
devices, to run directly on switches and other networking
hardware [18, 30]. Furthermore, new programming models
and languages make it easier for network operators to define
complex functionalities [6].

While the advent of programmable network switches has
inspired a large number of practitioners and researchers to
write complex functionalities that can run on switches, it
has also brought a new level of complexity in a world where
bugs can be costly. As is well known, network configura-
tion errors have led to widespread and costly outages (e.g.,
[13, 33]). The problem of preventing these, and other, types
of bugs has received a lot of attention in the programming
languages and verification communities. For example, re-
searchers have developed formal tools for verifying that
switch configurations guarantee desirable network proper-
ties, such as node reachability, the absence of black holes, and
resilience to link failures (e.g., [1, 2, 32]). While these tools
are extremely useful for network operators, applications
running on programmable switches may exhibit errors that
are not traditionally associated with networks. In particular,
there has been little work on verifying security properties
for dataplane programs.

Our work. We develop a new information-flow control
(IFC) type system for the network programming language
P4 [6], a leading language for programming network switches.
P4 is an attractive target: it is actively developed by re-
searchers from academia and industry, and can compile to
a variety of networking hardware. Information flow control

(IFC) is a well-studied, language-based approach to verify-
ing security properties where variables in the program are
tagged with security labels, and the type system ensures that
no information can flow from high-security variables (secret)
to low-security ones (public). IFC is (i) flexible: by chang-
ing the label usage one can model security properties, like
confidentiality and integrity; (ii) general: it can accommo-
date complex programming constructs; and (iii) lightweight:
the analysis is simple, type-based, and requires minimal an-
notations from the programmer. Owing to these strengths,
IFC has found wide adoption and has been deployed in real
languages [23, 26].
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Designing an IFC type system for P4 involves both techni-
cal and conceptual challenges. On the technical side, while P4
resembles a standard imperative language, it has a number
of features to target the restricted computational model of
networking switches. For instance, much of the computation
in P4 programs happens via tables, which match on data in
packet headers and select which actions to run. While a P4
program implements the actions, the table itself is not known
until it is installed at runtime by the network controller. A
second technical challenge is the size and complexity of the
language. Likemany languages in real-world use, P4 does not
have a formal specification. To firm up the foundations of P4,
Doenges et al. [10] developed a formal version of P4, called
Core P4, as part of the broader petr4 project. The formal
operational model of Core P4 makes it possible to develop
type systems that provably guarantee program properties.
However, Core P4 is still quite large—P4 is a language in-
tended for real-world use, with a wide variety of declarations,
statements, and expressions, and Core P4 models almost all
the features of P4. Our work develops an IFC system that
can handle the principal features of Core P4.
On the conceptual side, IFC for dataplane programming

has been little-studied and it is not know what useful prop-
erties network properties an IFC system can enforce. As part
of our work, we present case studies showing that standard
properties guaranteed by IFC, like confidentiality and in-

tegrity, are useful security properties for networking applica-
tions. We also show how natural network isolation properties
can also be guaranteed with an IFC system, by adjusting the
lattice of security labels.

Outline. After overviewing our approach in Section 2 and
providing the necessary background on P4 and Core P4 in
Section 3, we present our central contributions:

1. An Information Flow Control (IFC) type system for Core

P4 [10], a core calculus modeling the P4 language,
together with a soundness theorem: well-typed pro-
grams satisfy non-interference (Section 4).

2. P4BID: a type-checker implemented on top of p4c, the
reference compiler for P4. We evaluate our system
through four case studies, demonstrating how proper-
ties enforced by IFC, like confidentiality and integrity,
can be useful in a networking context. We implement
our case studies in P4 and show that P4BID can au-
tomatically detect when these properties are violated,
while correctly type-checking versions of these pro-
grams where the problems are removed (Section 5).

We conclude by surveying related work (Section 6) and out-
lining possible future directions (Section 7).

2 Overview
A quick introduction to P4. P4 is an actively-developed

language for programming the network data plane. Com-
putation is divided into three phases: parser, pipeline, and

deparser. The packet processing starts at the parser, where the
input packet is extracted into a typed representation given
by headers using a finite state machine. The pipeline phase
executes the primary logic of the switch by transforming
the parsed representation of the input packet. The deparser
serializes the parsed typed representation of the input packet
into the output packet. Our work focuses on P4 control blocks,
which implement the pipeline phase. To get a feel for the
language, we consider a P4 program for a basic task: con-
verting virtual addresses to physical addresses when packets
enter a local network. Listing 1 begins by declaring the types
of the headers which are carried by packets; P4 programs
manipulate the state of packets by modifying the headers. In
our case, there are three headers: ipv4 and ethernet carry the
routing information in the original packet, while local_hdr
carries information specific to the local network.
Listing 1 shows the code for the control block, which

implements the core part of the logic. (The full P4 program
also describes other stages of the packet-processing pipeline
like parsing and deparsing, which we do not consider in
our work.) The switch behavior is organized into tables and
actions. Tables match data in headers (the keys) and apply
actions. For instance, the table ipv4_lpm_forward inspects
the value of the header hdr.ipv4.dstAddr and then decides
whether to run action ipv4_forward or drop the packet. The
concrete mapping is not specified by the P4 program; instead,
the switch controller installs these mappings at runtime.
Actions can inspect and modify packet headers. Actions can
also be parameterized by arguments, which are supplied
by the table when the action is applied. For example, the
action ipv4_forward accepts a destination address and port as
arguments, and then proceeds to update headers. Finally, the
apply block specifies the overall behavior of the control block:
here, the switch applies table virt2phys to translate virtual
addresses to physical addresses, and then ipv4_lpm_forward
to forward the packet.

Apotential security vulnerability. Listing 1 is designed
to process a packet as it enters a local network. The incoming
packet refers to a virtual address, which must be translated
to a physical address. Furthermore, the switch adjusts other
packet fields, like themaximum number of hops (time-to-live,
ttl), to reflect the topology of the local network. To preserve
privacy, details of the local network should not leak into
fields that are visible when the packet leaves the network.
To accomplish this goal, the program uses a separate header
of type local_hdr_t to store local information (Line 1). As
the packet is routed in the local network, the switches do
not touch the public ipv4 and ethernet headers; instead, they
parse local_hdr and update it with the next hop route infor-
mation. When the packet exits the local network, the header
local_hdr is removed.

While the intended behavior is simple to describe, the pro-
gram in Listing 1 has an error: Line 34 incorrectly stores the
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Listing 1. Translating virtual to physical addresses.
1 header local_hdr_t {
2 bit<32> phys_dstAddr;
3 bit<8> phys_ttl;
4 bit<48> next_hop_MAC_addr;
5 }
6

7 header ipv4_t {
8 bit<8> ttl;
9 bit<8> protocol;
10 bit<32> srcAddr;
11 bit<32> dstAddr;
12 }
13

14 header eth_t {
15 bit<48> srcAddr;
16 bit<48> dstAddr;
17 }
18

19 struct headers {
20 ipv4_t ipv4;
21 eth_t eth;
22 local_hdr_t local_hdr;
23 }
24

25 control Obfuscate_Ingress(inout headers hdr,
26 inout standard_metadata_t std_metadata) {
27 table virtual2phys_topology {
28 key = { hdr.ipv4.dstAddr: exact; }
29 actions = { update_to_phys; }
30 }
31 action update_to_phys(bit<32> phys_dstAddr,
32 bit<8> phys_ttl) {
33 hdr.local_hdr.phys_dstAddr = phys_dstAddr;
34 hdr.ipv4.ttl = phys_ttl;
35 }
36 table ipv4_lpm_forward {
37 key = { hdr.ipv4.dstAddr: lpm; }
38 actions = { ipv4_forward; drop; }
39 }
40 action ipv4_forward(bit<48> dstAddr, bit<9> port) {
41 hdr.eth.dstAddr = dstAddr;
42 standard_metadata.egress_spec = port;
43 }
44 action drop() { mark_to_drop(standard_metadata); }
45 apply {
46 virtual2phys_topology.apply();
47 ipv4_lpm_forward.apply();
48 }
49 }

local ttl in the ipv4 header, rather than the local_hdr header.
Even when the local header is removed, the ipv4 header will
carry private information about the local network. This kind
of error unintentionally leaks local information into public
headers, but it can be easy to overlook.

Listing 2. Security-Annotated Version of Listing 1
1 header local_hdr_t {
2 <bit<32>, high> phys_dstAddr;
3 <bit<8>, high> phys_ttl;
4 // ...
5 }
6

7 header ipv4_t {
8 <bit<8>, low> ttl;
9 // ...
10 }
11

12 struct headers {
13 ipv4_t ipv4;
14 local_hdr_t local_hdr;
15 // ...
16 }
17

18 control Obfuscate_Ingress(inout headers hdr,
19 inout standard_metadata_t std_metadata) {
20 action update_to_phys(<bit<32>, high> phys_dstAddr,
21 <bit<8>, high> phys_ttl) {
22 hdr.local_hdr.phys_dstAddr = phys_dstAddr;
23 // !BUG!: low <− high
24 hdr.ipv4.ttl = phys_ttl;
25 // ∗FIX∗: high <− high
26 hdr.local_hdr.phys_ttl = phys_ttl;
27 }
28 // ...
29 }

Security types to the rescue. We design an information-
flow control type system for P4 to catch such bugs. Like
standard IFC type systems, our system extends each P4 type
with a security label: high if the data is secret, and low if
the data is public. Listing 2 shows our example program
annotated with security types. All data specific to the local
network (e.g., phys_dstAddr, phys_ttl) are marked as high
security. The publicly visible headers (e.g., ipv4, eth) are
marked as low security. Our type system guarantees that
information from high-security data does not influence low-
security data. For instance, the information leak we saw
before can be flagged in our type system: Line 24 incorrectly
assigns a high-security data phys_ttl to a low-security field
ipv4.ttl. The problem is corrected by assigning phys_ttl to
local_hdr.ttl (Line 26), which is a high-security field.
While this kind of analysis is fairly straightforward, the

design of our type system must handle unusual features
from P4’s programming model (e.g., actions and tables); we
discuss these aspects in Section 3 and Section 4. Furthermore,
while Listing 1 demonstrates a basic information leak, we
will see more interesting applications of our type system to
networking applications in Section 5.
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3 Syntax and Semantics of Core P4
This section briefly reviews the core P4 calculus presented
in the recent work on petr4 [10], the representation of P4
programs in terms of the core calculus syntax, and the opera-
tional semantics and typing judgements for the core calculus.

3.1 Core P4 Syntax
petr4 formalizes the semantics of various P4 primitives,
like control blocks, match-action tables, and statements in
a calculus called Core P4. For our information-flow control
type system, we focus on the fragment of Core P4 in Figure 1.
Expressions and statements are largely standard.
Core P4 programs (prg) are represented as a sequence of

variable, object, or type declarations followed by a control
block. The central construct in a P4 program is the control
block, which describes how the switch processes packets
in terms of table and action calls inside its apply block. A
control block body (ctrl_body) is a sequence of declarations
and statements. The stmt in the control block corresponds
to the apply block of a P4 program.
Variable and type declarations (var_decl, typ_decl) are

largely standard; the match_kind enum declares different
ways tables can match on packet fields. Object declarations
(obj_decl) declare P4 objects: tables and actions. These object
declarations can have nested ordinary statements (stmt) that
allow usual imperative primitives like mutation and control
flow statements. To get a feel for these features, let’s consider
how they correspond to parts of the Obfuscate_Ingress con-
trol block in Listing 1. The example control block consists of
three actions declarations (update_to_phys, ipv4_forward,
and drop), and two table declarations (virtual2phys_topology
and ipv4_lpm_forward).

Tables. A table declaration, table 𝑥 {𝑘𝑒𝑦 𝑎𝑐𝑡}, is com-
posed of a list of expressions (usually packet header fields)
that specify the lookup key, 𝑘𝑒𝑦, and actions, 𝑎𝑐𝑡 , which the
lookup table might execute. A table application uses the key
to lookup the entries in the table (installed by the control
plane) and invokes the action from the matched entry. For
example, table virtual2phys_topology in Line 27 contains the
key hdr.ipv4.dstAddr: exact (where exact specifies the match
pattern, in this case, exact match on the key), and the action
update_to_phys action. Applying this table, represented in
Core P4 as virtual2phys_topology(), matches the table en-
tries installed by the control plane against the corresponding
keys in the current packet and returns an appropriate action
to run, with all its arguments. Any optional arguments in the
returned action will be supplied by the control plane. The
match pattern determines the criterion for choosing a table
entry based on the key. For instance, lpm specifies that a key
is matched to the entry corresponding to its longest prefix;
exact specifies that a key should be exactly matched to some
table entry otherwise it is a match failure.

Actions. An action declaration is a special case of a func-
tion declaration, function 𝜏𝑟𝑒𝑡 𝑥 (𝑑 𝑦 : 𝜏){𝑠𝑡𝑚𝑡}, with no re-
turn type. For example, the action update_to_phys on Line 32
in Listing 1 has parameters phys_dstAddr and phys_ttl, of
types bit⟨32⟩ and bit⟨8⟩. Parameters can have a direction-

ality, 𝑑 : an in expression can only be read from, while an
inout expression can be both read and written to. Omitted
directions in parameters default to the in direction; these
directionless parameters are optional arguments that can be
passed by the control plane. Invoking the action, which can
be done directly as a statement or indirectly from a table,
runs the statement 𝑠𝑡𝑚𝑡 in the action body. Actions, like all
Core P4 functions, do not support recursion.

Differences compared to Core P4. The language in Fig-
ure 1 is a significant fragment of Core P4, but it does not
handle some of its more specialized features (e.g., generics,
constant declarations, slice operation, and native functions).
We consider this fragment for simplicity, but we do not fore-
see difficulties in extending our IFC analysis to full Core P4.
We omitted some lesser-used features, like generics, because
the core language is already quite large and we believe it
is unlikely that omitted features lead to information-flow
violations. We focus on programs with a single control block
because most P4 programs encode their main functionality
in a single ingress control block. Since our system already
supports user-defined functions and closures, with all of their
technical intricacies, we do not see any obstacle to handling
multiple control blocks besides increasing the complexity of
our type system.

3.2 Core P4 Semantics
To understand the semantics of Core P4 programs, we will
review the evaluation judgement forms for expressions, state-
ments, and declarations from petr4 [10]. The main judge-
ments are as follows:

⟨C,Δ, 𝜇, 𝜖, exp⟩ ⇓ ⟨𝜇 ′, 𝑣𝑎𝑙⟩
⟨C,Δ, 𝜇, 𝜖, 𝑠𝑡𝑚𝑡⟩ ⇓ ⟨𝜇 ′, 𝜖 ′, 𝑠𝑖𝑔⟩
⟨C,Δ, 𝜇, 𝜖, 𝑑𝑒𝑐𝑙⟩ ⇓ ⟨Δ′, 𝜇 ′, 𝜖 ′, 𝑠𝑖𝑔⟩

The contexts used in these judgements are defined in Fig-
ure 2. Here, Δ is the partial map from type names to types; 𝜖
is the partial map between variables and their memory loca-
tions; 𝜇 is the memory store mapping variable locations to
their values. C models the table lookup map provided by the
control plane: given a table at location 𝑙 with 𝑘𝑒𝑦 = 𝑣𝑎𝑙 , and
a list of actions described by a list of 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐴𝑐𝑡𝑖𝑜𝑛𝑅𝑒 𝑓 (ac-
tions with optional arguments missing), C returns an action
call expression with all the optional arguments of the action
supplied (𝐴𝑐𝑡𝑖𝑜𝑛𝑅𝑒 𝑓 ). The judgements use 𝑣𝑎𝑙 to denote a
value; and 𝑠𝑖𝑔 to denote a signal, which indicates whether
the program’s control flow proceeds normally (cont), returns
a value (return 𝑣𝑎𝑙 ), or errors (exit).
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𝑒𝑥𝑝 ::= 𝑏 Boolean
| 𝑛𝑤 integers or bits of width w
| 𝑥 variable
| 𝑒𝑥𝑝1 [𝑒𝑥𝑝2] array indexing
| 𝑒𝑥𝑝1 ⊕ 𝑒𝑥𝑝2 binary operation
| {𝑓𝑖 = 𝑒𝑥𝑝𝑖 } record
| 𝑒𝑥𝑝.𝑓𝑖 field projection
| 𝑒𝑥𝑝1 (𝑒𝑥𝑝2) function call

(a) Expressions

𝑠𝑡𝑚𝑡 ::= 𝑒𝑥𝑝1 (𝑒𝑥𝑝2) function call
| 𝑒𝑥𝑝1 := 𝑒𝑥𝑝2 assignment
| if (𝑒𝑥𝑝1) 𝑠𝑡𝑚𝑡1 else 𝑠𝑡𝑚𝑡2 conditional
| {𝑠𝑡𝑚𝑡} sequencing
| exit exit
| return 𝑒𝑥𝑝 return
| 𝑣𝑎𝑟_𝑑𝑒𝑐𝑙 variable declaration

(b) Statements

𝑝𝑟𝑔 ::= 𝑡𝑦𝑝_𝑑𝑒𝑐𝑙 𝑐𝑡𝑟𝑙_𝑏𝑜𝑑𝑦
𝑐𝑡𝑟𝑙_𝑏𝑜𝑑𝑦 ::= 𝑑𝑒𝑐𝑙 𝑠𝑡𝑚𝑡

𝑑𝑒𝑐𝑙 ::= 𝑣𝑎𝑟_𝑑𝑒𝑐𝑙 | 𝑜𝑏 𝑗_𝑑𝑒𝑐𝑙 | 𝑡𝑦𝑝_𝑑𝑒𝑐𝑙
𝑣𝑎𝑟_𝑑𝑒𝑐𝑙 ::= 𝜏 𝑥 := 𝑒𝑥𝑝 | 𝜏 𝑥
𝑡𝑦𝑝_𝑑𝑒𝑐𝑙 ::= match_kind {𝑓 } | typedef 𝜏 𝑋
𝑜𝑏 𝑗_𝑑𝑒𝑐𝑙 ::= table 𝑥 {𝑘𝑒𝑦 𝑎𝑐𝑡}

| function 𝜏𝑟𝑒𝑡 𝑥 (𝑑 𝑦 : 𝜏){𝑠𝑡𝑚𝑡}
(c) Declarations

𝑑 ::= 𝑖𝑛 | 𝑖𝑛𝑜𝑢𝑡
𝑙𝑣𝑎𝑙 ::= 𝑥

| 𝑙𝑣𝑎𝑙 .𝑓

| 𝑙𝑣𝑎𝑙 [𝑛]
𝑘𝑒𝑦 ::= 𝑒𝑥𝑝 : 𝑥
𝑎𝑐𝑡 ::= 𝑥 (𝑒𝑥𝑝, 𝑥 : 𝜏)
(d) Other constructs

Figure 1. Core P4 Expressions (fragment)

Var : variables Val : values
TypVar : type variables Typ : types in Core P4

Loc : locations

Γ : Var → Typ Δ : TypVar → Typ

𝜖 : Var → Loc 𝜇 : Loc → Val

C : Loc × Val × 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐴𝑐𝑡𝑖𝑜𝑛𝑅𝑒 𝑓 → 𝐴𝑐𝑡𝑖𝑜𝑛𝑅𝑒 𝑓

Figure 2. Typing and Evaluation Contexts

Since function calls are expressions, and a function’s body
can update the memory store, the evaluation judgement for
expressions can modify the memory store. Similarly, the
statement evaluation judgement captures the updated mem-
ory store from evaluating a statement with side-effects and
the environment extension on declaring a new variable. A
declaration evaluation can reduce to a new memory store
and environment when evaluating a variable or object decla-
ration. Additionally, a declaration statement can update the
type definition context by introducing a new type alias. Both
declarations and statements evaluate to a signal 𝑠𝑖𝑔, repre-
senting the result of the control flow in their sequencing
blocks.

3.3 Core P4 Type System
Figure 3 recalls the types from Core P4. Core P4 divides the
P4 types into two categories: base types, 𝜌 , and general types,
𝜅 . The fields of headers and records must be base types. The
simplified Core P4 typing judgements for the fragment of

𝜌 ::= 𝑏𝑜𝑜𝑙 | 𝑖𝑛𝑡 | 𝑏𝑖𝑡 ⟨𝑛⟩ | 𝑢𝑛𝑖𝑡
| {𝑓 : 𝜌} | ℎ𝑒𝑎𝑑𝑒𝑟 {𝑓 : 𝜌} | 𝜌 [𝑛]
| 𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑{𝑓 }

𝜅 ::= 𝜌 | 𝑡𝑎𝑏𝑙𝑒 | 𝑑 𝜅 → 𝜅

Figure 3. Core P4 types

Core P4 presented in Figure 1 are as follows:

Γ,Δ ⊢ exp : 𝜅 𝑔𝑜𝑒𝑠 𝑑 Γ,Δ ⊢ 𝑠𝑡𝑚𝑡 ⊣ Γ′ Γ,Δ ⊢ 𝑑𝑒𝑐𝑙 ⊣ Γ′,Δ′

The expression typing judgement associates a directionality
with expressions to indicate if the expression is read only
(in) or is both readable and writable (inout). Intuitively, the
contexts on the left of ⊢ in the statement and declaration typ-
ing rule describe the contexts before their execution, while
the contexts on the right of ⊣ define the context after the
execution of the statement and declaration.1

4 IFC Type System for P4
This section presents the security-type extension for the
Core P4 fragment presented in Figure 1. Before presenting
the security-types for our fragment of Core P4, we describe
the main idea behind security type systems.

4.1 Background on Security Type Systems
A security type system lifts ordinary types to security types
by annotating them with security labels [27]. These security
labels are drawn from a security lattice, (L, ⊑), associated
1The original Core P4 typing judgements also have a constant store, to
model compile-time constants. We omit this store since our fragment does
not include compile-time constants.
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with the type system. We illustrate the key ideas using a
simple two point lattice {low, high}. Here, low identifies
publicly visible values and high represents secure values,
and low ⊑ high.
Consider a well-typed closed expression exp with type

𝜏 , represented by an ordinary type system as ⊢ exp : 𝜏 .
A security-type system will additionally assign a security
label, 𝜒 ∈ L to exp. This can be represented by the typing
judgement ⊢ exp : ⟨𝜏, 𝜒⟩, where the pair ⟨𝜏, 𝜒⟩ is the security
type. For instance, if exp evaluates to 𝑣𝑎𝑙 and 𝜒 = high, then
𝑣𝑎𝑙 is considered to be a secure value.

For statements (or expressions) that can mutate variables,
a security type system assigns a security label 𝑝𝑐 ∈ L to the
typing judgements. This label denotes the security context
used to track the security level for variables that can be
written at a given program point (program counter). Consider
a conditional statement that branches on a high security
guard expression:

if (ℎ == 1) { ℎ := 𝑠𝑒𝑡_ℎ𝑖𝑔ℎ(); } else { ℎ := 1; },
where the security level ofℎ is high and the 𝑠𝑒𝑡_ℎ𝑖𝑔ℎ function
call in the true branch writes to only high security variables.
Since the guard is at high security level, the 𝑝𝑐 for both the
conditional branches becomes high. Here, both branches
need to be well-typed under the high security label, which
implies that no variable at security level lower than high
can be mutated in either branch. For instance, we must have
Γ ⊢high ℎ := 𝑠𝑒𝑡_ℎ𝑖𝑔ℎ() and Γ ⊢high (ℎ := 1). Without this
restriction, there can be an implicit flow of information from
the conditional guard into the statement blocks of the condi-
tional, for instance, if the function wrote to a low variable.

The utility of a security-type system lies in the non-interference
guarantee offered by a well-typed program. To define non-
interference, suppose that all low security variables are ob-
servable while any high security variable is unobservable.
Informally, non-interference can be understood as the prop-
erty of a program where no unobservable input variable
influences the value of any observable output.

4.2 P4 IFC Type System
This section describes our information-flow control type
system for the language in Figure 1. We assume the lattice
(L, ⊑) of security labels has ⊤ and ⊥ elements, representing
the top and bottom elements of the lattice. In our example
lattice, ⊥ = low and ⊤ = high.

Figure 4 summarizes the security types of our information-
flow control system. Core P4 types are lifted to security types
using a security label, 𝜒 , from the lattice L. We also use
𝑝𝑐 to denote a security label when it is used as a security
context. As in Core P4, we distinguish between base security
types 𝜌 and general security types 𝜅 . For non-base types, the
security label is tracked within the type itself, for instance,
the fields of headers and records are assigned security labels
instead of the header or record. But to keep the shape of

𝜌 ::= ⟨𝑏𝑜𝑜𝑙, 𝜒⟩ | ⟨𝑖𝑛𝑡, 𝜒⟩ | ⟨𝑏𝑖𝑡 ⟨𝑛⟩, 𝜒⟩ | ⟨𝑢𝑛𝑖𝑡,⊥⟩
| ⟨{𝑓 : 𝜌},⊥⟩ | ⟨ℎ𝑒𝑎𝑑𝑒𝑟 {𝑓 : 𝜌},⊥⟩ | ⟨𝜌 [𝑛],⊥⟩
| ⟨𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑{𝑓 },⊥⟩

𝜅 ::= 𝜌 | ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩ | ⟨𝑑 𝜌
𝑝𝑐
−−→ 𝜌𝑟𝑒𝑡 ,⊥⟩

𝜏 ::= 𝑏𝑜𝑜𝑙 | 𝑖𝑛𝑡 | 𝑏𝑖𝑡 ⟨𝑛⟩ | 𝑢𝑛𝑖𝑡
| {𝑓 : 𝜌} | ℎ𝑒𝑎𝑑𝑒𝑟 {𝑓 : 𝜌}
| 𝜌 [𝑛] |𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑{𝑓 }
| 𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ) | 𝑑 𝜌

𝑝𝑐
−−→ 𝜌𝑟𝑒𝑡

Figure 4. IFC Types

types uniform, we assign the ⊥ security label for such types.
We use the metavariable 𝜏 to denote a security type without
its outer-most security label; thus, security types are of the
form ⟨𝜏, 𝜒⟩.
Before describing the judgement forms of the security

type system, we introduce the contexts used in the typing
judgements. The typing judgements use a typing context, Γ,
a type definition context, Δ, and a security context, 𝑝𝑐 , which
are same as Core P4’s contexts Figure 2, with the difference
that now Typ is the set of security types of the form ⟨𝜏, 𝜒⟩.

For a given security label 𝑝𝑐 , variables in a typing context Γ
at security level 𝜒 ⊑ 𝑝𝑐 will be referred as below-pc variables,
and variables at security level 𝜒 @ 𝑝𝑐 will be referred as not
below-pc (or sometimes above-pc) variables.
Our security type system has three forms of judgements

for expressions, statements, and declarations, respectively:

Expressions : Γ,Δ ⊢𝑝𝑐 exp : ⟨𝜏, 𝜒⟩ 𝑔𝑜𝑒𝑠 𝑑
Statements : Γ,Δ ⊢𝑝𝑐 𝑠𝑡𝑚𝑡 ⊣ Γ′

Declarations : Γ,Δ ⊢𝑝𝑐 𝑑𝑒𝑐𝑙 ⊣ Γ′,Δ′

The direction annotation 𝑔𝑜𝑒𝑠 𝑑 in the typing judgement for
expressions is dropped when the direction is not important.
The complete security typing rules can be found in Figure 5
(expressions), Figure 6 (statements), and Figure 7 (declara-
tions). Expression typing assumes a typing oracle T , giving
the meaning of the binary operations. In statement and decla-
ration typing, the judgement Δ ⊢ 𝜏 ⇝ 𝜏 ′ converts 𝜏 to a base
type by unfolding type definitions [10]. Below, we discuss
the most interesting—and technically intricate—typing rules:
those for functions, tables, and subtyping.

Typing rules for functions. Our system has rules for
function declarations and function calls. These are also the
key rules for typing actions, which are functions with no
return type. The T-FnDecl rule in Figure 7 typechecks the
body of the function to eliminate any leaks in the function
body. The 𝑝𝑐 𝑓 𝑛 security label on the function’s arrow type
records the lower bound on the security labels of the vari-
ables that the function mutates. For instance, in the following
function:

function insecure(){𝑙 := 1;ℎ := 2; },
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where the security labels of 𝑙 and ℎ variable are low and
high respectively, 𝑝𝑐 𝑓 𝑛 will be low. The T-FnCall rule in
Figure 5 enforces that a function will not be invoked in a
context that is higher than the function’s 𝑝𝑐 𝑓 𝑛 because doing
so, for instance in the example program, will implicitly flow
information from a high guard expression into a low variable.

Typing rules for tables. Since a table matches on the key
to select an action to invoke, the key of a table resembles the
guard of a conditional. Thus, the value of a key can implicitly
leak in the action’s body if the invoked action writes to vari-
ables at security label lower that that of the key expression.
Therefore, to declare a table of type ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩, the
rule T-TblDecl in Figure 7 ensures that the security label of
the most secure key, 𝜒𝑘 , is lower than the label of the least
secure assignment, 𝑝𝑐𝑎 , in any action. Here, 𝑝𝑐𝑡𝑏𝑙 records the
lower bound on the write effects associated with any keys,
actions, or arguments.

The T-TblCall rule in Figure 6 prevents any implicit flow
into any of the actions that a table might invoke by allowing
a table to be applied only in a 𝑝𝑐 context lower than the
least secure write effect associated with the table application,
𝑝𝑐𝑡𝑏𝑙 . This prevents implicit leaks during the evaluation of
keys, arguments, or the action’s body.

Subtyping rule. The T-SubType-In rule in Figure 5 al-
lows only read-only (𝑖𝑛) expressions to increase their se-
curity label. It is not safe to allow 𝑖𝑛𝑜𝑢𝑡 expressions to be
subtyped. To see why, consider the following function:

write_to_high (𝑖𝑛𝑜𝑢𝑡 h : ⟨𝑏𝑜𝑜𝑙, ℎ𝑖𝑔ℎ⟩) {h := 𝑡𝑟𝑢𝑒; }
Suppose we have a low variable l : ⟨𝑏𝑜𝑜𝑙, 𝑙𝑜𝑤⟩. Since vari-
ables are 𝑖𝑛𝑜𝑢𝑡 expressions (T-Var in Figure 5), if 𝑖𝑛𝑜𝑢𝑡 ex-
pressionswere allowed to increase their label,write_to_high(l)
call would have been valid. In this case, the function would
have written to a low variable when it should have operated
with only a high variable.

4.3 Non-Interference
To define non-interference, consider two program states,
⟨C,Δ, 𝜇𝑎, 𝜖𝑎⟩ and ⟨C,Δ, 𝜇𝑏, 𝜖𝑏⟩, where the environments have
equal domains. Suppose every below-pc variable 𝑥 has equal
value under both the memory stores, 𝜇𝑎 (𝜖𝑎 (𝑥)) = 𝜇𝑏 (𝜖𝑏 (𝑥)),
but the value of any variables that are not below-pc can
differ between the two stores. Non-interference is satisfied
if evaluating an expression, statement, or declaration in the
two program states results in two final program states that
agree on below-pc variables.

The following definition formally describes a pair of below-
pc equivalent memory stores and environments. The store
typing context Ξ maps locations in a store to security types.

Definition 4.1. Consider two pairs of memory stores and
environments ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩. Then

Ξ𝑎,Ξ𝑏,Δ |=𝑝𝑐 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ

is satisfied when

Ξ𝑎,Δ |= ⟨𝜇𝑎, 𝜖𝑎⟩ : Γ and Ξ𝑏,Δ |= ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ

and every below-pc variable 𝑥 in 𝜖𝑎 and 𝜖𝑏 has equal value
i.e., 𝜇𝑎 (𝜖𝑎 (𝑥)) = 𝜇𝑏 (𝜖𝑏 (𝑥)).

Intuitively, Ξ,Δ |= ⟨𝜇, 𝜖⟩ : Γ states that the store and envi-
ronment are well-typed: recalling that the location of every
variable is described by the environment 𝜖 and the value at
valid locations is described by the memory store 𝜇, the type
assigned to a variable using the store typing Ξ must be the
same as the type assigned by the typing context Γ. The formal
definition for this relation is provided in Definition C.4.
The following definition of non-interference for state-

ments requires that evaluating a statement under below-pc
equivalent pairs of memory stores and environment can only
reduce to pairs of final memory stores and environments that
are below-pc equivalent. Technically, this is a termination

insensitive notion of non-interference, since it does not re-
quire that both executions terminate. However, P4 programs
do not allow recursion and Doenges et al. [10] prove that all
well-typed Core P4 programs terminate.

Definition 4.2 (Non-interference for statements). For any
security lable 𝑙 , Γ,Δ |=𝑝𝑐 NI(𝑠𝑡𝑚𝑡) |=Γ′ holds for any Ξ𝑎 , Ξ𝑏 ,
𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 , 𝜖

′
𝑎 , 𝜖 ′𝑏 if whenever

1. Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ,
2. ⟨C;Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑠𝑡𝑚𝑡⟩ ⇓ ⟨𝜇 ′𝑎 ; 𝜖 ′𝑎 ; 𝑠𝑖𝑔1⟩,
3. ⟨C;Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑠𝑡𝑚𝑡⟩ ⇓ ⟨𝜇 ′

𝑏
; 𝜖 ′

𝑏
; 𝑠𝑖𝑔2⟩

then there exists Ξ′
𝑎 , Ξ′

𝑏
, such that

1. Γ,Δ ⊢𝑝𝑐 𝑠𝑡𝑚𝑡 ⊣ Γ′,
2. Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ′,

3. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ,

4. for any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that
Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and
𝑝𝑐 @ 𝜒 , we have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

5. for any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 ,
where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, we have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎),

6. for any 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 ,
where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, we have 𝜇 ′𝑏 (𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

7. one of the following holds:
• 𝑠𝑖𝑔1 = 𝑠𝑖𝑔2 = 𝑐𝑜𝑛𝑡 ; or
• 𝑠𝑖𝑔1 = 𝑠𝑖𝑔2 = 𝑒𝑥𝑖𝑡 ; or
• 𝑠𝑖𝑔1 = return 𝑣𝑎𝑙1 and 𝑠𝑖𝑔2 = return 𝑣𝑎𝑙2 such that
Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 𝑁𝐼 (𝑣𝑎𝑙1, 𝑣𝑎𝑙2) : ⟨𝜏 ′𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, where Δ ⊢

𝜏𝑟𝑒𝑡 ⇝ 𝜏 ′𝑟𝑒𝑡 and Γ [return] = ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,
8. we have the inclusions:

• Ξ𝑎 ⊆ Ξ′
𝑎 and Ξ𝑏 ⊆ Ξ′

𝑏
;

• dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎) and dom(𝜇𝑏) ⊆ dom(𝜇 ′
𝑏
); and

• dom(𝜖𝑎) ⊆ dom(𝜖 ′𝑎) and dom(𝜖𝑏) ⊆ dom(𝜖 ′
𝑏
).

We present similar non-interference definitions for expres-
sions and declarations in Definition C.5 and Definition C.10.
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Γ,Δ ⊢𝑝𝑐′ 𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩ 𝑝𝑐 ⊑ 𝑝𝑐 ′

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩
T-Subtype-PC

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛 𝜒 ⊑ 𝜒 ′

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒 ′⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛
T-SubType-In

Γ,Δ ⊢𝑝𝑐 𝑏 : ⟨𝑏𝑜𝑜𝑙,⊥⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛
T-Bool

Γ,Δ ⊢𝑝𝑐 𝑛∞ : ⟨𝑖𝑛𝑡,⊥⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛
T-Int

𝑥 ∈ dom(Γ) Γ(𝑥) = ⟨𝜏, 𝜒⟩
Γ,Δ ⊢𝑝𝑐 𝑥 : ⟨𝜏, 𝜒⟩ goes inout

T-Var

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 : ⟨𝜌1, 𝜒1⟩ Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝2 : ⟨𝜌2, 𝜒2⟩
T (Δ; ⊕; 𝜌1; 𝜌2) = 𝜌3 𝜒1 ⊑ 𝜒 ′ 𝜒2 ⊑ 𝜒 ′

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 ⊕ 𝑒𝑥𝑝2 : ⟨𝜌3, 𝜒 ′⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛
T-BinOP

Γ,Δ ⊢𝑝𝑐 {𝑒𝑥𝑝 : ⟨𝜏𝑖 , 𝜒𝑖⟩}
Γ,Δ ⊢𝑝𝑐 {𝑓 : 𝑒𝑥𝑝} : ⟨{𝑓 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛

T-Rec

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨{𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ 𝑔𝑜𝑒𝑠 𝑑
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝.𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩ 𝑔𝑜𝑒𝑠 𝑑

T-MemRec

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 : ⟨⟨𝜏, 𝜒1⟩[𝑛],⊥⟩ 𝑔𝑜𝑒𝑠 𝑑
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝2 : ⟨𝑏𝑖𝑡 ⟨32⟩, 𝜒2⟩ 𝜒2 ⊑ 𝜒1

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 [𝑒𝑥𝑝2] : ⟨𝜏, 𝜒1⟩ 𝑔𝑜𝑒𝑠 𝑑
T-Index

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨ℎ𝑒𝑎𝑑𝑒𝑟 {𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ 𝑔𝑜𝑒𝑠 𝑑
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝.𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩ 𝑔𝑜𝑒𝑠 𝑑

T-MemHdr

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 : ⟨𝑑 ⟨𝜏𝑖 , 𝜒𝑖⟩
𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝2 : ⟨𝜏𝑖 , 𝜒𝑖⟩ 𝑔𝑜𝑒𝑠 𝑑 𝑝𝑐 ⊑ 𝑝𝑐 𝑓 𝑛

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 (𝑒𝑥𝑝2) : ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩ goes in
T-Call

Figure 5. IFC Typing Rules for Expressions

Γ,Δ ⊢𝑝𝑐 {} ⊣ Γ
T-Empty

Γ,Δ ⊢⊥ exit ⊣ Γ
T-Exit

Γ,Δ ⊢𝑝𝑐 𝑠𝑡𝑚𝑡1 ⊣ Γ1 Γ1,Δ ⊢𝑝𝑐 {𝑠𝑡𝑚𝑡2} ⊣ Γ2

Γ,Δ ⊢𝑝𝑐 {𝑠𝑡𝑚𝑡1; 𝑠𝑡𝑚𝑡2} ⊣ Γ2
T-Seq

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 : ⟨𝜏, 𝜒1⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛𝑜𝑢𝑡
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝2 : ⟨𝜏, 𝜒2⟩ 𝜒2 ⊑ 𝜒1 𝑝𝑐 ⊑ 𝜒1

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 := 𝑒𝑥𝑝2 ⊣ Γ
T-Assign

Γ,Δ ⊢𝜒2 𝑠𝑡𝑚𝑡1 ⊣ Γ1 Γ,Δ ⊢𝜒2 𝑠𝑡𝑚𝑡2 ⊣ Γ2
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝑏𝑜𝑜𝑙, 𝜒1⟩ 𝜒1 ⊑ 𝜒2 𝑝𝑐 ⊑ 𝜒2

Γ,Δ ⊢𝑝𝑐 if (𝑒𝑥𝑝) 𝑠𝑡𝑚𝑡1 else 𝑠𝑡𝑚𝑡2 ⊣ Γ
T-Cond

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒𝑟𝑒𝑡 ⟩ Γ(return) = ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩ Δ ⊢ 𝜏𝑟𝑒𝑡 ⇝ 𝜏

Γ,Δ ⊢⊥ return 𝑒𝑥𝑝 ⊣ Γ
T-Return

Γ,Δ ⊢𝑝𝑐 𝑣𝑎𝑟_𝑑𝑒𝑐𝑙 ⊣ Γ1,Δ

Γ,Δ ⊢𝑝𝑐 𝑣𝑎𝑟_𝑑𝑒𝑐𝑙 ⊣ Γ1
T-Decl

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 (𝑒𝑥𝑝2) : ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 (𝑒𝑥𝑝2) ⊣ Γ

T-FnCallStmt
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩ 𝑝𝑐 ⊑ 𝑝𝑐𝑡𝑏𝑙

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 () ⊣ Γ
T-TblCall

Figure 6. IFC Typing Rules for Statements

Then, our main soundness theorem states that a well-
typed program in our information-flow control type system
will be non-interfering.

Theorem4.3 (Main Soundness Theorem). If Γ,Δ ⊢𝑝𝑐 𝑠𝑡𝑚𝑡 ⊣
Γ′, then Γ,Δ |=𝑝𝑐 NI(𝑠𝑡𝑚𝑡) |=Γ′.

We present similar non-interference theorems for expres-
sions and declarations in Theorem D.1 and Theorem D.3.

Proof Sketch. We prove non-interference theorems for state-
ments, expressions and declarations together as a mutual
induction on the typing derivation. The detailed proof of The-
orem 4.3 is given in Appendix I. The most involved case is the
rule for function calls (T-FnCall), where we must slightly

strengthen the non-interference definition for expressions,
statements, and declarations. □

5 Implementation and Case Studies
To evaluate our type system, we implemented a type-checker
for annotated P4 programs and used it to analyze a range
of example programs exhibiting different kinds of errors.
We call our tool P4BID. Our information-flow control type
system is implemented as an extension of the type checker
in the p4c compiler [25], the reference compiler for P416 [24].
The target of our type checker is the simple_switch based
on the BMv2 behavioral model. Our implementation adds
about 700 LOC to p4c and supports the L = {high, low}
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Γ,Δ ⊢𝑝𝑐 ⟨𝜏, 𝜒⟩ 𝑥 ⊣ Γ [𝑥 : ⟨𝜏, 𝜒⟩],Δ
T-VarDecl

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏 ′, 𝜒⟩ Δ ⊢ 𝜏 ⇝ 𝜏 ′

Γ;Δ ⊢𝑝𝑐 ⟨𝜏, 𝜒⟩ 𝑥 := 𝑒𝑥𝑝 ⊣ Γ [𝑥 : ⟨𝜏 ′, 𝜒⟩];Δ
T-VarInit

Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑘 : ⟨𝜏𝑘 , 𝜒𝑘⟩ Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑥𝑘 : ⟨𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑,⊥⟩ 𝜒𝑘 ⊑ 𝑝𝑐𝑡𝑏𝑙 for all 𝑘

Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑎𝑐𝑡𝑎 𝑗
: ⟨𝑑 ⟨𝜏𝑎 𝑗𝑖

, 𝜒𝑎 𝑗𝑖
⟩ ; ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩

𝑝𝑐 𝑓 𝑛𝑗−−−−→ ⟨𝑢𝑛𝑖𝑡,⊥⟩,⊥⟩ 𝑝𝑐𝑎 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗
for all 𝑗

Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑎 𝑗𝑖
: ⟨𝜏𝑎 𝑗𝑖

, 𝜒𝑎 𝑗𝑖
⟩ 𝑔𝑜𝑒𝑠 𝑑 𝜒𝑘 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗

for all 𝑗, 𝑘 𝑝𝑐𝑡𝑏𝑙 ⊑ 𝑝𝑐𝑎

Γ,Δ ⊢𝑝𝑐 table 𝑥 {𝑒𝑥𝑝𝑘 : 𝑥𝑘 𝑎𝑐𝑡𝑎 𝑗
(𝑒𝑥𝑝𝑎 𝑗𝑖

)} ⊣ Γ [𝑥 : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩],Δ
T-TblDecl

Γ1 = Γ [𝑥𝑖 : ⟨𝜏 ′𝑖 , 𝜒𝑖⟩, return : ⟨𝜏 ′𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩] Γ1,Δ ⊢𝑝𝑐 𝑓 𝑛 𝑠𝑡𝑚𝑡 ⊣ Γ2,

Δ ⊢ 𝜏𝑖 ⇝ 𝜏 ′𝑖 for each 𝜏𝑖 Δ ⊢ 𝜏𝑟𝑒𝑡 ⇝ 𝜏 ′𝑟𝑒𝑡 Γ′ = Γ [𝑥 : ⟨𝑑 ⟨𝜏 ′
𝑖
, 𝜒𝑖⟩

𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏 ′𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩]
Γ,Δ ⊢𝑝𝑐 function ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩ 𝑥 (𝑑 𝑥𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩){𝑠𝑡𝑚𝑡} ⊣ Γ′,Δ

T-FuncDecl

Figure 7. IFC Typing Rules for Declaration

lattice, and a simple diamond lattice from Figure 8b, L =

{high, alice, bob, low} for modeling isolation specifications.
Standard P4 types can be annotated with a security label
from the lattice; unannotated types default to low.
We evaluate our implementation by comparing the type-

checking time of the secure programs presented in the case
studies using the P4BID typechecker with the typechecking
time of their uninstrumented insecure counterparts using
the original p4c compiler. Table 1 shows that our implemen-
tation incurs an overhead of 5% (or 30ms) on average in
comparison to the reference p4c compiler when evaluated
on the instrumented and uninstrumented versions of the
same program. We believe this overhead is reasonable for
an unoptimized implementation that builds on the stock p4c
compiler; developing a more optimized implementation is a
direction for future work.

Table 1. Typechecking time in milliseconds.

Program Unannotated, p4c Annotated, P4BID
D2R 534 599
App 593 600
Lattice 495 527
Topology 554 591
Cache 538 550
Average 543 573

In the rest of the section, we present our case studies.

5.1 Dataplane Routing with Priorities
In traditional networks, the control plane is responsible for
routing, determining how to send a packet from source to des-
tination, while the data plane is responsible for forwarding,
sending a packet to its next hop. Subramanian et al. [30] have
shown that using programmable switches, one can handle
routing in the data plane, avoiding the control plane entirely.

In their scheme, called D2R, when a switch receives a packet,
it uses pre-loaded information about the network topology
and local knowledge about link failures to perform a breadth-
first search (BFS) and find a path to the target destination
address. D2R uses P4 mechanisms (e.g., stacks) to perform
the BFS computation entirely on the switch, without needing
to communicate with the control plane.
We consider an extension of D2R where packets that en-

counter a higher number of link failures will receive higher
priority. Listing 3 gives schematic code for the main headers
and control block implementing this variant of data plane
routing. The bfs_t headers describe the auxiliary informa-
tion carried in the packets to perform the BFS, e.g., which
links have been tried, while the ipv4_t headers contain in-
formation for standard packet forwarding. In the control
block D2R_Ingress, the number of failures count (Line 19)
can be computed from the vector of links that have been
tried, hdr.bfs.tried_links, and the number of traversed links,
hdr.bfs.num_hops. The table bfs_step performs one step of
BFS; the details are not important for our purposes. Since
P4 does not support loops, an iterative search algorithm like
BFS is modeled in the apply block on Line 35 by unrolling
the loop. If the BFS search has not completed, i.e., the current
node in the BFS search is not the destination node (Line 37),
the BFS table is applied again (we elide the details of this BFS
search algorithm which can be found in [30]). When the BFS
search has successfully completed (Line 39), the forwarding
table is applied and packet priorities are assigned based on
the number of failures encountered by the packet.
Using failure information to prioritize packets may leak

information. For instance, there are several potential reasons
why hdr.bfs.num_hops could be secret—e.g., the packet could
be transiting a private network and one might not want to
reveal whether the network has reliable or unreliable links. If
hdr.bfs.num_hops is annotated as high security, the program
is rejected by our typechecker because the forwarding action
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Listing 3. D2R: Dataplane Routing
1 header bfs_t {
2 <bit<32>, low> curr;
3 <bit<32>, low> tried_links;
4 <bit<32>, high> num_hops;
5 // ...
6 }
7 header ipv4_t {
8 <bit<3>, low> priority;
9 // ...
10 }
11 struct headers {
12 bfs_t bfs;
13 ipv4_t ipv4;
14 // ...
15 }
16

17 control D2R_Ingress(headers hdr) {
18 <bit<32>, high> failures
19 = num_bits_set(hdr.bfs.tried_links) − hdr.bfs.num_hops;
20

21 table bfs_step { ... }
22 table forward {
23 key = { hdr.bfs.next_node: exact; }
24 actions = { forwarding(failures); NoAction; }
25 }
26 action forwarding(in <bit<32>, high> failures) {
27 if (failures >= THRESHOLD) {
28 hdr.ipv4.priority = PRIO_1; // Leak
29 }
30 else {
31 hdr.ipv4.priority = PRIO_2; // Leak
32 }
33 // ... normal forwarding logic ...
34 }
35 apply {
36 if (hdr.bfs.curr != hdr.ipv4.dstAddr) {
37 bfs_step.apply();
38 } else {
39 forward.apply();
40 }
41 // repeat applications of bfs
42 }
43 }

writes data to the low-security priority after branching on
the number of the failures, which is high security (Lines 28
and 31). This is an example of an indirect leak: the program
branches on the secret, and then writes to public fields.

To remedy this information leak, we canmodify the scheme
so that the priority is computed based on non-sensitive in-
formation. For instance, we can assign priority based on
the total number of links that a packet tried to cross. This
count is an approximate proxy for the number of failures:
as the number of failures rises, the packet tries more links.

This change can be implemented by removing hdr.bfs.num_-
hops in Line 19, giving a program that is accepted by our
typechecker.

A similar kind of leak can manifest in the implementation
of NetChain [17], an in-network implementation of chain
replication on top of a key-value store. The implementation
assigns roles to the various switches in the network to de-
termine the head, tail, or internal nodes of the chain, which
among various actions determines if the node sends out a re-
ply or not. If the roles header field is labeled as a secret field,
this can give away private topological information. When in-
strumented with a high label on role, the typechecker flagged
implicit leaks in the implementation.

5.2 Modeling Timing for In-Network Caching
Like other IFC systems, our type system can model different
notions of adversary-observable data. For an example, we can
consider a key-value store with an in-network cache [18].
These systems are a prominent application of data plane
computing: switches can quickly retrieve hot items, keep
track of which items are frequently requested, and notify
the controller about which items should be stored on the
switch. While the result of a query should be the same no
matter where the item is stored, an observer may be able to
detect variations in timing: data that is stored on the switch
is returned faster, while data that is stored on the controller
takes longer to access. In some cases, this timing side-channel

may allow an adversary to learn about the state of the system.
While Core P4 does not model timing aspects of program

behavior, we can still model timing information leaks by
augmenting the program with new variables holding data
that a timing-sensitive adversary may be able to observe.
For example, Listing 4 gives a schematic P4 program imple-
menting a simple cache. The switch first tries to fetch data
locally (Line 16). If the request hits then the table runs action
cache_hit, while if the request misses then the table runs
action cache_miss. Both actions record the hit or miss in
hdr.resp.hit. We mark this field as a low-security (publicly
visible) variable, to model an adversary who can distinguish
whether a request was serviced by the cache or the controller.
If the query is sensitive information, hdr.req.query is de-
clared as high security. Our typechecker rejects this program
because of an information leak: the actions cache_hit and
cache_miss write to the low-security field hdr.response.hit
(Lines 8 and 10), but they are invoked in a table with a high-
security key hdr.req.query (Line 12). This is again an indirect
leak, modeling a simple timing side-channel.

5.3 Preventing Manipulation in Resource
Allocation

The examples we have seen so far use IFC to guarantee con-
fidentiality: secret information (high) should not leak into
publicly visible outputs (low). As is well-known, if we in-
terpret high-security data as “untrusted” and low-security
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Listing 4. In-network cache
1 header request_t { <bit<8>, high> query; }
2 header response_t { <bool, low> hit; <bit<32>, low> value; }
3 struct headers { request_t req; response_t resp; eth_t eth; }
4

5 control Cache_Ingress(headers hdr) {
6 action cache_hit(<bit<32>, low> value) {
7 hdr.resp.value = value;
8 hdr.resp.hit = true;
9 }
10 action cache_miss() { hdr.resp.hit = false; }
11 table fetch_from_cache {
12 key = { hdr.req.query: exact; }
13 actions = { cache_hit; cache_miss; }
14 }
15 apply {
16 fetch_from_cache.apply();
17 // ... if miss, try to fetch from controller ...
18 }
19 }

data as “trusted”, IFC systems can also ensure integrity: un-
trusted inputs should not affect trusted outputs. To demon-
strate, suppose several applications are running on separate
subnetworks behind a single gateway switch, which is re-
sponsible for forwarding packets to their destination sub-
network and allocate resources to the application flows. We
consider a very simple form of resource allocation, where
a switch caters to the needs of latency-sensitive applica-
tions by increasing the priority of packets belonging to such
applications. The P4 program in Listing 5 gives the main
logic for a gateway switch that accomplishes this task. In
addition to ordinary IP headers, packet headers in this set-
ting also include an application ID hdr.app.appID indicating
which application the packet belongs to. In the control block,
the table app_resources matches on the application ID, and
then calls set_priority with the desired priority level. This
action then sets the priority level of the packet by writing to
hdr.ipv4.priority (Line 15). Finally, the switch forwards the
packet to the destination address hdr.ipv4.dstAddr.

While this program behaves well when clients are honest,
a malicious client may manipulate the switch to increase the
priority of their packets. Specifically, since hdr.app.appID
is used to determine priority but not used to forward the
packets, a client may report a false application ID. This issue
can be detected by our IFC system if we label hdr.app.appID
as untrusted (high) and hdr.ipv4.priority as trusted (low):
setting priority based on application ID is an information-
flow violation.

To address this problem, we can set the priority based on
the destination address instead, bymatching on hdr.ipv4.dstAddr
instead of hdr.app.appID on Line 18. It is reasonable to model
this header as trusted (low) because if a client were to manip-
ulate this data, the packet would be delivered to the wrong

Listing 5. Resource Allocation
1 header app_t { <bit<8>, high> appID; }
2 header ipv4_t {
3 <bit<32>, low> dstAddr;
4 <bit<32>, low> priority;
5 // ...
6 }
7 struct headers {
8 app_t app;
9 ipv4_t ipv4;
10 // ...
11 }
12

13 control App_Ingress(headers hdr) {
14 action set_priority(<bit<3>, low> priority) {
15 hdr.ipv4.priority = priority;
16 }
17 table app_resources {
18 key = { hdr.app.appID: exact; }
19 actions = { set_priority; }
20 }
21 apply {
22 set_priority.apply();
23 // ... forward the packet to hdr.ipv4.dstAddr ...
24 }
25 }

destination. In the modified program, the priority is now
only computed based on trusted data in hdr.ipv4.dstAddr
and the typechecker accepts this program because there is
no integrity violation.

5.4 Ensuring Network Isolation
The previous example changes the interpretation of security
labels in order to establish different properties with IFC. For
our final case study, we show how our type system can use
a richer lattice to enforce network isolation properties.
Suppose we have a private network used by two clients,

Alice and Bob, who run dataplane programs on two sep-
arate nodes (the precise topology is not important, but a
sketch can be see in Figure 8a). Nodes pass around a shared
packet header with separate fields for Alice and for Bob, and
we want to ensure that Alice does not touch Bob’s fields,
and vice versa. Furthermore, the network operator wants to
carry telemetry data alongside the packets (in-band network
telemetry [16]) this data may depend on Alice or Bob’s data,
but neither Alice nor Bob should be able to use telemetry
data.

We can model this isolation property as non-interference
with a four-point diamond lattice with labels {𝐴, 𝐵,⊤,⊥}
(Figure 8b). Non-interference ensures that data from level 𝜒
can flow to variables labeled 𝜒 ′ if and only if 𝜒 ⊑ 𝜒 ′. Thus, if
we label Alice’s fields 𝐴 and label Bob’s fields 𝐵, then Alice’s
data cannot influence Bob’s fields, and vice versa. Similarly,
⊤-labeled fields can depend on all data, but cannot influence
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Figure 8. Security lattice for a network topology

data below ⊤. For instance, telemetry data can be labeled ⊤:
both Alice and Bob can accumulate data into⊤-labeled fields
(e.g., increment a counter), but neither Alice nor Bob are able
to leak information from⊤-labeled data into their own fields.
Finally, fields labeled ⊥ contain globally visible data that
cannot depend on other fields above ⊥. For example, we can
pre-configure a packet’s route through the private network
in ⊥-labeled fields: this ensures that information from Alice
or Bob does not influence routing, potentially leading to an
indirect leak or isolation failure.

Labeling data from the four-point lattice can already rule
out many kinds of leaks. However, it still allows some leaks
involving⊥-labeled data. For instance, Alice may write Bob’s
fields with ⊥-labeled data, while Bob may use ⊥-labeled
data to modify⊥-labeled data. While potentially undesirable,
neither of these actions violates IFC since high data is allowed
to depend on low data. To prevent these behaviors, we can
additionally typecheck Alice’s code with 𝑝𝑐 label 𝐴, and
typecheck Bob’s code with 𝑝𝑐 label 𝐵. Then, non-interference
guarantees that Alice can only write to fields labeled 𝐴 or ⊤,
and Bob can only write to fields labeled 𝐵 or ⊤.
Listing 6 shows schematic versions of programs imple-

menting the Alice and Bob switches. Both the switches have
a single action. The packet header carries one of the four se-
curity labels. In this example, we consider that hdr.alice_data
and hdr.bob_data are Alice’s and Bob’s data, respectively;
hdr.eth cannot be updated by either switch, but it can be
used by both the switches; and hdr.telem can be updated by
any switch but it should not be visible to Alice or Bob. Then,
isolation can be established by checking two judgements:

Γ,Δ ⊢𝐴 update_by_alice() ⊣ Γ′

Γ,Δ ⊢𝐵 update_by_bob() ⊣ Γ′

Programs that incorrectly access packet headers will be
flagged by the typechecker. For instance, inAlice_Ingress, the
switch tries to write to Bob’s field, Line 12 and on Line 16 it
attempts to use the telemetry field hdr.telem, which can only
be written to, not read. Our typechecker flags both leaks. A
safe version of Alice’s switch program is shown in Listing 7.
In contrast, Bob_Ingress is accepted by the typechecker: it
applies a table that branches on the⊥-labeled header hdr.eth,
and the action set_by_bob only modifies the ⊤-level header
hdr.telem, incrementing a counter.

Listing 6. Network Isolation and Telemetry
1 struct headers {
2 <alice_t, A> alice_data;
3 <bob_t, B> bob_data;
4 <telem_t, top> telem;
5 <eth_t, bot> eth;
6 }
7

8 // typed at pc = A
9 control Alice_Ingress(headers hdr) {
10 action set_by_alice(<bob_t, A> value) {
11 // Error: should not have written to Bob's field
12 hdr.bob = value;
13 }
14 table update_by_alice {
15 // Error: should not have used telemetry field
16 key = { hdr.telem: exact; }
17 actions = { set_by_alice; }
18 }
19 apply { update_by_alice.apply(); }
20 }
21

22 // typed at pc = B
23 control Bob_Ingress(headers hdr) {
24 action set_by_bob() {
25 // Allowed: modify telemetry using telemetry

information
26 hdr.telem = hdr.telem + 1;
27 }
28 table update {
29 key = { hdr.eth.dstAddr: exact; }
30 actions = { set_by_bob; NoAction; }
31 }
32 apply { update_by_bob.apply(); }
33 }

Listing 7. Isolation Respecting Switch Program
1 // typed at pc = A
2 control Alice_Ingress(headers hdr) {
3 action set_by_alice(<alice_data, A> value) {
4 hdr.alice_data = value;
5 }
6 table update_by_alice {
7 key = { hdr.alice_data: exact; }
8 action = { set_by_alice; }
9 }
10 apply { update_by_alice.apply(); }
11 }

While our concrete example only involves two switches
and two parties, the same idea can be directly generalized to
more parties by adding additional labels at the level of𝐴 and
𝐵. Then, our typechecker can ensure that programs written
by different parties act on only their own packet headers.
Richer dataflow policies could potentially be enforced by
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using more complex lattices; this is an interesting direction
for future work.

6 Related Work
Security in programmable networks. Recent works ex-

plore the security and privacy implications of programmable
networks. For instance, in-network systems can be used to
defend against denial-of-service attacks [37, 38], obfuscate
network topology [22], mitigate covert channels [36], and
enforce custom security policies [20, 30]. Tools have also
been developed for helping operators test their dataplane
programs against adversarial inputs (e.g., [19]). Our work
complements these systems by detecting security and pri-
vacy bugs in programs running on programmable switches.

Network verification. The network verification litera-
ture is too vast to summarize here; methods have have tar-
geted many aspects of networked systems, including routing
protocols (e.g., [2–4, 35]), network configurations (e.g., [5,
28]), and network controllers (e.g., [7, 15]). Techniques have
also been developed for verifying dataplane programs (e.g.,
[1, 14]). Some works also allow one to automatically repair
faulty configurations [29] or to automatically synthesize
policy-compliant ones [31, 32].
Our work focuses on dataplane programs written in the

P4 language [6], building on the core version of P4 developed
by Doenges et al. [10]. Perhaps the most closely related work
is p4v [21], a verification system for P4 programs. Using p4v,
a P4 program is verified against a logical specification by ex-
tracting a logical formula, which can be dispatched to solvers
like Z3. Liu et al. [21] use p4v to verify basic correctness prop-
erties, e.g., a program does not read or write invalid headers,
or a program implements the desired functionality correctly.
While our system cannot verify the general properties estab-
lished by p4v, our target non-interference property cannot
be established in p4v since it relates a program’s behavior
on pairs of inputs [8]. Furthermore, our type-based analysis
is lightweight and does not require automated solvers.

Two closely related type-system based works that explore
properties orthogonal to non-interference properties are
SafeP4 [11] and Π4 [12]. SafeP4 aims at catching invalid
header access bugs, while Π4 presents a dependently-typed
extension of P4 for verifying richer properties that SafeP4
could not cover. Unlike Π4, P4BID has a light-weight type-
checking algorithm that does not involve constraint solving.
Furthermore, our system builds on Core P4, a more realistic
formal model of P4. For example, Core P4 models different
calling conventions of P4 functions (e.g., pass by value and
pass by reference) and control flow signals. These features
introduced new opportunities for implicit leaks, which our
type system rules out.

Information-flow control. Our approach belongs to a
line of research on information-flow control (IFC), a type-
based method of expressing and verifying a wide variety of
security properties. Starting from work by Denning [9] and
Volpano et al. [34], there are nowmany information-flow con-
trol systems ensuring different variants of non-interference
against different kinds of adversaries; the survey by Sabelfeld
and Myers [27] is a good introduction to this area. Exist-
ing systems target general-purpose programming languages
(e.g., [23, 26]). Our work brings this idea to languages for
programmable networks.

7 Conclusion and Future Directions
We have designed an information-flow control type system
for P4 and demonstrated how it can verify networking prop-
erties for programs running on programmable switches.

We see several possibilities for further investigation. First,
our non-interference theorems treat P4 programs as map-
ping a single input packet to a single output packet, but,P4
allows programming switches that can maintain internal
state and recirculate packets for additional processing. These
features could lead to security leaks if an adversary can ob-
serve sequences of input and output packets, and it would be
interesting to establish non-interference in this richer setting.
Second, it could be interesting to refine our analysis with
information or assumptions about the control plane [21].
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A Grammar

Expressions.

𝑒𝑥𝑝 ::= 𝑏 Boolean
| 𝑛𝑤 integers or bits of width w
| 𝑥 variable
| 𝑒𝑥𝑝1 [𝑒𝑥𝑝2] array indexing
| 𝑒𝑥𝑝1 ⊕ 𝑒𝑥𝑝2 binary operation
| {𝑓𝑖 = 𝑒𝑥𝑝𝑖 } record
| 𝑒𝑥𝑝.𝑓𝑖 field projection
| 𝑒𝑥𝑝1 (𝑒𝑥𝑝2) function call

Statements.

𝑠𝑡𝑚𝑡 ::= 𝑒𝑥𝑝1 (𝑒𝑥𝑝2) function call
| 𝑒𝑥𝑝1 := 𝑒𝑥𝑝2 assignment
| if (𝑒𝑥𝑝1) 𝑠𝑡𝑚𝑡1 else 𝑠𝑡𝑚𝑡2 conditional
| {𝑠𝑡𝑚𝑡} sequencing
| exit exit
| return 𝑒𝑥𝑝 return
| 𝑣𝑎𝑟_𝑑𝑒𝑐𝑙 variable declaration

Declaration.

𝑝𝑟𝑔 ::= 𝑡𝑦𝑝_𝑑𝑒𝑐𝑙 𝑐𝑡𝑟𝑙_𝑏𝑜𝑑𝑦
𝑐𝑡𝑟𝑙_𝑏𝑜𝑑𝑦 ::= 𝑑𝑒𝑐𝑙 𝑠𝑡𝑚𝑡

𝑑𝑒𝑐𝑙 ::= 𝑣𝑎𝑟_𝑑𝑒𝑐𝑙 | 𝑜𝑏 𝑗_𝑑𝑒𝑐𝑙 | 𝑡𝑦𝑝_𝑑𝑒𝑐𝑙
𝑣𝑎𝑟_𝑑𝑒𝑐𝑙 ::= 𝜏 𝑥 := 𝑒𝑥𝑝 | 𝜏 𝑥
𝑡𝑦𝑝_𝑑𝑒𝑐𝑙 ::= match_kind {𝑓 } | typedef 𝜏 𝑋
𝑜𝑏 𝑗_𝑑𝑒𝑐𝑙 ::= table 𝑥 {𝑘𝑒𝑦 𝑎𝑐𝑡}

| function 𝜏𝑟𝑒𝑡 𝑥 (𝑑 𝑦 : 𝜏){𝑠𝑡𝑚𝑡}
𝑑 ::= 𝑖𝑛 | 𝑖𝑛𝑜𝑢𝑡

𝑙𝑣𝑎𝑙 ::= 𝑥

| 𝑙𝑣𝑎𝑙 .𝑓

| 𝑙𝑣𝑎𝑙 [𝑛]
𝑘𝑒𝑦 ::= 𝑒𝑥𝑝 : 𝑥
𝑎𝑐𝑡 ::= 𝑥 (𝑒𝑥𝑝, 𝑥 : 𝜏)

B Typing Rules
Δ ⊢ 𝜏 ⇝ 𝜏 ′ are judgements that resolve the base types for typedefs. We use the same definition as presented in Petr4’s sections
A.7 and A.8 [10]. Note that the grammar that we consider doesn’t support 𝑏𝑖𝑡 ⟨𝑒𝑥𝑝⟩ as we have discounted slice operations,
instead we have 𝑏𝑖𝑡 ⟨𝑛⟩, where 𝑛 is some constant.
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Expression Typing Rules.

Γ,Δ ⊢𝑝𝑐′ 𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩ 𝑝𝑐 ⊑ 𝑝𝑐 ′

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩
T-SubType-PC

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛 𝜒 ⊑ 𝜒 ′

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒 ′⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛
T-SubType-In

Γ,Δ ⊢𝑝𝑐 𝑛∞ : ⟨𝑖𝑛𝑡,⊥⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛
T-Int

𝑥 ∈ dom(Γ) Γ(𝑥) = ⟨𝜏, 𝜒⟩
Γ,Δ ⊢𝑝𝑐 𝑥 : ⟨𝜏, 𝜒⟩ goes inout

T-Var

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 : ⟨𝜌1, 𝜒1⟩ Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝2 : ⟨𝜌2, 𝜒2⟩
T (Δ; ⊕; 𝜌1; 𝜌2) = 𝜌3 𝜒1 ⊑ 𝜒 ′ 𝜒2 ⊑ 𝜒 ′

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 ⊕ 𝑒𝑥𝑝2 : ⟨𝜌3, 𝜒 ′⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛
T-BinOP

Γ,Δ ⊢𝑝𝑐 {𝑒𝑥𝑝 : ⟨𝜏𝑖 , 𝜒𝑖⟩}
Γ,Δ ⊢𝑝𝑐 {𝑓 : 𝑒𝑥𝑝} : ⟨{𝑓 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛

T-Rec

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨{𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ 𝑔𝑜𝑒𝑠 𝑑
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝.𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩ 𝑔𝑜𝑒𝑠 𝑑

T-MemRec

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 : ⟨⟨𝜏, 𝜒1⟩[𝑛],⊥⟩ 𝑔𝑜𝑒𝑠 𝑑
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝2 : ⟨𝑏𝑖𝑡 ⟨32⟩, 𝜒2⟩

𝜒2 ⊑ 𝜒1

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 [𝑒𝑥𝑝2] : ⟨𝜏, 𝜒1⟩ 𝑔𝑜𝑒𝑠 𝑑
T-Index

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨ℎ𝑒𝑎𝑑𝑒𝑟 {𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ 𝑔𝑜𝑒𝑠 𝑑
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝.𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩ 𝑔𝑜𝑒𝑠 𝑑

T-MemHdr

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 : ⟨𝑑 ⟨𝜏𝑖 , 𝜒𝑖⟩
𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝2 : ⟨𝜏𝑖 , 𝜒𝑖⟩ 𝑔𝑜𝑒𝑠 𝑑 𝑝𝑐 ⊑ 𝑝𝑐 𝑓 𝑛

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 (𝑒𝑥𝑝2) : ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩ goes in
T-Call

Γ1 = Γ [𝑥𝑖 : ⟨𝜏 ′𝑖 , 𝜒𝑖⟩, return : ⟨𝜏 ′𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩] Γ1,Δ ⊢𝑝𝑐 𝑓 𝑛 𝑠𝑡𝑚𝑡 ⊣ Γ2,

Δ ⊢ 𝜏𝑖 ⇝ 𝜏 ′𝑖 for each 𝜏𝑖 Δ ⊢ 𝜏𝑟𝑒𝑡 ⇝ 𝜏 ′𝑟𝑒𝑡 Γ′ = Γ [𝑥 : ⟨𝑑 ⟨𝜏 ′
𝑖
, 𝜒𝑖⟩

𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏 ′𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩]
Γ,Δ ⊢𝑝𝑐 function ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩ 𝑥 (𝑑 𝑥𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩){𝑠𝑡𝑚𝑡} ⊣ Γ′,Δ

T-FuncDecl

Statement Typing Rules.

Γ,Δ ⊢𝑝𝑐 {} ⊣ Γ
T-Empty

Γ,Δ ⊢⊥ exit ⊣ Γ
T-Exit

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝑏𝑜𝑜𝑙, 𝜒1⟩
Γ,Δ ⊢𝜒2 𝑠𝑡𝑚𝑡1 ⊣ Γ1 Γ,Δ ⊢𝜒2 𝑠𝑡𝑚𝑡2 ⊣ Γ2 𝜒1 ⊑ 𝜒2 𝑝𝑐 ⊑ 𝜒2

Γ,Δ ⊢𝑝𝑐 if (𝑒𝑥𝑝) 𝑠𝑡𝑚𝑡1 else 𝑠𝑡𝑚𝑡2 ⊣ Γ
T-conditional

Γ,Δ ⊢𝑝𝑐 𝑠𝑡𝑚𝑡1 ⊣ Γ1 Γ1,Δ ⊢𝑝𝑐 {𝑠𝑡𝑚𝑡2} ⊣ Γ2

Γ,Δ ⊢𝑝𝑐 {𝑠𝑡𝑚𝑡1; 𝑠𝑡𝑚𝑡2} ⊣ Γ2
T-Seq

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒𝑟𝑒𝑡 ⟩ Γ(return) = ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩ Δ ⊢ 𝜏𝑟𝑒𝑡 ⇝ 𝜏

Γ,Δ ⊢⊥ return 𝑒𝑥𝑝 ⊣ Γ
T-Return

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 : ⟨𝜏, 𝜒1⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛𝑜𝑢𝑡 Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝2 : ⟨𝜏, 𝜒2⟩ 𝜒2 ⊑ 𝜒1 𝑝𝑐 ⊑ 𝜒1

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 := 𝑒𝑥𝑝2 ⊣ Γ
T-Assign

Γ,Δ ⊢𝑝𝑐 𝑣𝑎𝑟_𝑑𝑒𝑐𝑙 ⊣ Γ1,Δ

Γ,Δ ⊢𝑝𝑐 𝑣𝑎𝑟_𝑑𝑒𝑐𝑙 ⊣ Γ1
T-Decl

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 (𝑒𝑥𝑝2) : ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 (𝑒𝑥𝑝2) ⊣ Γ

T-FnCallStmt

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩ 𝑝𝑐 ⊑ 𝑝𝑐𝑡𝑏𝑙

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 () ⊣ Γ
T-TblCall
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Declaration Typing Rules.

Γ,Δ ⊢𝑝𝑐 ⟨𝜏, 𝜒⟩ 𝑥 ⊣ Γ [𝑥 : ⟨𝜏, 𝜒⟩],Δ
T-VarDecl

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏 ′, 𝜒⟩ Δ ⊢ 𝜏 ⇝ 𝜏 ′

Γ;Δ ⊢𝑝𝑐 ⟨𝜏, 𝜒⟩ 𝑥 := 𝑒𝑥𝑝 ⊣ Γ [𝑥 : ⟨𝜏 ′, 𝜒⟩];Δ

Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑘 : ⟨𝜏𝑘 , 𝜒𝑘⟩ Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑥𝑘 : ⟨𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑,⊥⟩
Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑎𝑐𝑡𝑎 𝑗

: ⟨𝑑 ⟨𝜏𝑎 𝑗𝑖
, 𝜒𝑎 𝑗𝑖

⟩ ; ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩
𝑝𝑐 𝑓 𝑛𝑗−−−−→ ⟨𝑢𝑛𝑖𝑡,⊥⟩,⊥⟩, for all 𝑗

Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑎 𝑗𝑖
: ⟨𝜏𝑎 𝑗𝑖

, 𝜒𝑎 𝑗𝑖
⟩𝑔𝑜𝑒𝑠 𝑑

𝜒𝑘 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗
for all 𝑗, 𝑘 𝑝𝑐𝑎 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗

, for all 𝑗 𝜒𝑘 ⊑ 𝑝𝑐𝑡𝑏𝑙 for all 𝑘 𝑝𝑐𝑡𝑏𝑙 ⊑ 𝑝𝑐𝑎

Γ,Δ ⊢𝑝𝑐 table 𝑥 {𝑒𝑥𝑝𝑘 : 𝑥𝑘 𝑎𝑐𝑡𝑎 𝑗
(𝑒𝑥𝑝𝑎 𝑗𝑖

)} ⊣ Γ [𝑥 : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩],Δ
T-TblDecl

Γ1 = Γ [𝑥𝑖 : ⟨𝜏 ′𝑖 , 𝜒𝑖⟩, return : ⟨𝜏 ′𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩] Γ1,Δ ⊢𝑝𝑐 𝑓 𝑛 𝑠𝑡𝑚𝑡 ⊣ Γ2,

Δ ⊢ 𝜏𝑖 ⇝ 𝜏 ′𝑖 for each 𝜏𝑖 Δ ⊢ 𝜏𝑟𝑒𝑡 ⇝ 𝜏 ′𝑟𝑒𝑡 Γ′ = Γ [𝑥 : ⟨𝑑 ⟨𝜏 ′
𝑖
, 𝜒𝑖⟩

𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏 ′𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩]
Γ,Δ ⊢𝑝𝑐 function ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩ 𝑥 (𝑑 𝑥𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩){𝑠𝑡𝑚𝑡} ⊣ Γ′,Δ

T-FuncDecl

C Definition
Let 𝜏𝑓 𝑛 = ⟨𝑑 𝜌

𝑝𝑐 𝑓 𝑛−−−→ 𝜌𝑟𝑒𝑡 ,⊥⟩ and 𝜏𝑡𝑏𝑙 = ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩
Definition C.1 (Store typing). Store typing context Ξ is a partial map from the locations to types, Ξ : L→ ⟨𝜏, 𝜒⟩. A memory-
store 𝜇 is well-typed in a store-typing context Ξ, which can be represented as Ξ,Δ |= 𝜇, if for every location, 𝑙 ∈ dom(𝜇) there
exists a type, ⟨𝜏, 𝜒⟩ = Ξ(𝑙) and Ξ,Δ ⊢ 𝜇 (𝑙) : ⟨𝜏, 𝜒⟩ (value typing is defined in Appendix J).

Definition C.2 (Typing of environment). Ξ ⊢ 𝜖 : Γ is defined as

Ξ ⊢ [] : []
Ξ ⊢ 𝜖 : Γ Ξ(𝑙) = ⟨𝜏, 𝜒⟩

Ξ ⊢ (𝜖, 𝑥 ↦→ 𝑙) : (Γ, 𝑥 : ⟨𝜏, 𝜒⟩)
Ξ ⊢ 𝜖 : Γ

Ξ ⊢ 𝜖 : Γ, return ↦→ 𝑙

Definition C.3 (Semantic typing of store and environment). A pair of store and environment ⟨𝜇, 𝜖⟩ is semantically well-typed
Ξ,Δ |= ⟨𝜇, 𝜖⟩ : Γ if the following conditions hold:

1. Ξ,Δ |= 𝜇

2. Ξ ⊢ 𝜖 : Γ
3. For any 𝑥 ∈ dom(𝜖), 𝜖 (𝑥) ∈ dom(𝜇),
4. For all 𝑥 in dom(𝜖) and some Γ𝑓 𝑛 ⊆ Γ and any 𝑝𝑐 , if Γ,Δ ⊢𝑝𝑐 𝑥 : 𝜏𝑓 𝑛 , 𝜇 (𝜖 (𝑥)) = 𝑐𝑙𝑜𝑠 (𝜖𝑐 , ...), and Ξ |= 𝜖𝑐 : Γ𝑓 𝑛 , then

dom(𝜖𝑐 ) ⊆ dom(𝜖) and Ξ,Δ |= ⟨𝜇, 𝜖𝑐⟩ : Γ𝑓 𝑛 . Here 𝜏𝑓 𝑛 is the function type. We elide the full view of the closures in this
definition.

5. For all 𝑥 in dom(𝜖) and some Γ𝑡𝑏𝑙 ⊆ Γ and any 𝑝𝑐 , if Γ,Δ ⊢𝑝𝑐 𝑥 : 𝜏𝑡𝑏𝑙 , 𝜇 (𝜖 (𝑥)) = 𝑡𝑎𝑏𝑙𝑒 𝑙 (𝜖𝑐 , ...), and Ξ |= 𝜖𝑐 : Γ𝑡𝑏𝑙 , then
dom(𝜖𝑐 ) ⊆ dom(𝜖) and Ξ,Δ |= ⟨𝜇, 𝜖𝑐⟩ : Γ𝑡𝑏𝑙 . Here 𝜏𝑡𝑏𝑙 is the table type.

Definition C.4 (Semantic typing for a pair of memory stores and environments). Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ holds when
1. Ξ𝑎,Δ |= ⟨𝜇𝑎, 𝜖𝑎⟩ : Γ and Ξ𝑏,Δ |= ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ
2. dom(𝜖𝑎) = dom(𝜖𝑏)
3. For any 𝑥 ∈ dom(𝜖𝑎) = dom(𝜖𝑏), Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni(𝜇𝑎 (𝜖𝑎 (𝑥)) , 𝜇𝑏 (𝜖𝑏 (𝑥))) : Γ(𝑥) (defined in Definition C.6),
4. For all 𝑥 in dom(𝜖𝑎) = dom(𝜖𝑏) and some Γ𝑓 𝑛 ⊆ Γ and any 𝑝𝑐 , if Γ,Δ ⊢𝑝𝑐 𝑥 : 𝜏𝑓 𝑛 , 𝜇𝑎 (𝜖𝑎 (𝑥)) = 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑎 , ...), 𝜇𝑏 (𝜖𝑏 (𝑥)) =

𝑐𝑙𝑜𝑠 (𝜖𝑐𝑏 , ...), Ξ𝑎 |= 𝜖𝑐𝑎 : Γ𝑓 𝑛 , and Ξ𝑏 |= 𝜖𝑐𝑏 : Γ𝑓 𝑛 , then Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑐𝑎 ⟩ ⟨𝜇𝑏, 𝜖𝑐𝑏 ⟩ : Γ𝑓 𝑛 ,
5. For all 𝑥 in dom(𝜖𝑎) = dom(𝜖𝑏) and some Γ𝑡𝑏𝑙 ⊆ Γ and any 𝑝𝑐 , if Γ,Δ ⊢𝑝𝑐 𝑥 : 𝜏𝑡𝑏𝑙 , 𝜇𝑎 (𝜖𝑎 (𝑥)) = 𝑡𝑎𝑏𝑙𝑒 𝑙𝑎 (𝜖𝑐𝑎 , ...),

𝜇𝑏 (𝜖𝑏 (𝑥)) = 𝑡𝑎𝑏𝑙𝑒 𝑙𝑏 (𝜖𝑐𝑏 , ...), Ξ𝑎 |= 𝜖𝑐𝑎 : Γ𝑡𝑏𝑙 , and Ξ𝑏 |= 𝜖𝑐𝑏 : Γ𝑡𝑏𝑙 , then Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑐𝑎 ⟩ ⟨𝜇𝑏, 𝜖𝑐𝑏 ⟩ : Γ𝑡𝑏𝑙 .
Definition C.5 (Non-interference for Expressions). Γ,Δ |=𝑝𝑐 ni(𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩) holds if for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 ,
and any security level 𝑙 ,

1. Variable at level lower than 𝑙 are indistinguishable at the beginning.Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ,
2. ⟨C;Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇 ′𝑎 ; 𝑣𝑎𝑙𝑎⟩,
3. ⟨C;Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇 ′

𝑏
; 𝑣𝑎𝑙𝑏⟩

implies there exists a Ξ′
𝑎 , Ξ′

𝑏
such that

1. Effects on any variable at level lower than 𝑙 should be indistinguishable. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ,
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2. PC is used to bound writes. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) :
⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

3. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎),
4. For any 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

5. Ξ𝑎 ⊆ Ξ′
𝑎 , Ξ𝑏 ⊆ Ξ′

𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), and dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
),

6. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒⟩.

Definition C.6 (Non-interference for values). Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒⟩ holds when:
1. Ξ𝑎,Δ ⊢ 𝑣𝑎𝑙𝑎 : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝑣𝑎𝑙𝑏 : ⟨𝜏, 𝜒⟩ (value typing is defined in Appendix J),
2. If 𝜏 ∉ {𝜌 [𝑛], {𝑓 : 𝜌}, ℎ𝑒𝑎𝑑𝑒𝑟 {𝑓 : 𝜌}, 𝑑 𝜌

𝑝𝑐
−−→ 𝜌𝑟𝑒𝑡 , 𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 )} and 𝜒 ⊑ 𝑙 , then 𝑣𝑎𝑙𝑎 = 𝑣𝑎𝑙𝑏 ,

3. If 𝜏 = 𝜌 [𝑛], 𝜏 = {𝑓 : 𝜌} or 𝜏 = ℎ𝑒𝑎𝑑𝑒𝑟 {𝑓 : 𝜌}, then Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎𝑖 , 𝑣𝑎𝑙𝑏𝑖 ) : ⟨𝜏𝑖 , 𝜒𝑖⟩, for all 𝑣𝑎𝑙𝑎𝑖 ∈ 𝑣𝑎𝑙𝑎𝑖 = 𝑣𝑎𝑙𝑎 and
𝑣𝑎𝑙𝑏𝑖 ∈ 𝑣𝑎𝑙𝑏𝑖 = 𝑣𝑎𝑙𝑏 , 𝜌 = ⟨𝜏𝑖 , 𝜒𝑖⟩.

4. If ⟨𝜏, 𝜒⟩ = 𝜏𝑓 𝑛 , then Ξ𝑎,Ξ𝑏,Δ |= ni_clos(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : 𝜏𝑓 𝑛 (Definition C.7),
5. If ⟨𝜏, 𝜒⟩ = 𝜏𝑡𝑏𝑙 , then Ξ𝑎,Ξ𝑏,Δ |= ni_tbl(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : 𝜏𝑡𝑏𝑙 (Definition C.8).

DefinitionC.7. Ξ𝑎,Ξ𝑏,Δ |= ni_clos(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : 𝜏𝑓 𝑛 , where 𝑣𝑎𝑙𝑎 and 𝑣𝑎𝑙𝑏 are of the form 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑎 , 𝑑𝑥 : ⟨𝜏, 𝜒⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, stmt)
and 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑏 , 𝑑𝑥 : ⟨𝜏, 𝜒⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, stmt) holds when there exists a Γ such that the following are satisfied:

1. Ξ𝑎 ⊢ 𝜖𝑐𝑎 : Γ and Ξ𝑏 ⊢ 𝜖𝑐𝑏 : Γ

2. for any 𝑝𝑐 , Γ,Δ ⊢𝑝𝑐 𝑣𝑎𝑙𝑎 : ⟨𝑑 ⟨𝜏, 𝜒⟩
𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩ and Γ,Δ ⊢𝑝𝑐 𝑣𝑎𝑙𝑏 : ⟨𝑑 ⟨𝜏, 𝜒⟩

𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩.
3. Γ [𝑥 : ⟨𝜏, 𝜒⟩, 𝑟𝑒𝑡𝑢𝑟𝑛 : ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩],Δ ⊢𝑝𝑐 𝑓 𝑛 𝑠𝑡𝑚𝑡 ⊣ Γ′

4. 𝑣𝑎𝑙𝑎 =𝑐𝑙𝑜𝑠 𝑣𝑎𝑙𝑏 .
Here, 𝑣𝑎𝑙𝑎 =𝑐𝑙𝑜𝑠 𝑣𝑎𝑙𝑏 is defined as two closures with dom(𝜖𝑐𝑎 ) = dom(𝜖𝑐𝑏 ).

Definition C.8. Ξ𝑎,Ξ𝑏,Δ |= ni_tbl(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : 𝜏𝑡𝑏𝑙 , where

𝑣𝑎𝑙𝑎 = 𝑡𝑎𝑏𝑙𝑒 𝑙𝑎 (𝜖𝑎, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗
(𝑒𝑥𝑝𝑎 𝑗𝑖

, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩))

and
𝑣𝑎𝑙𝑏 = 𝑡𝑎𝑏𝑙𝑒 𝑙𝑏 (𝜖𝑏, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗

(𝑒𝑥𝑝𝑎 𝑗𝑖
, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩))

holds when there exists a Γ and 𝑝𝑐𝑎 such that the following are satisfied:
1. Ξ𝑎 |= 𝜖𝑎 : Γ and Ξ𝑏 |= 𝜖𝑏 : Γ
2. for any 𝑝𝑐 , Γ;Δ ⊢𝑝𝑐 𝑣𝑎𝑙𝑎 : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩, Γ;Δ ⊢𝑝𝑐 𝑣𝑎𝑙𝑏 : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩.
3. Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑥𝑘 : ⟨𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑,⊥⟩ for each 𝑥𝑘 ∈ 𝑥𝑘
4. Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑘 : ⟨𝜏𝑘 , 𝜒𝑘⟩ for each 𝑒𝑥𝑝𝑘 ∈ 𝑒𝑥𝑝𝑘

5. Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑎𝑐𝑡𝑎𝑗 : ⟨𝑑 ⟨𝜏𝑎 𝑗𝑖
, 𝜒𝑎 𝑗𝑖

⟩ ; ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩
𝑝𝑐 𝑓 𝑛𝑗−−−−→ ⟨𝑢𝑛𝑖𝑡,⊥⟩,⊥⟩ for each 𝑎𝑐𝑡𝑎 𝑗

∈ 𝑎𝑐𝑡𝑎 𝑗

6. Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑎 𝑗𝑖
: ⟨𝜏𝑎 𝑗𝑖

, 𝜒𝑎 𝑗𝑖
⟩ 𝑔𝑜𝑒𝑠 𝑑 for each 𝑒𝑥𝑝𝑎 𝑗𝑖

∈ 𝑒𝑥𝑝𝑎 𝑗𝑖

7. 𝑣𝑎𝑙𝑎 =𝑡𝑏𝑙 𝑣𝑎𝑙𝑏 .
8. 𝜒𝑘 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗

, for all 𝑗, 𝑘
9. 𝑝𝑐𝑎 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗

, for all 𝑗
10. 𝜒𝑘 ⊑ 𝑝𝑐𝑡𝑏𝑙 for all 𝑘
11. 𝑝𝑐𝑡𝑏𝑙 ⊑ 𝑝𝑐𝑎 .

Here, 𝑡𝑎𝑏𝑙𝑒 𝑙𝑎 =𝑡𝑏𝑙 𝑡𝑎𝑏𝑙𝑒 𝑙𝑏 is defined as two table values with dom(𝜖𝑎) = dom(𝜖𝑏). Their control plane entries will be the same.

Definition C.9 (Non-interference for statements). For any security lable 𝑙 , Γ,Δ |=𝑝𝑐 NI(𝑠𝑡𝑚𝑡) |=Γ′ holds for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 ,
𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 , 𝜖

′
𝑎 , 𝜖 ′𝑏 if

1. Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ,
2. ⟨C;Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑠𝑡𝑚𝑡⟩ ⇓ ⟨𝜇 ′𝑎 ; 𝜖 ′𝑎 ; 𝑠𝑖𝑔1⟩,
3. ⟨C;Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑠𝑡𝑚𝑡⟩ ⇓ ⟨𝜇 ′

𝑏
; 𝜖 ′

𝑏
; 𝑠𝑖𝑔2⟩

then there exists Ξ′
𝑎 , Ξ′

𝑏
, such that

1. Γ,Δ ⊢𝑝𝑐 𝑠𝑡𝑚𝑡 ⊣ Γ′,
2. Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ′,

3. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ,
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4. PC is used to bound writes. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) :
⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

5. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎),
6. For any 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

7. 𝑠𝑖𝑔1 = 𝑠𝑖𝑔2 = 𝑐𝑜𝑛𝑡 or 𝑠𝑖𝑔1 = 𝑠𝑖𝑔2 = 𝑒𝑥𝑖𝑡 or 𝑠𝑖𝑔1 = return 𝑣𝑎𝑙1; 𝑠𝑖𝑔2 = return 𝑣𝑎𝑙2,
8. If 𝑠𝑖𝑔1 = return 𝑣𝑎𝑙1 and 𝑠𝑖𝑔2 = return 𝑣𝑎𝑙2, then Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 𝑁𝐼 (𝑣𝑎𝑙1, 𝑣𝑎𝑙2) : ⟨𝜏 ′𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, where Δ ⊢ 𝜏𝑟𝑒𝑡 ⇝ 𝜏 ′𝑟𝑒𝑡 and

Γ [return] = ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,
9. Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), dom(𝜖𝑎) ⊆ dom(𝜖 ′𝑎), and dom(𝜖𝑏) ⊆ dom(𝜖 ′

𝑏
).

Definition C.10 (Non-interference for declaration statements). For any security lable 𝑙 , Γ,Δ |=𝑝𝑐 NI(𝑑𝑒𝑐𝑙) |=Γ′,Δ1 holds for
any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 , 𝜖

′
𝑎 , 𝜖 ′𝑏 if

1. Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ,
2. ⟨C;Δ; 𝜇𝑎 ; 𝜖𝑎 ;𝑑𝑒𝑐𝑙⟩ ⇓ ⟨Δ1; 𝜇 ′𝑎 ; 𝜖 ′𝑎 ; 𝑐𝑜𝑛𝑡⟩,
3. ⟨C;Δ; 𝜇𝑏 ; 𝜖𝑏 ;𝑑𝑒𝑐𝑙⟩ ⇓ ⟨Δ1; 𝜇 ′𝑏 ; 𝜖

′
𝑏
; 𝑐𝑜𝑛𝑡⟩,

then there exists Ξ′
𝑎 , Ξ′

𝑏
such that

1. Γ,Δ ⊢𝑝𝑐 𝑑𝑒𝑐𝑙 ⊣ Γ′,Δ1,
2. Ξ′

𝑎,Ξ
′
𝑏
,Δ1 |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ′ and Ξ′

𝑎,Ξ
′
𝑏
,Δ1 |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ

3. PC is used to bound writes. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) :
⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

4. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎),
5. For any 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

6. Ξ𝑎 ⊆ Ξ′
𝑎 , Ξ𝑏 ⊆ Ξ′

𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), dom(𝜖𝑎) ⊆ dom(𝜖 ′𝑎), and dom(𝜖𝑏) ⊆ dom(𝜖 ′

𝑏
), Δ ⊆ Δ1.

D Theorems
Theorem D.1. If Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩, then Γ,Δ |=𝑝𝑐 ni(𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩).

Theorem D.2. If Γ,Δ ⊢𝑝𝑐 𝑠𝑡𝑚𝑡 ⊣ Γ′, then Γ,Δ |=𝑝𝑐 NI(𝑠𝑡𝑚𝑡) |=Γ′.

Theorem D.3. If Γ,Δ ⊢𝑝𝑐 𝑑𝑒𝑐𝑙 ⊣ Γ′,Δ′
, then Γ,Δ |=𝑝𝑐 NI(𝑑𝑒𝑐𝑙) |=Γ′,Δ′

.

E Lemmas
Lemma E.1. Suppose Ξ,Δ |= 𝜇. For any 𝑙 , if 𝑙 ∉ dom(Ξ), then 𝑙 ∉ dom(𝜇).

Proof. Direct proof by expanding the definition of the Ξ,Δ |= 𝜇. □

Lemma E.2. If Ξ,Δ ⊢ 𝑣𝑎𝑙 : ⟨𝜏, 𝜒⟩ and Ξ ⊆ Ξ′
, then Ξ′,Δ ⊢ 𝑣𝑎𝑙 : ⟨𝜏, 𝜒⟩.

Proof. By induction on the typing derivations of value typing judgement. □

Lemma E.3. Suppose Ξ,Δ |= 𝜇 and for any 𝑙𝑎 ∉ dom(Ξ), let Ξ′ = Ξ[𝑙𝑎 ↦→ ⟨𝜏 ′, 𝜒 ′⟩], 𝜇 ′ = 𝜇 [𝑙𝑎 ↦→ 𝑣𝑎𝑙], and Ξ′,Δ ⊢ 𝜇 ′(𝑙𝑎) :
⟨𝜏 ′, 𝜒 ′⟩. Then Ξ′,Δ |= 𝜇 ′.

Proof. By Definition C.1, 𝑙𝑎 ∉ dom(Ξ) implies 𝑙𝑎 ∉ dom(𝜇). For all 𝑙 ∈ dom(𝜇 ′), there are two cases:
• 𝑙 ∈ dom(𝜇). By the definitions of 𝜇 ′ and Ξ′ we know that for the locations in this case (𝑙 ∈ dom(𝜇 ′) ∩ dom(𝜇)),
𝜇 ′(𝑙) = 𝜇 (𝑙) and Ξ′(𝑙) = Ξ(𝑙). Using Ξ,Δ |= 𝜇, we can conclude that for the locations in this case, there exists a type,
⟨𝜏, 𝜒⟩ = Ξ(𝑙) = Ξ′(𝑙) and Ξ,Δ ⊢ 𝜇 (𝑙) : ⟨𝜏, 𝜒⟩. Using 𝜇 ′(𝑙) = 𝜇 (𝑙), we can say Ξ,Δ ⊢ 𝜇 ′(𝑙) : ⟨𝜏, 𝜒⟩. Applying Lemma E.2
with Ξ ⊆ Ξ′, we conclude Ξ′,Δ ⊢ 𝜇 ′(𝑙) : ⟨𝜏, 𝜒⟩.

• 𝑙 = 𝑙𝑎 . For the last case where 𝑙 = 𝑙𝑎 , we can see that Ξ′(𝑙𝑎) = ⟨𝜏 ′, 𝜒 ′⟩ and Ξ′,Δ ⊢ 𝜇 ′(𝑙𝑎) : ⟨𝜏 ′, 𝜒 ′⟩.
Therefore, we have shown that for every location, 𝑙 ∈ dom(𝜇 ′) there exists a type, ⟨𝜏, 𝜒⟩ = Ξ′(𝑙) and Ξ′,Δ ⊢ 𝜇 ′(𝑙) : ⟨𝜏, 𝜒⟩. □

Lemma E.4. If Ξ ⊢ 𝜖 : Γ, then for any Ξ′
such that Ξ ⊆ Ξ′

, we have Ξ′ ⊢ 𝜖 : Γ.

Proof. Direct proof using the definition of Ξ′ ⊢ 𝜖 : Γ □

Lemma E.5. Suppose Ξ𝑎,Δ |= ⟨𝜇𝑎, 𝜖𝑎⟩ : Γ. Let Ξ𝑎 ⊆ Ξ′
𝑎 , 𝜇𝑎 ⊆ 𝜇 ′𝑎 . If Ξ

′
𝑎,Δ |= 𝜇 ′𝑎 , then Ξ′

𝑎,Δ |= ⟨𝜇 ′𝑎, 𝜖𝑎⟩ : Γ.

Proof. By definition, Ξ′
𝑎 = Ξ𝑎 ∪ {𝑙𝑎 ↦→ ⟨𝜏, 𝜒⟩}, 𝜇 ′𝑎 = 𝜇𝑎 ∪ {𝑙𝑎 ↦→ 𝑣𝑎𝑙𝑎} and 𝑙𝑎 ∉ Ξ𝑎 . This is followed by: 𝜇 ′𝑎 (𝜖𝑎 (𝑥)) = 𝜇𝑎 (𝜖𝑎 (𝑥))

and Ξ′
𝑎 (𝜖𝑎 (𝑥)) = Ξ𝑎 (𝜖𝑎 (𝑥)), for any 𝑥 ∈ 𝜖𝑎 . We prove this lemma by induction on the dom(𝜖𝑎)
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1. Base case. dom(𝜖𝑎) = ∅. Trivial.
2. To prove Ξ′

𝑎,Δ |= ⟨𝜇 ′𝑎, 𝜖𝑎⟩ : Γ, we need to show that
a. Ξ′

𝑎,Δ |= 𝜇 ′𝑎 (already given),
b. Ξ′

𝑎 ⊢ 𝜖𝑎 : Γ (follows from Lemma E.4),
c. for any 𝑥 ∈ dom(𝜖𝑎), we have 𝜖𝑎 (𝑥) ∈ dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎),
d. For all𝑥 in dom(𝜖𝑎) and any Γ𝑐𝑙𝑜𝑠 ⊆ Γ and any 𝑝𝑐 , if Γ,Δ ⊢𝑝𝑐 𝑥 : 𝜏𝑐𝑙𝑜𝑠 , 𝜇 ′𝑎 (𝜖𝑎 (𝑥)) = 𝑣𝑎𝑙 ′

𝑐𝑙𝑜𝑠
, 𝑣𝑎𝑙𝑐𝑙𝑜𝑠 = {𝑐𝑙𝑜𝑠 (𝜖𝑐 , ...), 𝑡𝑎𝑏𝑙𝑒 𝑙𝑎 (𝜖𝑐 , ...)},

and Ξ′
𝑎 |= 𝜖𝑐 : Γ𝑐𝑙𝑜𝑠 , then dom(𝜖𝑐 ) ⊆ dom(𝜖𝑎) and Ξ′

𝑎,Δ |= ⟨𝜇 ′𝑎, 𝜖𝑐⟩ : Γ𝑐𝑙𝑜𝑠 . Note that 𝑣𝑎𝑙 ′𝑐𝑙𝑜𝑠 = 𝜇𝑎 (𝜖𝑎 (𝑥)). This implies
the 𝜖𝑐 will still satisfy dom(𝜖𝑐 ) ⊆ dom(𝜖𝑎). By applying the induction hypothesis on Ξ𝑎,Δ |= ⟨𝜇𝑎, 𝜖𝑐⟩ : Γ with
dom(𝜖𝑐 ) ⊆ dom(𝜖𝑎), we can conclude that Ξ′

𝑎,Δ |= ⟨𝜇 ′𝑎, 𝜖𝑐⟩ : Γ𝑐𝑙𝑜𝑠 holds.
□

Lemma E.6 (Non-interference with Subtyping). If Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝜒 ⊑ 𝜒 ′
, then Ξ𝑎,Ξ𝑏,Δ |=𝑙

ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒 ′⟩.

Proof. To show Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒 ′⟩, we need to show the following:
1. Ξ𝑎,Δ ⊢ 𝑣𝑎𝑙𝑎 : ⟨𝜏, 𝜒 ′⟩. The above holds true using the TV-SubType rule in Appendix J, since we have the premise

Ξ𝑎,Δ ⊢ 𝑣𝑎𝑙𝑎 : ⟨𝜏, 𝜒⟩ and 𝜒 ⊑ 𝜒 ′

2. Ξ𝑏,Δ ⊢ 𝑣𝑎𝑙𝑏 : ⟨𝜏, 𝜒 ′⟩. Similar to the above case.
3. if 𝜏 ∉ {{𝑓 : 𝜌}, ℎ𝑒𝑎𝑑𝑒𝑟 {𝑓 : 𝜌}, 𝑑 𝜌

𝑝𝑐
−−→ 𝜌𝑟𝑒𝑡 , 𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 )} and 𝜒 ′ ⊑ 𝑙 , then 𝑣𝑎𝑙𝑎 = 𝑣𝑎𝑙𝑏 . Since we know 𝜒 ⊑ 𝜒 ′, if 𝜒 ′ ⊑ 𝑙 ,

then 𝜒 ⊑ 𝑙 , and 𝑣𝑎𝑙𝑎 = 𝑣𝑎𝑙𝑏 (according to Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒⟩).
□

Lemma E.7. If Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒⟩ and Ξ𝑎 ⊆ Ξ′
𝑎 and Ξ

′
𝑏
⊆ Ξ′

𝑏
, then Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒⟩.

Proof. Direct proof using the definition of Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒⟩ and applying Lemma E.2, and Lemma E.4 □

Definition E.8. unused(⟨𝜇, 𝜖⟩, 𝑥, 𝑙𝑎) holds when the following are satisfied:
• if 𝑥 ∈ dom(𝜖), then 𝜖 (𝑥) ≠ 𝑙𝑎 ,
• for all 𝑦 ∈ dom(𝜖), if 𝜇 (𝜖 (𝑦)) = 𝑣𝑎𝑙𝑐𝑙𝑜𝑠 , where 𝑣𝑎𝑙𝑐𝑙𝑜𝑠 ∈ {𝑐𝑙𝑜𝑠 (𝜖𝑐 , ...), 𝑡𝑎𝑏𝑙𝑒 𝑙 (𝜖𝑐 , ...)}, then unused(⟨𝜇, 𝜖𝑐𝑙𝑜𝑠⟩, 𝑥, 𝑙𝑎) holds.

Lemma E.9. Suppose Ξ,Δ |= ⟨𝜇, 𝜖⟩ : Γ and ⟨Δ, 𝜇, 𝜖, 𝑠𝑡𝑚𝑡⟩ ⇓ ⟨𝜇 ′, 𝜖 ′, 𝑠𝑖𝑔⟩. For some 𝜖𝑎 with Ξ𝑎,Δ |= ⟨𝜇, 𝜖𝑎⟩ : Γ′ and some variable

𝑥 ∈ dom(𝜖𝑎), if unused(⟨𝜇, 𝜖⟩, 𝑥, 𝜖𝑎 (𝑥)), then 𝜇 (𝜖𝑎 (𝑥)) = 𝜇 ′(𝜖𝑎 (𝑥)).

Proof. By induction on the evaluation derivation of 𝑠𝑡𝑚𝑡 . Involves mutual induction of Lemma E.10, Lemma E.9, and Lemma E.11.
Some of the interesting bits include concluding Ξ,Δ′ |= ⟨𝜇 ′, 𝜖𝑎⟩ : Γ′ (using the definition), unused(⟨𝜇 ′, 𝜖 ′⟩, 𝑥, 𝜖𝑎 (𝑥)), and the
fact that declaration introduces new locations into 𝜇 ′. □

Lemma E.10. Suppose Ξ,Δ |= ⟨𝜇, 𝜖⟩ : Γ and ⟨Δ, 𝜇, 𝜖, 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇 ′, 𝑣𝑎𝑙⟩. For some 𝜖𝑎 with Ξ𝑎,Δ |= ⟨𝜇, 𝜖𝑎⟩ : Γ′ and some variable

𝑥 ∈ dom(𝜖𝑎), if unused(⟨𝜇, 𝜖⟩, 𝑥, 𝜖𝑎 (𝑥)), then 𝜇 (𝜖𝑎 (𝑥)) = 𝜇 ′(𝜖𝑎 (𝑥)).

Proof. By induction on the evaluation derivation of 𝑒𝑥𝑝 . Involves mutual induction of Lemma E.10, Lemma E.9, and Lemma E.11.
Some of the interesting bits include concluding Ξ,Δ |= ⟨𝜇 ′, 𝜖𝑎⟩ : Γ′ (using the definition), unused(⟨𝜇 ′, 𝜖⟩, 𝑥, 𝜖𝑎 (𝑥)). □

Lemma E.11. Suppose Ξ,Δ |= ⟨𝜇, 𝜖⟩ : Γ and ⟨Δ, 𝜇, 𝜖, 𝑑𝑒𝑐𝑙⟩ ⇓ ⟨Δ′, 𝜇 ′, 𝜖 ′, 𝑐𝑜𝑛𝑡⟩. For some 𝜖𝑎 with Ξ𝑎,Δ |= ⟨𝜇, 𝜖𝑎⟩ : Γ′ and some

variable 𝑥 ∈ dom(𝜖𝑎), if unused(⟨𝜇, 𝜖⟩, 𝑥, 𝜖𝑎 (𝑥)), then 𝜇 (𝜖𝑎 (𝑥)) = 𝜇 ′(𝜖𝑎 (𝑥)).

Proof. By induction on the evaluation derivation of𝑑𝑒𝑐𝑙 . Involves mutual induction of Lemma E.10, Lemma E.9, and Lemma E.11.
Some of the interesting bits include concluding Ξ,Δ′ |= ⟨𝜇 ′, 𝜖𝑎⟩ : Γ′ (using the definition), unused(⟨𝜇 ′, 𝜖 ′⟩, 𝑥, 𝜖𝑎 (𝑥)). □

Lemma E.12. Suppose Ξ𝑎,Ξ𝑏,Δ |=𝑝𝑐 ⟨𝜇𝑎, 𝜖𝑎1⟩ ⟨𝜇𝑏, 𝜖𝑏1⟩ : Γ1, Ξ𝑎,Ξ𝑏,Δ |=𝑝𝑐 ⟨𝜇𝑎, 𝜖𝑎2⟩ ⟨𝜇𝑏, 𝜖𝑏2⟩ : Γ2, where 𝜖𝑎2 = {𝑥 ↦→ 𝑙𝑎} and
𝜖𝑏2 = {𝑥 ↦→ 𝑙𝑏} and Γ2 = [{𝑥 ↦→ ⟨𝜏, 𝜒⟩}]. Then Ξ𝑎,Ξ𝑏,Δ |=𝑝𝑐 ⟨𝜇𝑎, 𝜖𝑎1 [𝑥 ↦→ 𝑙𝑎]⟩ ⟨𝜇𝑏, 𝜖𝑏1 [𝑥 ↦→ 𝑙𝑎]⟩ : Γ1 [𝑥 ↦→ ⟨𝜏, 𝜒⟩].

Proof. To prove all the requirements of the Definition C.4, we use the fact that independently all 𝑦 ∈ dom(𝜖𝑎1) = dom(𝜖𝑏1)
and 𝑦 ∈ dom(𝜖𝑎2) = dom(𝜖𝑏2) satisfy the required properties. Now, in the extended environment all 𝑦 ∈ dom(𝜖𝑎1 [𝑥 ↦→ 𝑙𝑎]) =
dom(𝜖𝑏1 [𝑥 ↦→ 𝑙𝑏]), will also satisfy the properties by reducing to either an element in dom(𝜖𝑎1) or dom(𝜖𝑎2) □

F L-value Evaluation Rules
For a term to be a well-formed l-value, the directionality of the term should be inout. Therefore, only the following typing
judgements can be used in the derivation of a well-formed l-value:
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Valid L-Value Expression Typing Rules.
• T-Var
• T-Index
• T-MemHdr
• T-MemRec

Therefore, l-value is given by the following grammar:

𝑏𝑎𝑠𝑒 ::= 𝑥

𝑙𝑣𝑎𝑙 ::= 𝑏𝑎𝑠𝑒 | 𝑙𝑣𝑎𝑙 .𝑓𝑖 | 𝑙𝑣𝑎𝑙 [𝑛]

lval_base. Note that only 𝑏𝑎𝑠𝑒 ∈ 𝜖 , where 𝜖 is the environment in which the l-value is evaluated. Other l-values like the
ones corresponding to a header field or an array index do not map to a location in the environment. Instead, it is the header
variable or the array variable that has an entry in the environment. For instance, to write to a header field 𝑙𝑣𝑎𝑙 .𝑓𝑖 where 𝑙𝑣𝑎𝑙 is
the l-value of the header that needs to be updated, the value of the header variable given by 𝑙𝑣𝑎𝑙 is updated and there is no
variable 𝑙𝑣𝑎𝑙 .𝑓𝑖 in 𝜖 . The value at location pointed by 𝜖 (𝑙𝑣𝑎𝑙) is then overwritten with the new header value. Therefore, we
define a function lval_base(𝑙𝑣𝑎𝑙) to return the l-value of the base variable that will be touched while writing to the 𝑙𝑣𝑎𝑙 . This
is inductively defined using:

lval_base(𝑏𝑎𝑠𝑒) = 𝑏𝑎𝑠𝑒

lval_base(𝑙𝑣𝑎𝑙 .𝑓𝑖 ) = lval_base(𝑙𝑣𝑎𝑙)
lval_base(𝑙𝑣𝑎𝑙 [𝑛]) = lval_base(𝑙𝑣𝑎𝑙)

F.1 L-value Equality Relation
We inductively define an equality relation on l-value expressions as follows:

𝑥 =𝑙𝑣𝑎𝑙 𝑥

𝑙𝑣𝑎𝑙𝑎 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏

𝑙𝑣𝑎𝑙𝑎 .𝑓 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 .𝑓

𝑙𝑣𝑎𝑙𝑎 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 𝑛𝑎 = 𝑛𝑏 𝑛𝑎 : 𝑖𝑛𝑡
𝑙𝑣𝑎𝑙𝑎 [𝑛𝑎] =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 [𝑛𝑏]

Definition F.1. For any security label 𝑙 , Γ,Δ |=𝑝𝑐 lval_eval(𝑙𝑣𝑎𝑙_𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩) holds for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 , if
1. Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ,
2. ⟨C;Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇 ′𝑎 ; 𝑙𝑣𝑎𝑙𝑎⟩ and ⟨C;Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇 ′𝑏 ; 𝑙𝑣𝑎𝑙𝑏⟩

then there exists some Ξ′
𝑎 , Ξ′

𝑏
such that

1. Ξ𝑎 ⊆ Ξ′
𝑎 , Ξ𝑏 ⊆ Ξ′

𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎) and dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
),

2. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ,

3. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

4. if 𝜒 ⊑ 𝑙 , then 𝑙𝑣𝑎𝑙𝑎 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 ,
5. lval_base(𝑙𝑣𝑎𝑙𝑎) ∈ dom(𝜖𝑎), lval_base(𝑙𝑣𝑎𝑙𝑏) ∈ dom(𝜖𝑏) and lval_base(𝑙𝑣𝑎𝑙𝑎) = lval_base(𝑙𝑣𝑎𝑙𝑏),
6. Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑎 : ⟨𝜏, 𝜒⟩ and Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑏 : ⟨𝜏, 𝜒⟩,
7. for any 𝑙 ′𝑎 ∈ dom(𝜇𝑎) and 𝑙 ′𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙 ′𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙 ′𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we have

𝜇𝑎 (𝑙 ′𝑎) = 𝜇𝑎1 (𝑙 ′𝑎) and 𝜇𝑏 (𝑙 ′𝑏) = 𝜇𝑏1 (𝑙 ′𝑏)

Lemma F.2. For any security label 𝑙 , if Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩, then Γ,Δ |=𝑝𝑐 lval_eval(𝑙𝑣𝑎𝑙_𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩).

Proof. We prove this by induction on the typing derivation of Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩, where we choose the last typing rule
to be the different cases.

1. T-Var
Consider the case where the last typing rule in the derivation of l-value expression is T-Var

𝑥 ∈ dom(Γ) Γ(𝑥) = ⟨𝜏, 𝜒⟩
Γ,Δ ⊢𝑝𝑐 𝑥 : ⟨𝜏, 𝜒⟩ goes inout

T-Var
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then we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 , if

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ (1)

and 𝑥 is evaluated to get its l-value in two initial configuration ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows:

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑥⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑎, 𝑥⟩ ⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑥⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑏, 𝑥⟩
then there exists some Ξ′

𝑎 and Ξ′
𝑏
satisfying the following properties:

a. Ξ𝑎 ⊆ Ξ′
𝑎 , Ξ𝑏 ⊆ Ξ′

𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), and Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ, where in this case

𝜇 ′𝑎 = 𝜇𝑎 and 𝜇 ′
𝑏
= 𝜇𝑏 ,

b. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

c. lval_base(𝑙𝑣𝑎𝑙𝑎) ∈ dom(𝜖𝑎), lval_base(𝑙𝑣𝑎𝑙𝑏) ∈ dom(𝜖𝑏) and lval_base(𝑙𝑣𝑎𝑙𝑎) = lval_base(𝑙𝑣𝑎𝑙𝑏).
d. Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑎 : ⟨𝜏, 𝜒⟩ and Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑏 : ⟨𝜏, 𝜒⟩,
e. for any 𝑙 ′𝑎 ∈ dom(𝜇𝑎) and 𝑙 ′𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙 ′𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙 ′𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we

have 𝜇𝑎 (𝑙 ′𝑎) = 𝜇 ′𝑎 (𝑙 ′𝑎) and 𝜇𝑏 (𝑙 ′𝑏) = 𝜇 ′
𝑏
(𝑙 ′
𝑏
).

Showing that Item 1a holds for Ξ′
𝑎 = Ξ𝑎 , Ξ′

𝑏
= Ξ𝑏 , 𝜇 ′𝑎 = 𝜇𝑎 , and 𝜇 ′

𝑏
= 𝜇𝑏 is same as proving Equation (1), which

is already given. Item 1b is trivial as the memory stores do not change. So is Item 1e. Item 1c is immediate since
𝑙𝑣𝑎𝑙𝑎 =𝑙𝑣𝑎𝑙 𝑥 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 . Additionally, 𝑥 ∈ dom(𝜖𝑎) = dom(𝜖𝑏) since 𝑥 ∈ dom(Γ), Ξ𝑎 ⊢ 𝜖𝑎 : Γ, and Ξ𝑏 ⊢ 𝜖𝑏 : Γ. Item 1d
follows from Γ,Δ ⊢𝑝𝑐 𝑥 : ⟨𝜏, 𝜒⟩.

2. T-MemRec
Consider the case where the last typing rule in the derivation of l-value expression is T-MemRec

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨{𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ 𝑔𝑜𝑒𝑠 𝑑
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝.𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩ 𝑔𝑜𝑒𝑠 𝑑

T-MemRec

then we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 , if

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ
and 𝑒𝑥𝑝.𝑓𝑖 is evaluated to get its l-value in two initial configuration ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows:

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇 ′𝑎, 𝑙𝑣𝑎𝑙𝑎⟩
⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝.𝑓𝑖⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇 ′𝑎, 𝑙𝑣𝑎𝑙𝑎 .𝑓𝑖⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇 ′𝑏, 𝑙𝑣𝑎𝑙𝑏⟩
⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝.𝑓𝑖⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇 ′𝑏, 𝑙𝑣𝑎𝑙𝑏 .𝑓𝑖⟩

then there exists some Ξ′
𝑎 and Ξ′

𝑏
satisfying the following properties:

a. Ξ𝑎 ⊆ Ξ′
𝑎 , Ξ𝑏 ⊆ Ξ′

𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎) and dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
). Also, Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ.

b. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

c. lval_base(𝑙𝑣𝑎𝑙𝑎 .𝑓𝑖 ) = lval_base(𝑙𝑣𝑎𝑙𝑏 .𝑓𝑖 ), lval_base(𝑙𝑣𝑎𝑙𝑎 .𝑓𝑖 ) = lval_base(𝑙𝑣𝑎𝑙𝑎) ∈ dom(𝜖𝑎) and lval_base(𝑙𝑣𝑎𝑙𝑏 .𝑓𝑖 ) =
lval_base(𝑙𝑣𝑎𝑙𝑏) ∈ dom(𝜖𝑏),

d. Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑎 .𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩ and Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑏 .𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩,
e. if 𝜒 ⊑ 𝑙 , then 𝑙𝑣𝑎𝑙𝑎 .𝑓𝑖 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 .𝑓𝑖 .
f. for any 𝑙 ′𝑎 ∈ dom(𝜇𝑎) and 𝑙 ′𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙 ′𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙 ′𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇𝑎 (𝑙 ′𝑎) = 𝜇 ′𝑎 (𝑙 ′𝑎) and 𝜇𝑏 (𝑙 ′𝑏) = 𝜇 ′

𝑏
(𝑙 ′
𝑏
)

By applying induction hypothesis on the typing derivation of 𝑒𝑥𝑝 , we conclude Γ,Δ |=𝑝𝑐 lval_eval(𝑒𝑥𝑝 : ⟨{𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩).
Since 𝑒𝑥𝑝 is evaluated to get its l-value in two initial configuration ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩, whereΞ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ :
Γ, there exists some Ξ′

𝑎1 and Ξ′
𝑏1 satisfying Ξ𝑎 ⊆ Ξ′

𝑎1 and Ξ𝑏 ⊆ Ξ′
𝑏1, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
) and the

following:
Ξ′
𝑎1,Ξ

′
𝑏1,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎⟩ ⟨𝜇𝑏1, 𝜖𝑏⟩ : Γ, (1)

lval_base(𝑙𝑣𝑎𝑙𝑎) = lval_base(𝑙𝑣𝑎𝑙𝑏), lval_base(𝑙𝑣𝑎𝑙𝑎) ∈ dom(𝜖𝑎) and lval_base(𝑙𝑣𝑎𝑙𝑏) ∈ dom(𝜖𝑏) (2)
Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑎 : ⟨{𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ and Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑏 : ⟨{𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ (3)

if ⊥ ⊑ 𝑙, then 𝑙𝑣𝑎𝑙𝑎 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 . (4)
and For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏). With this we have shown

Item 2b.
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Also, for any 𝑙 ′𝑎 ∈ dom(𝜇𝑎) and 𝑙 ′𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙 ′𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙 ′𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇𝑎 (𝑙 ′𝑎) = 𝜇𝑎1 (𝑙 ′𝑎) and 𝜇𝑏 (𝑙 ′𝑏) = 𝜇𝑏1 (𝑙 ′𝑏). This proves Item 2f. Equation (1) proves Item 2a. Proof of Item 2c follows
from the definition of lval_base and Equation (2). Using Equation (3) and T-MemRec we conclude Item 2d. Equation (4)
with the definition Appendix F.1 proves Item 2e. Note that we have proved that 𝑙𝑣𝑎𝑙𝑎 .𝑓𝑖 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 .𝑓𝑖 .

3. T-MemHdr
Consider the case where the last typing rule in the derivation of l-value expression is T-MemHdr

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨ℎ𝑒𝑎𝑑𝑒𝑟 {𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ 𝑔𝑜𝑒𝑠 𝑑
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝.𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩ 𝑔𝑜𝑒𝑠 𝑑

T-MemHdr

then showing all the required properties for an evaluation rule as follows is similar to the T-MemRec case.
⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑎1, 𝑙𝑣𝑎𝑙𝑎⟩

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝.𝑓 ⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑎1, 𝑙𝑣𝑎𝑙𝑎 .𝑓 ⟩
⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑏1, 𝑙𝑣𝑎𝑙𝑏⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝.𝑓 ⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑏1, 𝑙𝑣𝑎𝑙𝑏 .𝑓 ⟩
4. T-Index

Consider the case where the last typing rule in the derivation of l-value expression is T-Index
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 : ⟨⟨𝜏, 𝜒1⟩[𝑛],⊥⟩ 𝑔𝑜𝑒𝑠 𝑑

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝2 : ⟨𝑏𝑖𝑡 ⟨32⟩, 𝜒2⟩
𝜒2 ⊑ 𝜒1

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 [𝑒𝑥𝑝2] : ⟨𝜏, 𝜒1⟩ 𝑔𝑜𝑒𝑠 𝑑
T-Index

then we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 , if

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ
and 𝑒𝑥𝑝1 [𝑒𝑥𝑝2] is evaluated to get its l-value in two initial configuration ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows:

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝1⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑎1, 𝑙𝑣𝑎𝑙𝑎⟩ ⟨C,Δ, 𝜇𝑎1, 𝜖𝑎, 𝑒𝑥𝑝2⟩ ⇓ ⟨𝜇𝑎2, 𝑛𝑎⟩
⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝1 [𝑒𝑥𝑝2]⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑎2, 𝑙𝑣𝑎𝑙𝑎 [𝑛𝑎]⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝1⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑏1, 𝑙𝑣𝑎𝑙𝑏⟩ ⟨C,Δ, 𝜇𝑏1, 𝜖𝑏, 𝑒𝑥𝑝2⟩ ⇓ ⟨𝜇𝑏2, 𝑛𝑏⟩
⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝1 [𝑒𝑥𝑝2]⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑏2, 𝑙𝑣𝑎𝑙𝑏 [𝑛𝑏]⟩

then there exists some Ξ′
𝑎 and Ξ′

𝑏
satisfying the following properties:

a. Ξ𝑎 ⊆ Ξ′
𝑎 , Ξ𝑏 ⊆ Ξ′

𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎) and dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), where 𝜇 ′𝑎 = 𝜇𝑎2 and 𝜇 ′

𝑏
= 𝜇𝑏2. Also, Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙

⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ.
b. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any

𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′
𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

c. lval_base(𝑙𝑣𝑎𝑙𝑎 [𝑛𝑎]) = lval_base(𝑙𝑣𝑎𝑙𝑏 [𝑛𝑏]), lval_base(𝑙𝑣𝑎𝑙𝑎 [𝑛𝑎]) ∈ dom(𝜖𝑎) and lval_base(𝑙𝑣𝑎𝑙𝑏 [𝑛𝑏]) ∈ dom(𝜖𝑏),
d. Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑎 [𝑛𝑎] : ⟨𝜏, 𝜒1⟩ and Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑏 [𝑛𝑏] : ⟨𝜏, 𝜒1⟩,
e. if 𝜒1 ⊑ 𝑙 , then 𝑙𝑣𝑎𝑙𝑎 [𝑛𝑎] =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 [𝑛𝑏].
f. for any 𝑙 ′𝑎 ∈ dom(𝜇𝑎) and 𝑙 ′𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙 ′𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙 ′𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇𝑎 (𝑙 ′𝑎) = 𝜇𝑎2 (𝑙 ′𝑎) and 𝜇𝑏 (𝑙 ′𝑏) = 𝜇𝑏2 (𝑙 ′𝑏)

By applying induction hypothesis on the typing derivation of 𝑒𝑥𝑝1, we conclude Γ,Δ |=𝑝𝑐 lval_eval(𝑒𝑥𝑝1 : ⟨⟨𝜏, 𝜒1⟩[𝑛],⊥⟩).
Since 𝑒𝑥𝑝1 is evaluated to get its l-value in two initial configuration ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩, whereΞ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ :
Γ, there exists some Ξ′

𝑎1 and Ξ′
𝑏1 satisfying Ξ𝑎 ⊆ Ξ′

𝑎1 and Ξ𝑏 ⊆ Ξ′
𝑏1, dom(𝜇𝑎) ⊆ dom(𝜇𝑎1), dom(𝜇𝑏) ⊆ dom(𝜇𝑏1) and

the following:
Ξ′
𝑎1,Ξ

′
𝑏1,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎⟩ ⟨𝜇𝑏1, 𝜖𝑏⟩ : Γ, (1)

lval_base(𝑙𝑣𝑎𝑙𝑎) = lval_base(𝑙𝑣𝑎𝑙𝑏), lval_base(𝑙𝑣𝑎𝑙𝑎) ∈ dom(𝜖𝑎) and lval_base(𝑙𝑣𝑎𝑙𝑏) ∈ dom(𝜖𝑏) (2)
Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑎 : ⟨⟨𝜏, 𝜒1⟩[𝑛],⊥⟩ and Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑏 : ⟨⟨𝜏, 𝜒1⟩[𝑛],⊥⟩ (3)

if ⊥ ⊑ 𝑙, then 𝑙𝑣𝑎𝑙𝑎 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 . (4)
and For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑎1 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly
for any 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑏1 (𝑙𝑏) = 𝜇𝑏 (𝑙𝑏). Also, for any
𝑙 ′𝑎 ∈ dom(𝜇𝑎) and 𝑙 ′

𝑏
∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙 ′𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙 ′𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we have

𝜇𝑎 (𝑙 ′𝑎) = 𝜇𝑎1 (𝑙 ′𝑎) and 𝜇𝑏 (𝑙 ′𝑏) = 𝜇𝑏1 (𝑙 ′𝑏).
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By applying induction hypothesis of Theorem D.1 on the 𝑒𝑥𝑝2, we get Γ,Δ |=𝑝𝑐 ni(𝑒𝑥𝑝2 : ⟨𝑏𝑖𝑡 ⟨32⟩, 𝜒2⟩). Since 𝑒𝑥𝑝2
is evaluated in an initial configuration satisfying Equation (1), we can conclude that there exists some Ξ′

𝑎2 and Ξ′
𝑏2

satisfying Ξ′
𝑎1 ⊆ Ξ′

𝑎2, Ξ
′
𝑏1 ⊆ Ξ′

𝑏2, and dom(𝜇𝑎1) ⊆ dom(𝜇𝑎2), dom(𝜇𝑏1) ⊆ dom(𝜇𝑏2) and the following:

Ξ′
𝑎2,Ξ

′
𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ

Ξ′
𝑎2,Ξ

′
𝑏2,Δ |=𝑙 ni(𝑛𝑎 , 𝑛𝑏) : ⟨𝑏𝑖𝑡 ⟨32⟩, 𝜒2⟩

And finally, For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑎2 (𝑙𝑎) = 𝜇𝑎1 (𝑙𝑎).
Similarly for any 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑏2 (𝑙𝑏) = 𝜇𝑏1 (𝑙𝑏). This
equation proves Item 4b, since dom(𝜇𝑎) ⊆ dom(𝜇𝑎1) ⊆ dom(𝜇𝑎2) and dom(𝜇𝑏) ⊆ dom(𝜇𝑏1) ⊆ dom(𝜇𝑏2). Similarly, we
prove Item 4f
Since the type of 𝑛𝑎 is 𝜏 = 𝑏𝑖𝑡 ⟨32⟩, we can say that 𝑛𝑎 = 𝑛𝑏 if the 𝜒1 ⊑ 𝑙 . Therefore, Equation (4) proves Item 4e. Using
the definition of lval_base along with Equation (2) we can conclude Item 4c. Equation (3) with T-Index proves Item 4d.

□

G L-value Writing
Lemma G.1. Let Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩, ⟨C;Δ; 𝜇; 𝜖; 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇 ′; 𝑙𝑣𝑎𝑙⟩. Suppose ⟨C,Δ, 𝜇1, 𝜖1, 𝑙𝑣𝑎𝑙⟩ ⇓ ⟨𝜇2, 𝑣𝑎𝑙⟩,
dom(𝜇 ′) ⊆ dom(𝜇1) and dom(𝜖) ⊆ dom(𝜖1). Then 𝜇2 = 𝜇1.

Proof. By induction on the typing derivation of 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝 . Intuitively, 𝑙𝑣𝑎𝑙 has no unevaluated expression, so evaluating a
normalized value will not have side-effects. □

LemmaG.2. Let Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩, ⟨C;Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇 ′𝑎 ; 𝑙𝑣𝑎𝑙𝑎⟩ and ⟨C;Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇 ′𝑏 ; 𝑙𝑣𝑎𝑙𝑏⟩.
Suppose Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ, Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎⟩ ⟨𝜇𝑏1, 𝜖𝑏⟩ : Γ, and Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒⟩,

where Ξ𝑎 ⊆ Ξ𝑎1, Ξ𝑏 ⊆ Ξ𝑏1, dom(𝜇𝑎) ⊆ dom(𝜇𝑎1), dom(𝜇𝑏) ⊆ dom(𝜇𝑏1).
If ⟨C,Δ, 𝜇𝑎1, 𝜖𝑎, 𝑙𝑣𝑎𝑙𝑎 := 𝑣𝑎𝑙𝑎⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇 ′𝑎1, ⟨C,Δ, 𝜇𝑏1, 𝜖𝑏, 𝑙𝑣𝑎𝑙𝑏 := 𝑣𝑎𝑙𝑏⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇 ′

𝑏1, then

1. Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝜇 ′𝑎1 (𝜖𝑎 (lval_base(𝑙𝑣𝑎𝑙𝑎)) , 𝜇 ′𝑏1 (𝜖𝑏 (lval_base(𝑙𝑣𝑎𝑙𝑏))) : Γ(lval_base(𝑙𝑣𝑎𝑙𝑏)),
2. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎1 (𝑙𝑎) = 𝜇𝑎1 (𝑙𝑎). Similarly for any

𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′
𝑏1 (𝑙𝑏) = 𝜇𝑏1 (𝑙𝑏).

3. for any 𝑙𝑎 ∈ dom(𝜇𝑎1) and 𝑙𝑏 ∈ dom(𝜇𝑏1) such that 𝑙𝑏 ≠ 𝜖𝑏 (lval_base(𝑙𝑣𝑎𝑙𝑏)) and 𝑙𝑎 ≠ 𝜖𝑎 (lval_base(𝑙𝑣𝑎𝑙𝑎)), we have
𝜇 ′𝑎1 (𝑙𝑎) = 𝜇𝑎1 (𝑙𝑎) and 𝜇 ′

𝑏1 (𝑙𝑏) = 𝜇𝑏1 (𝑙𝑏),

Proof. By induction hypothesis on the typing derivation of 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝 .
1. T-Var

If the l-value expression’s typing derivation ends with a variable typing rule, then write to the l-value follows the
following evaluation, where 𝜇 ′𝑎1 = 𝜇𝑎1 [𝑙𝑎 ≔ 𝑣𝑎𝑙𝑎], and 𝜇 ′

𝑏1 = 𝜇𝑏1 [𝑙𝑏 ≔ 𝑣𝑎𝑙𝑏].

𝜖𝑎 (𝑥) = 𝑙𝑎

⟨C,Δ, 𝜇𝑎1, 𝜖𝑎, 𝑥 ≔ 𝑣𝑎𝑙𝑎⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇𝑎1 [𝑙𝑎 ≔ 𝑣𝑎𝑙𝑎]

𝜖𝑏 (𝑥) = 𝑙𝑏

⟨C,Δ, 𝜇𝑏1, 𝜖𝑏, 𝑥 ≔ 𝑣𝑎𝑙𝑏⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇𝑏1 [𝑙𝑏 ≔ 𝑣𝑎𝑙𝑏]
According to the evaluation rule, 𝜇 ′𝑎1 (𝜖𝑎 (lval_base(𝑥)) = 𝜇 ′𝑎1 (𝜖𝑎 (𝑥)) = 𝑣𝑎𝑙𝑎 and 𝜇 ′

𝑏1 (𝜖𝑏 (lval_base(𝑥)) = 𝜇 ′
𝑏
(𝜖𝑏 (𝑥)) =

𝑣𝑎𝑙𝑏 . Since we already know that Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒⟩, we have proved the requirement. Since the
memory store doesn’t change for other location’s besides that of 𝑥 , showing the other two requirements are direct.

2. T-Mem
If the l-value expression’s Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝.𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩ typing derivation ends with a T-MemRec rule, then write to the l-value
follows the following evaluation, where 𝜇 ′𝑎1 = 𝜇𝑎3 and 𝜇 ′

𝑏1 = 𝜇𝑏3.

⟨C,Δ, 𝜇𝑎1, 𝜖𝑎, 𝑙𝑣𝑎𝑙𝑎⟩ ⇓ ⟨𝜇𝑎2, {𝑓𝑗 = 𝑣𝑎𝑙𝑓𝑎 }⟩ ⟨C,Δ, 𝜇𝑎2, 𝜖𝑎, 𝑙𝑣𝑎𝑙𝑎 ≔ {𝑓𝑖 = 𝑣𝑎𝑙𝑎, 𝑓𝑗≠𝑖 = 𝑣𝑎𝑙𝑓𝑎 }⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇𝑎3

⟨C,Δ, 𝜇𝑎1, 𝜖𝑎, 𝑙𝑣𝑎𝑙𝑎 .𝑓𝑖 ≔ 𝑣𝑎𝑙𝑎⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇𝑎3

⟨C,Δ, 𝜇𝑏1, 𝜖𝑏, 𝑙𝑣𝑎𝑙𝑏⟩ ⇓ ⟨𝜇𝑏2, {𝑓𝑗 = 𝑣𝑎𝑙𝑓𝑏 }⟩ ⟨C,Δ, 𝜇𝑏2, 𝜖𝑏, 𝑙𝑣𝑎𝑙𝑏 ≔ {𝑓𝑖 = 𝑣𝑎𝑙𝑏, 𝑓𝑗≠𝑖 = 𝑣𝑎𝑙𝑓𝑏 }⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇𝑏3

⟨C,Δ, 𝜇𝑏1, 𝜖𝑏, 𝑙𝑣𝑎𝑙𝑏 .𝑓𝑖 ≔ 𝑣𝑎𝑙𝑏⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇𝑏3

We know that lval_base(𝑙𝑣𝑎𝑙𝑎 .𝑓𝑖 ) = lval_base(𝑙𝑣𝑎𝑙𝑏 .𝑓𝑖 ) using Lemma F.2. We can have two cases:
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• 𝜒𝑖 ⊑ 𝑙 . According to Lemma F.2, this implies that 𝑙𝑣𝑎𝑙𝑎 .𝑓𝑖 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 .𝑓𝑖 . Therefore, by inversion of the equality
defined in Appendix F.1, 𝑙𝑣𝑎𝑙𝑎 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 . By using Lemma G.1 to get the value of the respective l-value, we get
𝜇𝑎2 = 𝜇𝑎1 and 𝜇𝑏2 = 𝜇𝑏1. This implies Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ1. 𝑙𝑣𝑎𝑙𝑎 and 𝑙𝑣𝑎𝑙𝑏 are returned by sub-
expression 𝑒𝑥𝑝 of 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝 = 𝑒𝑥𝑝.𝑓𝑖 , therefore, by Lemma F.2, we have Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑎 : ⟨{𝑓 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ and
Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑏 : ⟨{𝑓 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩. Therefore, we can apply induction hypothesis of Theorem D.1 to evaluate the value
of a well-typed expression under two different configurations. By applying induction hypothesis of Theorem D.1 on
evaluating 𝑙𝑣𝑎𝑙𝑎 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 , we get Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni({𝑓𝑗 = 𝑣𝑎𝑙𝑓𝑎 } , {𝑓𝑗 = 𝑣𝑎𝑙𝑓𝑏 }) : ⟨{𝑓 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩. Since 𝑣𝑎𝑙𝑎 and 𝑣𝑎𝑙𝑏
are given to be non-interfering, we have

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni({𝑓𝑖 = 𝑣𝑎𝑙𝑎, 𝑓𝑗≠𝑖 = 𝑣𝑎𝑙𝑓𝑎 } , {𝑓𝑖 = 𝑣𝑎𝑙𝑏, 𝑓𝑗≠𝑖 = 𝑣𝑎𝑙𝑓𝑏 }) : ⟨{𝑓 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩

We can apply the induction hypothesis of this lemma to write to two l-value expressions generated from a well-typed
𝑒𝑥𝑝 , and conclude that

Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝜇𝑎3 (𝜖𝑎 (lval_base(𝑙𝑣𝑎𝑙𝑎)) , 𝜇𝑏3 (𝜖𝑏 (lval_base(𝑙𝑣𝑎𝑙𝑏))) : Γ(lval_base(𝑙𝑣𝑎𝑙𝑏))

Since lval_base(𝑙𝑣𝑎𝑙𝑎 .𝑓𝑖 ) = lval_base(𝑙𝑣𝑎𝑙𝑎) and lval_base(𝑙𝑣𝑎𝑙𝑏 .𝑓𝑖 ) = lval_base(𝑙𝑣𝑎𝑙𝑏), we have proved the
necessary. Also, the two other requirements follow from the results of this induction hypothesis.

• 𝜒𝑖 @ 𝑙 . Since 𝑙𝑣𝑎𝑙𝑎 and 𝑙𝑣𝑎𝑙𝑏 are evaluated from 𝑒𝑥𝑝 , by using Lemma F.2, we can conclude that 𝑙𝑣𝑎𝑙𝑎 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏
because ⊥ ⊑ 𝑙 . Also, the type of both 𝑙𝑣𝑎𝑙𝑎 and 𝑙𝑣𝑎𝑙𝑏 is ⟨{𝑓 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩. Now, by applying induction hypothesis of
Theorem D.1 to evaluate the value of a well-typed expression 𝑙𝑣𝑎𝑙𝑎 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 under two different configurations,
we conclude Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni({𝑓𝑗 = 𝑣𝑎𝑙𝑓𝑎 } , {𝑓𝑗 = 𝑣𝑎𝑙𝑓𝑏 }) : ⟨{𝑓 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩. Similar to the previous case, we can
apply the induction hypothesis of this lemma on the lval-write to 𝑙𝑣𝑎𝑙𝑎 and 𝑙𝑣𝑎𝑙𝑏 because they are both evaluated
from sub-expression 𝑒𝑥𝑝 of 𝑒𝑥𝑝.𝑓𝑖 (this can be checked from the lval-evaluation derivation). This can conclude that
Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝜇𝑎3 (𝜖𝑎 (lval_base(𝑙𝑣𝑎𝑙𝑎)) , 𝜇𝑏3 (𝜖𝑏 (lval_base(𝑙𝑣𝑎𝑙𝑏))) : Γ(lval_base(𝑙𝑣𝑎𝑙𝑏)). Also, the two other
requirements follow from the results of this induction hypothesis.

3. T-Hdr
Follows similarly.

⟨C,Δ, 𝜇, 𝜖, 𝑙𝑣𝑎𝑙⟩ ⇓ ⟨𝜇1, header{𝑣𝑎𝑙𝑖𝑑 = 𝑡𝑟𝑢𝑒, 𝑓 = 𝑣𝑎𝑙𝑓 }⟩
⟨C,Δ, 𝜇1, 𝜖, 𝑙𝑣𝑎𝑙 ≔ ℎ𝑒𝑎𝑑𝑒𝑟 {𝑣𝑎𝑙𝑖𝑑 = 𝑡𝑟𝑢𝑒, 𝑓𝑖 = 𝑣𝑎𝑙, 𝑓≠𝑖 = 𝑣𝑎𝑙𝑓 }⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇2

⟨C,Δ, 𝜇, 𝜖, 𝑙𝑣𝑎𝑙 .𝑓𝑖 ≔ 𝑣𝑎𝑙⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇2

4. T-Index
If the l-value expression’s typing derivation ends with a T-Index rule

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 : ⟨⟨𝜏, 𝜒1⟩[𝑛],⊥⟩ 𝑔𝑜𝑒𝑠 𝑑
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝2 : ⟨𝑏𝑖𝑡 ⟨32⟩, 𝜒2⟩

𝜒2 ⊑ 𝜒1

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 [𝑒𝑥𝑝2] : ⟨𝜏, 𝜒1⟩ 𝑔𝑜𝑒𝑠 𝑑
T-Index

then write to the l-value follows the following evaluation, where 𝜇 ′𝑎1 = 𝜇𝑎3 and 𝜇 ′
𝑏1 = 𝜇𝑏3.

⟨C,Δ, 𝜇𝑎1, 𝜖𝑎, 𝑙𝑣𝑎𝑙𝑎⟩ ⇓ ⟨𝜇𝑎2, 𝑠𝑡𝑎𝑐𝑘 𝜏 {𝑣𝑎𝑙𝑎}⟩ ⟨C,Δ, 𝜇𝑎2, 𝜖𝑎, 𝑙𝑣𝑎𝑙𝑎 ≔ 𝑠𝑡𝑎𝑐𝑘 𝜏 {..., 𝑣𝑎𝑙𝑎𝑛𝑎−1 , 𝑣𝑎𝑙𝑎, 𝑣𝑎𝑙𝑎𝑛𝑎+1 , ...}⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇𝑎3

⟨C,Δ, 𝜇𝑎1, 𝜖𝑎, 𝑙𝑣𝑎𝑙𝑎 [𝑛𝑎] ≔ 𝑣𝑎𝑙𝑎⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇𝑎3

⟨C,Δ, 𝜇𝑏1, 𝜖𝑏, 𝑙𝑣𝑎𝑙𝑏⟩ ⇓ ⟨𝜇𝑏2, 𝑠𝑡𝑎𝑐𝑘 𝜏 {𝑣𝑎𝑙𝑏}⟩ ⟨C,Δ, 𝜇𝑏2, 𝜖𝑏, 𝑙𝑣𝑎𝑙𝑏 ≔ 𝑠𝑡𝑎𝑐𝑘 𝜏 {..., 𝑣𝑎𝑙𝑏𝑛𝑏−1 , 𝑣𝑎𝑙𝑏, 𝑣𝑎𝑙𝑏𝑛𝑏+1 , ...}⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇𝑏3

⟨C,Δ, 𝜇𝑏1, 𝜖𝑏, 𝑙𝑣𝑎𝑙𝑏 [𝑛𝑏] ≔ 𝑣𝑎𝑙𝑏⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇𝑏3

We know that lval_base(𝑙𝑣𝑎𝑙𝑎 [𝑛𝑎]) = lval_base(𝑙𝑣𝑎𝑙𝑏 [𝑛𝑏]) using Lemma F.2 on 𝑒𝑥𝑝1. We can have two cases:
• 𝜒1 ⊑ 𝑙 . Lemma F.2 implies that 𝑙𝑣𝑎𝑙𝑎 [𝑛𝑎] =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 [𝑛𝑏]. Therefore, 𝑙𝑣𝑎𝑙𝑎 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 and 𝑛𝑎 = 𝑛𝑏 . Using similar argu-
ment to the "record" case, we can show that Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝜇𝑎3 (𝜖𝑎 (lval_base(𝑙𝑣𝑎𝑙𝑎)) , 𝜇𝑏3 (𝜖𝑏 (lval_base(𝑙𝑣𝑎𝑙𝑏))) :
Γ(lval_base(𝑙𝑣𝑎𝑙𝑏)). And by using the definition of lval_base, we conclude

Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝜇𝑎3 (𝜖𝑎 (lval_base(𝑙𝑣𝑎𝑙𝑎 [𝑛𝑎])) , 𝜇𝑏3 (𝜖𝑏 (lval_base(𝑙𝑣𝑎𝑙𝑏 [𝑛𝑏]))) : Γ(lval_base(𝑙𝑣𝑎𝑙𝑏))

• 𝜒1 @ 𝑙 . We can have the following cases:
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– Case 𝜒2 ⊑ 𝑙 . In this case 𝑛𝑎 = 𝑛𝑏 . (using induction hypothesis of Theorem D.1 on 𝑒𝑥𝑝2 evaluation in ⇓𝑙𝑣𝑎𝑙 of
𝑒𝑥𝑝1 [𝑒𝑥𝑝2]). Observe that Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 : ⟨⟨𝜏, 𝜒1⟩[𝑛],⊥⟩, and because ⊥ ⊑ 𝑙 , we have 𝑙𝑣𝑎𝑙𝑎 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 (by using
Lemma F.2, 𝑙𝑣𝑎𝑙𝑎 is the lvalue generated from 𝑒𝑥𝑝1). By applying Theorem D.1 on 𝑙𝑣𝑎𝑙𝑎’s evaluation, we get
Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝑠𝑡𝑎𝑐𝑘 𝜏 {𝑣𝑎𝑙𝑎} , 𝑠𝑡𝑎𝑐𝑘 𝜏 {𝑣𝑎𝑙𝑏}) : ⟨⟨𝜏, 𝜒1⟩[𝑛],⊥⟩. Similar to the previous cases, by applying
induction hypothesis of this lemma on the lval-write to 𝑙𝑣𝑎𝑙𝑎 and 𝑙𝑣𝑎𝑙𝑏 that are generated from the same 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝 ,
we can conclude that

Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝜇𝑎3 (𝜖𝑎 (lval_base(𝑙𝑣𝑎𝑙𝑎)) , 𝜇𝑏3 (𝜖𝑏 (lval_base(𝑙𝑣𝑎𝑙𝑏))) : Γ(lval_base(𝑙𝑣𝑎𝑙𝑏))

– Case 𝜒2 @ 𝑙 . In this case 𝑛𝑎 and 𝑛𝑏 can be 𝑛𝑎 ≠ 𝑛𝑏 (using induction hypothesis of Theorem D.1 on 𝑒𝑥𝑝2 evalua-
tion in ⇓𝑙𝑣𝑎𝑙 of 𝑒𝑥𝑝1 [𝑒𝑥𝑝2]). As ⊥ ⊑ 𝑝𝑐 , 𝑙𝑣𝑎𝑙𝑎 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 . By applying Theorem D.1 on 𝑙𝑣𝑎𝑙𝑎’s evaluation, we get
Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝑠𝑡𝑎𝑐𝑘 𝜏 {𝑣𝑎𝑙𝑎} , 𝑠𝑡𝑎𝑐𝑘 𝜏 {𝑣𝑎𝑙𝑏}) : ⟨⟨𝜏, 𝜒1⟩[𝑛],⊥⟩. However, with 𝜒2 @ 𝑙 and 𝜒1 @ 𝑙 and according to
Definition C.6, we haveΞ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝑠𝑡𝑎𝑐𝑘 𝜏 {..., 𝑣𝑎𝑙𝑎𝑛𝑎−1 , 𝑣𝑎𝑙𝑎, 𝑣𝑎𝑙𝑎𝑛𝑎+1 , ...} , 𝑠𝑡𝑎𝑐𝑘 𝜏 {..., 𝑣𝑎𝑙𝑏𝑛𝑏−1 , 𝑣𝑎𝑙𝑏, 𝑣𝑎𝑙𝑏𝑛𝑏+1 , ...}) :
⟨𝜏, 𝜒1⟩[𝑛]. Similar to the previous case, by applying induction hypothesis of this lemma on the lval-write to 𝑙𝑣𝑎𝑙𝑎
and 𝑙𝑣𝑎𝑙𝑏 that are generated from the same 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝 , we can conclude that

Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝜇𝑎3 (𝜖𝑎 (lval_base(𝑙𝑣𝑎𝑙𝑎)) , 𝜇𝑏3 (𝜖𝑏 (lval_base(𝑙𝑣𝑎𝑙𝑏))) : Γ(lval_base(𝑙𝑣𝑎𝑙𝑏))

□

LemmaG.3. Let Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩, ⟨C;Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇 ′𝑎 ; 𝑙𝑣𝑎𝑙𝑎⟩ and ⟨C;Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑙𝑣𝑎𝑙_𝑒𝑥𝑝⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇 ′𝑏 ; 𝑙𝑣𝑎𝑙𝑏⟩.
Suppose Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ, Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎⟩ ⟨𝜇𝑏1, 𝜖𝑏⟩ : Γ, and Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒⟩,

where Ξ𝑎 ⊆ Ξ𝑎1, Ξ𝑏 ⊆ Ξ𝑏1, dom(𝜇𝑎) ⊆ dom(𝜇𝑎1), dom(𝜇𝑏) ⊆ dom(𝜇𝑏1). If ⟨C,Δ, 𝜇𝑎1, 𝜖𝑎, 𝑙𝑣𝑎𝑙𝑎 := 𝑣𝑎𝑙𝑎⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇 ′𝑎1 and

⟨C,Δ, 𝜇𝑏1, 𝜖𝑏, 𝑙𝑣𝑎𝑙𝑏 := 𝑣𝑎𝑙𝑏⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇 ′
𝑏1, then Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ⟨𝜇 ′𝑎1, 𝜖𝑎⟩ ⟨𝜇 ′𝑏1, 𝜖𝑏⟩ : Γ.

Proof. Follows from Lemma G.2. □

H Function Evaluation Strategy
Lemma H.1. Consider the following well-typed expressions Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒 ′⟩, and 𝑑 𝑥 : ⟨𝜏, 𝜒⟩ := 𝑒𝑥𝑝 , where 𝜒 ′ ⊑ 𝜒 is

evaluated in two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ satisfying Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ as follows:

⟨C;Δ; 𝜇𝑎 ; 𝜖𝑎 ;𝑑 𝑥 : ⟨𝜏, 𝜒⟩ := 𝑒𝑥𝑝⟩ ⇓𝑐𝑜𝑝𝑦 ⟨𝜇 ′𝑎 ;𝑥 ↦→ 𝑙𝑎 ; 𝑙𝑣𝑎𝑙𝑎 ↦→ 𝑙𝑎⟩

and

⟨C;Δ; 𝜇𝑏 ; 𝜖𝑏 ;𝑑 𝑥 : ⟨𝜏, 𝜒⟩ := 𝑒𝑥𝑝⟩ ⇓𝑐𝑜𝑝𝑦 ⟨𝜇 ′
𝑏
;𝑥 ↦→ 𝑙𝑏 ; 𝑙𝑣𝑎𝑙𝑏 ↦→ 𝑙𝑏⟩

then

1. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝑥 ↦→ 𝑙𝑎⟩ ⟨𝜇 ′𝑏, 𝑥 ↦→ 𝑙𝑏⟩ : Γ′, for some Ξ′

𝑎 , Ξ
′
𝑏
, 𝜇 ′𝑎 , 𝜇

′
𝑏
such that Ξ𝑎 ⊆ Ξ′

𝑎 and Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎),

dom(𝜇𝑏) ⊆ dom(𝜇 ′
𝑏
) and Γ′ = {𝑥 ↦→ ⟨𝜏, 𝜒⟩}.

2. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ,

3. lval_base(𝑙𝑣𝑎𝑙𝑎) ∈ dom(𝜖𝑎), lval_base(𝑙𝑣𝑎𝑙𝑏) ∈ dom(𝜖𝑏), and lval_base(𝑙𝑣𝑎𝑙𝑎) = lval_base(𝑙𝑣𝑎𝑙𝑏),
4. 𝑙𝑎 ∈ dom(𝜇 ′𝑎) and 𝑙𝑏 ∈ dom(𝜇 ′

𝑏
),

5. 𝑙𝑎 and 𝑙𝑏 are fresh locations, 𝑙𝑎 ∉ Ξ𝑎 and 𝑙𝑏 ∉ Ξ𝑏 ,

6. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎),
7. For any 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

8. PC is used to bound writes. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) :
⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

Note. By Definition C.4, dom(𝜖𝑎) = dom(𝜖𝑏).

Proof. Case analysis on the possible directionalities d for the arguments.
1. Copy In If the statement 𝑖𝑛 𝑥 : ⟨𝜏, 𝜒⟩ := 𝑒𝑥𝑝 is evaluated in two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩

satisfying
Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ

as follows:
⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇𝑎1, 𝑣𝑎𝑙𝑎⟩ 𝑙𝑎 𝑓 𝑟𝑒𝑠ℎ

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑖𝑛 𝑥 : ⟨𝜏, 𝜒⟩ = 𝑒𝑥𝑝⟩ ⇓𝑐𝑜𝑝𝑦 ⟨𝜇𝑎1 [𝑙𝑎 ↦→ 𝑣𝑎𝑙𝑎], 𝑥 ↦→ 𝑙𝑎, []⟩
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⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇𝑏1, 𝑣𝑎𝑙𝑏⟩ 𝑙𝑏 𝑓 𝑟𝑒𝑠ℎ

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑖𝑛 𝑥 : ⟨𝜏, 𝜒⟩ = 𝑒𝑥𝑝⟩ ⇓𝑐𝑜𝑝𝑦 ⟨𝜇𝑏1 [𝑙𝑏 ↦→ 𝑣𝑎𝑙𝑏], 𝑥 ↦→ 𝑙𝑏, []⟩
then we need to show each of the following, where 𝜇 ′𝑎 = 𝜇𝑎1 [𝑙𝑎 ↦→ 𝑣𝑎𝑙𝑎] and 𝜇 ′

𝑏
= 𝜇𝑏1 [𝑙𝑏 ↦→ 𝑣𝑎𝑙𝑏], Γ′ = {𝑥 ↦→ ⟨𝜏, 𝜒⟩}.

a. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝑥 ↦→ 𝑙𝑎⟩ ⟨𝜇 ′𝑏, 𝑥 ↦→ 𝑙𝑏⟩ : Γ′, for some Ξ′

𝑎 , Ξ′
𝑏
, 𝜇 ′𝑎 , 𝜇 ′𝑏 such that Ξ𝑎 ⊆ Ξ′

𝑎 and Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆

dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′
𝑏
).

b. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ

c. Since the set of l-values, i.e., the third element of the final tuple is empty, vacuously we have lval_base(𝑙𝑣𝑎𝑙𝑎) ∈
dom(𝜖𝑎), lval_base(𝑙𝑣𝑎𝑙𝑏) ∈ dom(𝜖𝑏), and lval_base(𝑙𝑣𝑎𝑙𝑎) = lval_base(𝑙𝑣𝑎𝑙𝑏).

d. 𝑙𝑎 ∈ dom(𝜇 ′𝑎), 𝑙𝑏 ∈ dom(𝜇 ′
𝑏
), 𝑙𝑎 and 𝑙𝑏 are fresh locations, 𝑙𝑎 ∉ Ξ𝑎 and 𝑙𝑏 ∉ Ξ𝑏 ,

e. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

f. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

By applying the induction hypothesis of TheoremD.1 on Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒 ′⟩, we conclude that Γ,Δ |=𝑝𝑐 ni(𝑒𝑥𝑝 : ⟨𝜏, 𝜒 ′⟩).
This can be expanded to show that there exist someΞ𝑎1,Ξ𝑏1, 𝜇𝑎1, 𝜇𝑏1 satisfyingΞ𝑎 ⊆ Ξ𝑎1,Ξ𝑏 ⊆ Ξ𝑏1, dom(𝜇𝑎) ⊆ dom(𝜇𝑎1),
dom(𝜇𝑏) ⊆ dom(𝜇𝑏1) and the following:

Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎⟩ ⟨𝜇𝑏1, 𝜖𝑏⟩ : Γ (1)

Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒 ′⟩ (2)
and for any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑎1 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑏1 (𝑙𝑏) = 𝜇𝑏 (𝑙𝑏), Also, for any 𝑙𝑎 ∈ dom(𝜇𝑎)
and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we have 𝜇𝑎1 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and
𝜇𝑏1 (𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),
Using Lemma E.6, we can reduce the Equation (2) as follows since 𝜒 ′ ⊑ 𝜒 :

Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒⟩ (3)

To prove Item 1a, we take Ξ′
𝑎 = Ξ𝑎1 [𝑙𝑎 ↦→ ⟨𝜏, 𝜒⟩], Ξ′

𝑏
= Ξ𝑏1 [𝑙𝑏 ↦→ ⟨𝜏, 𝜒⟩], and 𝜇 ′𝑎 = 𝜇𝑎1 [𝑙𝑎 ↦→ 𝑣𝑎𝑙𝑎] and 𝜇 ′

𝑏
= 𝜇𝑏1 [𝑙𝑏 ↦→

𝑣𝑎𝑙𝑏]. Now to prove Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝑥 ↦→ 𝑙𝑎⟩ ⟨𝜇 ′𝑏, 𝑥 ↦→ 𝑙𝑎⟩ : Γ′, we need to show:

a. Ξ′
𝑎,Δ |= ⟨𝜇 ′𝑎, {𝑥 ↦→ 𝑙𝑎}⟩ : {𝑥 ↦→ ⟨𝜏, 𝜒⟩} and Ξ′

𝑏
,Δ |= ⟨𝜇 ′

𝑏
, {𝑥 ↦→ 𝑙𝑏}⟩ : {𝑥 ↦→ ⟨𝜏, 𝜒⟩}. Ξ′

𝑎,Δ |= ⟨𝜇 ′𝑎, {𝑥 ↦→ 𝑙𝑎}⟩ : {𝑥 ↦→
⟨𝜏, 𝜒⟩} holds as Ξ′

𝑎,Δ |= 𝜇 ′𝑎 (using Lemma E.3) and Ξ′
𝑎 ⊢ {𝑥 ↦→ 𝑙𝑎} : {𝑥 ↦→ ⟨𝜏, 𝜒⟩} (by definition). Since 𝑥 is not of

function type (as we do not support higher-order function), we do not need to prove the third/ fourth property of
Definition C.3. Similarly, Ξ′

𝑏
,Δ |= ⟨𝜇 ′

𝑏
, {𝑥 ↦→ 𝑙𝑏}⟩ : {𝑥 ↦→ ⟨𝜏, 𝜒⟩} also holds.

b. dom({𝑥 ↦→ 𝑙𝑎}) = dom({𝑥 ↦→ 𝑙𝑏}). Trivial.
c. Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ni(𝜇 ′𝑎 (𝑙𝑎) , 𝜇 ′𝑏 (𝑙𝑏)) : ⟨𝜏, 𝜒⟩)

Applying Lemma E.7 on Equation (3) with Ξ𝑎1 ⊆ Ξ′
𝑎 and Ξ𝑏1 ⊆ Ξ′

𝑏
, we conclude Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒⟩.

As 𝜇 ′𝑎 (𝑙𝑎) = 𝑣𝑎𝑙𝑎 and 𝜇 ′
𝑏
(𝑙𝑏) = 𝑣𝑎𝑙𝑏 , we have shown the necessary.

With this we have shown Item 1a. Observe that we do not need to show properties related to closure variables because 𝑥
is not a closure variable in our setting.
Can’t this be proved by saying that old locations have same value? To prove Item 1b, we apply Lemma E.5 on Equation (1)
with Ξ𝑎1 ⊆ Ξ′

𝑎 , Ξ𝑏1 ⊆ Ξ′
𝑏
, 𝜇𝑎1 ⊆ 𝜇 ′𝑎 , and 𝜇𝑏1 ⊆ 𝜇 ′

𝑏
, to conclude Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ.

Item 1d can be seen in the final configuration of the evaluation rule. Item 1e is satisfied using the result of applying
induction hypothesis of non-interference for expression.

2. Copy out
If the statement, 𝑜𝑢𝑡 𝑥 : ⟨𝜏, 𝜒⟩ := 𝑒𝑥𝑝 , is evaluated in two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ satisfying
Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ as follows:

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑎1, 𝑙𝑣𝑎𝑙𝑎⟩ 𝑙𝑎 𝑓 𝑟𝑒𝑠ℎ

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑜𝑢𝑡 𝑥 : ⟨𝜏, 𝜒⟩ = 𝑒𝑥𝑝⟩ ⇓𝑐𝑜𝑝𝑦 ⟨𝜇𝑎1 [𝑙𝑎 ↦→ 𝑖𝑛𝑖𝑡Δ𝜏], 𝑥 ↦→ 𝑙𝑎, [𝑙𝑣𝑎𝑙𝑎 := 𝑙𝑎]⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑏1, 𝑙𝑣𝑎𝑙𝑏⟩ 𝑙𝑏 𝑓 𝑟𝑒𝑠ℎ

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑜𝑢𝑡 𝑥 : ⟨𝜏, 𝜒⟩ = 𝑒𝑥𝑝⟩ ⇓𝑐𝑜𝑝𝑦 ⟨𝜇𝑏1 [𝑙𝑏 ↦→ 𝑖𝑛𝑖𝑡Δ𝜏], 𝑥 ↦→ 𝑙𝑏, [𝑙𝑣𝑎𝑙𝑏 := 𝑙𝑏]⟩
Then we need to show each of the following, where 𝜇 ′𝑎 = 𝜇𝑎1 [𝑙𝑎 ↦→ 𝑖𝑛𝑖𝑡Δ𝜏] and 𝜇 ′

𝑏
= 𝜇𝑏1 [𝑙𝑏 ↦→ 𝑖𝑛𝑖𝑡Δ𝜏]:
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a. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝑥 ↦→ 𝑙𝑎⟩ ⟨𝜇 ′𝑏, 𝑥 ↦→ 𝑙𝑏⟩ : Γ′, for some Ξ′

𝑎 , Ξ′
𝑏
, 𝜇 ′𝑎 , 𝜇 ′𝑏 such that Ξ𝑎 ⊆ Ξ′

𝑎 and Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆

dom(𝜇 ′𝑎), dom(𝜇 ′𝑏) ⊆ dom(𝜇 ′
𝑏
) and Γ′ = {𝑥 ↦→ ⟨𝜏, 𝜒⟩}.

b. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ

c. lval_base(𝑙𝑣𝑎𝑙𝑎) ∈ dom(𝜖𝑎), lval_base(𝑙𝑣𝑎𝑙𝑏) ∈ dom(𝜖𝑏), and lval_base(𝑙𝑣𝑎𝑙𝑎) = lval_base(𝑙𝑣𝑎𝑙𝑏).
d. 𝑙𝑎 ∈ dom(𝜇 ′𝑎) and 𝑙𝑏 ∈ dom(𝜇 ′

𝑏
). 𝑙𝑎 and 𝑙𝑏 are fresh locations, 𝑙𝑎 ∉ Ξ𝑎 and 𝑙𝑏 ∉ Ξ𝑏 ,

e. for any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

f. for any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

The proof for this case is similar to Copy-in, with the difference that here we use Lemma F.2 to conclude Ξ𝑎1,Ξ𝑏1,Δ |=𝑙
⟨𝜇𝑎1, 𝜖𝑎⟩ ⟨𝜇𝑏1, 𝜖𝑏⟩ : Γ, for some Ξ𝑎1, Ξ𝑏1, 𝜇𝑎1 and 𝜇𝑏1 satisfying Ξ𝑎 ⊆ Ξ𝑎1, Ξ𝑏 ⊆ Ξ𝑏1, dom(𝜇𝑎) ⊆ dom(𝜇𝑎1) and
dom(𝜇𝑏) ⊆ dom(𝜇𝑏1), Item 2c, and Item 2d. From here proving all the cases is similar to the Copy-in.

3. Copy inout
If the statement, 𝑖𝑛𝑜𝑢𝑡 𝑥 : ⟨𝜏, 𝜒⟩ := 𝑒𝑥𝑝 , is evaluated in two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ satisfying
Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ as follows:

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑎1, 𝑙𝑣𝑎𝑙𝑎⟩ ⟨C,Δ, 𝜇𝑎1, 𝜖𝑎, 𝑙𝑣𝑎𝑙𝑎⟩ ⇓ ⟨𝜇𝑎2, 𝑣𝑎𝑙𝑎⟩ 𝑙𝑎 𝑓 𝑟𝑒𝑠ℎ

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑖𝑛𝑜𝑢𝑡 𝑥 : ⟨𝜏, 𝜒⟩ = 𝑒𝑥𝑝⟩ ⇓𝑐𝑜𝑝𝑦 ⟨𝜇𝑎2 [𝑙𝑎 ↦→ 𝑣𝑎𝑙𝑎], 𝑥 ↦→ 𝑙𝑎, [𝑙𝑣𝑎𝑙𝑎 := 𝑙𝑎]⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑏1, 𝑙𝑣𝑎𝑙𝑏⟩ ⟨C,Δ, 𝜇𝑏1, 𝜖𝑏, 𝑙𝑣𝑎𝑙𝑏⟩ ⇓ ⟨𝜇𝑏2, 𝑣𝑎𝑙𝑏⟩ 𝑙𝑏 𝑓 𝑟𝑒𝑠ℎ

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑖𝑛𝑜𝑢𝑡 𝑥 : ⟨𝜏, 𝜒⟩ = 𝑒𝑥𝑝⟩ ⇓𝑐𝑜𝑝𝑦 ⟨𝜇𝑏2 [𝑙𝑏 ↦→ 𝑣𝑎𝑙𝑏], 𝑥 ↦→ 𝑙𝑏, [𝑙𝑣𝑎𝑙𝑏 := 𝑙𝑏]⟩
Then we need to show each of the following, where 𝜇 ′𝑎 = 𝜇𝑎2 [𝑙𝑎 ↦→ 𝑣𝑎𝑙𝑎], 𝜇 ′𝑏 = 𝜇𝑏2 [𝑙𝑏 ↦→ 𝑣𝑎𝑙𝑏]:
a. Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝑥 ↦→ 𝑙𝑎⟩ ⟨𝜇 ′𝑏, 𝑥 ↦→ 𝑙𝑏⟩ : Γ′, for some Ξ′

𝑎 , Ξ′
𝑏
, 𝜇 ′𝑎 , 𝜇 ′𝑏 such that Ξ𝑎 ⊆ Ξ′

𝑎 and Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆

dom(𝜇 ′𝑎), dom(𝜇 ′𝑏) ⊆ dom(𝜇 ′
𝑏
) and Γ′ = {𝑥 ↦→ ⟨𝜏, 𝜒⟩}.

b. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ,

c. lval_base(𝑙𝑣𝑎𝑙𝑎) ∈ dom(𝜖𝑎), lval_base(𝑙𝑣𝑎𝑙𝑏) ∈ dom(𝜖𝑏), and lval_base(𝑙𝑣𝑎𝑙𝑎) = lval_base(𝑙𝑣𝑎𝑙𝑏).
d. 𝑙𝑎 ∈ dom(𝜇 ′𝑎) and 𝑙𝑏 ∈ dom(𝜇 ′

𝑏
). 𝑙𝑎 and 𝑙𝑏 are fresh locations, 𝑙𝑎 ∉ Ξ𝑎 and 𝑙𝑏 ∉ Ξ𝑏 ,

e. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

f. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

By applying the induction hypothesis of Definition F.1, we conclude that
a. Ξ𝑎 ⊆ Ξ𝑎1, Ξ𝑏 ⊆ Ξ𝑏1, dom(𝜇𝑎) ⊆ dom(𝜇𝑎1) and dom(𝜇𝑏) ⊆ dom(𝜇𝑏1),
b. Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎⟩ ⟨𝜇𝑏1, 𝜖𝑏⟩ : Γ
c. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑎1 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any

𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑏1 (𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),
d. if 𝜒 ′ ⊑ 𝑝𝑐 , then 𝑙𝑣𝑎𝑙𝑎 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 ,
e. lval_base(𝑙𝑣𝑎𝑙𝑎) ∈ dom(𝜖𝑎), lval_base(𝑙𝑣𝑎𝑙𝑏) ∈ dom(𝜖𝑏) and lval_base(𝑙𝑣𝑎𝑙𝑎) = lval_base(𝑙𝑣𝑎𝑙𝑏).
f. Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑎 : ⟨𝜏, 𝜒⟩ and Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑏 : ⟨𝜏, 𝜒⟩
g. For any 𝑙𝑎 ∈ dom(𝜇𝑎1) and 𝑙𝑏 ∈ dom(𝜇𝑏1) such that Ξ𝑎1,Δ ⊢ 𝜇𝑎1 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏1,Δ ⊢ 𝜇𝑏1 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 ,

we have 𝜇𝑎1 (𝑙𝑎) = 𝜇𝑎2 (𝑙𝑎) and 𝜇𝑏1 (𝑙𝑏) = 𝜇𝑏2 (𝑙𝑏).
By applying Theorem D.1 on the expressions, 𝑙𝑣𝑎𝑙𝑎 and 𝑙𝑣𝑎𝑙𝑏 (which satisfy 𝑙𝑣𝑎𝑙𝑎𝑙𝑣𝑎𝑙𝑏 ), where Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑎 : ⟨𝜏, 𝜒⟩
and Γ,Δ ⊢𝑝𝑐 𝑙𝑣𝑎𝑙𝑏 : ⟨𝜏, 𝜒⟩ we get Ξ′

𝑎1,Ξ
′
𝑏1,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒 ′⟩. Here, Ξ𝑎1 ⊆ Ξ′

𝑎1 and Ξ𝑏1 ⊆ Ξ′
𝑏1. By applying

Lemma G.1, we conclude that 𝜇𝑎2 = 𝜇𝑎1 and 𝜇𝑏2 = 𝜇𝑏1. Now similar to the proof for copy-in, we can prove that Item 3a
and Item 3b. The other parts directly follow from the above induction results.

□

Lifting the copy-in-out rules to a list of statements, we arrive at the following lemma:

Lemma H.2. Consider well-typed expressionsΓ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒 ′⟩ and the statement, 𝑑 𝑥 : ⟨𝜏, 𝜒⟩ := 𝑒𝑥𝑝 , , where 𝜒 ′ ⊑ 𝜒 that is

evaluated in two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ satisfying Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ as follows:

⟨C;Δ; 𝜇𝑎1; 𝜖𝑎 ;𝑑 𝑥 : ⟨𝜏, 𝜒⟩ := 𝑒𝑥𝑝⟩ ⇓𝑐𝑜𝑝𝑦 ⟨𝜇𝑎2;𝑥 ↦→ 𝑙𝑎 ; 𝑙𝑣𝑎𝑙𝑎 ↦→ 𝑙𝑎⟩ and
⟨C;Δ; 𝜇𝑏1; 𝜖𝑏 ;𝑑 𝑥 : ⟨𝜏, 𝜒⟩ := 𝑒𝑥𝑝⟩ ⇓𝑐𝑜𝑝𝑦 ⟨𝜇𝑏2;𝑥 ↦→ 𝑙𝑏 ; 𝑙𝑣𝑎𝑙𝑏 ↦→ 𝑙𝑏⟩
Then:
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1. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇𝑎2, 𝑥 ↦→ 𝑙𝑎⟩ ⟨𝜇𝑏2, 𝑥 ↦→ 𝑙𝑏⟩ : Γ′, for some Ξ′

𝑎 , Ξ
′
𝑏
, 𝜇 ′𝑎 , 𝜇

′
𝑏
such that Ξ𝑎 ⊆ Ξ′

𝑎 and Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎),

dom(𝜇 ′
𝑏
) ⊆ dom(𝜇 ′

𝑏
) and Γ′ = {𝑥 ↦→ ⟨𝜏, 𝜒⟩},

2. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ,

3. lval_base(𝑙𝑣𝑎𝑙𝑎) ∈ dom(𝜖𝑎), lval_base(𝑙𝑣𝑎𝑙𝑏) ∈ dom(𝜖𝑏), and lval_base(𝑙𝑣𝑎𝑙𝑎) = lval_base(𝑙𝑣𝑎𝑙𝑏) for each 𝑙𝑣𝑎𝑙𝑎 and
𝑙𝑣𝑎𝑙𝑏 ,

4. 𝑙𝑎 ∈ dom(𝜇𝑎2) and 𝑙𝑏 ∈ dom(𝜇𝑏2)
5. 𝑙𝑎 and 𝑙𝑏 are fresh locations, 𝑙𝑎 ∉ Ξ𝑎 and 𝑙𝑏 ∉ Ξ𝑏 ,

6. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any

𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′
𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

7. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we have

𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′
𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

Note. By Definition C.4, dom(𝜖𝑎) = dom(𝜖𝑏).

I Proof of Non-Interference
Proof of Theorem D.1. The proof is given by induction on the typing derivation of the expression and the cases are given

by the last typing rule in the expression’s typing derivation.
1. T-Int If the typing derivation ends with the following last rule

Γ,Δ ⊢𝑝𝑐 𝑛𝑤 : ⟨𝑖𝑛𝑡,⊥⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛
T-Int

then we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ (1)

if the expression 𝑛𝑤 is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows:

⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ;𝑛𝑤⟩ ⇓ ⟨𝜇𝑎, 𝑛𝑤⟩
Eval 1

⟨C,Δ; 𝜇𝑏 ; 𝜖𝑏 ;𝑛𝑤⟩ ⇓ ⟨𝜇𝑏, 𝑛𝑤⟩
Eval 2

then there exists some Ξ′
𝑎 and Ξ′

𝑏
, such that the following hold:

a. Γ,Δ ⊢𝑝𝑐 𝑛𝑤 : ⟨𝑖𝑛𝑡,⊥⟩. Already given in the hypothesis of this theorem,
b. Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), and dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
) and Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ. Here, 𝜇

′
𝑎 = 𝜇𝑎

and 𝜇 ′
𝑏
= 𝜇𝑏 ,

c. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝑖𝑛𝑡,⊥⟩,

d. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for
any 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏). This is trivial, since

memory store doesn’t change.
e. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we

have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′
𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏). This is trivial, since memory store doesn’t change.

First we will prove Item 1b. Let Ξ′
𝑎 = Ξ𝑎 and Ξ′

𝑏
= Ξ𝑏 , now showing Item 1b is same as showing

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ (2)

From the evaluation rule, we know 𝜇 ′𝑎 = 𝜇𝑎 and 𝜇 ′
𝑏
= 𝜇𝑏 . Therefore, showing Equation (2) is same as showing

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ
This is what we had started out with in Equation (1). Therefore we have shown Item 1b.
Next to show Item 1c, we first expand the definition for NI for values and prove each of its requirement. Since 𝜏 = ⟨𝑖𝑛𝑡,⊥⟩,
using the syntactic typing, Γ,Δ ⊢𝑝𝑐 𝑛𝑤 : ⟨𝑖𝑛𝑡,⊥⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛 we can show that Ξ′

𝑎,Δ ⊢𝑝𝑐 𝑛𝑤 : ⟨𝑖𝑛𝑡,⊥⟩ and Ξ′
𝑏
,Δ ⊢𝑝𝑐 𝑛𝑤 :

⟨𝑖𝑛𝑡,⊥⟩. Also, since both integers have equal value 𝑣𝑎𝑙𝑎 = 𝑛𝑤 = 𝑣𝑎𝑙𝑏 , we have shown NI for values .
2. T-Bool Similar to E-Int.
3. T-Var If the typing derivation ends with the following last rule

𝑥 ∈ dom(Γ) Γ(𝑥) = ⟨𝜏, 𝜒⟩
Γ,Δ ⊢𝑝𝑐 𝑥 : ⟨𝜏, 𝜒⟩ goes inout

T-Var
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then we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ, (1)

if the expression 𝑥 is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows:
𝜖𝑎 (𝑥) = 𝑙𝑎 𝜇𝑎 (𝑙𝑎) = 𝑣𝑎𝑙𝑎

⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ;𝑥⟩ ⇓ ⟨𝜇𝑎, 𝑣𝑎𝑙𝑎⟩
Eval 1

𝜖𝑏 (𝑥) = 𝑙𝑏 𝜇𝑏 (𝑙𝑏) = 𝑣𝑎𝑙𝑏

⟨C,Δ; 𝜇𝑏 ; 𝜖𝑏 ;𝑥⟩ ⇓ ⟨𝜇𝑏, 𝑣𝑎𝑙𝑏⟩
Eval 2

then there exists some Ξ′
𝑎 and Ξ′

𝑏
, such that the following hold:

a. Γ,Δ ⊢𝑝𝑐 𝑥 : ⟨𝜏, 𝜒⟩. Already given in the hypothesis of this theorem,
b. Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), and dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
) and Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ. Here, 𝜇

′
𝑎 = 𝜇𝑎

and 𝜇 ′
𝑏
= 𝜇𝑏 ,

c. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒⟩,

d. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

e. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

First we will prove Item 3b. Let Ξ′
𝑎 = Ξ𝑎 and Ξ′

𝑏
= Ξ𝑏 , now showing Item 3b is same as showing

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ (2)

From the evaluation rule, we know 𝜇 ′𝑎 = 𝜇𝑎 and 𝜇 ′
𝑏
= 𝜇𝑏 . Therefore, showing Equation (2) is same as showing

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ (3)

This is what we had started out with in Equation (1). Therefore we have shown Item 1b.
Next, we use the following property from the definition of Equation (3)

for any 𝑥, Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni(𝜇𝑎 (𝜖𝑎 (𝑥)) , 𝜇𝑏 (𝜖𝑏 (𝑥))) : Γ(𝑥) (4)

to conclude that Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒⟩.
4. T-SubType-In In case the last typing rule is the following and we need to prove that Γ,Δ |=𝑝𝑐 ni(𝑒𝑥𝑝 : ⟨𝜏, 𝜒 ′⟩).

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛 𝜒 ⊑ 𝜒 ′

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒 ′⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛
T-SubType-In

By applying the induction hypothesis of this theorem, we get Γ,Δ |=𝑝𝑐 ni(𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩). Now we need to show that if
𝜒 ⊑ 𝜒 ′, then Γ,Δ |=𝑝𝑐 ni(𝑒𝑥𝑝 : ⟨𝜏, 𝜒 ′⟩). To show NI of expression, we need to first show that the final memory stores
are below-pc equivalent. This is already available from the expansion of Γ,Δ |=𝑝𝑐 ni(𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩). In addition, we need
to show that the value that this expression evaluates to is still respecting non-interference of values with the security
label 𝜒 ′ as defined in Definition C.6. To do this we use Lemma E.6.

5. T-BinOp If the typing derivation ends with the following last rule

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 : ⟨𝜌1, 𝜒1⟩ Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝2 : ⟨𝜌2, 𝜒2⟩
T (Δ; ⊕; 𝜌1; 𝜌2) = 𝜌3 𝜒1 ⊑ 𝜒 ′ 𝜒2 ⊑ 𝜒 ′

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 ⊕ 𝑒𝑥𝑝2 : ⟨𝜌3, 𝜒 ′⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛
T-BinOP

then we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ, (1)

if the expression 𝑒𝑥𝑝1 ⊕ 𝑒𝑥𝑝2 is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows:
⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑒𝑥𝑝1⟩ ⇓ ⟨𝜇𝑎1, 𝑣𝑎𝑙𝑎1⟩ ⟨C,Δ; 𝜇𝑎1; 𝜖𝑎 ; 𝑒𝑥𝑝2⟩ ⇓ ⟨𝜇𝑎2, 𝑣𝑎𝑙𝑎2⟩

⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑒𝑥𝑝1 ⊕ 𝑒𝑥𝑝2⟩ ⇓ ⟨𝜇𝑎2,E(⊕, 𝑣𝑎𝑙𝑎1, 𝑣𝑎𝑙𝑎2)⟩
Eval 1

⟨C,Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑒𝑥𝑝1⟩ ⇓ ⟨𝜇𝑏1, 𝑣𝑎𝑙𝑏1⟩ ⟨C,Δ; 𝜇𝑏1; 𝜖𝑏 ; 𝑒𝑥𝑝2⟩ ⇓ ⟨𝜇𝑏2, 𝑣𝑎𝑙𝑏2⟩
⟨C,Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑒𝑥𝑝1 ⊕ 𝑒𝑥𝑝2⟩ ⇓ ⟨𝜇𝑏2,E(⊕, 𝑣𝑎𝑙𝑏1, 𝑣𝑎𝑙𝑏2)⟩

Eval 2
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then there exists some Ξ′
𝑎 and Ξ′

𝑏
, such that the following hold:

a. Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 ⊕ 𝑒𝑥𝑝2 : ⟨𝜌3, 𝜒 ′⟩. Already given in the hypothesis of this theorem,
b. Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), and dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
) and Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ. Here, 𝜇

′
𝑎 = 𝜇𝑎

and 𝜇 ′
𝑏
= 𝜇𝑏 ,

c. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni(E(⊕, 𝑣𝑎𝑙𝑎1, 𝑣𝑎𝑙𝑎2) , E(⊕, 𝑣𝑎𝑙𝑏1, 𝑣𝑎𝑙𝑏2)) : ⟨𝜌3, 𝜒 ′⟩,

d. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

e. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

We repeatedly apply induction hypothesis on the typing derivation of 𝑒𝑥𝑝1 and 𝑒𝑥𝑝2 to get:

Γ,Δ |=𝑝𝑐 ni(𝑒𝑥𝑝1 : ⟨𝜌1, 𝜒1⟩) (2)

and
Γ,Δ |=𝑝𝑐 ni(𝑒𝑥𝑝2 : ⟨𝜌2, 𝜒2⟩) (3)

Expanding Equation (2) we get:
Ξ′
𝑎1,Ξ

′
𝑏1,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎⟩ ⟨𝜇𝑏1, 𝜖𝑏⟩ : Γ , (4)

where Ξ𝑎 ⊆ Ξ′
𝑎1 and Ξ𝑏 ⊆ Ξ′

𝑏1
Ξ′
𝑎1,Ξ

′
𝑏1,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎1 , 𝑣𝑎𝑙𝑏1) : ⟨𝜌1, 𝜒1⟩ (5)

Similarly expanding Equation (3) we get:

Ξ′
𝑎2,Ξ

′
𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ , (6)

where Ξ′
𝑎1 ⊆ Ξ′

𝑎2 and Ξ′
𝑏1 ⊆ Ξ′

𝑏2

Ξ′
𝑎2,Ξ

′
𝑏2,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎2 , 𝑣𝑎𝑙𝑏2) : ⟨𝜌2, 𝜒2⟩ (7)

Using Equation (4) and Equation (6), we conclude Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ, where Ξ′

𝑎 = Ξ′
𝑎2 and Ξ

′
𝑏
= Ξ′

𝑏2. This
proves Item 5b.
We assume the following about E:

𝑖 𝑓 𝑥1 = 𝑥2 𝑎𝑛𝑑 𝑦1 = 𝑦2, 𝑡ℎ𝑒𝑛 E(⊕, 𝑥1, 𝑦1) = E(⊕, 𝑥2, 𝑦2) (8)

Thus, if the parameters to the evaluation function E are non-interfering, Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎1 , 𝑣𝑎𝑙𝑏1) : ⟨𝜌1, 𝜒1⟩ and
Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎2 , 𝑣𝑎𝑙𝑏2) : ⟨𝜌2, 𝜒2⟩, then the resultant value will also be non-interfering

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni(E(⊕, 𝑣𝑎𝑙𝑎1, 𝑣𝑎𝑙𝑎2) , E(⊕, 𝑣𝑎𝑙𝑏1, 𝑣𝑎𝑙𝑏2)) : ⟨𝜌3, 𝜒 ′⟩,
where 𝜒1 ⊑ 𝜒 ′ and 𝜒2 ⊑ 𝜒 ′ and 𝜌3 = T (⊕, 𝜌1, 𝜌2).
We consider only binary operations returning integers, bit vectors and booleans.
Using Equation (5), Ξ′

𝑎1 ⊆ Ξ′
𝑎2 and the Lemma E.7 we have:

Ξ′
𝑎2,Ξ

′
𝑏2,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎1 , 𝑣𝑎𝑙𝑏1) : ⟨𝜌1, 𝜒1⟩ (9)

Using the above equation with Equation (7) and the above assumption about the E function, we conclude:

Ξ′
𝑎2,Ξ

′
𝑏2,Δ |=𝑙 ni(E(⊕, 𝑣𝑎𝑙𝑎1, 𝑣𝑎𝑙𝑎2) , E(⊕, 𝑣𝑎𝑙𝑏1, 𝑣𝑎𝑙𝑏2)) : ⟨𝜌3, 𝜒 ′⟩

Now, we prove Item 5d. We know from Equation (2) that for any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where
𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑎1 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈
{𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑏1 (𝑙𝑏) = 𝜇𝑏 (𝑙𝑏). Equation (3) also implies that for any 𝑙𝑎 ∈ dom(𝜇𝑎1) such that Ξ𝑎2,Δ ⊢ 𝜇𝑎1 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 ,
where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑎2 (𝑙𝑎) = 𝜇𝑎1 (𝑙𝑎). Similarly for any 𝑙𝑏 ∈ dom(𝜇𝑏1) such that Ξ𝑏2,Δ ⊢ 𝜇𝑏1 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where
𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑏2 (𝑙𝑏) = 𝜇𝑏1 (𝑙𝑏). We also know that Ξ𝑎 ⊆ Ξ𝑎1, this implies that 𝑙𝑎 ∈ dom(𝜇𝑎) will also be present
in dom(𝜇𝑎1). Therefore, we can show Item 5d. Item 5e can be similarly shown.

6. T-Rec If the typing derivation ends with the following last rule

Γ,Δ ⊢𝑝𝑐 {𝑒𝑥𝑝 : ⟨𝜏𝑖 , 𝜒𝑖⟩}
Γ,Δ ⊢𝑝𝑐 {𝑓 : 𝑒𝑥𝑝} : ⟨{𝑓 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛

T-Rec

then we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ, (1)
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if the expression {𝑓 : 𝑒𝑥𝑝} is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows:

⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇 ′𝑎, 𝑣𝑎𝑙𝑎⟩
⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ; {𝑓 = 𝑒𝑥𝑝}⟩ ⇓ ⟨𝜇 ′𝑎, {𝑓 = 𝑣𝑎𝑙𝑎}⟩

Eval 1

⟨C,Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇 ′
𝑏
, 𝑣𝑎𝑙𝑏⟩

⟨C,Δ; 𝜇𝑏 ; 𝜖𝑏 ; {𝑓 = 𝑒𝑥𝑝}⟩ ⇓ ⟨𝜇 ′
𝑏
, {𝑓 = 𝑣𝑎𝑙𝑏}⟩

Eval 2

then there exists some Ξ′
𝑎 and Ξ′

𝑏
, such that the following hold:

a. Γ,Δ ⊢𝑝𝑐 {𝑓 = 𝑒𝑥𝑝} : ⟨{𝑓 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩. Already given in the hypothesis of this theorem,
b. Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), and dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
) and Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ,

c. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni({𝑓 = 𝑣𝑎𝑙𝑎} , {𝑓 = 𝑣𝑎𝑙𝑏}) : ⟨{𝑓 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩,

d. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

e. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

We repeatedly apply induction hypothesis on each Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏𝑖 , 𝜒𝑖⟩ in the sequence Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩. The last
memory store we arrive at is given by 𝜇 ′𝑎 and 𝜇 ′𝑏 in the two evaluations. Therefore, after repeated application of induction
hypothesis we get,

Γ,Δ |=𝑝𝑐 ni(𝑒𝑥𝑝 : ⟨𝜏𝑖 , 𝜒𝑖⟩) (2)
Since we evaluate 𝑒𝑥𝑝 in initial configurations satisfying Equation (1), this can be expanded to conclude that there exists
some Ξ′

𝑎 and Ξ′
𝑏
satisfying Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
) and all of the following:

Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ , (3)

Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏𝑖 , 𝜒𝑖⟩ (4)

This is to be interpreted as a sequence of non-interfering values. Equation (3) proves the goal in Item 6b.
Equation (4) can be interpreted as satisfying Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏𝑖 , 𝜒𝑖⟩ for each 𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏 .

We use the TV-rec rule with Equation (4) to conclude that Ξ′
𝑎,Δ ⊢ {𝑓 = 𝑣𝑎𝑙𝑎} : ⟨{𝑓 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ and Ξ′

𝑏
,Δ ⊢ {𝑓 = 𝑣𝑎𝑙𝑏} :

⟨{𝑓 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩. Therefore, we have shown Item 6c. Item 6d and Item 6e follows from Equation (2).
7. T-MemRec If the typing derivation ends with the following last rule

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨{𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ 𝑔𝑜𝑒𝑠 𝑑
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝.𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩ 𝑔𝑜𝑒𝑠 𝑑

T-MemRec

then we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ, (1)

if the expression 𝑒𝑥𝑝.𝑓𝑖 is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows:

⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇 ′𝑎, {𝑓𝑖 : ⟨𝜏, 𝜒⟩ = 𝑣𝑎𝑙𝑎𝑖 }⟩
⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑒𝑥𝑝.𝑓𝑖⟩ ⇓ ⟨𝜇 ′𝑎, 𝑣𝑎𝑙𝑎𝑖⟩

Eval 1

⟨C,Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇 ′
𝑏
, {𝑓𝑖 : ⟨𝜏, 𝜒⟩ = 𝑣𝑎𝑙𝑏𝑖 }⟩

⟨C,Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑒𝑥𝑝.𝑓𝑖⟩ ⇓ ⟨𝜇 ′
𝑏
, 𝑣𝑎𝑙𝑏𝑖⟩

Eval 2

then there exists some Ξ′
𝑎 and Ξ′

𝑏
, such that the following hold:

a. Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝.𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩. Already given in the hypothesis of this theorem,
b. Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), and dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
) and Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ.

c. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎𝑖 , 𝑣𝑎𝑙𝑏𝑖 ) : ⟨𝜏𝑖 , 𝜒𝑖⟩,

d. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

e. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),
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By applying induction hypothesis on the typing derivation of 𝑒𝑥𝑝 , which is evaluated in an initial configuration satisfying
Equation (1), we get:

Γ,Δ |=𝑝𝑐 ni(𝑒𝑥𝑝 : ⟨{𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩)
This implies that there exists a Ξ′

𝑎 , Ξ′
𝑏
, such that Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
) and the

following:
Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ , (2)

This proves Item 7b.

Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni({𝑓𝑖 : ⟨𝜏, 𝜒⟩ = 𝑣𝑎𝑙𝑎𝑖 } , {𝑓𝑖 : ⟨𝜏, 𝜒⟩ = 𝑣𝑎𝑙𝑏𝑖 }) : ⟨{𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ (3)

Using the Definition C.6, we can observe that for each 𝑣𝑎𝑙𝑎𝑖 and 𝑣𝑎𝑙𝑏𝑖 the following holds:
Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎𝑖 , 𝑣𝑎𝑙𝑏𝑖 ) : ⟨𝜏𝑖 , 𝜒𝑖⟩ (4)

This proves Item 7c. Item 7d and Item 7e is also a conclusion of applying the induction hypothesis.
8. T-Index If the typing derivation ends with the following last rule

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 : ⟨⟨𝜏, 𝜒1⟩[𝑛],⊥⟩ 𝑔𝑜𝑒𝑠 𝑑
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝2 : ⟨𝑏𝑖𝑡 ⟨32⟩, 𝜒2⟩

𝜒2 ⊑ 𝜒1

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 [𝑒𝑥𝑝2] : ⟨𝜏, 𝜒1⟩ 𝑔𝑜𝑒𝑠 𝑑
T-Index

then we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 satisfying
Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ, (1)

if the expression 𝑒𝑥𝑝1 [𝑒𝑥𝑝2] is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows. Observe
that if 𝑒𝑥𝑝2 evaluates to a value within the array bounds the following rule will be used; otherwise Eval 1 error.

⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑒𝑥𝑝1⟩ ⇓ ⟨𝜇𝑎1, 𝑠𝑡𝑎𝑐𝑘 𝜏{𝑣𝑎𝑙𝑎}⟩ ⟨C,Δ; 𝜇𝑎1; 𝜖𝑎 ; 𝑒𝑥𝑝2⟩ ⇓ ⟨𝜇𝑎2, 𝑛𝑎⟩ 0 ≤ 𝑛𝑎 < 𝑙𝑒𝑛(𝑣𝑎𝑙𝑎)
⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑒𝑥𝑝1 [𝑒𝑥𝑝2]⟩ ⇓ ⟨𝜇𝑎2, 𝑣𝑎𝑙𝑎 𝑛𝑎 ⟩

Eval 1

⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑒𝑥𝑝1⟩ ⇓ ⟨𝜇𝑎1, 𝑠𝑡𝑎𝑐𝑘 𝜏{𝑣𝑎𝑙𝑎}⟩ ⟨C,Δ; 𝜇𝑎1; 𝜖𝑎 ; 𝑒𝑥𝑝2⟩ ⇓ ⟨𝜇𝑎2, 𝑛𝑎⟩ 𝑛𝑎 ≥ 𝑙𝑒𝑛(𝑣𝑎𝑙𝑎)
⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑒𝑥𝑝1 [𝑒𝑥𝑝2]⟩ ⇓ ⟨𝜇𝑎2, ℎ𝑎𝑣𝑜𝑐 (𝜏)⟩

Eval 1 error

If 𝑒𝑥𝑝2 evaluates to a value within the array bounds the following rule will be used; otherwise 𝐸𝑣𝑎𝑙2𝑒𝑟𝑟𝑜𝑟
⟨C,Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑒𝑥𝑝1⟩ ⇓ ⟨𝜇𝑏1, 𝑠𝑡𝑎𝑐𝑘 𝜏{𝑣𝑎𝑙𝑏}⟩ ⟨C,Δ; 𝜇𝑏1; 𝜖𝑏 ; 𝑒𝑥𝑝2⟩ ⇓ ⟨𝜇𝑏2, 𝑛𝑏⟩ 0 ≤ 𝑛𝑏 < 𝑙𝑒𝑛(𝑣𝑎𝑙𝑏)

⟨C,Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑒𝑥𝑝1 [𝑒𝑥𝑝2]⟩ ⇓ ⟨𝜇𝑏2, 𝑣𝑎𝑙𝑏 𝑛𝑏 ⟩
Eval 2

⟨C,Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑒𝑥𝑝1⟩ ⇓ ⟨𝜇𝑏1, 𝑠𝑡𝑎𝑐𝑘 𝜏{𝑣𝑎𝑙𝑏}⟩ ⟨C,Δ; 𝜇𝑏1; 𝜖𝑏 ; 𝑒𝑥𝑝2⟩ ⇓ ⟨𝜇𝑏2, 𝑛𝑏⟩ 𝑛𝑏 ≥ 𝑙𝑒𝑛(𝑣𝑎𝑙𝑏)
⟨C,Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑒𝑥𝑝1 [𝑒𝑥𝑝2]⟩ ⇓ ⟨𝜇𝑏2, ℎ𝑎𝑣𝑜𝑐 (𝜏)⟩

Eval 2 error

then there exists some Ξ′
𝑎 and Ξ′

𝑏
, such that the following hold:

a. Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 [𝑒𝑥𝑝2] : ⟨𝜏, 𝜒1⟩. Already given in the hypothesis of this theorem,
b. Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), and dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
) and Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ. Here, 𝜇

′
𝑎 = 𝜇𝑎2

and 𝜇 ′
𝑏
= 𝜇𝑏2,

c. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni(𝑣𝑎𝑙 ′𝑎 , 𝑣𝑎𝑙 ′𝑏) : ⟨𝜏, 𝜒1⟩, where 𝑣𝑎𝑙

′
𝑎 ∈ {𝑣𝑎𝑙𝑎 𝑛𝑎 , ℎ𝑎𝑣𝑜𝑐 (𝜏)} and 𝑣𝑎𝑙 ′𝑏 ∈ {𝑣𝑎𝑙𝑏 𝑛𝑏 , ℎ𝑎𝑣𝑜𝑐 (𝜏)},

d. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

e. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

By applying induction hypothesis on the typing derivation of 𝑒𝑥𝑝1 that is evaluated in configuration satisfying Equa-
tion (1), we conclude that there exist some Ξ′

𝑎1 and Ξ′
𝑏1 satisfying Ξ𝑎 ⊆ Ξ′

𝑎1, Ξ𝑏 ⊆ Ξ′
𝑏1 and all of the following:

Ξ′
𝑎1,Ξ

′
𝑏1,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎⟩ ⟨𝜇𝑏1, 𝜖𝑏⟩ : Γ , (2)

Ξ′
𝑎1,Ξ

′
𝑏1,Δ |=𝑙 ni(𝑠𝑡𝑎𝑐𝑘 𝜏{𝑣𝑎𝑙𝑎} , 𝑠𝑡𝑎𝑐𝑘 𝜏{𝑣𝑎𝑙𝑏}) : ⟨⟨𝜏, 𝜒1⟩[𝑛],⊥⟩ (3)

Using the Definition C.6, we can observe that for each 𝑣𝑎𝑙𝑎 and 𝑣𝑎𝑙𝑏 the following holds:
Ξ′
𝑎1,Ξ

′
𝑏1,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒1⟩ (4)
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By applying induction hypothesis on the typing derivation of 𝑒𝑥𝑝2 that is evaluated in configuration satisfying Equa-
tion (2), we conclude that there exist some Ξ′

𝑎2 and Ξ′
𝑏2 satisfying Ξ

′
𝑎1 ⊆ Ξ′

𝑎2, Ξ
′
𝑏1 ⊆ Ξ′

𝑏2 and all of the following:

Ξ′
𝑎2,Ξ

′
𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ , (5)

Ξ′
𝑎2,Ξ

′
𝑏2,Δ |=𝑙 ni(𝑛𝑎 , 𝑛𝑏) : ⟨𝑏𝑖𝑡 ⟨32⟩, 𝜒2⟩ (6)

Equation (5) proves the requirement of Item 8b. To prove Item 8c we consider the following cases for the final values
𝑣𝑎𝑙 ′𝑎 and 𝑣𝑎𝑙 ′𝑏 :
• Index within bound. In this case both the evaluations use the same evaluation rules.
If 𝜒1 ⊑ 𝑙 , then 𝜒2 ⊑ 𝑙 , which implies that 𝑛𝑎 = 𝑛𝑏 = 𝑛32. We can observe that in this case we will have 𝑣𝑎𝑙 ′𝑎 = 𝑣𝑎𝑙𝑎 𝑛32 and
𝑣𝑎𝑙 ′

𝑏
= 𝑣𝑎𝑙𝑏 𝑛32 . Using Equation (4), we conclude that Ξ′

𝑎1,Ξ
′
𝑏1,Δ |=𝑙 ni(𝑣𝑎𝑙 ′𝑎 , 𝑣𝑎𝑙 ′𝑏) : ⟨𝜏, 𝜒1⟩. By applying Lemma E.7,

we will get Ξ′
𝑎2,Ξ

′
𝑏2,Δ |=𝑙 ni(𝑣𝑎𝑙 ′𝑎 , 𝑣𝑎𝑙 ′𝑏) : ⟨𝜏, 𝜒1⟩. We have shown Item 8c.

If 𝜒1 @ 𝑙 , according to the Definition C.6, Ξ′
𝑎1,Ξ

′
𝑏1,Δ |=𝑙 ni(𝑣𝑎𝑙 ′𝑎 , 𝑣𝑎𝑙 ′𝑏) : ⟨𝜏, 𝜒1⟩ will hold even if 𝑣𝑎𝑙 ′𝑎 ≠ 𝑣𝑎𝑙 ′

𝑏
. Therefore,

even if 𝑛𝑎 ≠ 𝑛𝑏 , 𝑣𝑎𝑙 ′𝑎 = 𝑣𝑎𝑙𝑎 𝑛𝑎 and 𝑣𝑎𝑙 ′
𝑏
= 𝑣𝑎𝑙𝑏 𝑛𝑏 , we will have Ξ′

𝑎1,Ξ
′
𝑏1,Δ |=𝑙 ni(𝑣𝑎𝑙 ′𝑎 , 𝑣𝑎𝑙 ′𝑏) : ⟨𝜏, 𝜒1⟩.

• One index is out-of-bound. In this case one of the evaluation will yield the ℎ𝑎𝑣𝑜𝑐 (𝜏) and 𝑛𝑎 and 𝑛𝑏 should have differed.
This implies 𝜒2 @ 𝑙 , which implies 𝜒1 @ 𝑙 . As described in the previous case, Ξ′

𝑎1,Ξ
′
𝑏1,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 𝑛𝑎 , ℎ𝑎𝑣𝑜𝑐 (𝜏)) :

⟨𝜏, 𝜒1⟩ is true according to the Definition C.6.
• Both indices are out-of-bound. In this case the values will be of the form 𝑣𝑎𝑙 ′𝑎 = ℎ𝑎𝑣𝑜𝑐 (𝜏) = 𝑣𝑎𝑙 ′

𝑏
. According to the

Definition C.6, Ξ′
𝑎1,Ξ

′
𝑏1,Δ |=𝑙 ni(ℎ𝑎𝑣𝑜𝑐 (𝜏) , ℎ𝑎𝑣𝑜𝑐 (𝜏)) : ⟨𝜏, 𝜒1⟩ is satisfied.

9. T-HdrMem If the typing derivation ends with the following last rule

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨ℎ𝑒𝑎𝑑𝑒𝑟 {𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩},⊥⟩ 𝑔𝑜𝑒𝑠 𝑑
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝.𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩ 𝑔𝑜𝑒𝑠 𝑑

T-MemHdr

then we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ, (1)

if the expression 𝑒𝑥𝑝.𝑓𝑖 is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows:

⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇 ′𝑎, ℎ𝑒𝑎𝑑𝑒𝑟 {𝑣𝑎𝑙𝑖𝑑, 𝑓 : 𝜏 = 𝑣𝑎𝑙𝑎}⟩
⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑒𝑥𝑝.𝑓𝑖⟩ ⇓ ⟨𝜇 ′𝑎, 𝑣𝑎𝑙𝑎𝑖⟩

Eval 1

⟨C,Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇 ′
𝑏
, ℎ𝑒𝑎𝑑𝑒𝑟 {𝑣𝑎𝑙𝑖𝑑, 𝑓 : 𝜏 = 𝑣𝑎𝑙𝑏}⟩

⟨C,Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑒𝑥𝑝.𝑓𝑖⟩ ⇓ ⟨𝜇 ′
𝑏
, 𝑣𝑎𝑙𝑏𝑖⟩

Eval 2

then there exists some Ξ′
𝑎 and Ξ′

𝑏
, such that the following hold:

a. Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝.𝑓𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩. Already given in the hypothesis of this theorem.
b. Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), and dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
) and Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ,

c. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎𝑖 , 𝑣𝑎𝑙𝑏𝑖 ) : ⟨𝜏𝑖 , 𝜒𝑖⟩,

d. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

We consider only valid headers in this information-flow control system. Similar to case 7, we apply induction hypothesis
on typing derivation of 𝑒𝑥𝑝 followed by inverting the value typing for headers.

10. T-FuncCall If the typing derivation ends with the following last rule

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 : ⟨𝑑 ⟨𝜏𝑖 , 𝜒𝑖⟩
𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩ Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝2 : ⟨𝜏𝑖 , 𝜒𝑖⟩ 𝑔𝑜𝑒𝑠 𝑑 𝑝𝑐 ⊑ 𝑝𝑐 𝑓 𝑛

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 (𝑒𝑥𝑝2) : ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩ goes in
T-Call

then we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ (1)
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if the function call expression 𝑒𝑥𝑝1 (𝑒𝑥𝑝2) is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as
follows:

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝1⟩ ⇓ ⟨𝜇𝑎1, 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑎 , 𝑑 𝑥 : ⟨𝜏, 𝜒⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, stmt)⟩
⟨Δ, 𝜇𝑎1, 𝜖𝑎, 𝑑𝑥 : ⟨𝜏, 𝜒⟩ := 𝑒𝑥𝑝2⟩ ⇓𝑐𝑜𝑝𝑦 ⟨𝜇𝑎2, 𝑥 ↦→ 𝑙𝑎, 𝑙𝑣𝑎𝑙𝑎 := 𝑙𝑎⟩

⟨C,Δ, 𝜇𝑎2, 𝜖𝑐𝑎 [𝑥 ↦→ 𝑙𝑎], 𝑠𝑡𝑚𝑡⟩ ⇓ ⟨𝜇𝑎3, 𝜖𝑎2, return 𝑣𝑎𝑙𝑎⟩ ⟨C,Δ, 𝜇𝑎3, 𝜖𝑎, 𝑙𝑣𝑎𝑙 := 𝜇𝑎3 (𝑙)⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇4

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝1 (𝑒𝑥𝑝2)⟩ ⇓ ⟨𝜇𝑎4, 𝑣𝑎𝑙𝑎⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝1⟩ ⇓ ⟨𝜇𝑏1, 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑏 , 𝑑 𝑥 : ⟨𝜏, 𝜒⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, stmt)⟩
⟨Δ, 𝜇𝑏1, 𝜖𝑏, 𝑑𝑥 : ⟨𝜏, 𝜒⟩ := 𝑒𝑥𝑝2⟩ ⇓𝑐𝑜𝑝𝑦 ⟨𝜇𝑏2, 𝑥 ↦→ 𝑙𝑏, 𝑙𝑣𝑎𝑙𝑏 := 𝑙𝑏⟩

⟨C,Δ, 𝜇𝑏2, 𝜖𝑐𝑏 [𝑥 ↦→ 𝑙𝑏], 𝑠𝑡𝑚𝑡⟩ ⇓ ⟨𝜇𝑏3, 𝜖𝑏2, return 𝑣𝑎𝑙𝑏⟩ ⟨C,Δ, 𝜇𝑏3, 𝜖𝑏, 𝑙𝑣𝑎𝑙𝑏 := 𝜇𝑏3 (𝑙𝑏)⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇𝑏4

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝1 (𝑒𝑥𝑝2)⟩ ⇓ ⟨𝜇𝑏4, 𝑣𝑎𝑙𝑏⟩
then there exists some Ξ′

𝑎 and Ξ′
𝑏
, such that the following hold:

a. Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 (𝑒𝑥𝑝2) : ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩. Already given in the hypothesis of this theorem.
b. Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), and Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ. Here, 𝜇

′
𝑎 = 𝜇𝑎4

and 𝜇 ′
𝑏
= 𝜇𝑏4,

c. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

d. Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,

e. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

By applying induction hypothesis of Theorem D.1 on 𝑒𝑥𝑝1, which is evaluated in an initial configuration satisfying
Equation (1), we get: Γ,Δ |=𝑙 ni(𝑒𝑥𝑝1 : ⟨𝑑 ⟨𝜏𝑖 , 𝜒𝑖⟩

𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩). This implies that there exists some Ξ𝑎1, Ξ𝑏1,
𝜇𝑎1, 𝜇𝑏1 satisfying Ξ𝑎 ⊆ Ξ𝑎1 and Ξ𝑏 ⊆ Ξ𝑏1, dom(𝜇𝑎) ⊆ dom(𝜇𝑎1), and dom(𝜇𝑏) ⊆ dom(𝜇𝑏1) and the following:

Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎⟩ ⟨𝜇𝑏1, 𝜖𝑏⟩ : Γ (2)

Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎1 , 𝑣𝑎𝑙𝑏1) : 𝜏𝑓 𝑛 (3)

Here 𝑣𝑎𝑙𝑎1 = 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑎 , 𝑑𝑥 : ⟨𝜏, 𝜒⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, 𝑠𝑡𝑚𝑡) and 𝑣𝑎𝑙𝑏1 = 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑏 , 𝑑𝑥 : ⟨𝜏, 𝜒⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, 𝑠𝑡𝑚𝑡).
Since ⟨𝜏, 𝜒⟩ = 𝜏𝑓 𝑛 , by using Equation (3) we conclude thatΞ𝑎1,Ξ𝑏1,Δ |= ni_clos(𝑣𝑎𝑙𝑎1 , 𝑣𝑎𝑙𝑏1) : ⟨𝑑 ⟨𝜏𝑖 , 𝜒𝑖⟩

𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩.
Expanding the non-interference definition for closure (Definition C.7), we conclude that there exists some Γ𝑓 𝑛 , such that
the following properties are satisfied:

Ξ𝑎1,Δ |= 𝜖𝑐𝑎 : Γ𝑓 𝑛
Ξ𝑏1,Δ |= 𝜖𝑐𝑏 : Γ𝑓 𝑛

Γ𝑓 𝑛 ;Δ ⊢𝑝𝑐 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑎 , 𝑑𝑥 : ⟨𝜏, 𝜒⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, stmt) : ⟨𝑑 ⟨𝜏, 𝜒⟩
𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩

Γ𝑓 𝑛 ;Δ ⊢𝑝𝑐 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑏 , 𝑑𝑥 : ⟨𝜏, 𝜒⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, stmt) : ⟨𝑑 ⟨𝜏, 𝜒⟩
𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩

Γ𝑓 𝑛 [𝑥 : ⟨𝜏, 𝜒⟩, return : ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩],Δ ⊢𝑝𝑐 𝑓 𝑛 𝑠𝑡𝑚𝑡 ⊣ Γ𝑓 𝑛2 (4)
Application of the induction hypothesis on 𝑒𝑥𝑝1 also grantees that the closure values do not change in the transition
from 𝜇𝑎 to 𝜇𝑎1 and 𝜇𝑏 to 𝜇𝑏1. Therefore, we can apply the property of closure values in the state given by Equation (2) to
the closure values returned after the evaluation of 𝑒𝑥𝑝1. Equation (2) concludes that for any 𝑥 ∈ dom(𝜖𝑎), satisfying
Γ ⊢ 𝑥 : 𝜏𝑓 𝑛 , 𝜇𝑎1 (𝜖𝑎 (𝑥)) = 𝑐𝑙𝑜𝑠 (𝜖𝑐 , ...), and Ξ𝑎1 ⊢ 𝜖𝑐 : Γ𝑐 , we will have dom(𝜖𝑐 ) ⊆ dom(𝜖𝑎) and Ξ𝑎1,Δ |= ⟨𝜇𝑎1, 𝜖𝑐⟩ : Γ𝑐
. Here 𝜏𝑓 = ⟨𝑑 ⟨𝜏, 𝜒⟩

𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩, for any 𝜏, 𝜒, 𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 . This implies that dom(𝜖𝑐𝑎 ) ⊆ dom(𝜖𝑎) and Ξ𝑎1,Δ |=
⟨𝜇𝑎1, 𝜖𝑐𝑎 ⟩ : Γ𝑓 𝑛 . Similarly dom(𝜖𝑐𝑏 ) ⊆ dom(𝜖𝑏) and Ξ𝑏1,Δ |= ⟨𝜇𝑏1, 𝜖𝑐𝑏 ⟩ : Γ𝑓 𝑛 .
Using Lemma H.2 for the evaluation of 𝑑𝑥 : ⟨𝜏, 𝜒⟩ := exp2 in the initial configuration satisfying Equation (2), we conclude
the following:
a. Ξ𝑎2,Ξ𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝑥 ↦→ 𝑙𝑎⟩ ⟨𝜇𝑏2, 𝑥 ↦→ 𝑙𝑏⟩ : Γ′, for some Ξ𝑎2, Ξ𝑏2, 𝜇𝑎2, 𝜇𝑏2 such that Ξ𝑎1 ⊆ Ξ𝑎2 and Ξ𝑏1 ⊆ Ξ𝑏2,

dom(𝜇𝑎1) ⊆ dom(𝜇𝑎2), dom(𝜇𝑏1) ⊆ dom(𝜇𝑏2) and Γ′ = {𝑥 ↦→ ⟨𝜏, 𝜒⟩}.
b. Ξ𝑎2,Ξ𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ
c. For any 𝑙 ′𝑎 ∈ dom(𝜇𝑎1) and 𝑙 ′𝑏 ∈ dom(𝜇𝑏1) such that Ξ𝑎1,Δ ⊢ 𝜇𝑎1 (𝑙 ′𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏1,Δ ⊢ 𝜇𝑏1 (𝑙 ′𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 ,

we have 𝜇𝑎1 (𝑙 ′𝑎) = 𝜇𝑎2 (𝑙 ′𝑎) and 𝜇𝑏2 (𝑙 ′𝑏) = 𝜇𝑏1 (𝑙 ′𝑏),
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d. lval_base(𝑙𝑣𝑎𝑙𝑎) ∈ dom(𝜖𝑎), lval_base(𝑙𝑣𝑎𝑙𝑏) ∈ dom(𝜖𝑏), and lval_base(𝑙𝑣𝑎𝑙𝑎) = lval_base(𝑙𝑣𝑎𝑙𝑏) for each 𝑙𝑣𝑎𝑙𝑎
and 𝑙𝑣𝑎𝑙𝑏 .

e. 𝑙𝑎 ∈ dom(𝜇𝑎2) and 𝑙𝑏 ∈ dom(𝜇𝑏2)
f. 𝑙𝑎 and 𝑙𝑏 are fresh locations, 𝑙𝑎 ∉ Ξ𝑎1 and 𝑙𝑏 ∉ Ξ𝑏1
g. For any 𝑙𝑎 ∈ dom(𝜇𝑎1) such that Ξ𝑎1,Δ ⊢ 𝜇𝑎1 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑎1 (𝑙𝑎) = 𝜇𝑎2 (𝑙𝑎). Similarly for

any 𝑙𝑏 ∈ dom(𝜇𝑏1) such that Ξ𝑏,Δ ⊢ 𝜇𝑏1 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑏1 (𝑙𝑏) = 𝜇𝑏2 (𝑙𝑏).
Given Item 10g, we can observe that some closure variable 𝑥 that evaluated to the closures returned on evaluating 𝑒𝑥𝑝1
will have the same value in 𝜇𝑎2. Therefore, by expanding Item 10b we conclude

Ξ𝑎2,Ξ𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑐𝑎 ⟩ ⟨𝜇𝑏2, 𝜖𝑐𝑏 ⟩ : Γ𝑓 𝑛 (5)

Combining Item 10a and Equation (5) using Lemma E.12 we get:

Ξ𝑎2,Ξ𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑐𝑎 [𝑥 ↦→ 𝑙𝑎]⟩ ⟨𝜇𝑏2, 𝜖𝑐𝑏 [𝑥 ↦→ 𝑙𝑏]⟩ : Γ𝑓 𝑛 [𝑥 ↦→ ⟨𝜏, 𝜒⟩] (6)

Note that Item 10f enforces that 𝑙𝑎 and 𝑙𝑏 are present in 𝜇𝑎2 and 𝜇𝑏2.
By using the induction hypothesis of Theorem D.2 on 𝑠𝑡𝑚𝑡 that is evaluated in the initial configuration satisfying
Equation (6), we conclude Γ𝑓 𝑛 [𝑥 : ⟨𝜏, 𝜒⟩, return : ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩],Δ |=𝑝𝑐 NI(𝑠𝑡𝑚𝑡) |=Γ𝑓 𝑛1 or there exist some Ξ𝑎3, Ξ𝑏3, 𝜇𝑎3,
𝜇𝑏3, 𝜖𝑎2, and 𝜖𝑏2 such that Ξ𝑎2 ⊆ Ξ𝑎3 and Ξ𝑏2 ⊆ Ξ𝑏3, dom(𝜇𝑎2) ⊆ dom(𝜇𝑎3), dom(𝜇𝑏2) ⊆ dom(𝜇𝑏3), dom(𝜖𝑐𝑎 [𝑥 ↦→ 𝑙𝑎]) ⊆
dom(𝜖𝑎2), and dom(𝜖𝑐𝑏 [𝑥 ↦→ 𝑙𝑏]) ⊆ dom(𝜖𝑏2) satisfying:

Ξ𝑎3,Ξ𝑏3,Δ |=𝑙 ⟨𝜇𝑎3, 𝜖𝑎2⟩ ⟨𝜇𝑏3, 𝜖𝑏2⟩ : Γ𝑓 𝑛1 (7)

Ξ𝑎3,Ξ𝑏3,Δ |=𝑙 ⟨𝜇𝑎3, 𝜖𝑐𝑎 [𝑥 ↦→ 𝑙𝑎]⟩ ⟨𝜇𝑏3, 𝜖𝑐𝑏 [𝑥 ↦→ 𝑙𝑏]⟩ : Γ𝑓 𝑛 [𝑥 : ⟨𝜏, 𝜒⟩, return : ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩] (8)
and none of the locations with security label 𝑝𝑐 ⊑ 𝜒 will be updated between 𝜇𝑎2 and 𝜇𝑎3, 𝜇𝑏2 and 𝜇𝑏3.
We know that Ξ𝑎2,Ξ𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ. Any 𝑦 ∈ dom(𝜖𝑎) = dom(𝜖𝑏) can satisfy one of the following:
a. 𝜖𝑎 (𝑦) = 𝜖𝑐𝑎 [𝑥 ↦→ 𝑙𝑎] (𝑦) and 𝜖𝑏 (𝑦) = 𝜖𝑐𝑏 [𝑥 ↦→ 𝑙𝑏] (𝑦), then 𝜇𝑎3 (𝜖𝑎 (𝑦)) = 𝜇𝑎3 (𝜖𝑐𝑎 [𝑥 ↦→ 𝑙𝑎] (𝑦)) and 𝜇𝑏3 (𝜖𝑏 (𝑦)) =

𝜇𝑏3 (𝜖𝑐𝑏 [𝑥 ↦→ 𝑙𝑏] (𝑦)). This variable has non-interfering value (Equation (8)).
b. unused(𝜇𝑎2, 𝜖𝑐𝑎 , 𝑦, 𝜖𝑎 (𝑦)) (Definition E.8) and unused(𝜇𝑏2, 𝜖𝑐𝑏 , 𝑦, 𝜖𝑏 (𝑦)), then 𝜇𝑎3 (𝑦) = 𝜇𝑎2 (𝑦) and 𝜇𝑏3 (𝑦) = 𝜇𝑏2 (𝑦).

Ξ𝑎2,Ξ𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ guarantees this value to be non-interfering.
c. ¬unused(𝜇𝑎2, 𝜖𝑐𝑎 , 𝑦, 𝜖𝑎 (𝑦)) and¬unused(𝜇𝑏2, 𝜖𝑐𝑏 , 𝑦, 𝜖𝑏 (𝑦)), then there exists some closure valuewith 𝜖 ′𝑐𝑎 and dom(𝜖

′
𝑐𝑎
) ⊆

dom(𝜖𝑐𝑎 ), and 𝜖 ′𝑐𝑏 and dom(𝜖 ′𝑐𝑏 ) ⊆ dom(𝜖𝑐𝑏 ) where 𝜖𝑎 (𝑦) = 𝜖 ′𝑐𝑎 (𝑦) and 𝜖𝑏 (𝑦) = 𝜖 ′𝑐𝑏 (𝑦). From Equation (8), we know
that Ξ𝑎3,Ξ𝑏3,Δ |=𝑙 ⟨𝜇𝑎3, 𝜖 ′𝑐𝑎 ⟩ ⟨𝜇𝑏3, 𝜖

′
𝑐𝑏
⟩ : Γ𝑐𝑙𝑜𝑠 .

To conclude that
Ξ𝑎3,Ξ𝑏3,Δ |=𝑙 ⟨𝜇𝑎3, 𝜖𝑎⟩ ⟨𝜇𝑏3, 𝜖𝑏⟩ : Γ (9)

we also need to ensure that for all 𝑥 in dom(𝜖𝑎) = dom(𝜖𝑏) and some Γ𝑐𝑙𝑜𝑠 ⊆ Γ and any 𝑝𝑐 , if Γ,Δ ⊢𝑝𝑐 𝑥 : 𝜏𝑐𝑙𝑜𝑠 with
closure environments 𝜖 ′𝑐𝑎 and 𝜖 ′𝑐𝑏 in the two states, then Ξ𝑎3,Ξ𝑏3,Δ |=𝑙 ⟨𝜇𝑎3, 𝜖 ′𝑐𝑎 ⟩ ⟨𝜇𝑏3, 𝜖

′
𝑐𝑏
⟩ : Γ𝑐𝑙𝑜𝑠 . For closure variables

satisfying Item 10c, this will follow from closure properties in Equation (8). For variables satisfying Item 10b, this
will follow from the fact that the variables in their closure environments can again be unused (implies unchanged
between 𝜇𝑎2 and 𝜇𝑎3, 𝜇𝑏2 and 𝜇𝑏3) or used (in this case we already know from Equation (8) that such variables satisfy
non-interference of values).
Using Lemma G.3 on 𝜇𝑎3, 𝜇𝑏3 to assign non-interfering values (Equation (9) implies that the store has non-interfering
values) to l-values, we conclude

Ξ𝑎4,Ξ𝑏4,Δ |=𝑙 ⟨𝜇𝑎5, 𝜖𝑎⟩ ⟨𝜇𝑏5, 𝜖𝑏⟩ : Γ (10)
Since Ξ𝑎 ⊆ Ξ𝑎1 ⊆ Ξ𝑎2 ⊆ Ξ𝑎3 ⊆ Ξ𝑎4 and Ξ𝑏 ⊆ Ξ𝑏1 ⊆ Ξ𝑏2 ⊆ Ξ𝑏3 ⊆ Ξ𝑏4, showing the above equation is same as showing
Item 10b. Proof of Item 10c and Item 10e follows from the results of the application of the theorem for NI for expression,
statements above and the fact that domain of memory stores have increasing domains.

11. T-MatchKind Trivial

𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑{𝑓 } ∈ Δ(𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑) 𝑓𝑖 ∈ 𝑓

Γ,Δ ⊢𝑝𝑐 𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑.𝑓𝑖 : ⟨𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑{𝑓 },⊥⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛
T-MemHdr

Evaluation rule
𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑{𝑓 } ∈ Δ(𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑)

⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ;𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑.𝑓𝑖⟩ ⇓ ⟨𝜇𝑎, 𝑓𝑖⟩
Eval 1
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𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑{𝑓 } ∈ Δ(𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑)
⟨C,Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑒𝑥𝑝.𝑓𝑖⟩ ⇓ ⟨𝜇𝑏, 𝑓𝑖⟩

Eval 2

Proof on Theorem D.2. The non-interference theorem for statements is given in Theorem D.2.
1. T-Empty The last typing rule in the derivation of an empty statement will be:

Γ,Δ ⊢𝑝𝑐 {} ⊣ Γ

Given the above typing judgement holds for, {}, statement, we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 , 𝜖
′
𝑎 ,

𝜖 ′
𝑏
satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ (1)

if the statement, {} is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows:

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, {}⟩ ⇓ ⟨𝜇𝑎, 𝜖𝑎, 𝑐𝑜𝑛𝑡⟩ ⟨C,Δ, 𝜇𝑏, 𝜖𝑏, {}⟩ ⇓ ⟨𝜇𝑏, 𝜖𝑏, 𝑐𝑜𝑛𝑡⟩

Then there exists some Ξ′
𝑎 and Ξ′

𝑏
, such that the following hold:

a. Γ,Δ ⊢𝑝𝑐 {} ⊣ Γ′. This is already the theorem’s hypothesis.
b. We have Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), dom(𝜖𝑎) ⊆ dom(𝜖 ′𝑎), and dom(𝜖𝑏) ⊆ dom(𝜖 ′

𝑏
),

and Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ′. In this case 𝜇 ′𝑎 = 𝜇𝑎 , 𝜇 ′𝑏 = 𝜇𝑏 , 𝜖 ′𝑎 = 𝜖𝑎 , 𝜖 ′𝑏 = 𝜖𝑏 .

With Ξ′
𝑎 = Ξ𝑎 , Ξ′

𝑏
= Ξ𝑏 , the above equation reduces to showing Equation (1).

c. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏). This is evident as the

memory store remains unchanged.
d. 𝑠𝑖𝑔 in any two evaluations are of the same form. In this case 𝑠𝑖𝑔1 = 𝑐𝑜𝑛𝑡 = 𝑠𝑖𝑔2.
e. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we

have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′
𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏). The stores remain unchanged.

2. T-Exit

⟨C,Δ, 𝜎, 𝜖, 𝑒𝑥𝑖𝑡⟩ ⇓ ⟨𝜎, 𝜖, 𝑒𝑥𝑖𝑡⟩
Similar to the empty statement case. This time the 𝑠𝑖𝑔1 = 𝑠𝑖𝑔2 = 𝑒𝑥𝑖𝑡

3. T-Cond The last rule in the typing derivation of a conditional statement will be:

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝑏𝑜𝑜𝑙, 𝜒1⟩
Γ,Δ ⊢𝜒2 𝑠𝑡𝑚𝑡1 ⊣ Γ1 Γ,Δ ⊢𝜒2 𝑠𝑡𝑚𝑡2 ⊣ Γ2 𝜒1 ⊑ 𝜒2 𝑝𝑐 ⊑ 𝜒2

Γ,Δ ⊢𝑝𝑐 if (𝑒𝑥𝑝) 𝑠𝑡𝑚𝑡1 else 𝑠𝑡𝑚𝑡2 ⊣ Γ
T-Cond

Given the above typing judgement holds for, if (𝑒𝑥𝑝) 𝑠𝑡𝑚𝑡1 else 𝑠𝑡𝑚𝑡2, statement, we need to show that for any Ξ𝑎 , Ξ𝑏 ,
𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 , 𝜖

′
𝑎 , 𝜖 ′𝑏 satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ (1)

if the statement, if (𝑒𝑥𝑝) 𝑠𝑡𝑚𝑡1 else 𝑠𝑡𝑚𝑡2 is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as
follows (in a given evaluation, a conditional statement can have the 𝑒𝑥𝑝 evaluate to true or false):

Boolean guard evaluates to false.

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇𝑎1, 𝑓 𝑎𝑙𝑠𝑒⟩ ⟨C,Δ, 𝜇𝑎1, 𝜖𝑎, 𝑠𝑡𝑚𝑡2⟩ ⇓ ⟨𝜇𝑎2, 𝜖𝑎1, 𝑠𝑖𝑔𝑎1⟩
⟨C,Δ, 𝜇𝑎, 𝜖𝑎, if (𝑒𝑥𝑝) 𝑠𝑡𝑚𝑡1 else 𝑠𝑡𝑚𝑡2⟩ ⇓ ⟨𝜇𝑎2, 𝜖𝑎, 𝑠𝑖𝑔𝑎1⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇𝑏1, 𝑓 𝑎𝑙𝑠𝑒⟩ ⟨C,Δ, 𝜇𝑏1, 𝜖𝑏, 𝑠𝑡𝑚𝑡2⟩ ⇓ ⟨𝜇𝑏2, 𝜖𝑏1, 𝑠𝑖𝑔𝑏1⟩
⟨C,Δ, 𝜇𝑏, 𝜖𝑏, if (𝑒𝑥𝑝) 𝑠𝑡𝑚𝑡1 else 𝑠𝑡𝑚𝑡2⟩ ⇓ ⟨𝜇𝑏2, 𝜖𝑏, 𝑠𝑖𝑔𝑏1⟩
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Boolean guard evaluates to true.

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇𝑎1, 𝑡𝑟𝑢𝑒⟩ ⟨C,Δ, 𝜇𝑎1, 𝜖𝑎, 𝑠𝑡𝑚𝑡1⟩ ⇓ ⟨𝜇𝑎2, 𝜖𝑎1, 𝑠𝑖𝑔𝑎2⟩
⟨C,Δ, 𝜇𝑎, 𝜖𝑎, if (𝑒𝑥𝑝) 𝑠𝑡𝑚𝑡1 else 𝑠𝑡𝑚𝑡2⟩ ⇓ ⟨𝜇𝑎2, 𝜖𝑎, 𝑠𝑖𝑔𝑎2⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇𝑏1, 𝑡𝑟𝑢𝑒⟩ ⟨C,Δ, 𝜇𝑏1, 𝜖𝑏, 𝑠𝑡𝑚𝑡1⟩ ⇓ ⟨𝜇𝑏2, 𝜖𝑏1, 𝑠𝑖𝑔𝑏2⟩
⟨C,Δ, 𝜇𝑏, 𝜖𝑏, if (𝑒𝑥𝑝) 𝑠𝑡𝑚𝑡1 else 𝑠𝑡𝑚𝑡2⟩ ⇓ ⟨𝜇𝑏2, 𝜖𝑏, 𝑠𝑖𝑔𝑏2⟩

Then there exists some Ξ′
𝑎 and Ξ′

𝑏
, such that the following hold:

a. Γ,Δ ⊢𝑝𝑐 if (𝑒𝑥𝑝) 𝑠𝑡𝑚𝑡1 else 𝑠𝑡𝑚𝑡2 ⊣ Γ′. This is already the theorem’s hypothesis.
b. We have Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), dom(𝜖𝑎) ⊆ dom(𝜖 ′𝑎), and dom(𝜖𝑏) ⊆ dom(𝜖 ′

𝑏
),

and Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ′. In this case 𝜇 ′𝑎 = 𝜇𝑎2, 𝜇 ′𝑏 = 𝜇𝑏2, 𝜖 ′𝑎 = 𝜖𝑎 , 𝜖 ′𝑏 = 𝜖𝑏 .

c. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

d. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

e. Final 𝑠𝑖𝑔 in any two evaluations are of the same form. We will show this by proving that despite both the branches
yielding independent 𝑠𝑖𝑔𝑎1, 𝑠𝑖𝑔𝑎2 (similarly for 𝑏), the typing rule will ensure that the final 𝑠𝑖𝑔 will be of the same form.

In the following part, we prove the last four requirements. By applying induction hypothesis of Theorem D.1 on the
well-typed 𝑒𝑥𝑝 that is evaluated in an initial state satisfying Equation (1), we conclude that there exists some Ξ′

𝑎1 and
Ξ′
𝑏1 such that Ξ𝑎 ⊆ Ξ′

𝑎1 and Ξ𝑏 ⊆ Ξ′
𝑏1, dom(𝜇𝑎1) ⊇ dom(𝜇𝑎), dom(𝜇𝑏1) ⊇ dom(𝜇𝑏) and the following hold:

Ξ′
𝑎1,Ξ

′
𝑏1,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎⟩ ⟨𝜇𝑏1, 𝜖𝑏⟩ : Γ , (2)

for any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑎1 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑏1 (𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),
for any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we have
𝜇𝑎1 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇𝑏1 (𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

Ξ′
𝑎1,Ξ

′
𝑏1,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎1 , 𝑣𝑎𝑙𝑏1) : ⟨𝑏𝑜𝑜𝑙, 𝜒1⟩ (3)

To interpret this judgement, we consider two cases for 𝜒1:
• 𝜒1 ⊑ 𝑙 . This implies 𝑣𝑎𝑙𝑎1 = 𝑣𝑎𝑙𝑏1. Therefore, both the evaluations will either take true branch or both take false
branch. We prove the required results for the true case; proof for the other case follows similarly. By applying the
current theorem’s induction hypothesis on the well-typed 𝑠𝑡𝑚𝑡1 that is evaluated in an initial configuration satisfying
Equation (2), we conclude that given ⟨C;Δ; 𝜇𝑎1; 𝜖𝑎 ; 𝑠𝑡𝑚𝑡1⟩ ⇓ ⟨𝜇𝑎2; 𝜖𝑎1; 𝑠𝑖𝑔𝑎⟩ and ⟨C;Δ; 𝜇𝑏1; 𝜖𝑏 ; 𝑠𝑡𝑚𝑡1⟩ ⇓ ⟨𝜇𝑏2; 𝜖𝑏1; 𝑠𝑖𝑔𝑏⟩
there exists some Ξ′

𝑎2 and Ξ′
𝑏2, such that Ξ′

𝑎1 ⊆ Ξ′
𝑎2, Ξ

′
𝑏1 ⊆ Ξ′

𝑏2, dom(𝜇𝑎2) ⊇ dom(𝜇𝑎1), dom(𝜇𝑏2) ⊇ dom(𝜇𝑏1),
dom(𝜖𝑎) ⊆ dom(𝜖𝑎1), dom(𝜖𝑏) ⊆ dom(𝜖𝑏1), the signals satisfy the property of being of the same form (this proves the
requirement in Item 3e) and

Ξ′
𝑎2,Ξ

′
𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎1⟩ ⟨𝜇𝑏2, 𝜖𝑏1⟩ : Γ′, (4)

Ξ′
𝑎2,Ξ

′
𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ, (5)

We already know from above that Ξ𝑎 ⊆ Ξ′
𝑎1 ⊆ Ξ′

𝑎2, Ξ𝑏 ⊆ Ξ′
𝑏1 ⊆ Ξ′

𝑏2, dom(𝜇𝑎2) ⊇ dom(𝜇𝑎1) ⊇ dom(𝜇𝑎), dom(𝜇𝑏2) ⊇
dom(𝜇𝑏1) ⊇ dom(𝜇𝑏). Therefore, the Equation (5) proves the results needed to show Item 3b. Applying the induction
hypothesis also concludes that for any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then
𝜇𝑎2 (𝑙𝑎) = 𝜇𝑎1 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 },
then 𝜇𝑏2 (𝑙𝑏) = 𝜇𝑏1 (𝑙𝑏) = 𝜇𝑏 (𝑙𝑏). This proves the result needed to show Item 3c.
Applying the induction hypothesis also gives us that for any 𝑙𝑎 ∈ dom(𝜇𝑎1) and 𝑙𝑏 ∈ dom(𝜇𝑏1) such that Ξ′

𝑎1,Δ ⊢
𝜇𝑎1 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ′

𝑏1,Δ ⊢ 𝜇𝑏1 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we have 𝜇𝑎1 (𝑙𝑎) = 𝜇𝑎2 (𝑙𝑎) and 𝜇𝑏1 (𝑙𝑏) = 𝜇𝑏2 (𝑙𝑏). As
dom(𝜇𝑎) ⊆ dom(𝜇𝑎1) ⊆ dom(𝜇𝑎2), this proves the result needed to show Item 3d.

• 𝜒1 @ 𝑙 . In this case the conditional guards might differ causing different branches to be taken. However, 𝜒1 @ 𝑙 implies
𝜒 ′ @ 𝑙 . Since we know that 𝑠𝑡𝑚𝑡1 and 𝑠𝑡𝑚𝑡2 are well-typed at 𝜒 ′, which means store locations at 𝜒 ′ @ 𝜒 remain
unchanged across 𝜇𝑎1 and 𝜇𝑎2, and 𝜇𝑏1 and 𝜇𝑏2. This implies locations at 𝜒 ⊑ 𝑙 remain unchanged. Therefore, we can
conclude from Equation (2) that

Ξ′
𝑎2,Ξ

′
𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ (6)

𝑠𝑡𝑚𝑡1 and 𝑠𝑡𝑚𝑡2 are well-typed at 𝑝𝑐 = 𝜒 ′. Since 𝜒 ′ @ 𝑙 and ⊥ ⊑ 𝑙 , we know that 𝜒 ′ @ ⊥. This implies that return and
exit statements cannot be in these statement block because these two statements are well typed at the 𝑝𝑐 = ⊥ only.
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Therefore, only 𝑠𝑖𝑔 that can be returned in these statement blocks are 𝑐𝑜𝑛𝑡 . With this we prove that the final 𝑠𝑖𝑔 are of
the same kind.

4. T-Seq-1 The last rule in the typing derivation of a block of statements will be:

Γ,Δ ⊢𝑝𝑐 𝑠𝑡𝑚𝑡1 ⊣ Γ1 Γ1,Δ ⊢𝑝𝑐 {𝑠𝑡𝑚𝑡2} ⊣ Γ2

Γ,Δ ⊢𝑝𝑐 {𝑠𝑡𝑚𝑡1; 𝑠𝑡𝑚𝑡2} ⊣ Γ2
T-Seq

Given the above typing judgement holds for the statement, {𝑠𝑡𝑚𝑡1; 𝑠𝑡𝑚𝑡2}, we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 ,
𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 , 𝜖

′
𝑎 , 𝜖 ′𝑏 satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ (1)
If the statement, {𝑠𝑡𝑚𝑡1; 𝑠𝑡𝑚𝑡2} is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩, then there
exists some Ξ′

𝑎 and Ξ′
𝑏
, such that the following hold:

a. Γ,Δ ⊢𝑝𝑐 {𝑠𝑡𝑚𝑡1, 𝑠𝑡𝑚𝑡2} ⊣ Γ′,. This is already the theorem’s hypothesis.
b. We have Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), dom(𝜖𝑎) ⊆ dom(𝜖 ′𝑎), and dom(𝜖𝑏) ⊆ dom(𝜖 ′

𝑏
),

and Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ′. In this case 𝜇 ′𝑎 = 𝜇𝑎2, 𝜇 ′𝑏 = 𝜇𝑏2, 𝜖 ′𝑎 = 𝜖𝑎2, 𝜖 ′𝑏 = 𝜖𝑏2. We also need to show that

Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ.

c. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

d. For any 𝑙 ′𝑎 ∈ dom(𝜇𝑎) and 𝑙 ′𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙 ′𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙 ′𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇𝑎 (𝑙 ′𝑎) = 𝜇 ′𝑎 (𝑙 ′𝑎) and 𝜇𝑏 (𝑙 ′𝑏) = 𝜇 ′

𝑏
(𝑙 ′
𝑏
),

e. 𝑠𝑖𝑔 in any two evaluations are of the same form.
There are three cases for this evaluation: involving return statement, exit statement, or ordinary statements. We explain
the ordinary statements case in detail, and the other two follow similarly.

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑠𝑡𝑚𝑡1⟩ ⇓ ⟨𝜇𝑎1, 𝜖𝑎1, 𝑐𝑜𝑛𝑡⟩ ⟨C,Δ, 𝜇𝑎1, 𝜖𝑎1, {𝑠𝑡𝑚𝑡2}⟩ ⇓ ⟨𝜇𝑎2, 𝜖𝑎2, 𝑠𝑖𝑔𝑎⟩
⟨C,Δ, 𝜇𝑎, 𝜖𝑎, {𝑠𝑡𝑚𝑡1, 𝑠𝑡𝑚𝑡2}⟩ ⇓ ⟨𝜇𝑎2, 𝜖𝑎2, 𝑠𝑖𝑔𝑎⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑠𝑡𝑚𝑡1⟩ ⇓ ⟨𝜇𝑏1, 𝜖𝑏1, 𝑐𝑜𝑛𝑡⟩ ⟨C,Δ, 𝜇𝑏1, 𝜖𝑏1, {𝑠𝑡𝑚𝑡2}⟩ ⇓ ⟨𝜇𝑏2, 𝜖𝑏2, 𝑠𝑖𝑔𝑏⟩
⟨C,Δ, 𝜇𝑏, 𝜖𝑏, {𝑠𝑡𝑚𝑡1, 𝑠𝑡𝑚𝑡2}⟩ ⇓ ⟨𝜇𝑏2, 𝜖𝑏2, 𝑠𝑖𝑔𝑏⟩

In the following part, we prove the last three requirements. Since 𝑠𝑡𝑚𝑡1 is evaluated in an initial configuration sat-
isfying Equation (1), by applying induction hypothesis on the typing derivation of 𝑠𝑡𝑚𝑡1, we conclude that given
⟨C;Δ; 𝜇𝑎 ; 𝜖𝑎 ; 𝑠𝑡𝑚𝑡1⟩ ⇓ ⟨𝜇𝑎1; 𝜖𝑎1; 𝑐𝑜𝑛𝑡⟩ and ⟨C;Δ; 𝜇𝑏 ; 𝜖𝑏 ; 𝑠𝑡𝑚𝑡1⟩ ⇓ ⟨𝜇𝑏1; 𝜖𝑏1; 𝑐𝑜𝑛𝑡⟩ there exists some Ξ′

𝑎1 and Ξ′
𝑏1, such that

Ξ′
𝑎 ⊆ Ξ′

𝑎1, Ξ
′
𝑏
⊆ Ξ′

𝑏1, dom(𝜇𝑎1) ⊇ dom(𝜇𝑎), dom(𝜇𝑏1) ⊇ dom(𝜇𝑏), dom(𝜖𝑎) ⊆ dom(𝜖𝑎1), dom(𝜖𝑏) ⊆ dom(𝜖𝑏1), the
signals satisfy the property of being of the same form (in both case it is 𝑐𝑜𝑛𝑡 ) and

Ξ′
𝑎1,Ξ

′
𝑏1,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎1⟩ ⟨𝜇𝑏1, 𝜖𝑏1⟩ : Γ1, (2)

Ξ′
𝑎1,Ξ

′
𝑏1,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎⟩ ⟨𝜇𝑏1, 𝜖𝑏⟩ : Γ, (3)

and for any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑎1 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for
any 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑏1 (𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).
𝑠𝑡𝑚𝑡2 is a sequence of statements, so we apply induction hypothesis repeatedly on each statement and conclude that the fi-
nal states after evaluation of the sequence of statements ⟨C;Δ; 𝜇𝑎1; 𝜖𝑎1; 𝑠𝑡𝑚𝑡2⟩ ⇓ ⟨𝜇𝑎2; 𝜖𝑎2; 𝑠𝑖𝑔𝑎⟩ and ⟨C;Δ; 𝜇𝑏1; 𝜖𝑏1; 𝑠𝑡𝑚𝑡2⟩ ⇓
⟨𝜇𝑏2; 𝜖𝑏2; 𝑠𝑖𝑔𝑏⟩ there exists some Ξ′

𝑎2 and Ξ′
𝑏2, such that Ξ′

𝑎1 ⊆ Ξ′
𝑎2, Ξ

′
𝑏1 ⊆ Ξ′

𝑏2, dom(𝜇𝑎2) ⊇ dom(𝜇𝑎1), dom(𝜇𝑏2) ⊇
dom(𝜇𝑏1), dom(𝜖𝑎1) ⊆ dom(𝜖𝑎2), dom(𝜖𝑏1) ⊆ dom(𝜖𝑏2), the signals satisfy the property of being of the same form (this
proves the requirement in Item 4e) and

Ξ′
𝑎2,Ξ

′
𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎2⟩ ⟨𝜇𝑏2, 𝜖𝑏2⟩ : Γ2 (4)

Ξ′
𝑎2,Ξ

′
𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎1⟩ ⟨𝜇𝑏2, 𝜖𝑏1⟩ : Γ1 (5)

and for any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑎2 (𝑙𝑎) = 𝜇𝑎1 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎).
Similarly for any 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑏2 (𝑙𝑏) = 𝜇𝑏1 (𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).
This proves the result needed to show Item 3c. Since we know that dom(𝜖𝑎) ⊆ dom(𝜖𝑎1), any 𝑥 ∈ dom(𝜖𝑎) will also be
in dom(𝜖𝑎1). Similarly for 𝜖𝑏 . There can be two cases due to shadowing a variable name:
a. 𝜖𝑎 (𝑥) = 𝜖𝑎1 (𝑥), 𝜖𝑏 (𝑥) = 𝜖𝑏1 (𝑥). In this case, 𝜇𝑎2 (𝜖𝑎 (𝑥)) = 𝜇𝑎2 (𝜖𝑎1 (𝑥)) and 𝜇𝑏2 (𝜖𝑏 (𝑥)) = 𝜇𝑏2 (𝜖𝑏1 (𝑥)). We know that

these variables satisfy non-interference in 𝜇𝑎2 and 𝜇𝑏2 from Equation (5).
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b. 𝜖𝑎 (𝑥) ≠ 𝜖𝑎1 (𝑥) and 𝜖𝑏 (𝑥) ≠ 𝜖𝑏1 (𝑥).
i. If unused(⟨𝜇𝑎1, 𝜖𝑎1⟩, 𝑥, 𝜖𝑎 (𝑥)) and unused(⟨𝜇𝑏1, 𝜖𝑏1⟩, 𝑥, 𝜖𝑏 (𝑥)), then 𝜇𝑎2 (𝜖𝑎 (𝑥)) = 𝜇𝑎1 (𝜖𝑎 (𝑥)) and 𝜇𝑏2 (𝜖𝑏 (𝑥)) =

𝜇𝑏1 (𝜖𝑏 (𝑥)), which we know are non-interfering from Equation (3).
ii. If ¬unused(⟨𝜇𝑎1, 𝜖𝑎1⟩, 𝑥, 𝜖𝑎 (𝑥)) and ¬unused(⟨𝜇𝑏1, 𝜖𝑏1⟩, 𝑥, 𝜖𝑏 (𝑥)), then there exists some closure value with envi-

ronment 𝜖 ′𝑐𝑎 and dom(𝜖 ′𝑐𝑎 ) ⊆ dom(𝜖𝑎1), and 𝜖 ′𝑐𝑏 and dom(𝜖 ′𝑐𝑏 ) ⊆ dom(𝜖𝑏1) where 𝑥 ∈ dom(𝜖 ′𝑐𝑎 )and 𝜖𝑎 (𝑥) = 𝜖 ′𝑐𝑎 (𝑥).
Also, 𝜖𝑏 (𝑦) = 𝜖 ′𝑐𝑏 (𝑦). From Equation (5), we know that Ξ′

𝑎2,Ξ
′
𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖 ′𝑐𝑎 ⟩ ⟨𝜇𝑏2, 𝜖

′
𝑐𝑏
⟩ : Γ𝑐𝑙𝑜𝑠 . This implies that

this variable 𝑥 will have non-interfering values in 𝜇𝑎2 and 𝜇𝑏2.
We also need to ensure that for all 𝑥 in dom(𝜖𝑎) = dom(𝜖𝑏) and some Γ𝑐𝑙𝑜𝑠 ⊆ Γ and any 𝑝𝑐 , if Γ,Δ ⊢𝑝𝑐 𝑥 : 𝜏𝑐𝑙𝑜𝑠 with
closure environments 𝜖 ′𝑐𝑎 and 𝜖 ′𝑐𝑏 in the two states, then Ξ′

𝑎2,Ξ
′
𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖 ′𝑐𝑎 ⟩ ⟨𝜇𝑏2, 𝜖

′
𝑐𝑏
⟩ : Γ𝑐𝑙𝑜𝑠 . For closure variables

satisfying Item 4(b)ii, this will follow from closure properties in Equation (5). For variables ratifying Item 4(b)i, this
will follow from the fact that the variables in their closure environments can again be unused (implies unchanged
between 𝜇𝑎1 and 𝜇𝑎2, 𝜇𝑏1 and 𝜇𝑏2) or used (in this case we already know from Equation (5) that such variables satisfy
non-interference of values). By combining the observation that all variables in 𝜖𝑎 and 𝜖𝑏 are non-interfering, we can
conclude

Ξ′
𝑎2,Ξ

′
𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ

This proves Item 4b.
For reference, the evaluation rules for the other two cases are as follows:

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑠𝑡𝑚𝑡1⟩ ⇓ ⟨𝜇𝑎1, 𝜖𝑎1, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑣𝑎𝑙𝑎⟩
⟨C,Δ, 𝜇𝑎, 𝜖𝑎, {𝑠𝑡𝑚𝑡1, 𝑠𝑡𝑚𝑡2}⟩ ⇓ ⟨𝜇𝑎1, 𝜖𝑎1, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑣𝑎𝑙𝑎⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑠𝑡𝑚𝑡1⟩ ⇓ ⟨𝜇𝑏1, 𝜖𝑏1, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑣𝑎𝑙𝑏⟩
⟨C,Δ, 𝜇𝑏, 𝜖𝑏, {𝑠𝑡𝑚𝑡1, 𝑠𝑡𝑚𝑡2}⟩ ⇓ ⟨𝜇𝑏1, 𝜖𝑏1, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑣𝑎𝑙𝑏⟩

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑠𝑡𝑚𝑡1⟩ ⇓ ⟨𝜇𝑎1, 𝜖𝑎1, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑣𝑎𝑙𝑎⟩
⟨C,Δ, 𝜇𝑎, 𝜖𝑎, {𝑠𝑡𝑚𝑡1, 𝑠𝑡𝑚𝑡2}⟩ ⇓ ⟨𝜇𝑎1, 𝜖𝑎1, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑣𝑎𝑙𝑎⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑠𝑡𝑚𝑡1⟩ ⇓ ⟨𝜇𝑏1, 𝜖𝑏1, 𝑒𝑥𝑖𝑡⟩
⟨C,Δ, 𝜇𝑏, 𝜖𝑏, {𝑠𝑡𝑚𝑡1, 𝑠𝑡𝑚𝑡2}⟩ ⇓ ⟨𝜇𝑏1, 𝜖𝑏1, 𝑒𝑥𝑖𝑡⟩

5. T-Return The last rule in the typing derivation of a return will be:

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒𝑟𝑒𝑡 ⟩ Γ(return) = ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩ Δ ⊢ 𝜏𝑟𝑒𝑡 ⇝ 𝜏

Γ,Δ ⊢𝑝𝑐 return 𝑒𝑥𝑝 ⊣ Γ
T-Return

Given the above typing judgement holds for, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒𝑥𝑝 , we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 , 𝜖
′
𝑎 ,

𝜖 ′
𝑏
satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ (1)
if the statement, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒𝑥𝑝 is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows:

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇𝑎1, 𝑣𝑎𝑙𝑎⟩
⟨C,Δ, 𝜇𝑎, 𝜖𝑎, return exp⟩ ⇓ ⟨𝜇𝑎1, 𝜖𝑎, return 𝑣𝑎𝑙𝑎⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇𝑏1, 𝑣𝑎𝑙𝑏⟩
⟨C,Δ, 𝜇𝑏, 𝜖𝑏, return exp⟩ ⇓ ⟨𝜇𝑏1, 𝜖𝑏, return 𝑣𝑎𝑙𝑏⟩

Then there exists some Ξ′
𝑎 and Ξ′

𝑏
, such that the following hold:

a. Γ,Δ ⊢𝑝𝑐 return 𝑒𝑥𝑝 ⊣ Γ′, where Γ′ = Γ. This is already the theorem’s hypothesis.
b. Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), dom(𝜖𝑎) ⊆ dom(𝜖 ′𝑎), dom(𝜖𝑏) ⊆ dom(𝜖 ′

𝑏
), and

Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ′. In this case 𝜇 ′𝑎 = 𝜇𝑎1, 𝜇 ′𝑏 = 𝜇𝑏1, 𝜖 ′𝑎 = 𝜖𝑎 , 𝜖 ′𝑏 = 𝜖𝑏 .

c. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

d. 𝑠𝑖𝑔 in any two evaluations are of the same form.
e. For any 𝑙 ′𝑎 ∈ dom(𝜇𝑎) and 𝑙 ′𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙 ′𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙 ′𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we

have 𝜇𝑎 (𝑙 ′𝑎) = 𝜇 ′𝑎 (𝑙 ′𝑎) and 𝜇𝑏 (𝑙 ′𝑏) = 𝜇 ′
𝑏
(𝑙 ′
𝑏
),

Since 𝑒𝑥𝑝 is evaluated in an initial configuration satisfying Equation (1), by applying induction hypothesis of Theorem D.1
on the typing derivation of 𝑒𝑥𝑝 , we conclude that there exists some Ξ′

𝑎 , Ξ′
𝑏
, 𝜇𝑎1, and 𝜇𝑏1 such that Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
,

dom(𝜇𝑎) ⊆ dom(𝜇𝑎1), dom(𝜇𝑏) ⊆ dom(𝜇𝑏1) and the following holds:

Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎⟩ ⟨𝜇𝑏1, 𝜖𝑏⟩ : Γ, (2)

For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑎1 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for
any 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑏1 (𝑙𝑏) = 𝜇𝑏 (𝑙𝑏). This proves Item 5b
and Item 5c. Also, for any 𝑙 ′𝑎 ∈ dom(𝜇𝑎) and 𝑙 ′𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙 ′𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙 ′𝑏) : ⟨𝜏, 𝜒⟩
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and 𝑝𝑐 @ 𝜒 , we have 𝜇𝑎 (𝑙 ′𝑎) = 𝜇𝑎1 (𝑙 ′𝑎) and 𝜇𝑏 (𝑙 ′𝑏) = 𝜇𝑏1 (𝑙 ′𝑏). This proves Item 5e. The above applying of the induction
hypothesis also shows

Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩. (3)

Since the signal in this case is of the form 𝑟𝑒𝑡 𝑣𝑎𝑙 , we need to show that

Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑝𝑐 𝑁𝐼 (𝑣𝑎𝑙𝑎, 𝑣𝑎𝑙𝑏) : ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩

This is already given by Equation (3).
6. T-Assign The last rule in the typing derivation of an assignment statement will be:

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 : ⟨𝜏, 𝜒1⟩ 𝑔𝑜𝑒𝑠 𝑖𝑛𝑜𝑢𝑡 Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝2 : ⟨𝜏, 𝜒2⟩ 𝜒2 ⊑ 𝜒1 𝑝𝑐 ⊑ 𝜒1

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 := 𝑒𝑥𝑝2 ⊣ Γ
T-Assign

Given the above typing judgement holds for, 𝑒𝑥𝑝1 := 𝑒𝑥𝑝2, we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 , 𝜖
′
𝑎 ,

𝜖 ′
𝑏
satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ (1)
if the statement, 𝑒𝑥𝑝1 := 𝑒𝑥𝑝2 is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows:

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝1⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑎1, 𝑙𝑣𝑎𝑙𝑎⟩ ⟨C,Δ, 𝜇𝑎1, 𝜖𝑎, 𝑒𝑥𝑝2⟩ ⇓ ⟨𝜇𝑎2, 𝑣𝑎𝑙𝑎⟩ ⟨C,Δ, 𝜇𝑎2, 𝜖𝑎, 𝑙𝑣𝑎𝑙𝑎 := 𝑣𝑎𝑙𝑎⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇𝑎3

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, {𝑒𝑥𝑝1 := 𝑒𝑥𝑝2}⟩ ⇓ ⟨𝜇𝑎3, 𝜖𝑎, 𝑐𝑜𝑛𝑡⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝1⟩ ⇓𝑙𝑣𝑎𝑙 ⟨𝜇𝑏1, 𝑙𝑣𝑎𝑙𝑏⟩ ⟨C,Δ, 𝜇𝑏1, 𝜖𝑏, 𝑒𝑥𝑝2⟩ ⇓ ⟨𝜇𝑏2, 𝑣𝑎𝑙𝑏⟩ ⟨C,Δ, 𝜇𝑏2, 𝜖𝑏, 𝑙𝑣𝑎𝑙𝑏 := 𝑣𝑎𝑙𝑏⟩ ⇓𝑤𝑟𝑖𝑡𝑒 𝜇𝑏3

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, {𝑒𝑥𝑝1 := 𝑒𝑥𝑝2}⟩ ⇓ ⟨𝜇𝑎3, 𝜖𝑎, 𝑐𝑜𝑛𝑡⟩
Then there exists some Ξ′

𝑎 and Ξ′
𝑏
, such that the following hold:

a. Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝1 := 𝑒𝑥𝑝2 ⊣ Γ′,. This is already the theorem’s hypothesis.
b. We have Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), dom(𝜖𝑎) ⊆ dom(𝜖 ′𝑎), and dom(𝜖𝑏) ⊆ dom(𝜖 ′

𝑏
),

and Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ′. In this case 𝜇 ′𝑎 = 𝜇𝑎2, 𝜇 ′𝑏 = 𝜇𝑏2, 𝜖 ′𝑎 = 𝜖𝑎 , 𝜖 ′𝑏 = 𝜖𝑏 .

c. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

d. For any 𝑙 ′𝑎 ∈ dom(𝜇𝑎) and 𝑙 ′𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙 ′𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙 ′𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇𝑎 (𝑙 ′𝑎) = 𝜇 ′𝑎 (𝑙 ′𝑎) and 𝜇𝑏 (𝑙 ′𝑏) = 𝜇 ′

𝑏
(𝑙 ′
𝑏
),

e. 𝑠𝑖𝑔 in any two evaluations are of the same form. In this case 𝑠𝑖𝑔1 = 𝑐𝑜𝑛𝑡 = 𝑠𝑖𝑔2.
By applying Lemma F.2 on 𝑒𝑥𝑝1, which is evaluated in an initial configuration satisfying Equation (1), we conclude:
There exists some Ξ𝑎1, Ξ𝑏1, 𝜇𝑎1 and 𝜇𝑏1 satisfying Ξ𝑎 ⊆ Ξ𝑎1, Ξ𝑏 ⊆ Ξ𝑏1, dom(𝜇𝑎) ⊆ dom(𝜇𝑎1) and dom(𝜇𝑏) ⊆ dom(𝜇𝑏1)
and the following:

Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎⟩ ⟨𝜇𝑏1, 𝜖𝑏⟩ : Γ (2)
For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑎1 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇𝑏1 (𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).
Also, for any 𝑙 ′𝑎 ∈ dom(𝜇𝑎) and 𝑙 ′𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙 ′𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙 ′𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇𝑎 (𝑙 ′𝑎) = 𝜇𝑎1 (𝑙 ′𝑎) and 𝜇𝑏 (𝑙 ′𝑏) = 𝜇𝑏1 (𝑙 ′𝑏),
Also, if 𝜒1 ⊑ 𝑙 , then 𝑙𝑣𝑎𝑙𝑎 =𝑙𝑣𝑎𝑙 𝑙𝑣𝑎𝑙𝑏 . Also, lval_base(𝑙𝑣𝑎𝑙𝑎) ∈ dom(𝜖𝑎) and lval_base(𝑙𝑣𝑎𝑙𝑏) ∈ dom(𝜖𝑏).
By applying induction Theorem D.1 on 𝑒𝑥𝑝2, which is evaluated in an initial configuration satisfying Equation (2), we
can conclude:
There exists some Ξ𝑎2, Ξ𝑏2, 𝜇𝑎2, and 𝜇𝑏2 such that Ξ𝑎1 ⊆ Ξ𝑎2, Ξ𝑏1 ⊆ Ξ𝑏2, dom(𝜇𝑎1) ⊆ dom(𝜇𝑎2), dom(𝜇𝑏1) ⊆ dom(𝜇𝑏2)
and the following hold:

Ξ𝑎2,Ξ𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ, (3)
Ξ𝑎2,Ξ𝑏2,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝜏, 𝜒2⟩ (4)

Using Lemma G.3 on l-value write in expressions 𝑙𝑣𝑎𝑙𝑎 := 𝑣𝑎𝑙𝑎 and 𝑙𝑣𝑎𝑙𝑏 := 𝑣𝑎𝑙𝑏 , we get that

Ξ𝑎2,Ξ𝑏2,Δ |=𝑙 ⟨𝜇𝑎3, 𝜖𝑎⟩ ⟨𝜇𝑏3, 𝜖𝑏⟩ : Γ, (5)

Since Ξ𝑎 ⊆ Ξ𝑎1 ⊆ Ξ𝑎2 and Ξ𝑏 ⊆ Ξ𝑏1 ⊆ Ξ𝑏2, showing the above equation is same as showing Item 6b. Observe that the
𝑙𝑣𝑎𝑙𝑎 and 𝑙𝑣𝑎𝑙𝑏 have security level 𝑝𝑐 ⊑ 𝜒1, and Lemma G.3 states that only the location given by 𝜖𝑎 (lval_base(𝑙𝑣𝑎𝑙𝑎))
is updated in the 𝜇𝑎3 and similarly 𝜇𝑏3. Therefore, we have proved Item 6d. Proof of Item 6c follows similarly from the
results of applying the above induction hypothesis.
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7. T-VarDecl A well-formed declaration statement will satisfy the following typing rule:

Γ;Δ ⊢𝑝𝑐 var_decl ⊣ Γ′;Δ1

Γ;Δ ⊢𝑝𝑐 var_decl ⊣ Γ′

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, var_decl⟩ ⇓ ⟨Δ1, 𝜇
′
𝑎, 𝜖

′
𝑎, 𝑐𝑜𝑛𝑡⟩

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, var_decl⟩ ⇓ ⟨𝜇 ′𝑎, 𝜖 ′𝑎, 𝑐𝑜𝑛𝑡⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, var_decl⟩ ⇓ ⟨Δ1, 𝜇
′
𝑏
, 𝜖 ′

𝑏
, 𝑐𝑜𝑛𝑡⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, var_decl⟩ ⇓ ⟨𝜇 ′
𝑏
, 𝜖 ′

𝑏
, 𝑐𝑜𝑛𝑡⟩

The proof of this case follows from applying the induction hypothesis for NI for declarations. In case of var_decl Δ1 = Δ.
8. T-TblCall

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩ 𝑝𝑐 ⊑ 𝑝𝑐𝑡𝑏𝑙

Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 () ⊣ Γ
T-TblCall

Given the above typing judgement holds for, 𝑒𝑥𝑝 () statement, we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 ,
𝜖 ′𝑎 , 𝜖 ′𝑏 satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ (1)
If the statement, 𝑒𝑥𝑝 () is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows,

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇𝑎1, 𝑡𝑎𝑏𝑙𝑒 𝑙𝑎 (𝜖𝑐𝑎 , 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗
(𝑒𝑥𝑝𝑎 𝑗 𝑖 , 𝑦𝑐 : ⟨𝜏𝑐 , 𝜒𝑐⟩))⟩

⟨C,Δ, 𝜇𝑎1, 𝜖𝑐 , 𝑒𝑥𝑝𝑘⟩ ⇓ ⟨𝜇𝑎2, 𝑣𝑎𝑙𝑘𝑎⟩ ⟨C, 𝑙𝑎, 𝑣𝑎𝑙𝑘𝑎 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗
(𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩)⟩ ⇓𝑚𝑎𝑡𝑐ℎ ⟨𝑎𝑐𝑡𝑎 𝑗

(𝑒𝑥𝑝𝑐 𝑗𝑖 )⟩
⟨C,Δ, 𝜇𝑎2, 𝜖𝑐𝑎 , 𝑎𝑐𝑡𝑎𝑗 (𝑒𝑥𝑝𝑎 𝑗𝑖

, 𝑒𝑥𝑝𝑐 𝑗𝑖 )⟩ ⇓ ⟨𝜇𝑎3, 𝜖 ′𝑐𝑎 , 𝑐𝑜𝑛𝑡⟩
⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝 ()⟩ ⇓ ⟨𝜇𝑎3, 𝜖𝑎, 𝑐𝑜𝑛𝑡⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇𝑏1, 𝑡𝑎𝑏𝑙𝑒 𝑙𝑏 (𝜖𝑐𝑏 , 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗
(𝑒𝑥𝑝𝑎 𝑗𝑖

, 𝑦𝑐 𝑗 : ⟨𝜏𝑐 𝑗 , 𝜒𝑐 𝑗 ⟩))⟩
⟨C,Δ, 𝜇𝑏1, 𝜖𝑐𝑏 , 𝑒𝑥𝑝𝑘⟩ ⇓ ⟨𝜇𝑏2, 𝑣𝑎𝑙𝑘𝑏⟩ ⟨C, 𝑙𝑏, 𝑣𝑎𝑙𝑘𝑏 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗

(𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩)⟩ ⇓𝑚𝑎𝑡𝑐ℎ ⟨𝑎𝑐𝑡𝑎 𝑗
(𝑒𝑥𝑝𝑐 𝑗𝑖 )⟩

⟨C,Δ, 𝜇𝑏2, 𝜖𝑐𝑏 , 𝑎𝑐𝑡𝑎𝑗 ′ (𝑒𝑥𝑝𝑎 𝑗𝑖′ , 𝑒𝑥𝑝𝑐 𝑗𝑖′ )⟩ ⇓ ⟨𝜇𝑏3, 𝜖 ′𝑐𝑏 , 𝑐𝑜𝑛𝑡⟩
⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝 ()⟩ ⇓ ⟨𝜇𝑏3, 𝜖𝑏, 𝑐𝑜𝑛𝑡⟩

Then there exists some Ξ′
𝑎 and Ξ′

𝑏
, such that the following hold:

a. Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 () ⊣ Γ′, where Γ′ = Γ. This is already the theorem’s hypothesis.
b. We have Ξ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), dom(𝜖𝑎) ⊆ dom(𝜖 ′𝑎), and dom(𝜖𝑏) ⊆ dom(𝜖 ′

𝑏
)

and Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ′. In this case 𝜖 ′𝑎 = 𝜖𝑎 , 𝜖 ′𝑏 = 𝜖𝑏 , 𝜇 ′𝑎 = 𝜇𝑎3 and 𝜇 ′

𝑏
= 𝜇𝑏3.

c. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

d. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

e. 𝑠𝑖𝑔 in any two evaluations are of the same form. In this case 𝑠𝑖𝑔1 = 𝑐𝑜𝑛𝑡 = 𝑠𝑖𝑔2.
To show that the final state satisfies Item 8b we start by showing that final state after evaluating all the sub-step in the
table evaluation satisfies Item 8b.

Evaluating table expression. By applying induction hypothesis of Theorem D.1 on the well-typed 𝑒𝑥𝑝 , we get

Γ,Δ |=𝑝𝑐 ni(𝑒𝑥𝑝 : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩) .
Since 𝑒𝑥𝑝 is evaluated in an initial configuration satisfying Equation (1), we can expand the NI for expression definition to
conclude that there exists some Ξ𝑎1, Ξ𝑏1, satisfying Ξ𝑎 ⊆ Ξ𝑎1, Ξ𝑏 ⊆ Ξ𝑏1, dom(𝜇𝑎) ⊆ dom(𝜇𝑎1) and dom(𝜇𝑏) ⊆ dom(𝜇𝑏1)
and the following:

Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎1⟩ ⟨𝜇𝑏1, 𝜖𝑏1⟩ : Γ , (2)
Ξ𝑎1,Ξ𝑏1,Δ |=𝑙 ni(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩ (3)

where
𝑣𝑎𝑙𝑎 = 𝑡𝑎𝑏𝑙𝑒 𝑙𝑎 (𝜖𝑎, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗

(𝑒𝑥𝑝𝑎 𝑗𝑖
, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩))
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and
𝑣𝑎𝑙𝑏 = 𝑡𝑎𝑏𝑙𝑒 𝑙𝑏 (𝜖𝑏, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑏 𝑗

(𝑒𝑥𝑝𝑎 𝑗𝑖
, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩)) .

Equation (3) expands to give Ξ𝑎1,Ξ𝑏1,Δ |=𝑝𝑐 ni_tbl(𝑣𝑎𝑙𝑎 , 𝑣𝑎𝑙𝑏) : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩, which implies that there exists a Γ𝑡𝑏𝑙
and 𝑝𝑐𝑎 such that
a. Ξ𝑎1 |= 𝜖𝑐𝑎 : Γ𝑡𝑏𝑙 and Ξ𝑏1 |= 𝜖𝑐𝑏 : Γ𝑡𝑏𝑙
b. Well-typed. Γ𝑡𝑏𝑙 ;Δ ⊢𝑝𝑐 𝑡𝑎𝑏𝑙𝑒 𝑙𝑎 (𝜖𝑎, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗

(𝑒𝑥𝑝𝑎 𝑗𝑖
, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩)) : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑎, 𝑝𝑐𝑡𝑏𝑙 ),⊥⟩. Similarly, we have

Γ𝑡𝑏𝑙 ;Δ ⊢𝑝𝑐 𝑡𝑎𝑏𝑙𝑒 𝑙𝑏 (𝜖𝑏, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑏 𝑗
(𝑒𝑥𝑝𝑎 𝑗𝑖

, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩)) : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑎, 𝑝𝑐𝑡𝑏𝑙 ),⊥⟩
c. Γ𝑡𝑏𝑙 ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑥𝑘 : ⟨𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑,⊥⟩ for each 𝑥𝑘 ∈ 𝑥𝑘
d. Γ𝑡𝑏𝑙 ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑘 : ⟨𝜏𝑘 , 𝜒𝑘⟩ for each 𝑒𝑥𝑝𝑘 ∈ 𝑒𝑥𝑝𝑘

e. Γ𝑡𝑏𝑙 ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑎𝑐𝑡𝑎𝑗 : ⟨𝑑 ⟨𝜏𝑎 𝑗𝑖
, 𝜒𝑎 𝑗𝑖

⟩ ; ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩
𝑝𝑐 𝑓 𝑛𝑗−−−−→ ⟨𝑢𝑛𝑖𝑡,⊥⟩,⊥⟩ for each 𝑎𝑐𝑡𝑎 𝑗

∈ 𝑎𝑐𝑡𝑎 𝑗

f. Γ𝑡𝑏𝑙 ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑎 𝑗𝑖
: ⟨𝜏𝑎 𝑗𝑖

, 𝜒𝑎 𝑗𝑖
⟩ 𝑔𝑜𝑒𝑠 𝑑 for each 𝑒𝑥𝑝𝑎 𝑗𝑖

∈ 𝑒𝑥𝑝𝑎 𝑗𝑖

g. 𝑣𝑎𝑙𝑎 =𝑡𝑏𝑙 𝑣𝑎𝑙𝑏 .
h. 𝜒𝑘 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗

, for all 𝑗, 𝑘
i. 𝑝𝑐𝑎 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗

, for all 𝑗
j. 𝜒𝑘 ⊑ 𝑝𝑐𝑡𝑏𝑙 for all 𝑘 .
k. 𝑝𝑐𝑡𝑏𝑙 ⊑ 𝑝𝑐𝑎
From Equation (1), we already know that for all 𝑥 in dom(𝜖) and some Γ𝑡𝑏𝑙 ⊆ Γ, if Γ,Δ ⊢𝑝𝑐 𝑥 : 𝜏𝑡𝑏𝑙 , 𝜇 (𝜖 (𝑥)) = 𝑡𝑎𝑏𝑙𝑒 𝑙 (𝜖𝑐 , ...),
and Ξ |= 𝜖𝑐 : Γ𝑡𝑏𝑙 , then dom(𝜖𝑐 ) ⊆ dom(𝜖) and Ξ,Δ |= ⟨𝜇, 𝜖𝑐⟩ : Γ𝑡𝑏𝑙 .
This implies that dom(𝜖𝑐𝑎 ) ⊆ dom(𝜖𝑎) and dom(𝜖𝑐𝑏 ) ⊆ dom(𝜖𝑏). Also, Ξ𝑎1,Δ |= ⟨𝜇𝑎1, 𝜖𝑐𝑎 ⟩ : Γ𝑡𝑏𝑙 and Ξ𝑏1,Δ |= ⟨𝜇𝑏1, 𝜖𝑐𝑏 ⟩ :
Γ𝑡𝑏𝑙 . Since closure values do not change across 𝜇𝑎 , 𝜇𝑎1, and 𝜇𝑏 , 𝜇𝑏1, the variable that would have evaluated to the table
closure value under 𝜇𝑎 will have the same value under 𝜇𝑎1. By using the property of closures implied by Equation (2), we
conclude Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎1, 𝜖𝑐𝑎 ⟩ ⟨𝜇𝑏1, 𝜖𝑐𝑏 ⟩ : Γ𝑡𝑏𝑙 .

Evaluating key expression. By repeatedly applying the induction hypothesis of Theorem D.1 on Γ𝑡𝑏𝑙 ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑘 :
⟨𝜏𝑘 , 𝜒𝑘⟩ for each 𝑒𝑥𝑝𝑘 ∈ 𝑒𝑥𝑝𝑘 , implies that there exists some Ξ𝑎2, Ξ𝑏2, 𝜇𝑎2 and 𝜇𝑏2 satisfying Ξ𝑎1 ⊆ Ξ𝑎2, Ξ𝑏1 ⊆ Ξ𝑏2,
𝜇𝑎1 ⊆ 𝜇𝑎2 and 𝜇𝑏1 ⊆ 𝜇𝑏2 and the following:

Ξ𝑎2,Ξ𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑐𝑎 ⟩ ⟨𝜇𝑏2, 𝜖𝑐𝑏 ⟩ : Γ𝑡𝑏𝑙 , (4)

Ξ𝑎2,Ξ𝑏2,Δ |=𝑙 ni(𝑣𝑎𝑙𝑘𝑎 , 𝑣𝑎𝑙𝑘𝑏) : ⟨𝜏𝑘 , 𝜒𝑘⟩ (5)
This can be read as “if 𝜒𝑘 ⊑ 𝑙 then 𝑣𝑎𝑙𝑘𝑎 = 𝑣𝑎𝑙𝑘𝑏”.
Also, none of the variables at security label 𝑝𝑐 @ 𝜒 are updated between 𝜇𝑎1, 𝜇𝑎2, and 𝜇𝑏1, 𝜇𝑏2. Similar to the argument
used in function call case to prove Equation (9), we can also conclude

Ξ𝑎2,Ξ𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ (6)

Table match. The ⇓𝑚𝑎𝑡𝑐ℎ depends on some assumption about the control plane, C that it will ensure that only well-typed
arguments, Γ𝑡𝑏𝑙 ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩ for each 𝑒𝑥𝑝𝑐 𝑗𝑖 ∈ 𝑒𝑥𝑝𝑐 𝑗𝑖 are passed to partially-applied actions (this is same
as Petr4’s assumption around the control plane). In addition, considering that the table entries are fixed, matching on a
equal 𝑣𝑎𝑙𝑘𝑎 = 𝑣𝑎𝑙𝑘𝑏 will return the same action and arguments, i.e., the matched action will be the same 𝑎𝑐𝑡𝑎𝑗 = 𝑎𝑐𝑡𝑎𝑗 ′

and 𝑒𝑥𝑝𝑐 𝑗𝑖 = 𝑒𝑥𝑝𝑐′
𝑗𝑖
. 𝑒𝑥𝑝𝑘 at security-level 𝜒𝑘 @ 𝑙 might not evaluate to equal values. Therefore, we have two cases for

the match evaluation, either same actions, 𝑎𝑐𝑡𝑎𝑗 = 𝑎𝑐𝑡𝑎𝑗 ′ , with same parameter expressions, 𝑒𝑥𝑝𝑐 𝑗𝑖 = 𝑒𝑥𝑝𝑐′
𝑗𝑖
are returned

or 𝑎𝑐𝑡𝑎𝑗 ≠ 𝑎𝑐𝑡𝑎𝑗 ′ and their parameter expression can also differ.

Invoking the matched action. In case 𝑎𝑐𝑡𝑎𝑗 = 𝑎𝑐𝑡𝑎𝑗 ′ , 𝑒𝑥𝑝𝑐 𝑗𝑖 = 𝑒𝑥𝑝𝑐′
𝑗𝑖
and 𝑒𝑥𝑝𝑎 𝑗𝑖

= 𝑒𝑥𝑝𝑎′
𝑗𝑖
, then the last premise of the

evaluation rule is equivalent to evaluating a function expression with same parameter expression. By using induction
hypothesis of Theorem D.2 for a well-typed function call statement, we arrive at a final state involving Ξ𝑎3, Ξ𝑏3, 𝜇𝑎3, 𝜇𝑏3,
𝜖 ′𝑐𝑎 , 𝜖

′
𝑐𝑏

satisfying Ξ𝑎2 ⊆ Ξ𝑎3, Ξ𝑏3 ⊆ Ξ𝑏3, dom(𝜇𝑎2) ⊆ dom(𝜇𝑎3) and dom(𝜇𝑏2) ⊆ dom(𝜇𝑏3), dom(𝜖𝑐𝑎 ) ⊆ dom(𝜖 ′𝑐𝑎 ), and
dom(𝜖𝑐𝑏 ) ⊆ dom(𝜖 ′𝑐𝑏 ) and the following:

Ξ𝑎3,Ξ𝑏3,Δ |=𝑙 ⟨𝜇𝑎3, 𝜖 ′𝑐𝑎 ⟩ ⟨𝜇𝑏3, 𝜖
′
𝑐𝑏
⟩ : Γ𝑡𝑏𝑙 , (7)

In case of a function call statement, 𝜖𝑐𝑎 = 𝜖 ′𝑐𝑎 , and 𝜖𝑐𝑏 = 𝜖 ′𝑐𝑏 .
Similar to the argument used in function call case to prove Equation (9), since we have Equation (6) we can also conclude

Ξ𝑎3,Ξ𝑏3,Δ |=𝑙 ⟨𝜇𝑎3, 𝜖𝑎⟩ ⟨𝜇𝑏3, 𝜖𝑏⟩ : Γ (8)
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This proves Item 8b.
In case 𝑎𝑐𝑡𝑎𝑗 ≠ 𝑎𝑐𝑡𝑎𝑗 ′ , 𝑒𝑥𝑝𝑐 𝑗𝑖 ≠ 𝑒𝑥𝑝𝑐′

𝑗𝑖
and 𝑒𝑥𝑝𝑎 𝑗𝑖

≠ 𝑒𝑥𝑝𝑎′
𝑗𝑖
, then there exists some 𝑣𝑎𝑙𝑘𝑎 ≠ 𝑣𝑎𝑙𝑘𝑏 . This implies 𝜒𝑘 @ 𝑙 .

Since 𝜒𝑘 ⊑ 𝑝𝑐𝑡𝑏𝑙 , we can conclude 𝑝𝑐𝑡𝑏𝑙 @ 𝑙 . Although, the function call statements are different in the two cases, we
know that both the function call statements are well-typed at 𝑝𝑐𝑡𝑏𝑙 . This implies that when the function call statement
in 𝜇𝑎2 and 𝜖𝑐𝑎 is evaluated, then variables at 𝑝𝑐 @ 𝜒 will have unchanged value in 𝜇𝑎3. Similarly, the other function call
statement despite being different guarantees that the values of variables at 𝑝𝑐 @ 𝜒 in 𝜇𝑏2 and will have unchanged value
in 𝜇𝑏3. We already know that

Ξ𝑎2,Ξ𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ
By using the fact that none of the variables at 𝜒 ⊑ 𝑙 are updated between 𝜇𝑎2 and 𝜇𝑎3, and similarly 𝜇𝑏2 and 𝜇𝑏3, we can
conclude that

Ξ𝑎3,Ξ𝑏3,Δ |=𝑙 ⟨𝜇𝑎3, 𝜖𝑎⟩ ⟨𝜇𝑏3, 𝜖𝑏⟩ : Γ
A consistent state requires that any variables at 𝜒 ⊑ 𝑙 are indistinguishable; this holds in

Ξ𝑎2,Ξ𝑏2,Δ |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ
and with no changes to the variables at 𝜒 ⊑ 𝑙 , it will continue to hold in the final memory store.

Proof of Theorem D.3. By induction on typing derivation of declaration statements.
1. T-VarDecl

Δ ⊢ 𝜏 ⇝ 𝜏 ′

Γ;Δ ⊢𝑝𝑐 ⟨𝜏, 𝜒⟩ 𝑥 ⊣ Γ [𝑥 : ⟨𝜏 ′, 𝜒⟩];Δ
Given the above typing judgement holds for, ⟨𝜏, 𝜒⟩ 𝑥 , we need to show that Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 , 𝜖

′
𝑎 , 𝜖 ′𝑏 satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ, (1)

if the declaration, ⟨𝜏, 𝑝𝑐⟩ 𝑥 is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows,
𝑙𝑎 fresh ⟨Δ, 𝜇𝑎, 𝜖𝑎, 𝜏⟩ ⇓𝜏 𝜏 ′

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, ⟨𝜏, 𝜒⟩ 𝑥⟩ ⇓ ⟨Δ, 𝜇𝑎 [𝑙𝑎 := 𝑖𝑛𝑖𝑡Δ𝜏
′], 𝜖𝑎 [𝑥 ↦→ 𝑙𝑎], 𝑐𝑜𝑛𝑡⟩

𝑙𝑏 fresh ⟨Δ, 𝜇𝑏, 𝜖𝑏, 𝜏⟩ ⇓𝜏 𝜏 ′

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, ⟨𝜏, 𝜒⟩ 𝑥⟩ ⇓ ⟨Δ, 𝜇𝑏 [𝑙𝑏 := 𝑖𝑛𝑖𝑡Δ𝜏
′], 𝜖𝑏 [𝑥 ↦→ 𝑙𝑏], 𝑐𝑜𝑛𝑡⟩

then there exists Ξ′
𝑎 , Ξ′

𝑏
such that

a. Γ,Δ ⊢𝑝𝑐 ⟨𝜏, 𝜒⟩ 𝑥 ⊣ Γ′,Δ. This is already the hypothesis of the theorem.
b. Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ′, where 𝜇 ′𝑎 = 𝜇𝑎 [𝑙𝑎 := 𝑖𝑛𝑖𝑡Δ𝜏

′], 𝜇 ′
𝑏
= 𝜇𝑏 [𝑙𝑏 := 𝑖𝑛𝑖𝑡Δ𝜏

′], 𝜖 ′𝑎 = 𝜖𝑎 [𝑥 ↦→ 𝑙𝑎], 𝜖 ′𝑏 = 𝜖𝑏 [𝑥 ↦→
𝑙𝑏]. Also, Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ,

c. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

d. Ξ𝑎 ⊆ Ξ′
𝑎 , Ξ𝑏 ⊆ Ξ′

𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), dom(𝜖𝑎) ⊆ dom(𝜖 ′𝑎), and dom(𝜖𝑏) ⊆ dom(𝜖 ′

𝑏
).

e. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

With Ξ′
𝑎 = Ξ𝑎 ∪ {𝑙𝑎 ↦→ ⟨𝜏 ′, 𝜒⟩}, Ξ′

𝑏
= Ξ𝑏 ∪ {𝑙𝑏 ↦→ ⟨𝜏 ′, 𝜒⟩} the equation in Item 1d is evident. To show Item 1b, we need

to show the following:
Ξ′
𝑎,Δ |= ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ : Γ′ (2)

Ξ′
𝑏
,Δ |= ⟨𝜇 ′

𝑏
, 𝜖 ′

𝑏
⟩ : Γ′ (3)

dom(𝜖 ′𝑎) = dom(𝜖 ′
𝑏
) (4)

For any 𝑥 ∈ dom(𝜖 ′𝑎) = dom(𝜖 ′
𝑏
) we have Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ni(𝜇 ′𝑎 (𝜖 ′𝑎 (𝑥)) , 𝜇 ′𝑏 (𝜖

′
𝑏
(𝑥))) : Γ′(𝑥) (5)

For all 𝑥 in dom(𝜖 ′𝑎) = dom(𝜖 ′
𝑏
) and some Γ𝑓 𝑛 ⊆ Γ and any 𝑝𝑐 , if Γ′,Δ ⊢𝑝𝑐 𝑥 : 𝜏𝑓 𝑛 , 𝜇 ′𝑎 (𝜖 ′𝑎 (𝑥)) = 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑎 , ...), 𝜇 ′𝑏 (𝜖

′
𝑏
(𝑥)) =

𝑐𝑙𝑜𝑠 (𝜖𝑐𝑏 , ...), Ξ′
𝑎 |= 𝜖𝑐𝑎 : Γ𝑓 𝑛 , and Ξ′

𝑏
|= 𝜖𝑐𝑏 : Γ𝑓 𝑛 , then Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑐𝑎 ⟩ ⟨𝜇 ′𝑏, 𝜖𝑐𝑏 ⟩ : Γ𝑓 𝑛 .

For all 𝑥 in dom(𝜖 ′𝑎) = dom(𝜖 ′
𝑏
) and some Γ𝑡𝑏𝑙 ⊆ Γ′ and any 𝑝𝑐 , if Γ′,Δ ⊢𝑝𝑐 𝑥 : 𝜏𝑡𝑏𝑙 , 𝜇 ′𝑎 (𝜖 ′𝑎 (𝑥)) = 𝑡𝑎𝑏𝑙𝑒 𝑙𝑎 (𝜖𝑐𝑎 , ...),

𝜇 ′
𝑏
(𝜖 ′

𝑏
(𝑥)) = 𝑡𝑎𝑏𝑙𝑒 𝑙𝑏 (𝜖𝑐𝑏 , ...), Ξ′

𝑎 |= 𝜖𝑐𝑎 : Γ𝑡𝑏𝑙 , and Ξ′
𝑏
|= 𝜖𝑐𝑏 : Γ𝑡𝑏𝑙 , then Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑐𝑎 ⟩ ⟨𝜇 ′𝑏, 𝜖𝑐𝑏 ⟩ : Γ𝑡𝑏𝑙 .

Equation (4) is evident from the definitions of 𝜖 ′𝑎 , and 𝜖 ′𝑏 and the given fact that dom(𝜖𝑎) = dom(𝜖𝑏). First, we begin by
showing Equation (2). This requires us to in turn prove the following:
a. Ξ′

𝑎,Δ |= 𝜇 ′𝑎 . This is shown in Lemma E.3.
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b. Ξ′
𝑎 ⊢ 𝜖 ′𝑎 : Γ′. We are given Ξ𝑎 ⊢ 𝜖𝑎 : Γ. Using Lemma E.4, we can say that Ξ′

𝑎 ⊢ 𝜖𝑎 : Γ. Since Γ′ = Γ [𝑥 ↦→ ⟨𝜏 ′, 𝜒⟩],
𝜖 ′𝑎 = 𝜖𝑎 [𝑥 ↦→ 𝑙𝑎], Ξ′

𝑎 = Ξ𝑎 ∪ {𝑙𝑎 ↦→ ⟨𝜏 ′, 𝜒⟩}, by using the typing judgements for Ξ ⊢ 𝜖 : Γ, we can show that

Ξ′
𝑎 ⊢ 𝜖𝑎 : Γ Ξ′

𝑎 (𝑙𝑎) = ⟨𝜏 ′, 𝜒⟩
Ξ′
𝑎 ⊢ 𝜖𝑎 [𝑥 ↦→ 𝑙𝑎] : Γ [𝑥 ↦→ ⟨𝜏 ′, 𝜒⟩]

This gives us the proof for Ξ′
𝑎 ⊢ 𝜖 ′𝑎 : Γ′.

c. For all 𝑥 in dom(𝜖 ′𝑎) and some Γ𝑓 𝑛 ⊆ Γ′ and any 𝑝𝑐 , if Γ′,Δ ⊢𝑝𝑐 𝑥 : 𝜏𝑓 𝑛 , 𝜇 ′𝑎 (𝜖 ′𝑎 (𝑥)) = 𝑐𝑙𝑜𝑠 (𝜖𝑐 , ...), and Ξ′
𝑎 |= 𝜖𝑐 : Γ𝑓 𝑛 , then

dom(𝜖𝑐 ) ⊆ dom(𝜖 ′𝑎) and Ξ′
𝑎,Δ |= ⟨𝜇 ′𝑎, 𝜖𝑐⟩ : Γ𝑓 𝑛 . Here 𝜏𝑓 𝑛 is the function type. We elide the full view of the closures in

this definition. Observe that the function closure variables in dom(𝜖 ′𝑎) are variables that were also in dom(𝜖𝑎) and
are not shadowed by the new declaration 𝑥 . We already know for such closure variables that dom(𝜖𝑐 ) ⊆ dom(𝜖𝑎).
Therefore, we can conclude that dom(𝜖𝑐 ) ⊆ dom(𝜖 ′𝑎). Also, we know that Ξ𝑎,Δ |= ⟨𝜇𝑎, 𝜖𝑐⟩ : Γ𝑓 𝑛 . Using the proof in
Lemma E.5 we can conclude that Ξ′

𝑎,Δ |= ⟨𝜇 ′𝑎, 𝜖𝑐⟩ : Γ𝑓 𝑛 .
d. For all 𝑥 in dom(𝜖 ′𝑎) and some Γ𝑡𝑏𝑙 ⊆ Γ′ and any 𝑝𝑐 , if Γ′,Δ ⊢𝑝𝑐 𝑥 : 𝜏𝑡𝑏𝑙 , 𝜇 ′𝑎 (𝜖 ′𝑎 (𝑥)) = 𝑡𝑎𝑏𝑙𝑒 𝑙 (𝜖𝑐 , ...), and Ξ′

𝑎 |= 𝜖𝑐 : Γ𝑡𝑏𝑙 ,
then dom(𝜖𝑐 ) ⊆ dom(𝜖 ′𝑎) and Ξ′

𝑎,Δ |= ⟨𝜇 ′𝑎, 𝜖𝑐⟩ : Γ𝑡𝑏𝑙 . Here 𝜏𝑡𝑏𝑙 is the table type. Proof for this is similar to the function
closures case.

Proof of Equation (3) follows similarly.
To show Equation (5), we again use the fact that any 𝑦 ∈ dom(𝜖 ′𝑎) will be either in dom(𝜖𝑎) or be the new variable.
The new variable already satisfies Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ni(𝜇 ′𝑎 (𝜖 ′𝑎 (𝑥)) , 𝜇 ′𝑏 (𝜖

′
𝑏
(𝑥))) : Γ′(𝑥), since the value is 𝑖𝑛𝑖𝑡Δ𝜏 ′ which

is not a function closure. For the other case where 𝑦 ∈ dom(𝜖𝑎), we already know that for any 𝑦 ∈ dom(𝜖𝑎) =

dom(𝜖𝑏) we have Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni(𝜇𝑎 (𝜖𝑎 (𝑥)) , 𝜇𝑏 (𝜖𝑏 (𝑥))) : Γ(𝑥). This concludesΞ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni(𝜇 ′𝑎 (𝜖 ′𝑎 (𝑥)) , 𝜇 ′𝑏 (𝜖𝑏 ; (𝑥))) :

Γ′(𝑥) because for variables in 𝜖𝑎 not equal to this new variable the memory store remains unchanged.
The last requirement is to prove that for all 𝑥 in dom(𝜖 ′𝑎) = dom(𝜖 ′

𝑏
) and some Γ𝑓 𝑛 ⊆ Γ and any 𝑝𝑐 , if Γ′,Δ ⊢𝑝𝑐

𝑥 : 𝜏𝑓 𝑛 , 𝜇 ′𝑎 (𝜖 ′𝑎 (𝑥)) = 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑎 , ...), 𝜇 ′𝑏 (𝜖
′
𝑏
(𝑥)) = 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑏 , ...), Ξ′

𝑎 |= 𝜖𝑐𝑎 : Γ𝑓 𝑛 , and Ξ′
𝑏
|= 𝜖𝑐𝑏 : Γ𝑓 𝑛 , then Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙

⟨𝜇 ′𝑎, 𝜖𝑐𝑎 ⟩ ⟨𝜇 ′𝑏, 𝜖𝑐𝑏 ⟩ : Γ𝑓 𝑛 . This holds true becausewe already know that these closures satisfiedΞ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑐𝑎 ⟩ ⟨𝜇𝑏, 𝜖𝑐𝑏 ⟩ :
Γ𝑓 𝑛 and because the memory stores haven’t changed for any of the locations in dom(𝜇𝑎) or dom(𝜇𝑏), we can conclude
that Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑐𝑎 ⟩ ⟨𝜇 ′𝑏, 𝜖𝑐𝑏 ⟩ : Γ𝑓 𝑛 is also true. Similarly, we can show this for table closures as well.

This proves that Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ′, where 𝜇 ′𝑎 = 𝜇𝑎 [𝑙𝑎 := 𝑖𝑛𝑖𝑡Δ𝜏

′], 𝜇 ′
𝑏
= 𝜇𝑏 [𝑙𝑏 := 𝑖𝑛𝑖𝑡Δ𝜏

′], 𝜖 ′𝑎 = 𝜖𝑎 [𝑥 ↦→ 𝑙𝑎],
𝜖 ′
𝑏
= 𝜖𝑏 [𝑥 ↦→ 𝑙𝑏]. We also have Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ, which follows from the definition (using induction in a

similar manner as shown in Lemma E.5). Item 1c and Item 1e is satisfied because only the value of the new variable 𝑥 is
updated across 𝜇𝑎 and 𝜇 ′𝑎 and similarly 𝜇𝑏 and 𝜇 ′

𝑏
.

2. T-VarInit
Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩ Δ ⊢ 𝜏 ′⇝ 𝜏

Γ;Δ ⊢𝑝𝑐 ⟨𝜏 ′, 𝜒⟩ 𝑥 := 𝑒𝑥𝑝 ⊣ Γ [𝑥 : ⟨𝜏, 𝜒⟩];Δ
Given the above typing judgement holds for ⟨𝜏, 𝜒⟩ 𝑥 := 𝑒𝑥𝑝 declaration, we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 ,
𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 , 𝜖

′
𝑎 , 𝜖 ′𝑏 satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ (1)
if the declaration, ⟨𝜏, 𝜒⟩ 𝑥 := 𝑒𝑥𝑝 is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows,

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇𝑎1, 𝑣𝑎𝑙𝑎⟩ 𝑙𝑎 fresh
⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝜏 𝑥 ≔ 𝑒𝑥𝑝⟩ ⇓ ⟨Δ, 𝜇𝑎1 [𝑙𝑎 := 𝑣𝑎𝑙𝑎], 𝜖𝑎 [𝑥 ↦→ 𝑙𝑎], 𝑐𝑜𝑛𝑡⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑒𝑥𝑝⟩ ⇓ ⟨𝜇𝑏1, 𝑣𝑎𝑙𝑏⟩ 𝑙𝑏 fresh
⟨C,Δ, 𝜇𝑏, 𝜖𝑏, ⟨𝜏, 𝜒⟩ 𝑥 ≔ 𝑒𝑥𝑝⟩ ⇓ ⟨Δ, 𝜇𝑏1 [𝑙𝑏 := 𝑣𝑎𝑙𝑏], 𝜖𝑏 [𝑥 ↦→ 𝑙𝑏], 𝑐𝑜𝑛𝑡⟩

then there exists some Ξ′
𝑎 , Ξ′

𝑏
such that

a. Γ,Δ ⊢𝑝𝑐 ⟨𝜏, 𝜒⟩ 𝑥 ≔ 𝑒𝑥𝑝 ⊣ Γ′,Δ. This is already the hypothesis of the theorem.
b. Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ′, where 𝜇 ′𝑎 = 𝜇𝑎1 [𝑙𝑎 := 𝑣𝑎𝑙𝑎], 𝜇 ′𝑏 = 𝜇𝑏1 [𝑙𝑏 := 𝑣𝑎𝑙𝑏], 𝜖 ′𝑎 = 𝜖𝑎 [𝑥 ↦→ 𝑙𝑎], and 𝜖 ′𝑏 = 𝜖𝑏 [𝑥 ↦→

𝑙𝑏]. Also, Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ,

c. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

d. Ξ𝑎 ⊆ Ξ′
𝑎 , Ξ𝑏 ⊆ Ξ′

𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), dom(𝜖𝑎) ⊆ dom(𝜖 ′𝑎), and dom(𝜖𝑏) ⊆ dom(𝜖 ′

𝑏
).

e. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).
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We can show the last three requirements similar to the previous case. In this case, we additionally know using the
induction hypothesis of Theorem D.1 that 𝑒𝑥𝑝 evaluates to values that satisfy NI for values.

3. T-FuncDecl
Γ1 = Γ [𝑥𝑖 : ⟨𝜏 ′𝑖 , 𝜒𝑖⟩, return : ⟨𝜏 ′𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩] Γ1,Δ ⊢𝑝𝑐 𝑓 𝑛 𝑠𝑡𝑚𝑡 ⊣ Γ2,

Δ ⊢ 𝜏𝑖 ⇝ 𝜏 ′𝑖 for each 𝜏𝑖 Δ ⊢ 𝜏𝑟𝑒𝑡 ⇝ 𝜏 ′𝑟𝑒𝑡 Γ′ = Γ [𝑥 : ⟨𝑑 ⟨𝜏 ′
𝑖
, 𝜒𝑖⟩

𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏 ′𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩]
Γ,Δ ⊢𝑝𝑐 function ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩ 𝑥 (𝑑 𝑥𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩){𝑠𝑡𝑚𝑡} ⊣ Γ′,Δ

T-FuncDecl

Given the above typing judgement holds for function declaration, we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 ,
𝜇 ′
𝑏
, 𝜖 ′𝑎 , 𝜖 ′𝑏 , Δ satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ (1)
if the function declaration is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows,

𝑙𝑎 𝑓 𝑟𝑒𝑠ℎ 𝑣𝑎𝑙𝑎 = 𝑐𝑙𝑜𝑠 (𝜖𝑎, 𝑑 𝑥𝑖 : ⟨𝜏 ′𝑖 , 𝜒𝑖⟩, ⟨𝜏
′
𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, 𝑠𝑡𝑚𝑡)

⟨Δ, 𝜇𝑎, 𝜖𝑎, 𝜏𝑖⟩ ⇓𝜏 𝜏 ′𝑖 ⟨Δ, 𝜇𝑎, 𝜖𝑎, 𝜏𝑟𝑒𝑡 ⟩ ⇓𝜏 𝜏 ′𝑟𝑒𝑡
⟨C,Δ, 𝜇𝑎, 𝜖𝑎, function ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩ 𝑥 (𝑑 𝑥𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩){𝑑𝑒𝑐𝑙 𝑠𝑡𝑚𝑡}⟩ ⇓ ⟨Δ, 𝜇𝑎 [𝑙𝑎 ↦→ 𝑣𝑎𝑙𝑎], 𝜖𝑎 [𝑥 ↦→ 𝑙𝑎], 𝑐𝑜𝑛𝑡⟩

𝑙𝑏 𝑓 𝑟𝑒𝑠ℎ 𝑣𝑎𝑙𝑏 = 𝑐𝑙𝑜𝑠 (𝜖𝑏, 𝑑 𝑥𝑖 : ⟨𝜏 ′𝑖 , 𝜒𝑖⟩, ⟨𝜏
′
𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, 𝑠𝑡𝑚𝑡)

⟨Δ, 𝜇𝑎, 𝜖𝑎, 𝜏𝑖⟩ ⇓𝜏 𝜏 ′𝑖 ⟨Δ, 𝜇𝑎, 𝜖𝑎, 𝜏𝑟𝑒𝑡 ⟩ ⇓𝜏 𝜏 ′𝑟𝑒𝑡
⟨C,Δ, 𝜇𝑏, 𝜖𝑏, function ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩ 𝑥 (𝑑 𝑥𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩){𝑑𝑒𝑐𝑙 𝑠𝑡𝑚𝑡}⟩ ⇓ ⟨Δ, 𝜇𝑏 [𝑙𝑏 ↦→ 𝑣𝑎𝑙𝑏], 𝜖𝑏 [𝑥 ↦→ 𝑙𝑏], 𝑐𝑜𝑛𝑡⟩

then there exists some Ξ′
𝑎 , Ξ′

𝑏
such that:

a. Γ,Δ ⊢𝑝𝑐 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ⊣ Γ′,Δ. This is already the hypothesis of the theorem.
b. Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ′ and Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ, where 𝜇

′
𝑎 = 𝜇𝑎 [𝑙𝑎 ↦→ 𝑣𝑎𝑙𝑎], 𝜇 ′𝑏 = 𝜇𝑏 [𝑙𝑏 ↦→ 𝑣𝑎𝑙𝑏],

𝜖 ′𝑎 = 𝜖𝑎 [𝑥 ↦→ 𝑙𝑎] and 𝜖 ′𝑏 = 𝜖𝑏 [𝑥 ↦→ 𝑙𝑏].
c. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any

𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′
𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

d. Ξ𝑎 ⊆ Ξ′
𝑎 , Ξ𝑏 ⊆ Ξ′

𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), dom(𝜖𝑎) ⊆ dom(𝜖 ′𝑎), and dom(𝜖𝑏) ⊆ dom(𝜖 ′

𝑏
), Δ ⊆ Δ1.

e. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

WithΞ′
𝑎 = Ξ𝑎∪{𝑙𝑎 ↦→ 𝜏𝑓 𝑛},Ξ′

𝑏
= Ξ𝑏∪{𝑙𝑏 ↦→ 𝜏𝑓 𝑛}, 𝜇 ′𝑎 = 𝜇𝑎∪{𝑙𝑎 ↦→ 𝑣𝑎𝑙𝑎}, 𝜇 ′𝑏 = 𝜇𝑏∪{𝑙𝑏 ↦→ 𝑣𝑎𝑙𝑏}, dom(𝜖 ′𝑎) = dom(𝜖𝑎)∪{𝑥}

dom(𝜖 ′
𝑏
) = dom(𝜖𝑏) ∪ {𝑥} the equation in Item 1d is evident.

To prove Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ, we need to show the following:

Ξ′
𝑎,Δ |= ⟨𝜇 ′𝑎, 𝜖𝑎⟩ : Γ (2)

Ξ′
𝑏
,Δ |= ⟨𝜇 ′

𝑏
, 𝜖𝑏⟩ : Γ (3)

dom(𝜖𝑎) = dom(𝜖𝑏) (4)
For any 𝑥 ∈ dom(𝜖𝑎) = dom(𝜖𝑏) we have Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ni(𝜇 ′𝑎 (𝜖𝑎 (𝑥)) , 𝜇 ′𝑏 (𝜖𝑏 (𝑥))) : Γ(𝑥) (5)

and for all 𝑥 in dom(𝜖𝑎) = dom(𝜖𝑏) and some Γ𝑓 𝑛 ⊆ Γ and any 𝑝𝑐 , if Γ,Δ ⊢𝑝𝑐 𝑥 : 𝜏𝑓 𝑛 , 𝜇 ′𝑎 (𝜖𝑎 (𝑥)) = 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑎 , ...),
𝜇 ′
𝑏
(𝜖𝑏 (𝑥)) = 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑏 , ...), Ξ′

𝑎 |= 𝜖𝑐𝑎 : Γ𝑓 𝑛 , and Ξ′
𝑏
|= 𝜖𝑐𝑏 : Γ𝑓 𝑛 , then Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑐𝑎 ⟩ ⟨𝜇 ′𝑏, 𝜖𝑐𝑏 ⟩ : Γ𝑓 𝑛 .

First, we begin by showing Equation (2). This requires us to in turn prove the following:
a. Ξ′

𝑎,Δ |= 𝜇 ′𝑎 . This is shown in Lemma E.3.
b. Ξ′

𝑎 ⊢ 𝜖𝑎 : Γ. This follows from Ξ𝑎 ⊢ 𝜖𝑎 : Γ and weakening of store typing context.
c. Next, we need to show that any closure value has dom(𝜖𝑐𝑙𝑜𝑠 ) ⊆ dom(𝜖) (already known from Equation (1)) and Ξ′

𝑎,Δ |=
⟨𝜇 ′𝑎, 𝜖𝑐𝑙𝑜𝑠⟩ : Γ𝑐𝑙𝑜𝑠 , where 𝜖𝑐𝑙𝑜𝑠 is the environment bound to the closure. We already know that Ξ𝑎,Δ |= ⟨𝜇𝑎, 𝜖𝑐𝑙𝑜𝑠⟩ : Γ𝑐𝑙𝑜𝑠 .
Using Lemma E.5, we have Ξ′

𝑎,Δ |= ⟨𝜇 ′𝑎, 𝜖𝑐𝑙𝑜𝑠⟩ : Γ𝑐𝑙𝑜𝑠 .
Similarly, we can prove Equation (3). Since value of no location besides the fresh 𝑙𝑎 and 𝑙𝑏 changes between 𝜇𝑎 and 𝜇 ′𝑎
and 𝜇𝑏 and 𝜇 ′

𝑏
, we can show Equation (5) and the one following it using the results from Equation (1). All the variables

referenced by closures that were declared until 𝜖𝑎 or 𝜖𝑏 have unchanged values.
To prove Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ, we need to show the following:

Ξ′
𝑎,Δ |= ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ : Γ′ (6)

Ξ′
𝑏
,Δ |= ⟨𝜇 ′

𝑏
, 𝜖 ′

𝑏
⟩ : Γ′ (7)

dom(𝜖 ′𝑎) = dom(𝜖 ′
𝑏
) (8)
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For any 𝑥 ∈ dom(𝜖 ′𝑎) = dom(𝜖 ′
𝑏
) we have Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ni(𝜇 ′𝑎 (𝜖 ′𝑎 (𝑥)) , 𝜇 ′𝑏 (𝜖

′
𝑏
(𝑥))) : Γ′(𝑥) (9)

and for all 𝑥 in dom(𝜖 ′𝑎) = dom(𝜖 ′
𝑏
) and some Γ𝑓 𝑛 ⊆ Γ and any 𝑝𝑐 , if Γ′,Δ ⊢𝑝𝑐 𝑥 : 𝜏𝑓 𝑛 , 𝜇 ′𝑎 (𝜖 ′𝑎 (𝑥)) = 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑎 , ...),

𝜇 ′
𝑏
(𝜖 ′

𝑏
(𝑥)) = 𝑐𝑙𝑜𝑠 (𝜖𝑐𝑏 , ...), Ξ′

𝑎 |= 𝜖𝑐𝑎 : Γ𝑓 𝑛 , and Ξ′
𝑏
|= 𝜖𝑐𝑏 : Γ𝑓 𝑛 , then Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑐𝑎 ⟩ ⟨𝜇 ′𝑏, 𝜖𝑐𝑏 ⟩ : Γ𝑓 𝑛 .

First, we begin by showing Equation (6). This requires us to in turn prove the following:
a. Ξ′

𝑎,Δ |= 𝜇 ′𝑎 . This is shown in Lemma E.3.
b. Ξ′

𝑎 ⊢ 𝜖 ′𝑎 : Γ′. Since we are given Ξ𝑎 ⊢ 𝜖𝑎 : Γ, by using Lemma E.4, we can say that Ξ′
𝑎 ⊢ 𝜖𝑎 : Γ. Since Γ′ = Γ [𝑥 ↦→

⟨𝑑 ⟨𝜏𝑖 , 𝜒𝑖⟩
𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩], 𝜖 ′𝑎 = 𝜖𝑎 [𝑥 ↦→ 𝑙𝑎], Ξ′

𝑎 = Ξ𝑎 ∪ {𝑙𝑎 ↦→ ⟨𝜏, 𝑝𝑐⟩}, by using the rules for Ξ ⊢ 𝜖 : Γ, we can
show that Ξ′

𝑎 ⊢ 𝜖 ′𝑎 : Γ′.

Ξ′
𝑎 ⊢ 𝜖𝑎 : Γ Ξ′

𝑎 (𝑙𝑎) = ⟨𝑑 ⟨𝜏𝑖 , 𝜒𝑖⟩
𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩

Ξ′
𝑎 ⊢ 𝜖𝑎 [𝑥 ↦→ 𝑙𝑎] : Γ [𝑥 ↦→ ⟨𝑑 ⟨𝜏𝑖 , 𝜒𝑖⟩

𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩]
c. Next, we need to show that any closure value has dom(𝜖𝑐𝑙𝑜𝑠 ) ⊆ dom(𝜖 ′) and Ξ′

𝑎,Δ |= ⟨𝜇 ′𝑎, 𝜖𝑐𝑙𝑜𝑠⟩ : Γ𝑐𝑙𝑜𝑠 , where 𝜖𝑐𝑙𝑜𝑠 is
the environment bound to the closure. Since 𝜖 ′𝑎 = 𝜖𝑎 [𝑥 ↦→ 𝑙𝑎], where Γ′,Δ ⊢𝑝𝑐 𝑥 : 𝜏𝑓 𝑛 , we need to show the above
property for 𝑦 ∈ dom(𝜖𝑎) that is not equal to 𝑥 and the new closure variable 𝑥 . Since

for any 𝑦 ∈ dom(Γ) such that 𝑦 ≠ 𝑥,we have Γ′(𝑦) = Γ(𝑦)

for any 𝑦 ∈ dom(𝜖𝑎) such that 𝑦 ≠ 𝑥,we have 𝜖 ′𝑎 (𝑦) = 𝜖𝑎 (𝑦)
and from Equation (1), we already know that for all Γ,Δ ⊢𝑝𝑐 𝑦 : 𝜏𝑐𝑙𝑜𝑠 ∈ dom(𝜖𝑎) such that𝑦 ≠ 𝑥 and 𝜇 ′𝑎 (𝜖 ′𝑎 (𝑦)) = 𝑣𝑎𝑙𝑐𝑙𝑜𝑠 ,
we have dom(𝜖𝑐 ) ⊆ dom(𝜖𝑎), Ξ𝑎,Δ |= ⟨𝜇𝑎, 𝜖𝑐⟩ : Γ𝑐𝑙𝑜𝑠 and Ξ𝑏,Δ |= ⟨𝜇𝑏, 𝜖𝑐⟩ : Γ𝑐𝑙𝑜𝑠 . Using Lemma E.5, we can conclude
that Ξ′

𝑎,Δ |= ⟨𝜇 ′𝑎, 𝜖𝑐⟩ : Γ𝑐𝑙𝑜𝑠 and Ξ′
𝑏
,Δ |= ⟨𝜇 ′

𝑏
, 𝜖𝑐⟩ : Γ𝑐𝑙𝑜𝑠 .

Since 𝜇 ′𝑎 (𝜖 ′𝑎 (𝑥)) = 𝑐𝑙𝑜𝑠 (𝜖𝑎, 𝑑 𝑥𝑖 : ⟨𝜏 ′𝑖 , 𝜒𝑖⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, 𝑠𝑡𝑚𝑡), dom(𝜖𝑎) ⊆ dom(𝜖 ′𝑎), and Ξ′
𝑎,Δ |= ⟨𝜇 ′𝑎, 𝜖𝑎⟩ : Γ we can

conclude that for all closure values, we have dom(𝜖𝑐 ) ⊆ dom(𝜖 ′𝑎), Ξ′
𝑎,Δ |= ⟨𝜇 ′𝑎, 𝜖𝑐⟩ : Γ𝑐𝑙𝑜𝑠 and Ξ′

𝑏
,Δ |= ⟨𝜇 ′

𝑏
, 𝜖𝑐⟩ : Γ𝑐𝑙𝑜𝑠 .

This proves Equation (6). Proof of Equation (7) follows similarly.
To show Equation (9), we again use the fact that any 𝑦 ∈ dom(𝜖 ′𝑎) will be either in dom(𝜖𝑎) or be the function name, 𝑥 .
For the case where 𝑦 ≠ 𝑥 ∈ dom(𝜖𝑎), we already know that Ξ𝑎,Ξ𝑏,Δ |=𝑙 ni(𝜇𝑎 (𝜖𝑎 (𝑥)) , 𝜇𝑏 (𝜖𝑏 (𝑥))) : Γ(𝑥). This implies
that for any 𝑦 ≠ 𝑥 ∈ dom(𝜖𝑎) = dom(𝜖𝑏), we have Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ni(𝜇 ′𝑎 (𝜖 ′𝑎 (𝑥)) , 𝜇 ′𝑏 (𝜖

′
𝑏
(𝑥))) : Γ′(𝑥), since such 𝑦 satisfies

𝜇 ′𝑎 (𝜖 ′𝑎 (𝑥)) = 𝜇𝑎 (𝜖𝑎 (𝑥)), 𝜇 ′𝑏 (𝜖
′
𝑏
(𝑥)) = 𝜇𝑏 (𝜖𝑏 (𝑥)), Γ(𝑥) = Γ′(𝑥) and Ξ′

𝑎 (𝑥) = Ξ𝑎 (𝑥), and Ξ′
𝑏
(𝑥) = Ξ𝑏 (𝑥).

For the case when 𝑦 = 𝑥 , we need to show the following , where 𝜏𝑓 𝑛 = ⟨𝑑 ⟨𝜏𝑖 , 𝜒𝑖⟩
𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩.

Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni(𝑐𝑙𝑜𝑠 (𝜖𝑎, 𝑑 𝑥𝑖 : ⟨𝜏 ′𝑖 , 𝜒𝑖⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, 𝑠𝑡𝑚𝑡) , 𝑐𝑙𝑜𝑠 (𝜖𝑏, 𝑑 𝑥𝑖 : ⟨𝜏 ′𝑖 , 𝜒𝑖⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, 𝑠𝑡𝑚𝑡)) : 𝜏𝑓 𝑛 (10)

To show this, we need to first prove thatΞ′
𝑎,Δ ⊢ 𝑐𝑙𝑜𝑠 (𝜖𝑎, 𝑑 𝑥𝑖 : ⟨𝜏 ′𝑖 , 𝜒𝑖⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, 𝑑𝑒𝑐𝑙 𝑠𝑡𝑚𝑡) : ⟨𝑑 ⟨𝜏𝑖 , 𝜒𝑖⟩

𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩.
For this we need to look at the value typing rule for function closures.

TV-Clos
Ξ ⊢ 𝜖 : Γ Γ [𝑥 : ⟨𝜏, 𝜒⟩, return = ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩],Δ ⊢𝑝𝑐 𝑓 𝑛 𝑠𝑡𝑚𝑡 ⊣ Γ′

Ξ,Δ ⊢ 𝑐𝑙𝑜𝑠 (𝜖, 𝑑 𝑥 : ⟨𝜏, 𝜒⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, 𝑑𝑒𝑐𝑙 𝑠𝑡𝑚𝑡) : ⟨⟨𝑑 𝜏, 𝜒⟩
𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩

These premises are:
a. We need to show Ξ′

𝑎 ⊢ 𝜖𝑎 : Γ. We already know from Equation (1) that Ξ𝑎 ⊢ 𝜖𝑎 : Γ. Using Lemma E.4, we can conclude
Ξ′
𝑎 ⊢ 𝜖𝑎 : Γ.

b. We need to show Γ[𝑥𝑖 : ⟨𝜏𝑖 , 𝜒𝑖⟩, 𝑟𝑒𝑡𝑢𝑟𝑛 : ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩],Δ ⊢𝑝𝑐 𝑓 𝑛 𝑠𝑡𝑚𝑡 ⊣ Γ1,
This is satisfied as a part of the premise in the typing rule for function declaration. This concludes

Ξ′
𝑎,Δ ⊢ 𝑐𝑙𝑜𝑠 (𝜖𝑎, 𝑑 𝑥𝑖 : ⟨𝜏 ′𝑖 , 𝜒𝑖⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, 𝑠𝑡𝑚𝑡) : ⟨𝑑 ⟨𝜏𝑖 , 𝜒𝑖⟩

𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩

Ξ′
𝑏
,Δ ⊢ 𝑐𝑙𝑜𝑠 (𝜖𝑏, 𝑑 𝑥𝑖 : ⟨𝜏 ′𝑖 , 𝜒𝑖⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, 𝑠𝑡𝑚𝑡) : ⟨𝑑 ⟨𝜏𝑖 , 𝜒𝑖⟩

𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩
Next, we show that for Γ, the following properties hold:
a. Ξ′

𝑎 ⊢ 𝜖𝑎 : Γ, Ξ′
𝑏
⊢ 𝜖𝑏 : Γ. Already shown above.

b. Γ,Δ ⊢𝑝𝑐 𝑐𝑙𝑜𝑠 (𝜖𝑎, 𝑑 𝑥𝑖 : ⟨𝜏 ′𝑖 , 𝜒𝑖⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, 𝑠𝑡𝑚𝑡) : ⟨𝑑 ⟨𝜏𝑖 , 𝜒𝑖⟩
𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩. We already know this by the typing

derivation. Similarly, Γ,Δ ⊢𝑝𝑐 𝑐𝑙𝑜𝑠 (𝜖𝑏, 𝑑 𝑥𝑖 : ⟨𝜏 ′𝑖 , 𝜒𝑖⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, 𝑠𝑡𝑚𝑡) : ⟨𝑑 ⟨𝜏𝑖 , 𝜒𝑖⟩
𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩.

c. Γ [𝑥 : ⟨𝜏, 𝜒⟩, 𝑟𝑒𝑡𝑢𝑟𝑛 : ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩],Δ ⊢𝑝𝑐 𝑓 𝑛 𝑠𝑡𝑚𝑡 ⊣ Γ′
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d. Also, we have 𝑣𝑎𝑙𝑎 =𝑐𝑙𝑜𝑠 𝑣𝑎𝑙𝑏 .
We also need to show that for all 𝑦 ∈ dom(𝜖 ′𝑎) = dom(𝜖 ′

𝑏
) and some Γ𝑐𝑙𝑜𝑠 ⊆ Γ′ and any 𝑝𝑐 , if Γ′,Δ ⊢𝑝𝑐 𝑦 : 𝜏𝑐𝑙𝑜𝑠 ,

𝜇 ′𝑎 (𝜖 ′𝑎 (𝑥)) = 𝑣𝑎𝑙𝑐𝑙𝑜𝑠 with environment 𝜖𝑐𝑎 , 𝜇 ′𝑏 (𝜖
′
𝑏
(𝑦)) = 𝑣𝑎𝑙𝑐𝑙𝑜𝑠 with environment 𝜖𝑐𝑏 , Ξ′

𝑎 |= 𝜖𝑐𝑎 : Γ𝑐𝑙𝑜𝑠 , and Ξ′
𝑏
|= 𝜖𝑐𝑏 : Γ𝑐𝑙𝑜𝑠

, then Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑐𝑎 ⟩ ⟨𝜇 ′

𝑏
, 𝜖𝑐𝑏 ⟩ : Γ𝑐𝑙𝑜𝑠 . For 𝑦 ≠ 𝑥 , we know that a closure value would satisfy Ξ𝑎,Ξ𝑏,Δ |=𝑙

⟨𝜇𝑎, 𝜖𝑐𝑎 ⟩ ⟨𝜇𝑏, 𝜖𝑐𝑏 ⟩ : Γ𝑐𝑙𝑜𝑠 . Since value of no variable referenced by any of the closure defined until 𝜖𝑎 is updated between
𝜇 ′𝑎 and 𝜇 ′

𝑏
, we can say that Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑐𝑎 ⟩ ⟨𝜇 ′𝑏, 𝜖𝑐𝑏 ⟩ : Γ𝑐𝑙𝑜𝑠 . By weakening the store typing context, we can also say

Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑐𝑎 ⟩ ⟨𝜇 ′𝑏, 𝜖𝑐𝑏 ⟩ : Γ𝑐𝑙𝑜𝑠 . For the new closure variable 𝑥 , we already have Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ.

This finally proves Item 3b. Item 3e is satisfied because only the value of the location pointed by the function name, 𝑥 is
updated in the memory store. Item 3c is trivial since no location besides the fresh 𝑙𝑎 and 𝑙𝑏 are updated.

4. T-TblDecl

Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑘 : ⟨𝜏𝑘 , 𝜒𝑘⟩ Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑥𝑘 : ⟨𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑,⊥⟩
Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑎𝑐𝑡𝑎 𝑗

: ⟨𝑑 ⟨𝜏𝑎 𝑗𝑖
, 𝜒𝑎 𝑗𝑖

⟩ ; ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩
𝑝𝑐 𝑓 𝑛𝑗−−−−→ ⟨𝑢𝑛𝑖𝑡,⊥⟩,⊥⟩, for all 𝑗

Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑎 𝑗𝑖
: ⟨𝜏𝑎 𝑗𝑖

, 𝜒𝑎 𝑗𝑖
⟩𝑔𝑜𝑒𝑠 𝑑

𝜒𝑘 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗
for all 𝑗, 𝑘 𝑝𝑐𝑎 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗

, for all 𝑗 𝜒𝑘 ⊑ 𝑝𝑐𝑡𝑏𝑙 for all 𝑘 𝑝𝑐𝑡𝑏𝑙 ⊑ 𝑝𝑐𝑎

Γ,Δ ⊢𝑝𝑐 table 𝑥 {𝑒𝑥𝑝𝑘 : 𝑥𝑘 𝑎𝑐𝑡𝑎 𝑗
(𝑒𝑥𝑝𝑎 𝑗𝑖

)} ⊣ Γ [𝑥 : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩],Δ
T-TblDecl

Given the above typing judgement holds for table declaration, we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 , 𝜇 ′𝑎 , 𝜇 ′𝑏 ,
𝜖 ′𝑎 , 𝜖 ′𝑏 satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ (1)

if the table declaration is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩ as follows,

𝑙𝑎 𝑓 𝑟𝑒𝑠ℎ 𝑣𝑎𝑙𝑎 = 𝑡𝑎𝑏𝑙𝑒 𝑙𝑎 (𝜖𝑎, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗
(𝑒𝑥𝑝𝑎 𝑗𝑖

, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩))

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, table 𝑥 {𝑒𝑥𝑝𝑘 : 𝑥𝑘 𝑎𝑐𝑡𝑎 𝑗
(𝑒𝑥𝑝𝑎 𝑗𝑖

)}⟩ ⇓ ⟨Δ, 𝜇𝑎 [𝑙𝑎 ↦→ 𝑣𝑎𝑙𝑎], 𝜖𝑎 [𝑥 ↦→ 𝑙𝑎], 𝑐𝑜𝑛𝑡⟩

𝑙𝑏 𝑓 𝑟𝑒𝑠ℎ 𝑣𝑎𝑙𝑏 = 𝑡𝑎𝑏𝑙𝑒 𝑙𝑏 (𝜖𝑏, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗
(𝑒𝑥𝑝𝑎 𝑗𝑖

, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩))

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, table 𝑥 {𝑒𝑥𝑝𝑘 : 𝑥𝑘 𝑎𝑐𝑡𝑎 𝑗
(𝑒𝑥𝑝𝑎 𝑗𝑖

)}⟩ ⇓ ⟨Δ, 𝜇𝑏 [𝑙𝑏 ↦→ 𝑣𝑎𝑙𝑏], 𝜖𝑏 [𝑥 ↦→ 𝑙𝑏], 𝑐𝑜𝑛𝑡⟩

then there exists some Ξ′
𝑎 , Ξ′

𝑏
such that

a. Γ,Δ ⊢𝑝𝑐 𝑡𝑎𝑏𝑙𝑒 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ⊣ Γ′,Δ. This is already the hypothesis of the theorem.
b. Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ′ and Ξ′

𝑎,Ξ
′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ, where 𝜇

′
𝑎 = 𝜇𝑎 [𝑙𝑎 ↦→ 𝑣𝑎𝑙𝑎], 𝜇 ′𝑏 = 𝜇𝑏 [𝑙𝑏 ↦→ 𝑣𝑎𝑙𝑏],

𝜖 ′𝑎 = 𝜖𝑎 [𝑥 ↦→ 𝑙𝑎] and 𝜖 ′𝑏 = 𝜖𝑏 [𝑥 ↦→ 𝑙𝑏], Γ′ = Γ [𝑥 ↦→ ⟨table(𝑝𝑐𝑡𝑏𝑙 ),⊥⟩].
c. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any

𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′
𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏),

d. Ξ𝑎 ⊆ Ξ′
𝑎 , Ξ𝑏 ⊆ Ξ′

𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), dom(𝜖𝑎) ⊆ dom(𝜖 ′𝑎), and dom(𝜖𝑏) ⊆ dom(𝜖 ′

𝑏
).

e. For any 𝑙𝑎 ∈ dom(𝜇𝑎) and 𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎) and 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

With 𝜇 ′𝑎 = 𝜇𝑎 [𝑙𝑎 ↦→ 𝑣𝑎𝑙𝑎], 𝜖 ′𝑎 = 𝜖𝑎 [𝑥 ↦→ 𝑙𝑎], dom(𝜖 ′𝑎) = dom(𝜖𝑎) ∪ {𝑥}, 𝜇 ′
𝑏
= 𝜇𝑏 [𝑙𝑏 ↦→ 𝑣𝑎𝑙𝑏], 𝜖 ′𝑏 = 𝜖𝑏 [𝑥 ↦→ 𝑙𝑏],

dom(𝜖 ′
𝑏
) = dom(𝜖𝑏) ∪ {𝑥}, Ξ′

𝑎 = Ξ𝑎 [𝑙𝑎 ↦→ ⟨𝑡𝑒𝑥𝑡𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩], and Ξ′
𝑏
= Ξ𝑏 [𝑙𝑏 ↦→ ⟨table(𝑝𝑐𝑡𝑏𝑙 ),⊥⟩] Item 4d is

evident.
Proof of Item 4b follows similar to the function declaration case. The interesting bit is to show that the freshly added
table name 𝑥 satisfies the following property. For the case when 𝑦 = 𝑥 , we need to show that

Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ni(𝑡𝑎𝑏𝑙𝑒 𝑙𝑎 (𝜖𝑎, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗

(𝑒𝑥𝑝𝑎 𝑗𝑖
, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩)) , 𝑡𝑎𝑏𝑙𝑒 𝑙𝑏 (𝜖𝑎, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗

(𝑒𝑥𝑝𝑎 𝑗𝑖
, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩))) : 𝜏𝑡𝑏𝑙

where 𝜏𝑡𝑏𝑙 = ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩. For this, we need to first show that

Ξ′
𝑎,Δ ⊢ 𝑡𝑎𝑏𝑙𝑒 𝑙𝑎 (𝜖𝑎, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗

(𝑒𝑥𝑝𝑎 𝑗𝑖
, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩)) : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩

Ξ′
𝑏
,Δ ⊢ 𝑡𝑎𝑏𝑙𝑒 𝑙𝑏 (𝜖𝑏, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗

(𝑒𝑥𝑝𝑎 𝑗𝑖
, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩)) : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩
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To show this, we need to prove that the premises of the following value typing rule are satisfied,
TV-Tbl

Ξ ⊢ 𝜖 : Γ Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑘 : ⟨𝜏𝑘 , 𝜒𝑘⟩ Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑥𝑘 : ⟨𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑,⊥⟩
Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑎𝑐𝑡𝑎 𝑗

: ⟨𝑑 ⟨𝜏𝑎 𝑗𝑖
, 𝜒𝑎 𝑗𝑖

⟩ ; ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩
𝑝𝑐 𝑓 𝑛𝑗−−−−→ ⟨𝑢𝑛𝑖𝑡,⊥⟩,⊥⟩, for all 𝑗

Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑎 𝑗𝑖
: ⟨𝜏𝑎 𝑗𝑖

, 𝜒𝑎 𝑗𝑖
⟩𝑔𝑜𝑒𝑠 𝑑

𝜒𝑘 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗
for all 𝑗, 𝑘 𝑝𝑐𝑎 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗

, for all 𝑗 𝜒𝑘 ⊑ 𝑝𝑐𝑡𝑏𝑙 for all 𝑘 𝑝𝑐𝑡𝑏𝑙 ⊑ 𝑝𝑐𝑎

Ξ,Δ ⊢ table 𝑙 {𝜖, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 𝑎𝑐𝑡𝑎 𝑗
(𝑒𝑥𝑝𝑎 𝑗𝑖

)} : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩
a. We need to show Ξ′

𝑎,Δ ⊢ 𝜖𝑎 : Γ. We already know from Equation (1) that Ξ𝑎 ⊢ 𝜖𝑎 : Γ. Using Lemma E.4, we can
conclude Ξ′

𝑎 ⊢ 𝜖𝑎 : Γ.
b. We need to show Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑘 : ⟨𝜏𝑘 , 𝜒𝑘⟩
c. We need to show Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑥𝑘 : ⟨𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑,⊥⟩

d. We need to show Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑎𝑐𝑡𝑎 𝑗
: ⟨𝑑 ⟨𝜏𝑎 𝑗𝑖

, 𝜒𝑎 𝑗𝑖
⟩ ; ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩

𝑝𝑐 𝑓 𝑛𝑗−−−−→ ⟨𝑢𝑛𝑖𝑡,⊥⟩,⊥⟩
e. We need to show Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑎 𝑗𝑖

: ⟨𝜏𝑎 𝑗𝑖
, 𝜒𝑎 𝑗𝑖

⟩ 𝑔𝑜𝑒𝑠 𝑑
The last four properties are satisfied as a part of the premise for the typing rule for table declaration. This concludes:

Ξ′
𝑎,Δ ⊢ 𝑡𝑎𝑏𝑙𝑒 𝑙𝑎 (𝜖𝑎, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗

(𝑒𝑥𝑝𝑎 𝑗𝑖
, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩)) : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩

Ξ′
𝑏
,Δ ⊢ 𝑡𝑎𝑏𝑙𝑒 𝑙𝑏 (𝜖𝑎, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗

(𝑒𝑥𝑝𝑎 𝑗𝑖
, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩)) : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩

Next we show that for Γ the following properties hold (by expanding the definition of NI for table closures)
a. Ξ′

𝑎 ⊢ 𝜖𝑎 : Γ, Ξ′
𝑏
⊢ 𝜖𝑏 : Γ. Already shown.

b. Γ,Δ ⊢𝑝𝑐 𝑡𝑎𝑏𝑙𝑒 𝑙𝑎 (𝜖𝑎, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗
(𝑒𝑥𝑝𝑎 𝑗𝑖

, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩)) : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩. We already know this by the typing

derivation. Similarly, Γ,Δ ⊢𝑝𝑐 𝑡𝑎𝑏𝑙𝑒 𝑙𝑏 (𝜖𝑎, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 , 𝑎𝑐𝑡𝑎 𝑗
(𝑒𝑥𝑝𝑎 𝑗𝑖

, 𝑦𝑐 𝑗𝑖 : ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩)) : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩.
c. Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑥𝑘 : ⟨𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑,⊥⟩ for each 𝑥𝑘 ∈ 𝑥𝑘 .
d. Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑘 : ⟨𝜏𝑘 , 𝜒𝑘⟩. for each 𝑒𝑥𝑝𝑘 ∈ 𝑒𝑥𝑝𝑘 .

e. Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑎𝑐𝑡𝑎𝑗 : ⟨𝑑 ⟨𝜏𝑎 𝑗𝑖
, 𝜒𝑎 𝑗𝑖

⟩ ; ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩
𝑝𝑐 𝑓 𝑛𝑗−−−−→ ⟨𝑢𝑛𝑖𝑡,⊥⟩,⊥⟩ for each 𝑎𝑐𝑡𝑎 𝑗

∈ 𝑎𝑐𝑡𝑎 𝑗
.

f. Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑎 𝑗𝑖
: ⟨𝜏𝑎 𝑗𝑖

, 𝜒𝑎 𝑗𝑖
⟩ 𝑔𝑜𝑒𝑠 𝑑 for each 𝑒𝑥𝑝𝑎 𝑗𝑖

∈ 𝑒𝑥𝑝𝑎 𝑗𝑖
.

g. 𝑣𝑎𝑙𝑎 =𝑡𝑏𝑙 𝑣𝑎𝑙𝑏 .
h. 𝜒𝑘 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗

, for all 𝑗, 𝑘
i. 𝑝𝑐𝑎 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗

, for all 𝑗
j. 𝜒𝑘 ⊑ 𝑝𝑐𝑡𝑏𝑙 for all 𝑘
k. 𝑝𝑐𝑡𝑏𝑙 ⊑ 𝑝𝑐𝑎
These properties are can be shown using the premise in the typing derivation.

5. T-Typedef

Γ,Δ ⊢𝑝𝑐 typedef 𝜏 𝑋 ⊣ Γ,Δ[𝑋 = 𝜏]
T-Typedef

⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ; typedef 𝜏 𝑋 ⟩ ⇓ ⟨Δ[𝑋 = 𝜏], 𝜇𝑎, 𝜖𝑎, 𝑐𝑜𝑛𝑡⟩
The proof of this case is trivial. The only interesting part is to show that Ξ′

𝑎,Ξ
′
𝑏
,Δ[𝑋 = 𝜏] |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ. We

already know that Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ. By definition of this judgement for a pair of consistent state, we can
observe that we can prove this for the extended Δ as it is a case of weakening the context.

6. T-MatchKind

Γ,Δ ⊢𝑝𝑐 𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑{𝑓 } ⊣ Γ,Δ[𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑 =𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑{𝑓 }]
T-MemHdr

Evaluation rule is

⟨C,Δ; 𝜇𝑎 ; 𝜖𝑎 ;𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑{𝑓 }⟩ ⇓ ⟨Δ[𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑 =𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑{𝑓 }], 𝜇𝑎, 𝜖𝑎, 𝑐𝑜𝑛𝑡⟩
Eval 1

The proof is similar to the typedef case.
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7. T-Seq-2

Γ,Δ ⊢𝑝𝑐 𝑑𝑒𝑐𝑙 ⊣ Γ1,Δ1 Γ1,Δ1 ⊢𝑝𝑐 𝑠𝑡𝑚𝑡 ⊣ Γ2

Γ,Δ ⊢𝑝𝑐 𝑑𝑒𝑐𝑙 𝑠𝑡𝑚𝑡 ⊣ Γ2,Δ1
T-Seq

⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑑𝑒𝑐𝑙⟩ ⇓ ⟨Δ1, 𝜇𝑎1, 𝜖𝑎1, 𝑐𝑜𝑛𝑡⟩ ⟨C,Δ1, 𝜇𝑎1, 𝜖𝑎1, 𝑠𝑡𝑚𝑡⟩ ⇓ ⟨𝜇𝑎2, 𝜖𝑎2, 𝑠𝑖𝑔𝑎⟩
⟨C,Δ, 𝜇𝑎, 𝜖𝑎, 𝑑𝑒𝑐𝑙 𝑠𝑡𝑚𝑡⟩ ⇓ ⟨Δ1, 𝜇𝑎2, 𝜖𝑎2, 𝑠𝑖𝑔𝑎⟩

⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑑𝑒𝑐𝑙⟩ ⇓ ⟨Δ1, 𝜇𝑏1, 𝜖𝑏1, 𝑐𝑜𝑛𝑡⟩ ⟨C,Δ1, 𝜇𝑏1, 𝜖𝑏1, 𝑠𝑡𝑚𝑡⟩ ⇓ ⟨𝜇𝑏2, 𝜖𝑏2, 𝑠𝑖𝑔𝑏⟩
⟨C,Δ, 𝜇𝑏, 𝜖𝑏, 𝑑𝑒𝑐𝑙 𝑠𝑡𝑚𝑡⟩ ⇓ ⟨Δ1, 𝜇𝑏2, 𝜖𝑏2, 𝑠𝑖𝑔𝑏⟩

Given the above typing judgement holds for the statement,𝑑𝑒𝑐𝑙 𝑠𝑡𝑚𝑡 , we need to show that for any Ξ𝑎 , Ξ𝑏 , 𝜇𝑎 , 𝜇𝑏 , 𝜖𝑎 , 𝜖𝑏 ,
𝜇 ′𝑎 , 𝜇 ′𝑏 , 𝜖

′
𝑎 , 𝜖 ′𝑏 satisfying

Ξ𝑎,Ξ𝑏,Δ |=𝑙 ⟨𝜇𝑎, 𝜖𝑎⟩ ⟨𝜇𝑏, 𝜖𝑏⟩ : Γ (1)

If the statement, 𝑑𝑒𝑐𝑙 𝑠𝑡𝑚𝑡 is evaluated under two different initial configurations ⟨𝜇𝑎, 𝜖𝑎⟩ and ⟨𝜇𝑏, 𝜖𝑏⟩, then there exists
some Ξ′

𝑎 and Ξ′
𝑏
, such that the following hold:

a. Γ,Δ ⊢𝑝𝑐 𝑑𝑒𝑐𝑙 𝑠𝑡𝑚𝑡 ⊣ Γ2,Δ1. This is already the theorem’s hypothesis.
b. We haveΞ𝑎 ⊆ Ξ′

𝑎 , Ξ𝑏 ⊆ Ξ′
𝑏
, dom(𝜇𝑎) ⊆ dom(𝜇 ′𝑎), dom(𝜇𝑏) ⊆ dom(𝜇 ′

𝑏
), dom(𝜖𝑎) ⊆ dom(𝜖 ′𝑎), and dom(𝜖𝑏) ⊆ dom(𝜖 ′

𝑏
),

Δ ⊆ Δ1, and Ξ′
𝑎,Ξ

′
𝑏
,Δ1 |=𝑙 ⟨𝜇 ′𝑎, 𝜖 ′𝑎⟩ ⟨𝜇 ′𝑏, 𝜖

′
𝑏
⟩ : Γ′. In this case 𝜇 ′𝑎 = 𝜇𝑎2, 𝜇 ′𝑏 = 𝜇𝑏2, 𝜖 ′𝑎 = 𝜖𝑎2, 𝜖 ′𝑏 = 𝜖𝑏2. We also need to show

that Ξ′
𝑎,Ξ

′
𝑏
,Δ |=𝑙 ⟨𝜇 ′𝑎, 𝜖𝑎⟩ ⟨𝜇 ′𝑏, 𝜖𝑏⟩ : Γ.

c. For any 𝑙𝑎 ∈ dom(𝜇𝑎) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙𝑎) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′𝑎 (𝑙𝑎) = 𝜇𝑎 (𝑙𝑎). Similarly for any
𝑙𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙𝑏) : 𝜏𝑐𝑙𝑜𝑠 , where 𝜏𝑐𝑙𝑜𝑠 ∈ {𝜏𝑓 𝑛, 𝜏𝑡𝑏𝑙 }, then 𝜇 ′

𝑏
(𝑙𝑏) = 𝜇𝑏 (𝑙𝑏).

d. For any 𝑙 ′𝑎 ∈ dom(𝜇𝑎) and 𝑙 ′𝑏 ∈ dom(𝜇𝑏) such that Ξ𝑎,Δ ⊢ 𝜇𝑎 (𝑙 ′𝑎) : ⟨𝜏, 𝜒⟩ and Ξ𝑏,Δ ⊢ 𝜇𝑏 (𝑙 ′𝑏) : ⟨𝜏, 𝜒⟩ and 𝑝𝑐 @ 𝜒 , we
have 𝜇𝑎 (𝑙 ′𝑎) = 𝜇 ′𝑎 (𝑙 ′𝑎) and 𝜇𝑏 (𝑙 ′𝑏) = 𝜇 ′

𝑏
(𝑙 ′
𝑏
),

e. 𝑠𝑖𝑔 in any two evaluations are of the same form.
The proof is direct by applying induction hypothesis on the 𝑑𝑒𝑐𝑙 and 𝑠𝑡𝑚𝑡 . We will highlight the most interesting
part. By applying induction hypothesis of Theorem D.3 on 𝑑𝑒𝑐𝑙 , we conclude that NI decl. This implies Ξ𝑎1,Ξ𝑏1,Δ1 |=𝑙
⟨𝜇𝑎1, 𝜖𝑎1⟩ ⟨𝜇𝑏1, 𝜖𝑏1⟩ : Γ and Ξ𝑎1,Ξ𝑏1,Δ1 |=𝑙 ⟨𝜇𝑎1, 𝜖𝑎⟩ ⟨𝜇𝑏1, 𝜖𝑏⟩ : Γ By applying induction hypothesis of Theorem D.2
on 𝑠𝑡𝑚𝑡 , we conclude that Ξ𝑎2,Ξ𝑏2,Δ1 |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎2⟩ ⟨𝜇𝑏2, 𝜖𝑏2⟩ : Γ and Ξ𝑎2,Ξ𝑏2,Δ1 |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎1⟩ ⟨𝜇𝑏2, 𝜖𝑏1⟩ : Γ. To prove
Ξ𝑎2,Ξ𝑏2,Δ1 |=𝑙 ⟨𝜇𝑎2, 𝜖𝑎⟩ ⟨𝜇𝑏2, 𝜖𝑏⟩ : Γ, we use the same approach from T-Seq-1 case (Item 4).
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J Value Typing Rule
TV-Rec

Ξ,Δ ⊢ 𝑣𝑎𝑙 : ⟨𝜏, 𝜒⟩
Ξ,Δ ⊢ {𝑓 = 𝑣𝑎𝑙} : ⟨{𝑓 : ⟨𝜏, 𝜒⟩},⊥⟩

TV-Hdr
Ξ,Δ ⊢ 𝑣𝑎𝑙 : ⟨𝜏, 𝜒⟩

Ξ,Δ ⊢ ℎ𝑒𝑎𝑑𝑒𝑟 {𝑣𝑎𝑙𝑖𝑑, 𝑓 : ⟨𝜏, 𝜒⟩ = 𝑣𝑎𝑙} : ⟨ℎ𝑒𝑎𝑑𝑒𝑟 {𝑓 : ⟨𝜏, 𝜒⟩},⊥⟩

TV-Stack
𝑙𝑒𝑛(𝑣𝑎𝑙) = 𝑛 Ξ,Δ ⊢ 𝑣𝑎𝑙 : ⟨𝜏, 𝜒⟩

Ξ,Δ ⊢ 𝑠𝑡𝑎𝑐𝑘 ⟨𝜏, 𝜒⟩ {𝑣𝑎𝑙} : ⟨⟨𝜏, 𝜒⟩[𝑛],⊥⟩

TV-Clos
Ξ ⊢ 𝜖 : Γ Γ [𝑥 : ⟨𝜏, 𝜒⟩, return = ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩],Δ ⊢𝑝𝑐 𝑓 𝑛 𝑠𝑡𝑚𝑡 ⊣ Γ′

Ξ,Δ ⊢ 𝑐𝑙𝑜𝑠 (𝜖, 𝑑 𝑥 : ⟨𝜏, 𝜒⟩, ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩, 𝑑𝑒𝑐𝑙 𝑠𝑡𝑚𝑡) : ⟨⟨𝑑 𝜏, 𝜒⟩
𝑝𝑐 𝑓 𝑛−−−→ ⟨𝜏𝑟𝑒𝑡 , 𝜒𝑟𝑒𝑡 ⟩,⊥⟩

TV-Tbl
Ξ ⊢ 𝜖 : Γ Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑘 : ⟨𝜏𝑘 , 𝜒𝑘⟩ Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑥𝑘 : ⟨𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑,⊥⟩
Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑎𝑐𝑡𝑎 𝑗

: ⟨𝑑 ⟨𝜏𝑎 𝑗𝑖
, 𝜒𝑎 𝑗𝑖

⟩ ; ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩
𝑝𝑐 𝑓 𝑛𝑗−−−−→ ⟨𝑢𝑛𝑖𝑡,⊥⟩,⊥⟩, for all 𝑗

Γ,Δ ⊢𝑝𝑐𝑡𝑏𝑙 𝑒𝑥𝑝𝑎 𝑗𝑖
: ⟨𝜏𝑎 𝑗𝑖

, 𝜒𝑎 𝑗𝑖
⟩𝑔𝑜𝑒𝑠 𝑑

𝜒𝑘 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗
for all 𝑗, 𝑘 𝑝𝑐𝑎 ⊑ 𝑝𝑐 𝑓 𝑛 𝑗

, for all 𝑗 𝜒𝑘 ⊑ 𝑝𝑐𝑡𝑏𝑙 for all 𝑘 𝑝𝑐𝑡𝑏𝑙 ⊑ 𝑝𝑐𝑎

Ξ,Δ ⊢ table 𝑙 {𝜖, 𝑒𝑥𝑝𝑘 : 𝑥𝑘 𝑎𝑐𝑡𝑎 𝑗
(𝑒𝑥𝑝𝑎 𝑗𝑖

)} : ⟨𝑡𝑎𝑏𝑙𝑒 (𝑝𝑐𝑡𝑏𝑙 ),⊥⟩

TV-PartialApp

Γ,Δ ⊢𝑝𝑐 𝑥𝑎𝑐𝑡 : ⟨𝑑 ⟨𝜏𝑎 𝑗𝑖
, 𝜒𝑎 𝑗𝑖

⟩ ; ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩
𝑝𝑐 𝑓 𝑛−−−→ ⟨𝑢𝑛𝑖𝑡,⊥⟩,⊥⟩ Γ,Δ ⊢𝑝𝑐 𝑒𝑥𝑝 : ⟨𝜏, 𝜒⟩𝑔𝑜𝑒𝑠 𝑑

Ξ,Δ ⊢ 𝑥𝑎𝑐𝑡 (𝑒𝑥𝑝, 𝑥𝑐 : ⟨𝜏, 𝜒⟩) : ⟨𝑑 ⟨𝜏𝑎 𝑗𝑖
, 𝜒𝑎 𝑗𝑖

⟩ ; ⟨𝜏𝑐 𝑗𝑖 , 𝜒𝑐 𝑗𝑖 ⟩
𝑝𝑐 𝑓 𝑛−−−→ ⟨𝑢𝑛𝑖𝑡,⊥⟩,⊥⟩

Match
Δ(𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑) =𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑{𝑓 }
Ξ,Δ ⊢ 𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑.𝑓 :𝑚𝑎𝑡𝑐ℎ_𝑘𝑖𝑛𝑑

TV-SubType
Ξ,Δ ⊢ 𝑣𝑎𝑙 : ⟨𝜏, 𝜒⟩ 𝜒 ⊑ 𝜒 ′

Ξ,Δ ⊢ 𝑣𝑎𝑙 : ⟨𝜏, 𝜒 ′⟩
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