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ABSTRACT

Federated learning provides a communication-efficient and privacy-preserving training process by
enabling learning statistical models with massive participants without accessing their local data.
Standard federated learning techniques that naively minimize an average loss function are vulnerable
to data corruptions from outliers, systematic mislabeling, or even adversaries. In this paper, we
address this challenge by proposing Auto-weighted Robust Federated Learning (ARFL), a novel
approach that jointly learns the global model and the weights of local updates to provide robustness
against corrupted data sources. We prove a learning bound on the expected loss with respect to the
predictor and the weights of clients, which guides the definition of the objective for robust federated
learning. We present an objective that minimizes the weighted sum of empirical risk of clients with a
regularization term, where the weights can be allocated by comparing the empirical risk of each client
with the average empirical risk of the best p clients. This method can downweight the clients with
significantly higher losses, thereby lowering their contributions to the global model. We show that
this approach achieves robustness when the data of corrupted clients is distributed differently from
the benign ones. To optimize the objective function, we propose a communication-efficient algorithm
based on the blockwise minimization paradigm. We conduct extensive experiments on multiple
benchmark datasets, including CIFAR-10, FEMNIST, and Shakespeare, considering different neural
network models. The results show that our solution is robust against different scenarios including
label shuffling, label flipping, and noisy features, and outperforms the state-of-the-art methods in
most scenarios.

1 Introduction

Federated learning (McMahan et al., 2017; Li et al., 2021; Konecny et al., 2016a) has recently attracted more and more
attention due to the increasing concern of user data privacy. In federated learning, the server trains a shared model based
on data originating from remote clients such as smartphones and IoT devices, without the need to store and process
the data in a centralized server. In this way, federated learning enables joint model training over privacy-sensitive data
in a wide range of applications (Yang et al., 2018, 2019b), including natural language processing (Chen et al., 2019),
computer vision (Luo et al., 2019), and speech recognition (Guliani et al., 2020).

However, standard federated learning strategies fail in the presence of data corruption (Rodriguez-Barroso et al., 2020;
Mahloujifar et al., 2019). Data collected from different clients, or data sources (in this article we use the two terms
interchangeably), may vary greatly in data quality and thus reduce the reliability of the learning task. Some of the
clients may be unreliable or even malicious. For instance, distributed sensor networks are vulnerable to cybersecurity
attacks, such as false data injection attacks (Liu and Ngai, 2019). In crowdsourcing scenarios, the problem of noisy data
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is unignorable due to biased or erroneous workers (Wais et al., 2010). As a consequence, the clients can update their
local models using corrupted data and send the parameters to the server. After averaging these harmful updates, the
accuracy and the convergence of the shared global model can be compromised. To mitigate this limitation, different
robust learning approaches have been proposed in the literature. Some of these techniques rely on robust statistical
estimations (e.g. geometric median estimators) to update the aggregated model (Blanchard et al., 2017; Pillutla et al.,
2019; Yin et al., 2018). Although these techniques are widely used in traditional distributed learning scenarios with
i.i.d. datasets, it is not straightforward to generalize them for non-i.i.d. data settings, i.e., some of the clients have
significantly different data distribution than the others. Other approaches require some trusted clients or samples to
guide the learning (Li et al., 2020b; Peng et al., 2019; Sui et al., 2020) or detect the updates from corrupted clients (Han
and Zhang, 2020; Konstantinov and Lampert, 2019). Unfortunately, the credibility of these trusted clients and samples
are usually not guaranteed. Since the data is stored locally in the clients, the server is insensible to the corruption
behaviors and unable to measure the quality of data sources due to privacy constraints.

In this article, we aim to improve the robustness of federated learning when some of the clients are malicious, i.e.,
they actively corrupt the local training set by changing the features or the labels. We propose a novel solution, named
Auto-weighted Robust Federated Learning (ARFL), to jointly learn the global model and the weights of local updates.
More specifically, we first prove a learning bound on the expected risk with respect to the predictor and the weights
of clients. Based on this theoretical insight, we present our objective that minimizes a weighted sum of the empirical
risk of clients with a regularization term. We then theoretically show that the weights in the objective can be allocated
by comparing the empirical risk of each client with the best p clients. When the corrupted clients have significantly
higher losses comparing with the benign ones, their contributions to the global model will be downweighted or even
zero-weighted, so as to play less important roles in the global model. Therefore, by using ARFL, we can exclude
potentially corrupted clients and keep optimizing the global model with the benign clients. To solve the problem in
federated learning settings, we further propose a communication-efficient optimization method based on the blockwise
updating paradigm (Zheng et al., 2019). Through extensive experiments on multiple benchmark datasets (i.e., CIFAR-10,
FEMNIST and Shakespeare) with different neural network models, we demonstrate the robustness of our approach
compared with the state-of-the-art approaches (McMahan et al., 2017; Pillutla et al., 2019; Blanchard et al., 2017;
Sattler et al., 2020), showing up to 30% improvement in model accuracy.

2 Related work

The concept of federated learning has been proposed for collaboratively learning a model without collecting users’
data (McMahan et al., 2017; Li et al., 2021; Konecny et al., 2016a,b). The research work on federated learning can
be divided into three categories, i.e., horizontal federated learning, vertical federated learning, and federated transfer
learning, based on the distribution characteristics of the data. Due to space limits, we refer to Yang et al. (Yang et al.,
2019a) for detailed explanations. In this paper we focus on horizontal federated learning where datasets in all clients
share the same feature space but different samples. In 2017, one of the most famous horizontal federated learning
framework, Federated Averaging (FedAvqg) has been proposed to update global parameters with a weighted average of
the model parameters sent by a subset of clients after several local iterations (McMahan et al., 2017).

Due to the nature of data decentralization and the requirement of collaborative training from multiple clients, fed-
erated learning is vulnerable to malicious corruption of training data from remote clients (Lyu et al., 2020). No-
tably, it has been shown that traditional federated learning approaches (e.g., FedAvqg) are fragile in the pres-
ence of malicious or corrupted clients (Fang et al., 2020; So et al., 2020). To mitigate the impact of malicious
clients and improve the robustness of federated training, several solutions have been proposed in the litera-
ture (So et al., 2020; Pillutla et al., 2019; Kairouz et al., 2021; Li et al., 2021). Among these robust approaches, robust
statistical estimations have received much attention in particular. Typical estimation rules include Geometric Median
(GM) (Chen et al., 2017; Pillutla et al., 2019), trimmed mean (Yin et al., 2018), and Krum (Blanchard et al., 2017). For
instance, in 2017, Chen et al. (2017) proposed to apply GM as a gradient aggregation protocol in robust distributed
learning and showed that it can tolerate up to half malicious clients while estimating the underlying true gradients. In
2019, Pillutla et al. (2019) used GM to aggregate parameters in a robust FL solution. However, the robustness of the
traditional estimators are limited as they rely on the assumption that data are i.i.d. and balanced among the clients, i,e,
they distribute identically and have the same (or a similar) number of training data points. Hence, those approaches can
be inefficient when some of the clients have significantly more data than others. In addition, Li et al. (2021) proposed a
multi-task learning objective called Ditto, for federated learning that provides robustness via personalization in 2021.
The optimization of Ditto, however, requires extra training overhead for personalized models.

Others (Li et al., 2020a; Han and Zhang, 2020; Sattler et al., 2020; Cao et al., 2021), couple the process of teaching
and learning based on a few trusted instances to produce a robust prediction model. For example, in 2020, Sattler et al.
(2020) proposed to separate the client population into different groups (e.g., benign and corrupted groups) based on
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the pairwise cosine similarities between their parameter updates. Also in 2020, Li et al. (2020a) suggested allowing
the server to learn to detect and remove the malicious model updates using an encoder-decoder based detection model.
These approaches require some trusted clients or samples to guide the learning or detect the updates from corrupted
clients. In 2021, Cao et al. (2021) presented a Byzantine-robust method that allows the service provider itself collect a
clean small training datase for the learning task and maintain a model based on it to bootstrap trust. Unfortunately, the
credibility of these trusted clients and samples are usually not guaranteed since the data is isolated and stored locally.
Thus, the server is not aware of these corruption behaviors and does not have the ability to measure the quality of data
at the sources due to privacy and communication constraints. Different from previous studies, we propose a robust
approach that can learn both the global model and the weights of clients automatically from a mix of reliable and
unreliable clients, without the need of any pre-verified trusted instances.

3 Preliminaries and Motivation

3.1 Federated Learning

In federated learning tasks, a general assumption is that the target distribution for which the centralized model is
learned is a weighted mixture of distributions associated with all clients (or data sources), that is, if we denote by D;
the distribution associated with the ¢-th client, the centralized model is trained to minimize the risk with respect to

Do = Zfil a;D;, where N is the total number of clients, o = (a1, ..., ) T is the vector of source-specific weights.
We also have a € R’} and 1T o = 1 Mohri et al. (2019); Hamer et al. (2020); Li et al. (2021).

Let ¢, (z) be the loss function that captures the error of a predictor & € H (where H is the hypothesis class) on the
training data z = (z,y) (where (x,y) is the input and output pair), and Lp_ (h) be the risk of a predictor & on the
mixture data distribution D, we have:

N N
= Z Oé’ucz(h) - Z aiEztz‘ (gh(z))v (1)
i=1 =1

where £;(h) = E..p,(£n(2)) is the expected loss of a predictor h on the data distribution D; of the i-th client.

Most prior work in federated learning has assumed that all samples are uniformly weighted, where the underlying
assumption is that the target distribution is U = Zf\;l it Di, where m; is the number of samples from client 7 and
M = Z —1 M;. Thus the risk becomes:

7E2~D eh )) (2)

HMz

In practice, the goal is to minimize a traditional empirical risk qu(h) as follows:

L (h) = Zeh 2i ;) (3)
i=1

which can be minimized by sampling a subset of clients randomly at each round, then running an optimizer such as
stochastic gradient descent (SGD) for a variable number of iterations locally on each client. These local updating
methods enable flexible and efficient communication compared to traditional mini-batch methods, which would simply
calculate a subset of the gradients Wang and Joshi (2019); Stich (2018); Yu et al. (2019). One of the most well-known
methods to minimize Eq. (3) in non-convex settings is FedAvg McMahan et al. (2017), which runs simply by letting
each selected client apply a fixed number of epochs of SGD locally and then averaging the resulted local models.

3.2 Threat Model: Data Corruption

Guerraoui et al. has shown that a few clients with corrupted data can lead to inaccurate models Guerraoui et al. (2018).
The problem stems from a mismatch between the target distribution and /. That is, in corruption scenarios, the target
distribution may in general be quite different from I, since U includes some corrupted components. We expect that
the data distributions are more similar among benign clients compared with the corrupted ones even when the data is
non-i.i.d. More specifically, we model the target distribution with corrupted clients as,

N N
= i=1
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Figure 1: INlustration of federated learning using the standard FedAvg with potential corruptions in local datasets,
where red circles represent data of class 0 and blue crosses represent class 1. (a) All samples are clean. (b) The features
in Client 1 are shifted by random noise. (c) The labels in Client 1 are forced to class 1.

where 1; € {0,1} denotes whether the local data distribution D; is a benign distribution D; ; (when n; = 1) or
a corrupted distribution D; . (when 7; = 0). Ideally, the corruption can be usually measured by the difference
between D; ;, and D, . using statistical distance (e.g., the Kullback-Leibler divergence), if both distributions are
known Konstantinov and Lampert (2019). In practice, data corruption can be achieved by modifying features or labels
of the local training dataset.

When vazl 7n; = N, all components of the mixture distribution are benign (i.e. D; = D; ;). Assuming that the target
distribution is uniform ¢/, minimizing Eq. (3) can lead to an accurate global model. However, when there are corrupted
data sources (i.e. Zfil 71; < IN), the mixture of the distributions will include some corrupted components D; ... In this

case, optimizing the empirical risk with respect to 2/ will not lead to an accurate global model. We make the following
assumptions regarding the adversaries:

1. Each adversary controls exactly one non-colluding and corrupted client. The data distributions of any
corrupted clients are independent of each other. Since all clients do not collude, the effect of malicious updates
from each adversary to the global model is limited Bhagoji et al. (2019).

2. A corrupted client has a higher loss with respect to the best predictor under the uniformly weighted assumption
in Eq. (2), i.e., we have

‘Cch(h*) > ﬁDi,b (h*)v )

where h* is the optimal global predictor that minimizes the empirical risk. Base on this, we will identify the
corrupted clients according to their empirical losses as discussed in the next section.

3.3 Introductory Example

As an example, we train a binary classification model from three clients, where the data is originally generated from
three distributions with linearly separable classes. A Logistic Regression (LR) model is learned using the standard
FedAvg approach. As shown in Fig. 1(a), the learned separating plane is close to the true plane when the all datasets
are clean. When Client 1 is corrupted on either feature x (Fig. 1(b)) or label y (Fig. 1(c)), the learned plane is driven
away from the true one.

One possible solution is to exclude all the corrupted components of the mixture distribution and seek for a new target
distribution considering only benign clients, i.e. U, = Y ieB J\”Z—BDZ where B is the set of all benign clients and
Mp = 3,5 m;. The challenge with this approach is that the centralized server is agnostic to the corruptions on the
local clients and hence it is impossible to measure the data quality directly.
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4 Robust Federated Learning

In this section, we describe our Auto-weighted Robust Federated Learning (ARFL) in detail. Specifically, we present a
novel objective according to a learning bound with respect to both the predictor & and the weights oc. We analyze the
robustness of the proposed objective against corruptions and optimize it with a federated learning based algorithm.

4.1 Learning Bound

In the following theorem, we present a learning bound on the risk on the weighted mixture distribution with respect to
the predictor h and the weights ac. A proof is provided in Appendix A.

Theorem 1. We denote ﬁ,(h) as the corresponding empirical counterparts of Lp, (h). Assume that the loss function
0n(2) is bounded by a constant M > 0. Then, for any 6 € (0, 1], with probability at least 1 — § over the data, the
following inequality holds:

N N 4 n
LD& (h‘) S E O‘z‘cz(h) + 2 E OéiRi (H) + 3\/Og(5)/\/l E @ ;
i=1 i=1

where, for each clientv=1,..., N,

1 &
R;(H)=E, | sup | — 04l (25
(%) sup mZ iy (i)

and o, ;s are independent uniform random variables taking values in {—1,+1}. These variables are called Rademacher
random variables (Yin et al., 2019).

Although the Rademacher complexities in the bound are functions of both the underlying distribution and the hypothesis
class (Yin et al., 2019), in practice one usually works with a computable upper bound of R; () that is distribution-
independent (e.g. using VC dimension) (Shalev-Shwartz and Ben-David, 2014; Konstantinov and Lampert, 2019;
Bousquet et al., 2003). In our setting the hypothesis space H is fixed and hence these bounds would be identical for all
i. Therefore, we expect the R; (#) to be of similar order for all clients and the impact of « in the second term to be
negligible. We refer to Konstantinov et al. (Konstantinov and Lampert, 2019, Appendix B.1) for detailed explanations
and some examples on this point. In general, we can ignore this term and concentrate on optimizing the remaining
terms.

The rest of the terms for the learning bound in Theorem 1 thus suggest a trade-off between reducing the weighted sum

2
of the empirical losses and minimizing a weighted norm of the weights Z?:l ::L . Note that reducing the weighted
sum of the empirical losses will encourage trusting the clients who provide data with the smallest loss but it may lead to
large and sparse weights, which will make the model fit only very few local datasets. On the contrary, minimizing the
norm will increase the smoothness of the weight distribution, but it may also increase the weighted sum of empirical
losses. To control this trade-off, we introduce a tuning hyperparameter A to the weighted norm. For the convenience of

derivation, the square root on the sum of weights can be removed by tuning \.

4.2 Problem Formulation

We present our problem formulation in the following. The learning bound derived above suggests minimizing the
following objective with respect to the model parameters w together with the weights ac:

N
. by a?
i iLi 5. 6
min ;a (w) + 2; " (6)
st. acRY, 1Ta=1,

where w is a vector of parameters defining a predictor h. Here and after we use notation ﬁi(w) to replace lji(h),

representing the empirical risk of hypothesis h (corresponding to w) on client 7. Note that removing the square root

2
of the last term does not affect the optimal solution, since the total sum vazl fn is the same in both forms, and the

square root is simply a scaling for importance of the total sum. In practice, we can achieve the equivalent purpose by
adjusting .
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The second term of the objective is small whenever the weights are distributed proportionally to the number of samples
of the client. As A\ — oo, we have a;(w) = %, which means that all clients are assigned with weights proportional to
their number of training samples and the model minimizes the empirical risk over all the data, regardless of the losses
of the clients. Thus, the objective becomes the same as the standard FedAvg in Eq. (3). In contrast, as A — 0, the
regularization term in Eq. (6) vanishes, so that the client with the lowest empirical risk will dominate the objective
by setting its weight to 1. A thus acts as a form of regularization by encouraging the usage of information from more

clients.

4.3 Robustness of the Objective

We now study the optimal weights « of the problem in Eq. (6) to understand how the objective yields robustness

against corrupted data sources. We notice that the objective is a convex quadratic program problem over a.. Given that

a = N1 is a strictly feasible point, the problem satisfies Slater’s condition, which indicates the strong duality of the

problem. Thus, the optimal weights o can be obtained using the Karush-Kuhn-Tucker (KKT) conditions (Boyd et al.,

2004). Here we give the closed-form solution in Theorem 2. The detailed proof is provided in Appendix B.

Theorem 2. For any w, when X\ > 0 and {L;(w)}N., are sorted in increasing order: L,(w) < Ly(w) < ... <

Ly (w), by setting:

My (Ly(w) — Ly (w))
A

p = argmax{l + > 0}, (7
k

where M;, = Zle my,
Yy mili(w) ®)
My,

is the average loss over the first k clients that have the smallest empirical risks. Then the optimal o to the problem (6)
is given by:

Zk(h) =

My (Lp(w) — Li(w))

m;
a;(w) = M, 1+ 3 1+, 9)
where |1 = max(0,-).
When A € (0, 00), plugging «; (w) back into Eq. (6) yields the equivalent concentrated objective
N —_— ~
mi | mi(Lp(w) — Li(w), 4 1A = i
;[Mp + 3 e (Lutw) + 357 + Lolw) = Luw)],), (10)

which consists of N components and each is related to the empirical risk of the corresponding client and the average

loss over the first p clients with the smallest losses, which is called the p-average loss. An intuitive interpretation is that
the p clients act as a consensus group to reallocate the weights and encourage trusting clients that provide empirical
losses that are smaller than the average while downweighting the clients with higher losses. Given a suitable A, more
benign clients will be in the consensus group to dominate the model and exclude the outliers.

In a situation where the majority of clients are benign, £,,(w) becomes relatively low as the benign clients achieve the
minimum empirical risk. The components with corrupted datasets will be downweighted as they have higher losses.
Especially, the i-th component becomes zero when £;(w) > 1%1,, + L, (w), which means that a client is considered to
be corrupted and does not contribute to the objective if its empirical risk is significantly larger than the p-average loss,
where the threshold 1\%, + Zp (w) is controlled by \. From Eq. (7) we can also conclude that the optimal solution has
only p non-zero components and the remaining components will be exactly zero.

On the other hand, if the corrupted clients try to bias the model to fit their corrupted datasets, the p-average loss £, (w)
becomes higher because the model does not fit the samples from the majority. The threshold 1\% + Zp(w) will also be
P

enlarged, which makes «; (w) fail to downweight the component with high losses. Thus, the optimization problem in
Eq. (6) will exceed the minimum.

4.4 Blockwise Minimization Algorithm

To solve the robust learning problem in federated learning settings, we propose an optimization method based on the
blockwise updating paradigm, which is guaranteed to converge to a critical point when the parameter set is closed
and convex (Grippo and Sciandrone, 2000). The key idea is to divide the problem into two parts. One sub-problem
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for estimating the model parameters and the other sub-problem for automatically weighting the importance of client
updates. Then we minimize the objective iteratively w.r.t. one variable each time while fixing the other one.

The pseudocode of the optimization procedure is given in Algorithm 1. At the beginning of the algorithm, we initialize
L =[L1,Ls,...,Lx]" by broadcasting the initial global model wy to each client to measure its training loss and return
it to the server.

Algorithm 1 Optimization of ARFL

Server executes:
1: Initialize wq, £,
2: foreachroundt =1,2,... do
3:  Select a subset S; from NV clients at random

4:  Broadcast the global model w; to selected clients S;
5:  for each client i € S; in parallel do

6: w} 4, L; + ClientUpdate(i, w;)

7:  end for

8:  Update w41 according to Eq. (11)

9:  Update o according to Theorem 2
10: end for
11:

ClientUpdate(z, w): // Run on client 1
12: L; < (evaluate training loss using training set)
13: B < (split local training set into batches of size B)
14: for each local epoch ¢ from 1 to E do
15:  for batch b € B do

16: w +— w — NVl (w;b)
17:  end for
18: end for

19: return w and ﬁz

Updating w. When « is fixed, similar to the standard FedAvg approach, at round ¢, the server selects a subset .S; of
clients at random (Line 3) and broadcasts the global model w; to the selected clients (Line 4). For each client i, it firstly
evaluates its training loss £; using its local dataset. Then, the model parameters can be updated by local computation
with a few steps of SGD (Line 14-18), after which the client uploads the new model parameters w along with £; to the
server (Line 6). While at the aggregation step, the server assembles the global model as:

(677 i
Wiy < —_  w . (l 1)
Z;»St ZiESt @ i

Updating . When w is fixed, we update o using Eq. (9) in Theorem 2. Intuitively, in order to update o, the
server should broadcast the updated model parameters to all clients to obtain their training loss before updating o.
Unfortunately, such behavior might significantly increase the burden of the communication network. To improve
communication efficiency, we only update the losses from those selected clients while keeping the others unchanged. In
other words, the weights of clients are reallocated according to their latest empirical losses. If a client is not selected in
the current round, the last updated loss is used instead.

5 Experimental Results

5.1 Experimental Setup

We implement ARFL and the considered baseline methods in TensorFlow (Abadi et al., 2016) Version 2.3!, simulating a
federated learning system with one server and IV clients. We perform our experimental evaluation on three datasets that
are commonly used in previous work (Li et al., 2019; Wang et al., 2019; McMahan et al., 2017), namely CIFAR-10 (van
Dyk and Meng, 2001), FEMNIST (Cohen et al., 2017; Caldas et al., 2018), and Shakespeare (Caldas et al., 2018;
McMabhan et al., 2017). Their basic information is listed in Table 1. For the CIFAR-10 dataset, we consider an 1.i.d.
partition where each local client has approximately the same amount of samples and in proportion to each of the classes.

!Code is available at https://github.com/lishenghui/arfl
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Table 1: Dataset description and parameters

Dataset #Classes  #Clients ~ #Samples ii.d. Model used lr E  Batchsize |S¢| #Rounds
CIFAR-10 10 100 60,000 Yes CNN 001 5 64 20 2000
FEMNIST 62 1039 236,500 No CNN 0.01 20 64 32 2000
Shakespeare 80 71 417,469 No LSTM 0.6 1 10 16 100

We use the original test set in CIFAR-10 as our global test set for comparing the performance of all methods. For the
Shakespeare and FEMNIST datasets, we treat each speaking role or writer as a client and randomly sample subsets of all
clients. We assume that data distributions vary among clients in the raw data, and hence we regard this sampling process
as non-i.i.d.. The raw data in FEMNIST and Shakespeare is preprocessed using the popular benchmark LEAF (Caldas
et al., 2018), where the data on each local client is partitioned into an 80% training set and a 20% testing set. The details
of the network models we use in the experiments are as follows:

» The model for CIFAR-10 is a Convolutional Neural Network (CNN) chosen from Tensorflow’s website?,
which consists of three 3x3 convolution layers (the first with 32 channels, the second and third with 64, the
first two followed by 2x2 max pooling), a fully connected layer with 64 units and ReLu activation, and a final
softmax output layer. To improve the performance, data augmentation (random shift and flips) is used in this
dataset (Wang et al., 2019).

» For the FEMNIST dataset, we train a CNN with two 5x5 convolution layers (the first with 32 channels,
the second with 64, each followed by 2x2 max pooling), a fully connected layer with 126 units and ReLu
activation, and a final softmax output layer.

* For the Shakespeare dataset, we learn a character-level language model to predict the next character over the
Complete Works of Shakespeare (Shakespeare, [n.d.]). The model takes a series of characters as input and
embeds each of these into an 8-dimensional space. The embedded features are then processed through two
stacked Long Short-Term Memory (LSTM) layers, each with 256 nodes and a dropout value of 0.2. Finally,
the output of the second LSTM layer is sent to a softmax output layer with one node per character.

For each dataset we consider four different scenarios: 1) Normal operation (clean): we use the original datasets
without any corruption. 2) Label shuffling (shuffling): the labels of all samples are shuffled randomly in each corrupted
client. 3) Label flipping (flipping): the labels of all samples are switched to a random one in each corrupted client,
which means that all labels of training samples are flipped as the same one for each corrupted client. 4) Noisy clients
(noisy): for CIFAR-10 and FEMNIST datasets, we normalize the inputs to the interval [0, 1]. In this scenario, for
the selected noisy clients we add Gaussian noise to all the pixels, so that z < x + ¢, with ¢ ~ N(0,0.7). Then we
normalize the resulting values again to the interval [0, 1]. For the Shakespeare dataset, we randomly select half of the
characters and shuffle them so that the input sentence might be disordered. For each corruption scenario, we set 30%
and 50% of the clients to be corrupted clients (i.e. providing corrupted data).

We empirically tune the hyper-parameters on ARFL and use the same values in all experiments of each dataset. We use
the parameter setups in Table 1, unless specified otherwise. Following the standard setup, we use SGD and train for F
local epochs with local learning rate [,.. A shared global model is trained by all participants, a subset S; is randomly
selected in each round of local training, and |S;| is the size of S;. By default, we use a large A (A = 10000 x M) for
clean data, and use a relatively small A (A = M) for all corruptions, where M is the total amount of training samples.
We repeat every experiment five times with different random seeds for data corruption and client selection, and evaluate
the accuracy of the learned model with the clean test set.

We compare the performance of ARFL with the following state-of-the-art solutions:
* FedAvg (McMabhan et al., 2017). The standard Federated Averaging aggregation approach that just calculates
the weighted average of the parameters from local clients.

* RFA (Pillutla et al., 2019). A robust aggregation approach that minimizes the weighted Geometric Median
(GM) of the parameters from local clients. A smoothed Weiszfeld’s algorithm is used to compute the
approximate GM.

¢ MKrum (Multi-Krum) (Blanchard et al., 2017). A Byzantine tolerant aggregation rule. Note that this
approach tolerates some Byzantine failures such as completely arbitrary behaviors from local updates.

https://www.tensorflow.org/tutorials/images/cnn
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Table 2: Averaged test accuracy over five random seeds for FedAvg, RFA, MKRUM, CFL and ARFL in four different
scenarios. In the shuffling and flipping scenarios, ARFL significantly outperforms the others. In the clean and noisy
scenario, FedAvg, RFA, MKRUM and ARFL achieve similar accuracy.

CIFAR-10 Clean Shuffling Flipping Noisy
Corr. Per. - 30% 50% 30% 50% 30% 50%
FedAvg (McMabhan et al., 2017) 73.59 + 0.44 61.17 £ 1.81 47.00 £ 7.51 65.01 £ 2.38 51.75 £ 7.75 73.75 + 0.49 73.61 + 0.53
RFA (Pillutla et al., 2019) 71.36 £ 0.47 57.86 + 3.22 40.26 £ 9.14 55.47 £ 5.17 40.91 £ 11.06 73.74 £ 0.52 73.69 + 0.63
MKRUM (Blanchard et al., 2017) 67.03 £ 0.93 59.27 + 9.34 52.32 £ 14.90 60.21 £ 5.73 47.96 £ 10.25 73.41 £ 0.69 73.49 + 0.49
CFL (Sattler et al., 2020) 71.68 + 0.36 52.54 +1.71 50.29 £+ 1.95 52.87 + 1.07 51.67 £ 0.92 54.97 +1.14 55.26 £+ 1.96
ARFL (ours) 73.42 + 0.40 71.68 + 1.01 69.66 + 0.73 71.78 +£ 0.53 70.25 + 0.56 73.48 + 0.56 73.29 + 0.79
FEMNIST Clean Shuffling Flipping Noisy
Corr. Per. - 30% 50% 30% 50% 30% 50%
FedAvg (McMabhan et al., 2017) 82.12 £ 0.20 61.91 + 21.33 39.69 £ 20.80 70.19 £ 10.17 48.53 £ 23.49 79.94 + 0.36 78.27 +£0.47
RFA (Pillutla et al., 2019) 82.11 £ 0.32 74.36 £ 7.52 52.02 + 22.51 73.80 £ 7.49 50.75 + 19.91 80.45 + 0.30 79.21 + 0.41
MKRUM (Blanchard et al., 2017) 79.38 £+ 0.41 57.51 £ 21.17 42.40 £ 24.84 78.57 £ 4.83 67.10 £ 7.35 81.52 + 0.53 79.80 £+ 0.22
CFL (Sattler et al., 2020) 82.18 £+ 0.30 81.24 + 0.47 36.03 £ 36.38 81.22 + 0.36 65.54 + 26.94 80.13 + 0.70 79.21 + 0.64
ARFL (ours) 82.32 4+ 0.19 81.60 + 0.31 81.35 + 0.43 81.87 + 0.22 81.30 £+ 0.24 80.71 + 0.28 79.40 + 0.45
Shal e Clean Shuffling Flipping Noisy
Corr. Per. - 30% 50% 30% 50% 30% 50%
FedAvg (McMabhan et al., 2017) 53.80 £+ 0.33 51.98 + 0.48 47.70 £+ 4.96 52.08 £+ 0.39 41.85 4+ 16.18 51.85 £ 0.56 50.43 £ 1.19
RFA (Pillutla et al., 2019) 54.27 + 0.41 50.16 £+ 1.28 32.49 + 13.81 50.50 £+ 1.02 23.84 + 21.78 52.17 + 0.50 50.69 + 1.04
MKRUM (Blanchard et al., 2017) 50.81 + 0.85 40.38 + 7.44 24.46 + 6.88 44.95 £+ 2.43 16.11 + 15.46 48.19 £+ 0.40 45.67 £ 0.46
CFL (Sattler et al., 2020) 54.01 + 0.34 49.76 £+ 4.47 43.68 £+ 12.68 51.09 + 1.36 37.30 £ 19.76 51.98 + 1.03 50.38 + 1.39
ARFL (ours) 53.52 + 0.32 52.85 + 0.49 51.61 + 0.68 52.82 + 0.48 51.74 + 0.69 52.09 + 1.27 50.98 + 0.75
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Figure 2: Test loss and accuracy vs. round number for FedAvg, RFA, MKRUM and ARFL on the FEMNIST dataset
with 50% clients with different corruption scenarios. In the shuffling and flipping corruption scenarios, ARFL converges
to the highest accuracy among the four approaches.

* CFL (Sattler et al., 2020). A Clustered Federated Learning (CFL) approach that separates the client population
into different groups based on the pairwise cosine similarities between their parameter updates, where the
clients are partitioned into two groups, i.e., benign clients and corrupted clients.

5.2 Robustness and Convergence

Firstly, we show that ARFL is a more robust solution by comparing the average test accuracy in Table 2. The results
show that ARFL is robust in all data corruption scenarios and corruption levels. It achieves the highest test accuracy in
most scenarios compared with the other approaches. ARFL achieves significantly higher test accuracy in the shuffling
and flipping corruption scenarios compared with all the existing methods, which is especially noticeable in the case
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Figure 3: Impact of fraction of corrupted clients on test ac- Figure 4: Learning curves of ARFL on CIFAR-10 with
curacy of ARFL using CIFAR-10. The accuracy decreases different non-i.i.d settings, where smaller « indicates
as the fraction of corrupted clients increases, especially  stronger non-i.i.d. data distribution. The curves fluctuates
when 60% clients are corrupted. as we increase the degree of non-i.i.d.

of flipping corruption with the level of 50%, where the test accuracy for the CIFAR-10, FEMNIST and Shakespeare
datasets are 70.25%, 81.30% and 51.74%, which are 18.5%, 14.2%, and 9.89% higher than that of the best of existing
methods, respectively. In the clean and noisy scenarios, ARFL’s test accuracy is very close to the best method in the
comparison.

As expected, FedAvg’s performance is significantly affected by the presence of corrupted clients, especially in shuffling
and flipping scenarios. Furthermore, MKRUM also shows poor performance in shuffling and flipping scenarios of all
datasets. RFA works well for the FEMNIST dataset, but worse than FedAvg in the shuffling and flipping scenarios
for the CIFAR-10 and Shakespere datasets. It is also interesting to observe that CFL works well for the FEMNIST
and Shakespeare datasets under 30% corruption level, but the accuracy decreases significantly when the corruption
level is 50%. The reason is that when half of the clients are corrupted, CFL fails to identify which group of clients
are corrupted. These results demonstrate that ARF L offers better performance than the existing approaches across the
corruption scenarios we consider. Note that our approach can handle even higher corruption rates in those scenarios. For
example, using the FEMNIST data set with 70% corrupted clients we still achieve an accuracy above 79%. However, it
is also noticeable that if multiple clients try to bias their data to the same distribution (i.e., colluding corruption), our
approach is unable to handle such a high corruption rate.

Next, we study the convergence of the approaches by comparing the test loss and accuracy of the global model versus
the number of training rounds in Figure 2, where 50% of the clients are corrupted. As discussed before, CFL is unable
to handle such a high corruption level. Therefore we only compare the remaining four approaches. The shaded areas
denote the minimum and maximum values over five repeated runs. The figure shows that all approaches converge to a
good solution in the clean and noisy scenarios. However, in the clean scenario, the test loss of ARFL is slightly higher
than the others. The reason is that the global model could bias towards some of the local updates, which can be avoided
by increasing A. Furthermore, all the RFA, FedAvg and MKRUM approaches diverge in the shuffling and flipping
corruption scenarios, which indicates that the local data corruption harms the global model during their training process.
On the contrary, our ARF'L method is able to converge with high accuracy, since it is able to lower the contribution
of the corrupted clients. In the clean and noisy scenarios, we observe that MKRUM converges slower, as it only uses a
subset of selected updates to aggregate the global model.

5.3 Impact of the Fraction of Corrupted Clients

To demonstrate the effect of the fraction of corrupted clients to the robustness of ARFL, we run an experiment on
CIFAR-10 with different number of corrupted clients and apply shuffling to corrupt the clients. As shown in Fig. 3, the
performance decreases with the fraction of corrupted clients. Noticeably, the accuracy does not significantly change
until more than 60% clients are corrupted. Similar phenomenon has been shown by Li et al. in a previous work (Li
et al., 2021), which achieves robustness by personalized federated training. However, different from the solution in (Li
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Figure 5: Effects of A on weights and model accuracy on the CIFAR-10 dataset. The corrupted clients (dashed lines)
are zero-weighted when A < 2.5 x M, and the accuracy reaches its peak when A = 1 x M.

et al., 2021), our ARFL only learns a single global model, without the need of extra training overhead for personalized
models.

5.4 Impact of Data Heterogeneity

In order to study the impact of non-i.i.d. data, i.e., the extent of data heterogeneity among clients, we simulate a
non-i.i.d. partition of CIFAR-10, for which the number of data points and class proportions are unbalanced, and 30% of
the clients are corrupted with shuffling. Following prior arts (Hsu et al., 2019; Lin et al., 2020), we model non-i.i.d.
data distributions by using a Dirichlet distribution P}, ~ Dir, (c) and by allocating a P}, ; proportion of the training
instances of class k to local client ¢, in which a smaller « indicates stronger non-i.i.d. data distributions. As shown in
Fig. 4, when the data is less heterogeneous (e.g., & = 10.0), the learning curve increases more steadily, and therefore
results in higher accuracy at the end of the training. On the contrary, the learning curve fluctuates over the training
rounds when « is small. One explanation for this is that it becomes hard to induce a consensus model for the benign
clients if their data distributions are significantly different, thus the corrupted clients can damage the global model more
easily as they are not down-weighted properly.

5.5 Tuning A

As mentioned before, A in the objective should be tuned in order to provide a trade-off between robustness and average
accuracy. Here we conduct further experiments on the CIFAR-10 dataset to study the effects of A\. The dataset is
partitioned into N = 10 clients by sampling Pj, ~ Dir,, (0.5) and allocating a P, ; proportion of the training instances
of class k to local client 7, where three clients are corrupted by shuffling their labels randomly (Client 8-10). We use the
original test set in CIFAR-10 as the global test set. We train the model for 1000 rounds where each client runs one
epoch of SGD on their training set before each aggregation, where \ is set in the range of [10~1 x M, 10% x M]. All
the other settings are the same as in Sec. 5.1.

Fig. 5(a) shows the optimized weights as a function of A on the CIFAR-10 dataset. It is readily apparent that « has
only one non-zero element (Client 7) for small A and all elements of o« come to certain non-zero values for large A. In
between these two extremes, we obtain sparse solutions of « in which only a part of elements have non-zero values. It
is also noticeable that all the corrupted clients (dashed lines) are zero-weighted when A < 2.5 x M, which means that
they make no contribution when the server aggregates the updated local models.

In Fig. 5(b), we plot the model accuracy as a function of A, showing that the model achieves relatively low accuracy for
small A\, which demonstrates that extremely sparse weights are not favorable under this non-i.i.d. data setting. The
reason behind this is that the model finally fits only one local dataset without considering data from other clients. The
accuracy increases as more benign clients are upweighted and contribute their local updates to the global model. The
optimal value for A is 1.0 x M in this experiment, where all the benign clients have non-zero weights, while all the
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Figure 6: Visualization of the weights v.s. round number Figure 7: Weights comparison between ARFL and Fe-
of ARFL. All corrupted clients (dashed lines) are zero- dAvg. ARFL’s weights distributed similar to those of
weighted after 350 rounds of training. FedAvg with only benign clients

corrupted clients have zero weights. However, as A further increases, the global model is harmed by the corrupted
clients as they gain adequate weights, which leads to lower accuracy.

5.6 Auto-weighting Analysis

In this part, we investigate the auto-weighting process during training in ARFL when A = 1.0 X M, where we keep
the setup the same as the previous above. As shown in Fig. 6, our approach successfully downweights all the three
corrupted clients, for which the weights become zero after 350 rounds of training.

We next compare the reallocated weights with the standard FedAvg, where the weights are fixed as a; = 7, and
FedAvg with only benign clients (Benign FedAvg), where a; = X’/}B for benign clients, and «; = 0 for corrupted
clients. Fig. 7 shows that the learned weight distribution (in red) of ARF'L is approximated to the distribution considering
only benign clients (in blue). We conclude that our approach can automatically reweight the clients and approximate
the mixture distribution to the benign uniform distribution during the model training process, even when the centralized

server is agnostic to the local corruptions.

6 Limitations

The first limitation is the fairness. When a small X is chosen, the clients are treated unfairly, e.g., a client with data that
is difficult to learn (but not due to corruption) would carry less weight. This happens in some strongly non-i.i.d cases
where the distributions among sources are inherently different. However, we argue that robustness and fairness are two
competing targets (Li et al., 2021), it is technically difficult to distinguish between “corrupted” and “just different” (but
not corrupted) data sources if the data is strongly non-i.i.d., which we leave it for future work. Nevertheless, we show in
our experiments (Sec. 5) that our approach performs well in some general non-i.i.d. settings.

Another limitation is on the assumption of corruption strategies. Colluding corruptions among clients, e.g., multiple
clients are trying to bias their data distribution to the same target, may bring risk to the robustness of the objective. In
addition, our approach is not designed to handle malicious attacks on the model parameters, i.e., only data corruption
scenarios are considered. Our work is based on the assumption that all clients are honest during local training and
communication steps, which means that the training loss should reflect the real empirical loss of the global model on the
local data. If some corrupted clients cheat the server by giving extremely small fake losses, then they will be allocated
with high weights and dominate the training accordingly.

7 Conclusions and Future work

In this article, we proposed Auto-weighted Robust Federated Learning (ARFL), a novel approach that automatically
re-weights the local updates to lower the contribution of corrupted clients who provide low-quality updates to the global
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model. Experimental results on benchmark datasets corroborate the competitive performance of ARFL compared to the
state-of-the-art methods under different data corruption scenarios. Our future work will focus on robust aggregation
without the losses provided by clients since evaluating training loss from local clients could also be a potential overhead.
Also, we will explore the possibility of further improving the robustness of federated learning and coping with higher
fraction of corrupted clients. Furthermore, we plan to extend ARFL to a more general federated learning approach and
make it robust against both model poisoning and data corruption.
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A Proof of Theorem 1

Theorem 1. We denote ﬁl(h) as the corresponding empirical counterparts of Lp,(h). Assume that the loss function
L (2) is bounded by a constant M > 0. Then, for any § € (0, 1], with probability at least 1 — § over the data, the
following inequality holds:

N N 5 "
Lp,(h) <> aili(h)+2) aR; (H) +3\/1°g(§)M yoa

2 — m;

where, for each clienti =1,... N

1 &
R;(H)=E, | sup | — 0i.ilf(2i 5
(%) sup mg iy (i)

and o, ;s are independent uniform random variables taking values in {—1,+1}. These variables are called Rademacher
random variables (Yin et al., 2019).

Proof. Write:

Lo, (0) < Lo, () + sup (Lo, () = £pa (1)) (12)
feHr

To link the second term to its expectation, we prove the following:

Lemma 1. Define the function ¢ : (X x V)™ — R by:

¢ (i1 yiabe s Aonmy unony ) = sup (Loa () = Lo () -

FEH
Denote for brevity z; ; = {x; j,Yi ;}. Then, foranyi € {1,2,... ,N},j € {1,2,...,m;}:

sup , |¢(21}1,...,Zi’j,...,ZN’mN)—¢(2171,...7Zi’j,...,ZN’mN)|SfM (13)

21,1500y EN,m N7
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Proof. Fix any ¢,j and any 21.1,..., 2N,my» z; ;- Denote the a-weighted empirical average of the loss with respect to

the sample 21 1, ..., z;-’j, ..y ZN,my bY ,C/Da. Then we have that:

6 (ovszigsee) = Oz )l = [sup (Loa (f) = Loa (1) = sup(Lo, () = £, ()]
feH feEH

<|[sup(Lp, (f) = Lo. ()]
feH
= —|sup (4 Le(zi s
mz|f€ (Cr(2i ) = Ly (zi4)) |
< 2m
my;
Note: the inequality we used above holds for bounded functions inside the supremum. O

Let .S denote a random sample of size m drawn from a distribution as the one generating out data (i.e. m; samples from
D, for each 7). Now, using Lemma 1, McDiarmid’s inequality gives:

2t2
P(o(S) —E((S5)) = t) <exp | —
Zz 123 1 m
2t2
=exp | ——— 7
M2 ZL 1 ;)rtziZ

For any § > 0, setting the right-hand side above to be §/4 and using (12), we obtain that with probability at least
1—0/4:

Lp, (h) < Lp, () +Es <sup (£0a () = Lo f))) + (14)

feH

To deal with the expected loss inside the second term, introduce a ghost sample (denoted by .S), drawn from the same
distributions as our original sample (denoted by S). Denoting the weighted empirical loss with respect to the ghost

sample by CIDO‘, B; = m;/m for all 4, and using the convexity of the supremum, we obtain:

Es (;25 (£o.(5) - ﬁpam)) = Es (;g (Bs (£5. () ~ Lo, <f>)>

< Es.g (Sup (ﬁlpa (f) — Lo, (f)))

feH
N m;
:E&S/ sup —/ Zi7'>
sup mZ;; e

Introducing m independent Rademacher random variables and noting that (¢¢(2") — £f(z)) and o (£(2") — £f(2))
have the same distribution, as long as z and 2z’ have the same distribution:

Es (Sup (ﬁpa(f) - ﬁm(f))) <Esso sup ZZ 3,06 (ff (255)) _gf(zi,j)> ))

fer 11]1

N m;

SEg | sup ZZ U’Jgf %)

m
fer 1131

N my

+Es,o SUP ZZ —0i5) Ly (zi5)

LlJl

N m;

=2Eg, | sup ZZ O'z,jéf Zw

m
feH 11]1
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We can now link the last term to the empirical analog of the Rademacher complexity, by using the McDiarmid Inequality
(with an observation similar to Lemma 1). Putting this together, we obtain that for any & > 0 with probability at least
1-46/2:

15)

Bounding Lp, (h) — Lop,, (h) with the same quantity and with probability at least 1 — §/2 follows by a similar argument.
The result then follows by applying the union bound. O

B Proof of Theorem 2

Theorem 2. For any w, when X\ > 0 and {L;(w)}N., are sorted in increasing order: L,(w) < Ly(w) < ... <
L (w), by setting:

My (L (w) — Li(w))
A

p = argmax{1l + > 0}, @)
k

where M, = Zle m;,

S mili(w) ®)
My,

is the average loss over the first k clients that have the smallest empirical risks. Then the optimal o to the problem (6)

is given by:

Li(h) =

m; M, (L, (w) — ﬁl w
ailw) = g1+ ol i wh,, ©)
where /|1 = maz(0,-).
Proof. The Lagrangian function of Eq. (6) is
L=a"f(w) + SllaTm* HB -~ aT8 - n(a1-1), (16)

where £(w) = [£1(w), Lo(w), ..., Lx(w)]T, o is the Hadamard root operation, 3 and 7 are the Lagrangian multipliers.
Then the following Karush-Kuhn-Tucker (KKT) conditions hold:

daL(c, B,1) =0, (17)
a™l—-1=0, (18)

a >0, (19)

B8 =0, (20)

;B =0,Vi=1,2,..N. @1)

According to Eq. (17), we have:

~ mi(Bi 41— Li(w))
o; = .
A
Since 3; > 0, we discuss the following cases:

(22)

17
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1. When 3; = 0, we have o; = M > 0. Note that we further have  — ﬁl(w) > 0.
2. When ; > 0, from the condition «;3; = 0, we have a; = 0.
Therefore, the optimal solution to Eq. (6) is given by:
m; — LA7 w
o) = (1= L))y 23)
where [-]+ = max(0,-).
We notice that > ©_, o; = 1, thus we can get:
_ mt[ll w) + A
n= Z’L 1 > ( ) (24)

According to n — fi(w) > 0, we have Eq. (7) and Eq. (8). Finally, plugging Eq. (24) into Eq. (23) yields Eq. (9). O

18
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