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ABSTRACT

Search systems often employ a re-ranking pipeline, wherein docu-
ments (or passages) from an initial pool of candidates are assigned
new ranking scores. The process enables the use of highly-effective
but expensive scoring functions that are not suitable for use directly
in structures like inverted indices or approximate nearest neighbour
indices. However, re-ranking pipelines are inherently limited by
the recall of the initial candidate pool; documents that are not iden-
tified as candidates for re-ranking by the initial retrieval function
cannot be identified. We propose a novel approach for overcoming
the recall limitation based on the well-established clustering hy-
pothesis. Throughout the re-ranking process, our approach adds
documents to the pool that are most similar to the highest-scoring
documents up to that point. This feedback process adapts the pool
of candidates to those that may also yield high ranking scores, even
if they were not present in the initial pool. It can also increase
the score of documents that appear deeper in the pool that would
have otherwise been skipped due to a limited re-ranking budget.
We find that our Graph-based Adaptive Re-ranking (GAR) approach
significantly improves the performance of re-ranking pipelines in
terms of precision- and recall-oriented measures, is complementary
to a variety of existing techniques (e.g., dense retrieval), is robust to
its hyperparameters, and contributes minimally to computational
and storage costs. For instance, on the MS MARCO passage ranking
dataset, GAR can improve the nDCG of a BM25 candidate pool by
up to 8% when applying a monoT5 ranker.!
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Figure 1: Overview of GAR. Traditional re-ranking exclu-
sively scores results seeded by the retriever. GAR (in green)
adapts the re-ranking pool after each batch based on the
computed scores and a pre-computed graph of the corpus.

1 INTRODUCTION

Deep neural ranking models — especially those that use contextu-
alised language models like BERT [6] — have brought significant
benefits in retrieval effectiveness across a range of tasks [18]. The
most effective techniques tend to be those that first retrieve a pool
of candidate documents? using an inexpensive retrieval approach
and then re-score them using a more expensive function. This pro-
cess is called re-ranking, since the documents from the candidate
pool are given a new ranked order. Re-ranking enables the use of so-
phisticated scoring functions (such as cross-encoders, which jointly
model the texts of the query and document) that are incompatible
with inverted indexes or vector indexes. Since the scoring function
can be computationally expensive, re-ranking is often limited to a
predefined maximum number documents that the system is willing
to re-rank for each query (i.e., a re-ranking budget, such as 100).

The performance of a re-ranking pipeline is limited by the recall
of the candidate pool, however. This is because documents that were
not found by the initial ranking function have no chance of being
re-ranked. Consequently, a variety of techniques are employed to
improve the recall of the initial ranking pool, including document-
rewriting approaches that add semantically-similar terms to an
inverted index [30], or dense document retrieval techniques that
enable semantic searching [12].

In this work, we explore a complementary approach to overcom-
ing the recall limitation of re-ranking based on the long-standing
clustering hypothesis [11], which suggests that closely-related docu-
ments tend to be relevant to the same queries. During the re-ranking
process, our approach, called Graph-based Adaptive Re-Ranking
(GAR), prioritises the scoring of the neighbours of documents that
have received high scores up to this point. An overview of GAR
is shown in Figure 1. The Gar feedback mechanism allows for

20r passages; we often simply use the term “document” for ease of reading.
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documents to be retrieved that were not present in the initial re-
ranking pool, which can improve system recall. It also allows for
the re-ranking of the documents that may have otherwise been
skipped from the pool when the re-ranking budget is low. Finally,
by including the feedback within the re-ranking itself (as opposed
to post-scoring feedback mechanisms, such as PRF), our approach
can find documents that are multiple hops away (i.e., neighbours
of neighbours). GAR achieves low online overhead through offline
computation of a corpus graph that stores the nearest neighbours
of each document.

On experiments over the TREC Deep Learning datasets, we find
that GAR significantly improves precision- and recall-oriented eval-
uation measures. GAR can improve virtually any re-ranking pipeline,
with the results largely holding across a variety of initial retrieval
functions (lexical, dense retrieval, document expansion, and learned
lexical), scoring functions (cross-encoding, late interaction), doc-
ument similarity metrics (lexical, semantic), and re-ranking bud-
gets (high, low). Impressively, a GAR pipeline that uses only BM25
for both the initial retrieval and the document similarity is able
to achieve comparable or improved performance in terms of re-
ranked precision and recall over the competitive TCT-ColBERT-v2-
HNP [19] and DocT5Query [30] models — both of which have far
higher requirements in terms of offline computation and/or storage
capacities. We find that the online overhead of GAR is low compared
to a typical re-ranking, usually only adding around 2-4ms per 100
documents re-ranked. We also find that Gar is largely robust to its
parameters, with major deviations in performance only occurring
with extreme parameter values. Finally, we find that despite using
document similarity, GAR does not significantly reduce the diversity
among the relevant retrieved documents.

In summary, we propose a novel approach to embed a feed-
back loop within the neural re-ranking process to help identify
un-retrieved relevant documents through application of the clus-
tering hypothesis. Our contributions can therefore be summarised
as follows: (1) We demonstrate a novel application of the clustering
hypothesis in the context of neutral re-ranking; (2) We show that
our proposed approach can successfully improve both the precision
and the recall of re-ranking pipelines with minimal computational
overhead; (3) We demonstrate that the approach is robust across
pipeline components and the parameters it introduces. The remain-
der of the paper is organised as follows: We first provide additional
background and related work, positioning GAR in context with past
work in neural retrieval, relevance feedback, and the clustering
hypothesis (Section 2); We then briefly demonstrate that the clus-
tering hypothesis still holds on a recent dataset to motivate our
approach (Section 3); We formally describe our method (Section 4)
and present our experiments that demonstrate its effectiveness
(Sections 5 & 6); We wrap up with final conclusions and future
directions of this promising area (Section 7).

2 BACKGROUND AND RELATED WORK

The recent advancements in deep neural ranking models have
brought significant improvements on the effectiveness of ad-hoc
ranking tasks in IR system [18]. In particular, pre-trained language
models such as BERT [6] and T5 [33] are able to lean semantic
representations of words depending on their context, and these
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representations are able to better model the relevance of a doc-
ument w.r.t. a query, with notable improvements w.r.t. classical
approaches. However, these improvements have an high computa-
tional costs; BERT-based rankers [22, 28] are reported to be slower
than classical rankers such as those based on BM25 by orders of
magnitude [10, 22]. Therefore, it is still usually infeasible to di-
rectly use pre-trained language models to rank all documents in a
corpus for each query (even using various to reduce the computa-
tional cost [12, 20, 21].) Deep neural ranking models are typically
deployed as re-rankers in a pipeline architecture, where a first
preliminary ranking stage is deployed before the more expensive
neural re-ranker, in a cascading manner. During query processing,
the first ranking stage retrieves from the whole document corpus
a candidate pool of documents using a simple ranking function,
with the goal of maximising the recall effectiveness. The following
re-ranking stage processes the documents in the candidate pool,
reordering them by focusing on high precision results at the top
positions, whose documents will be returned to the user [31, 36]. In
this setting, there is an efficiency-effectiveness tradeoff on the num-
ber of documents retrieved by the first ranker. From the efficiency
perspective, a smaller number of documents in the candidate pool
will allow the re-ranker to reduce the time spent on re-ranking the
documents, since the execution time is proportional to the candidate
set size. From the effectiveness perspective, the larger the candidate
pool, the higher the number of potentially relevant documents to
be retrieved from the document corpus. In fact, relevant documents
can be retrieved from the corpus only during first-stage processing.
The recall effectiveness of the candidate pool has been investigated
in previous IR settings, in particular in learning-to-rank pipelines.
Tonellotto et al. [35] studied how, given a time budget, dynamic
pruning strategies [36] can be use in first-stage retrieval to improve
the candidate pool size on a per-query basis. Macdonald et al. [23]
studied the minimum effective size of the document pool, i.e., when
to stop ranking in the first stage, and concluded that the smallest
effective pool for a given query depends, among others, on the
type of the information need and the document representation.
In the context of neural IR, learned sparse retrieval focuses on
learning new terms to be included in a document before indexing,
and the impact scores to be stored in the inverted index, such that
the resulting ranking function approximates the effectiveness of
a full transformer-based ranker while retaining the efficiency of
the fastest inverted-index based methods [5, 7, 26]. In doing so,
first-stage rankers based on learned impacts are able to improve
the recall w.r.t. BM25, but the end-to-end recall is still limited by
the first-stage ranker.

Pseudo-Relevance Feedback (PRF) involves the reformulation of
a query based on the top results (e.g., by adding distinctive terms
from the top documents). This query is then re-issued to the engine,
producing a new ranked result list. Adaptive Re-Ranking also makes
use of these top-scoring documents, but differs in two important
ways. First, the query remains unmodified, and therefore, ranking
scores from the model need not be re-computed. Second, the top
scores are used in an intermediate stage of the scoring process; the
process is guided by the highest-scoring documents known up until
a given point, which may not reflect the overall top results. Finally,
we note that the output of an adaptive re-ranking operation could
be fed as input into a PRF operation to perform query reformulation.
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This work can be seen as a modern instantiation of the cluster-
ing hypothesis, which Jardine and van Rijsbergen [11] stated as
“Closely associated documents tend to be relevant to the same requests".
Many works have explored the clustering hypothesis for various
tasks in information retrieval, such as for visualisation of the corpus
(e.g., [17]), visualisation of search results (e.g., [4]), enriching doc-
ument representations [16] and fusing rankings (e.g., [15]). Most
related to our application is the usage of the clustering hypothesis
for first-stage retrieval (i.e., document selection), in which the doc-
uments to rank are identified by finding the most suitable cluster
for a query [13]. However, these works focus on identifying the
most suitable clusters for a given query and transforming the con-
stituents into a ranking. Moreover, while our approach also takes a
soft clustering approach [14] where each ‘cluster’ is represented by
a document and its neighbours, instead of ranking clusters, we iden-
tify “good” clusters as when the representative document is scored
highly by a strong neural scoring function. We also address the
problem of transforming the documents into a ranking by letting
the neural scoring function do that job as well. Overall, our novel
approach is the first to embed a feedback loop within the re-ranking
process to help identify un-retrieved relevant documents.

3 PRELIMINARY ANALYSIS

We first perform a preliminary check to see whether the cluster-
ing hypothesis appears to hold on a recent dataset and using a
recent model. Namely, we want to check whether the passages
from the MS MARCO corpus [2] are more likely to distributed
closer to those with the same relevance labels than those with
differing grades. We explore two techniques for measuring similar-
ity: a lexical similarity score via BM25, and a semantic similarity
via TCT-ColBERT-HNP [19]. For the queries in the TREC DL 2019
dataset [3], we compute similarity scores between each pair of
judged documents. Then, akin to the Voorhees’ cluster hypothesis
test [37], we calculate the distribution of the relevance labels of
the nearest neighbouring passage by relevance label (i.e., we calcu-
late P(rel(neighbour(p)) = y|rel(p) = x) for all pairs of relevance
labels x and y.)

Table 1 presents the results of this analysis. We observe a clear
trend: passages with a given relevance label are far more likely
to be closer to the passages with the same label (among judged
passages) than those with other labels (in the same row). This holds
across both lexical (BM25) and semantic (TCT-ColBERT) similarity
measures, and across all four relevance labels (ranging from non-
relevant to perfectly relevant).

Table 1: Distribution of nearest neighbouring passages,
among pairs of judged passages in TREC DL 2019, based on
BM25 and TCT-ColBERT-HNP similarity scores. Each cell
represents the percentage that a passage with a given rele-
vance label (x) has a nearest neighbour with the column’s
relevance label (y); each row sums to 100%.

BM25 TCT-ColBERT-HNP
neighbour’s rel y neighbour’s rel y
0 1 2 3 0 1 2
x=01]67 11 16 7 x=0]76 10 10 4
1|14 47 31 8 1117 46 29 8
218 12 71 9 2|1 8 11 72 8
3] 8 7 12 73 3] 6 7 12 75
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Algorithm 1 Graph-based Adaptive Re-Ranking

Input: Initial ranking Ry, batch size b, budget ¢, corpus graph G
Output: Re-Ranked pool Ry

Ri <0 > Re-Ranking results
P <Ry > Re-ranking pool
Fe0 > Graph frontier
do
B « Scorg(top b from P, subject to c) > e.g., monoT5
Ri <~ R{UB > Add batch to results
Ry < Ry \ B > Discard batch from initial ranking
F«< F\B > Discard batch from frontier

F « F U (Ne1caBoURS(B, G) \ Ry) > Update frontier

Ry ifP=F

pe{"? 1 > Alternate initial ranking and frontier
F ifP=Ry

while |R{| < ¢

Ry < Ry UBACKFILL(Rg, Ry) > Backfill remaining items

This analysis suggests that the clustering hypothesis holds on
TREC DL 2019. Therefore, it follows that the neighbours of passages
that a scoring function considers most relevant are a reasonable
place to look for additional relevant passages to be scored — which
is the core motivation of our proposed method.

4 GRAPH-BASED ADAPTIVE RE-RANKING

We now introduce the document re-ranking scenario, and we present
a description of our proposed re-ranking algorithm. Let Ry denote
an initial ranked pool of |Ry| documents produced by a first-stage
ranker, and let R; denote a subsequent re-ranked pool of |R1| = |Ry|
documents. A certain number of top ranked documents from the Ry
pool will subsequently be returned to the user who issued the query.
In re-ranking, we assume that the documents from Ry are processed
in batches of b documents at maximum (the size of the last batch de-
pends on the re-ranking budget). A scoring function Scorg() takes
as input a batch of documents, e.g., the top scoring b documents
in Ry and re-scores them according to a specific re-ranking stage
implementation. The re-scored batch is added the final re-ranked
pool Ry, and then removed from the initial ranked pool Ry. Note
that by setting b = 1, we are re-ranking one document at a time,
as in classical learning-to-rank scenarios; in contrast, when b > 1,
we allow for more efficient re-ranking function implementations
leveraging advanced hardware, such as GPUs and TPUs.

Since the time available for re-ranking is often small, and given
that it is directly proportional to the number of documents re-
ranked, the re-ranking process can be provided with a budget c,
denoting the maximum number of documents to be re-ranked given
the proportional time constraint. If the budget does not allow to
re-rank all the document in the initial ranked pool, the BACKFILL
function returns the documents in Ry that have not been re-ranked,
i.e, not in Ry, that are used to fill up the final re-ranked pool Ry
to contain all the documents initially included in Ry. For example,
if Ry contains 1000 documents and, due to the budget, only 100
documents can be re-scored, the 900 top ranked documents in Ry
but not re-ranked in Ry are appended to R in the same order as in Ry,
to obtain a re-ranked list of 1000 documents. The uncoloured lines in
Alg. 1 illustrate this re-ranking algorithm, which corresponds to the
common re-ranking adopted in a pipelined cascading architecture.
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In our adaptive re-ranking algorithm, we leverage a corpus graph
G = (V,E). This directed graph encodes the similarity between doc-
uments, and can be computed offline, using lexical or semantic
similarity function between two documents. Every node in V repre-
sents a document in the corpus, and every pair of documents may
be connected with an edge in E, labelled with the documents’ simi-
larity. To address the graph’s quadratic space (and time) complexity,
we limit to a small value k the number of edges for each node in the
corpus graph, i.e., |[E| = k|V|. The top k edges are selected according
to their similarity scores, in decreasing order.

Our adaptive re-ranking algorithm, illustrated in Alg. 1, receives
an initial ranking pool of documents Ry, a batch size b, a budget c,
and the corpus graph G as input. We consider a dynamically updated
re-ranking pool P, initialised with the contents of Ry (P < Ry), and
a dynamically updated graph frontier F, initially empty (F « 0).
After the re-ranking of the top b documents selected from P and
subject to the constraint ¢ (called batch B, where b = |b|), we update
the initial and re-ranked pools Ry and R;. The documents in the
batch are removed from the frontier F because there is no need to
re-rank them again. Now we consider the documents in the batch
B, and we look up in the corpus graph for documents whose nodes
are directly connected to the documents in B. These documents
(except any that have already been scored) are added to the frontier
(FU (NE1GHBOURS(B, G) \ R1)), prioritised by the computed ranking
score of the source document. Note that the neighbours may occur
later in the ranking list. Next, instead of using the current contents
of the initial pool Ry for the next batch evaluation, we alternate
between Ry and the current frontier F. In doing so, we ensure that
R contains documents from Ry and newly identified documents not
included in Ry. The algorithm proceeds alternating between these
two options, populating the frontier at each step, until the budget
allows, then backfills the final pool of initial candidates as before.

We note that alternating between the initial ranking and the
frontier is somewhat naive; perhaps it is better to score more/fewer
documents from the frontier, or to dynamically decide whether to
select batches from the frontier or the initial ranking based on recent
scores. Indeed, we investigated such strategies in pilot experiments
but were unable to identify a strategy that consistently performed
better than the simple alternating technique. We therefore decided
to leave the exploration of alternative techniques to future work.

5 EXPERIMENTAL SETUP

We experiment to answer the following research questions:

RQ1 What is the impact of GAR on retrieval effectiveness com-
pared to typical re-ranking?

RQ2 What is the computational overhead introduced by GAR?
(Section 6.2)

RQ3 How sensitive is GAR to the parameters it introduces: the
number of neighbours included in the corpus graph k and
the batch size b? (Section 6.3)

RQ4 What is the impact of GAR on retrieval effectiveness com-
pared to state-of-the-art neural IR systems?

Finally, because GAR is based on scoring similar documents, we
recognise that it has the potential to reduce the diversity of the
retrieved passages (i.e., it could make the retrieved passages more
homogeneous). Therefore, we ask:

RQ5 Does GAR result in more homogeneous relevant passages
than existing techniques?
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5.1 Datasets and Evaluation

Our primary experiments are conducted using the TREC Deep
Learning 2019 (DL19) and 2020 (DL20) test collections [3]. DL19
is used throughout the development and for the analysis of GAR,
and therefore acts as our validation set. DL20 is held out until
the final evaluation, allowing us to confirm that our approach has
not over-fit to DL19. Both datasets use the MS MARCO passage
ranking corpus, which consists of 8.8M passages [2]. DL19 consists
of 43 queries and an average of 215 relevance assessments per
query; DL20 has 54 queries with 211 assessments per query. We
evaluate our approach using nDCG, MAP, and Recall at rank 1000.
For the binary measures (MAP and Recall), we use the standard
practice of setting a minimum relevance score of 2, which counts
answers that are highly or perfectly relevant. In our experiments
we are concerned with both precision and recall, so we focus on
nDCG without a rank cutoff, though we also report the official task
measure of nDCG with a rank cutoff of 10 (nDCG@10) to provide
meaningful comparisons with other works.

We select DL19 and DL20 because they provide more complete
relevance assessments than the MS MARCO development set; this
is especially important given that GAR is designed to retrieve docu-
ments that were not necessarily in the initial re-ranking pool. For
completeness, we also report performance on the small subset of
MS MARCO dev, which consists of 6980 queries, each with 1.1 rele-
vance assessments per query on average. For this dataset, we report
the official measure of Mean Reciprocal Rank at 10 (MRR@10) and
the commonly-reported value of Recall at 1000.

5.2 Retrieval and Scoring Models

To test the effect of GAR under a variety of initial ranking conditions,
we conduct experiments using four retrieval functions as first stage
rankers, each representing a different family of ranking approaches.

e BM25, a simple and long-standing lexical retrieval approach. We
retrieve the top 1000 BM25 results from a PISA [27] index using
default parameters.

e TCT, a dense retrieval approach. We conduct exact (i.e., exhaus-
tive) retrieval of the top 1000 results using a TCT-ColBERT-HNP
model [19] trained on MS MARCO.? This is among the most
effective dense retrieval models to date.

e D2Q, a document expansion approach. We retrieve the top 1000
BM25 results from a PISA index of documents expanded using
a docT5query model [30] trained on MS MARCO. We use the
expanded documents released by the authors. This is the most
effective document expansion model we are aware of to date.

e SPLADE, alearned sparse lexical retrieval model. We retrieve the
top 1000 results for a SPLADE++ model [7] trained on MS MARCO
(CoCondenser-EnsembleDistil version). We use code released
by the authors for indexing and retrieval.# This is the most effec-
tive learned lexical retrieval model we are aware of to date.

Similarly, we experiment with the following neural re-ranking mod-
els to test the effect of the scoring function on GAR.

e MonoTS5, a sequence-to-sequence scoring function. We test two
versions of the MonoT5 model [29] trained on MS MARCO from
two base language models: MonoT5-base, and MonoT5-3b. The
3b model has the same structure as the base model, but has more

$Hugging Face ID: castorini/tct_colbert-v2-hnp-msmarco
*https://github.com/naver/splade
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parameters (13X more; 2.9B, compared to base’s 223M) so it is
consequently more expensive to run. These models are among
the most effective scoring functions reported to date.

o ColBERT (scorer only), a late interaction scoring function. Al-
though ColBERT [12] can be used in an end-to-end fashion (i.e.,
using its embeddings to perform dense retrieval), we use it as
a scoring function over the aforementioned retrieval functions.
The model represents two paradigms: one where representations
are pre-computed to reduce the query latency, and another where
the representations are computed on-the-fly.

We use the implementations of the above methods provided by
PyTerrier [24]. Following PyTerrier notation, we use » to denote a
re-ranking pipeline. For instance, “BM25»MonoT5-base” retrieves
using BM25 and re-ranks using MonoT5-base.

5.3 Corpus Graphs

In our experiments, we construct and exploit two corpus graphs,
namely a lexical similarity graph and a semantic similarity graph.
The lexical graph (denoted as GARgyy,5) is constructed by retrieving
the top BM25 [34] results using the text of the passage as the query.
We use PISA to perform top k + 1 lexical retrieval (discarding the
passage itself). Using a 4.0 GHz 24-core AMD Ryzen Threadripper
Processor, the MS MARCO passage graph takes around 8 hours to
construct. The semantic similarity graph (denoted as GARrct) is con-
structed using the TCT-ColBERT-HNP model. We perform an exact
(i.e., exhaustive) search over an index to retrieve the top k + 1 most
similar embeddings to each passage (discarding the passage itself).
Using an NVIDIA GeForce RTX 3090 GPU to compute similarities,
the MS MARCO passage graph takes around 3 hours to construct.

We construct both graphs using k = 8 neighbours, and explore
the robustness to various values of k in Section 6.3. Because the
number of edges (i.e., neighbours) per node (i.e., passage) is known,
the graphs are both stored as a uncompressed sequence of docids.
Using unsigned 32-bit integer docids, only 32 bytes per passage are
needed, which amounts to 283 MB to store an MS MARCO graph.°
We note that there are likely approaches that reduce the computa-
tional overhead in graph construction by making use of approxi-
mate searches; we leave this for future work. The two graphs differ
substantially in their content.” We release these graphs through our
implementation to aid other researchers and enable future works.

5.4 Other Parameters and Settings

We use a GAR batch size of b = 16 by default, matching a typical
batch size for a neural cross-encoder model. We explore the robust-
ness of GAR to various values of b in Section 6.3. We explore two
budgets: ¢ = 100 (a reasonable budget for a deployed re-ranking sys-
tem, e.g., [9]) and ¢ = 1000 (the de facto default threshold commonly
used in shared tasks like TREC).

6 RESULTS AND ANALYSIS

We now present the results of our experiments and conduct associ-
ated analysis to answer our research questions.

SWe also experiment with applying DuotT5 [32] as a final re-ranker in Section 6.4.
SFor context, the compressed document source is 1035MB, and the compressed PISA
index of MS MARCO is 647MB.

7Only 3% of passages agree on seven or eight neighbours across graphs, and 43% of
passages have no agreement on neighbours across graphs.
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6.1 Effectiveness

To understand whether GAR is generally effective, it is necessary
to test the effect it has on a variety of retrieval pipelines. There-
fore, we construct re-ranking pipelines based on every pair of our
initial ranking functions (BM25, TCT, D2Q, and SPLADE) and scor-
ing functions (MonoT5-base, MonoT5-3b, and ColBERT). These 12
pipelines collectively cover a variety of paradigms. Table 2 presents
the results of GAR on these pipelines for TREC DL 2019 and 2020 us-
ing both the lexical BM25-based graph and the semantic TCT-based
corpus graph. We report results using both re-ranking budgets
¢ =100 and ¢ = 1000.

Each box in Table 2 allows the reader to inspect the effect on re-
trieval effectiveness that GAR has on a particular re-ranking pipeline
and re-ranking budget. In general, we see that the greatest improve-
ment when the initial retrieval pool is poor. In particular, BM25 only
provides a R@1k of 0.755 and 0.805 on DL19 and DL20, respectively,
while improved retrieval functions offer up to 0.872 and 0.899, re-
spectively (SPLADE). GAR enables the pipelines to find additional
relevant documents. Using BM25 as the initial pool, our approach
reaches a R@1k up to 0.846 and 0.892, respectively (BM25»MonoT5-
3b w/ GARrcr and ¢ = 1000). Perhaps unsurprisingly, this result is
achieved using both a corpus graph (GARrycr) that differs substan-
tially from the technique used for initial retrieval (BM25) and using
the most effective re-ranking function (MonoT5-3b). However, we
also note surprisingly high recall in this setting when using the
GARpy25 corpus graph: up to 0.831 (DL19) and 0.881 (DL20). These
results are on par with the recall achieved by TCT and D2Q - an im-
pressive feat considering that this pipeline only uses lexical signals
and a single neural model trained with a conventional process.?
The pipelines that use a BM25 initial ranker also benefit greatly in
terms of nDCG, which is likely due in part to the improved recall.

Significant improvements are also observed in all other pipelines,
particularly in terms of nDCG when there is a low re-ranking bud-
get available (c = 100) and in recall when a high budget is available
(c = 1000). In general, the corpus graph that is least similar to the
initial ranker is most effective (e.g., the BM25 graph when using a
TCT ranking). However, we note that both corpus graphs improve
every pipeline, at least in some settings. For instance, the GARtcr
corpus graph consistently improves the nDCG of pipelines that use
TCT as an initial ranker, but rarely the recall.

We also note that GAR can nearly always improve the precision
of the top results, as measured by nDCG, in settings with a limited
re-ranking budget (¢ = 100), even when R@1k remains unchanged.
This is likely due to the fact that GAR is able to pick out documents
from lower depths of the initial ranking pool to score within the
limited available budget. For instance, in the case of the strong
SPLADE»MonoT5-base pipeline with ¢ = 100, which offers high
recall to begin with (0.872 on DL19 and 0.899 on DL20), GARgy5
improves the nDCG from 0.750 to 0.762 (DL19) and from 0.748 to
0.757 (DL20), while leaving the R@1k unchanged.

In a few rare cases, we observe that GAR can yield a lower mean
performance than the baseline (e.g., MAP for the D2Q»MonoT5-
base pipeline with ¢ = 1000). However, these differences are never

8D2Q is trained as a sequence-to-sequence model and involves a lengthy inference
stage during indexing, while TCT employs a complex, multi-stage training process
involving another trained scoring model that is challenging to fully reproduce [38].
Meanwhile, MonoT5-3b is simply trained using MS MARCO’s training triples.
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Table 2: Effectiveness of GAR on TREC DL 2019 and 2020 in a variety of re-ranking pipelines and re-ranking budgets (c). The
top result for each pipeline is in bold. Significant differences with the baseline (typical re-ranking) are marked with *, while

insignificant differences are in grey (paired t-test, p < 0.05, using Bonferroni correction).

DL19 (valid.) ¢ = 100

DL19 (valid.) ¢ = 1000

DL20 (test) ¢ = 100

DL20 (test) ¢ = 1000

Pipeline | nDCG  MAP R@1lk | nDCG MAP R@lk | nDCG MAP R@lk | nDCG MAP R@1lk
BM25»MonoT5-base 0.665 0417 0755 | 0.699 0483 0755 | 0.672 0421 0.805| 0711 0498  0.805
w/ GARgzs *0.697 *0.456 *0.786 | 0.727 0490 *0.827 | *0.695  0.439 *0.823 | *0.743  0.501 *0.874
w/ GARrer *0.722 *0.491 *0.800 | *0.743 0.511 *0.839 | *0.714 *0.472 *0.831 | *0.749 0.501 *0.892
BM25»MonoT5-3b 0.667 0418 0.755 | 0.700 0.489 0755 | 0.678  0.442  0.805 | 0728  0.534  0.805
w/ GARpps *0.693 0454 *0.790 | *0.741 0517 *0.831 | *0.715 *0.469 *0.829 | *0.772 0556 *0.881
w/ GARer *0.715 *0.484 *0.806 | *0.746 0.522 *0.846 | *0.735 *0.512 *0.837 | *0.787 *0.564 *0.899
BM25»ColBERT 0.663 0409 0755 | 0.681 0458 0755 | 0.667 0421  0.805| 0.697 0469  0.805
w/ GARgps *0.690 *0.442 *0.783 | *0.720 0.480 *0.825 | *0.695 *0.446 *0.823 | *0.732  0.479 *0.870
w/ GARper *0.716  *0.475 *0.798 | *0.727 0.482 *0.841 | *0.707 *0.463 *0.829 | *0.740 0.481 *0.887
TCT»MonoT5-base 0708 0472 0830 | 0.704 0473 0.830 | 0.698 04838 0848 | 0.693 0471  0.848
w/ GARgp5 *0.728  0.484  0.852 | *0.733 0.480 *0.883 | *0.719 *0.501 0.861 | *0.719 0.473 *0.881
w/ GARper 0722 0481 0847 | *0.724 0474 0866 | *0.712 0494  0.856 | *0.710 0471  0.871
TCT»MonoT5-3b 0720 0498 0830 | 0725 0513 0830 | 0723 0534 0848 | 0733 0544  0.848
w/ GARgzs *0.748 *0.521 *0.857 | *0.759 0.521 *0.885 | *0.743  0.546 *0.864 | *0.771 *0.555 *0.890
w/ GARper *0.742 *0.517  0.849 | *0.749 0516 *0.868 | *0.741 *0.545 *0.861 | *0.759  0.551 *0.880
TCT»ColBERT 0.708 0464 0.830 | 0701 0452 0830 | 0.698 0476 0.848 | 0.697 0470  0.848
w/ GARgpzs *0.729 *0.480 0.853 | *0.727 0.459 0.876 | *0.715 0.485 0.857 | *0.722 *0.477 *0.877
w/ GARer *0.722 0474 0845 | *0.715 0452  0.852 | *0.711 *0.484 *0.857 | *0.713  0.473  0.864
D2Q»MonoT5-base 0736 0503  0.830 | 0.747 0531 0.830 | 0.726 0499 0839 | 0731 0.508  0.839
w/ GARgps *0.748 0506 0848 | 0.757 0519 *0.880 | *0.734  0.497 *0.847 | 0.748  0.504 *0.880
w/ GARer *0.760 *0.528  0.850 | *0.766 0.533 *0.879 | 0.740 0508 *0.856 | 0.748  0.499 *0.895
D2Q»MonoT5-3b 0737 0506 0830 | 0751 0542 0.830 | 0738 0531 0839 | 0753 0557  0.839
w/ GARppps 0.744 0512 *0.850 | 0.772 0.549 *0.880 | *0.751  0.535 *0.852 | *0.781  0.561 *0.887
w/ GARper 0.755  0.524 *0.857 | 0.769 0544 *0.880 | *0.764 0.550 *0.860 | *0.790  0.565 *0.905
D2Q»ColBERT 0724 0475 0830 | 0733 0501 0830 | 0718 0483 0839 | 0717 0479  0.839
w/ GARgzs 0734 0484 0845 | 0.753 0.505 *0.876 | *0.731  0.487 *0.849 | *0.737  0.482 *0.872
w/ GARper *0.744 *0.496  0.849 | *0.752 0.503 *0.878 | *0.735 0.483 *0.856 | *0.746  0.485 *0.893
SPLADE»MonoT5-base | 0.750  0.506  0.872 | 0.737 0.487 0872 | 0.748 0505 0.899 | 0.731 0.480  0.899
w/ GARppps *0.762 0509 0.888 | 0.745 0.487 0.893 | *0.757 0.509  0.902 | 0.737 0479 0.909
w/ GARper *0.759 0512 0.878 | 0.737 0481  0.875| 0751  0.506 0.903 | 0.734  0.475  0.908
SPLADE»MonoT5-3b 0761 0526 0872 | 0.764 0.533 0.872 | 0774 0559 0899 | 0775 0560  0.899
w/ GARgps *0.775 0532 *0.891 | 0.774 0.533 0.896 | *0.780  0.559  0.903 | *0.788  0.562 *0.919
w/ GARer *0.773  0.539  0.884 | 0769 0.531  0.881 | *0.780 0.561 0.905 | 0.783  0.559  0.910
SPLADE»ColBERT 0741 0479 0872 | 0.727 0.456 0.872 | 0747 0495 0899 | 0733 0474  0.899
w/ GARppp2s *0.753  0.490 0.885 | 0.730 0.456 0.875 | *0.755 0501  0.902 | *0.742 *0.477 0.914
w/ GARer *0.750 0489 0876 | 0.727 0455  0.868 | *0.752  0.500  0.903 | 0.740 *0.476 0911

statistically significant and are usually accompanied by significant
improvements to other measures (e.g., the R@1k improves).

We note that the same trends appear for both our validation set
(DL19) and our held-out test set (DL20), suggesting that GAR is not
over-fitted to the data that we used during the development of GAR.

Finally, we test GAR on the MS MARCO dev (small) set. This
setting differs from the TREC DL experiments in that each of the
queries has only a few (usually just one) passages that are labeled
as relevant, but has far more queries (6,980 compared to 43 in DL19
and 54 in DL20). Thus, experiments on this dataset test a pipeline’s
capacity to retrieve a single (and somewhat arbitrary) relevant pas-
sage for a query.’ Due to the cost of running multiple versions of

9The suitability of this dataset for evaluation is debated in the community (e.g., [1, 25]),
but we include it for completeness.

highly-expensive re-ranking pipelines, we limit this study to a low
re-ranking budget ¢ = 100 and to the two less expensive scoring
functions (MonoT5-base and ColBERT). Table 3 presents the results.
We find that GAR offers the most benefit in pipelines that suffer
from the lower recall - namely, the BM25-based pipelines. In this
setting, the improved R@1k also boosts the RR@10. In the TCT,
D2Q, and SPLADE pipelines, R@1k often significantly improved,
but this results in non-significant (or marginal) changes to RR@10.

To answer RQ1, we find that GAR provides significant benefits in
terms of precision- and recall-oriented measures. The results hold
across a variety of initial retrieval functions, re-ranking functions,
and re-ranking budgets. The most benefit is apparent when the
initial pool has low recall, though we note that GARr also improves
over systems with high initial recall — particularly by enabling
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Table 3: Effectiveness of GAR on the MS MARCO dev (small)
set with a re-ranking budget of ¢ = 100. The top result for
each pipeline is in bold. Significant differences with the base-
line (typical re-ranking) are marked with * (paired t-test,
p < 0.05, using Bonferroni correction).

»MonoT5-base »ColBERT
RR@10 R@1k RR@10 R@ik

BM25» 0356  0.868 0323  0.868
GARgyzs 0358 *0.881 0323 *0.882
GARrer %0369  *0.903  *0.333  *0.902

TCT» 038 0970 0345  0.970
GARgyzs  0.389 *0.973  *0.346 *0.973
GARper 0388 *0.973  0.346 *0.972

D2Q» 0.386 0936  0.345  0.936
GARpyps  0.386  *0.941  0.345 *0.941
GARrer 0386 *0.949  0.344 *0.948

SPLADE»  0.389  0.983 0345  0.983
GARgpyps 0389 0.984  *0.346  0.984
GARrcr 0.388 *0.984 *0.346 0.984

Pipeline

higher precision at a lower re-ranking budget. Overall, we find
that GAR is safe to apply to any re-ranking pipeline (i.e., it will
not harm the effectiveness), and it will often improve performance
(particularly when the re-ranking budget is limited or when a low-
cost first stage retriever is used).

To illustrate the ability of GAR to promote low-ranked docu-
ments under limited ranking budgets, Figure 2 plots the initial rank
(x-axis) of documents and their final rank (y-axis), for a particular
query. Each point represents a retrieved document, with colour/size
indicative of the relevance label. Lines between points indicate links
followed in the corpus graph. It can be seen that by leveraging the
corpus graph, GAR is able to promote highly relevant documents
that were lowly scored in the initial ranking, as well as retrieve
‘new’ relevant documents, which are not retrieved in the initial
BM25 pool. For instance, GAR is able to select five rel=2 documents
from around initial rank 250-300, and ultimately score them within
the top 40 documents. Meanwhile, it retrieves two rel=2 and one
rel=3 documents that were not found in the first stage.

6.2 Computational Overhead

GAR is designed to have a minimal impact on query latency. By
relying on a pre-computed corpus graph that will often be small
enough to fit into memory (283MB with k = 8 for MS MARCO),
neighbour lookups are performed in O(1) time. With the frontier F
stored in a heap, insertions take only O(1), meaning that finding
neighbours and updating the frontier adds only a constant time
for each scored document. Sampling the top b items from the heap
takes O(blogc), since the number of items in the heap never needs
to exceed the budget c.

To obtain a practical sense of the computational overhead of
GAR, we conduct latency tests. To isolate the effect of GAR itself,
we find it necessary to factor out the overhead from the re-ranking
model itself, since the variance in latency between neural scoring
runs often exceeds the overhead introduced by GaR. To this end, we
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Figure 2: Plot of the initial and final rankings of
BM25»MonoT5-base using GArrcr with ¢ = 100 for the
DL19 query ‘how long is life cycle of flea’. The colour/size
of dots indicate the relevance label. Lines between points
indicate links followed in the corpus graph.

pre-compute and store all the needed query-document scores and
simply look them up as they would be scored. We then test various
re-ranking budgets (c) for DL19, and take 10 latency measurements
of the typical re-ranking and GAR processes. Table 4 reports the
differences between the latency of GARr and the typical re-ranking
results, isolating the overhead of GaR itself. We find that GaAR intro-
duces less than 37.37ms overhead per 1000 documents scores (i.e.,
2.68-3.73ms overhead per 100 documents scored), on average, using
16 documents per batch. We report results using the semantic TCT-
based corpus graph, though we find little difference when using
the lexical BM25-based corpus graph. The overhead can be further
reduced (down to 3.1ms per 100 documents) by using a larger batch
size, i.e., 64 documents per batch; we explore the effect of the batch
size parameter on effectiveness in Section 6.3. When compared to
the cost of monoT5 scoring (rightmost column in Table 4), the GAR
process adds negligible overhead, typically amounting to less than
a 2% increase in latency and falls within the variance of the scoring
function’s latency for low re-ranking budgets.

This experiment answers RQ2: the online computational over-
head of GAR is minimal. It can be efficiently implemented using
a heap, and adds only around 3-4ms per 100 documents in the re-
ranking budget. This overhead is negligible when compared with
the latency of a leading neural scoring function, though it will
represent a higher proportion for more efficient scoring functions.

6.3 Robustness to Parameters

Recall that GAR introduces two new parameters: the number of
nearest neighbours in the corpus graph k and the batch size b. In this
section, we conduct experiments to test whether GAR is robust to the
settings of these parameters.'? We separately sweep k € [1,16] and
b € [1,512] (by powers of 2) over DL19 with ¢ = 1000 for all GAR
pipelines, and present the different effectiveness metrics in Figure 3.

¥Dye to the number of pipelines and parameter settings, an exhaustive grid search
over these parameters is prohibitively expensive.
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With regard to the number of graph neighbours k, the nDCG,
MAP and recall metrics are relatively stable from around k = 6 to
k = 16 for almost all pipelines. The MAP performance appears to be
the least stable in this range, with some fluctuations in performance
between k = 7 and k = 13. Recall appears to be most affected, with
sharp gains for some pipelines between k = 1 to k = 4. This trend
is present also for nDCG.

The batch size b is remarkably stable from b = 1 to b = 128, with
only a blip in effectiveness for the BM25 graph at b = 16. The most
prominent shift in performance occurs at large batch sizes, e.g.,
b = 512. We note that, when b = 512, the corpus graph can only
be traversed for a single hop - the neighbours of the top-scoring
documents from the frontier batch are not able to be fed back into
the re-ranking pool. This validates our technique of incorporating
the feedback mechanism into the re-ranking process itself, which
gives the model more chances to traverse the graph. While it may
be tempting to prefer the stability of the system with very low
batch sizes, we note that this has an effect on the performance: as
seen in Section 6.2, lower batch sizes reduces the speed of GAr
itself. Further, and more importantly, b imposes a maximum batch
size of the scoring function itself; given that neural models benefit
considerably in terms of performance with larger batch sizes (since
the operations on the GPU are parallelised), larger values of b (e.g.,
b =16 to b = 128) should be preferred for practical reasons.

To answer RQ3, we find that the performance of GaR is stable
across various pipelines when the number of neighbours is suffi-
ciently large (k > 6) and the batch size is sufficiently low (b < 128).

6.4 Baseline Performance

Section 6.1 established the effectiveness of GAR as ablations over a
variety of re-ranking pipelines. We now explore how the approach
fits into the broader context of the approaches proposed for passage
retrieval and ranking. We explore two classes of pipelines: ‘Kitchen
Sink’ approaches that combine numerous approaches and models
together, and ‘Single-Model” approaches that use only involve a
single neural model at any stage. We select representative GAR
variants based on the nDCG@10 performance on DL19 (i.e, as a
validation set), with DL20 again treated as the held-out test set.
All systems use a re-ranking budget of ¢ = 1000. In this table, we
report nDCG@10 to allow comparisons against prior work. We also
report the judgment rate at 10 to provide context about how missing
information in the judgments may affect the nDCG@10 scores.
The Kitchen Sink results are reported in the top section of Ta-
ble 5. All systems involve three ranking components: an initial

Table 4: Mean latency overheads (ms/query) for GAr with
95% confidence intervals. The latency of MonoT5-base scor-
ing (with a model batch size of 64) is presented for context.

GARreT MonoT5-base

c b=16 b=064 Scoring
100 2.68 £0.02 0.57 £ 0.01 267.06 £ 6.12
250 8.10 £ 0.05 4.34 £ 0.01 652.30 £ 7.53
500 17.38 £0.07 13.66 +£0.02 1,362.14 +5.27

750 26.96 +£0.12 22.29+0.07 2,047.20 +6.71
1000 37.37+0.07 30.82+0.04 2,631.75+6.28

MacAvaney, et al.
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Figure 3: Performance of GAR when the number of neigh-
bours in the corpus graph k and the batch size b vary. Each
line represents a system from Table 2. The dashed blue (solid
green) lines are for the BM25 (TCT) graph.

retriever Ry, a Mono-scorer Ry (which assigns a relevance score to
each document), and a Duo-scorer Ry (which scores and aggregates
pairs of documents). The Duo-style models are known to improve
the ranking of the top documents [32]. Although we leave the ex-
ploration of how GAR can be used to augment the Duo process
directly for future work, we still want to check what effect GArR
has on these pipelines. We ablate two Duo systems (either based
on D2Q or SPLADE) using GAR for the first-stage re-ranker and
a DuoT5-3b-based second-stage re-ranker (second stage uses the
suggested cutoff of 50 from [32]). We observe that there is no signif-
icant difference in terms of precision of the top 10 results. However,
GAR can still provide a significant improvement in terms of nDCG
later in the ranking and in terms of recall. These results suggest
that although GaRr identifies more relevant documents, the Duo
models are not capable of promoting them to the top ranks.

We next explore Single-Model systems, which are shown in the
bottom section of Table 5. Having only a single models likely has
some practical advantages: pipelines that use a single model tend to
be simpler, and practitioners only need to train a single model. Here,
we compare with a variety of systems that fall into this category,
most notably the recently-proposed ColBERT-PRF approaches that
operate over dense indexes [39]. A GARgy,5 pipeline that operates
over BM25 results also falls into this category, since only a single
neural model (the scorer) is needed. Among this group, GAR per-
forms competitively, outmatched only by ColBERT-PRF [39] and
the recent SPLADE [7] model (though the differences in perfor-
mance are not statistically significant). Compared to these methods,
though, GAR requires far less storage — the corpus graph for GAR is
only around 283MB, while the index for SPLADE is 8GB, and the
vectors required for CoIBERT-PRF are 160GB.

To answer RQ4: We observe that GAR can be incorporated into a
variety of larger, state-of-the-art re-ranking pipelines. It frequently
boosts the recall of systems that it is applied to, though the scor-
ing functions we explore tend to have difficulty in making use of
the additional relevant passages. This motivates exploring further
improvements to re-ranking models. For instance, cross-encoder
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Table 5: Performance of GAR compared to a variety of other baselines. Significant differences are computed within groups,
with significance denoted as superscript letters ¢ ¢ (paired t-test, p < 0.05, Bonferroni correction). Rows marked with { are
given to provide additional context, but the metrics were copied from other papers so do not include statistical tests.

DL19 (validation)

DL20 (test)

Ro Ry Ry RR nDCG@10 nDCG R@lk Judged@10 nDCG@10 nDCG R@ilk Judged@10
Kitchen Sink Systems

D2Q »MonoT5-3b  »DuoT5-3b 0.771  0.756 200.830 0.958 0.785 4b0.754 b0 839 0.996

SPLADE »MonoT5-3b  »DuoT5-3b 0.768  0.772  0.872 0.953 0.787  20.781  0.899 0.987
a SPLADE »MonoT5-3b  »DuoT5-3b GARgpizs 0.767 0781  0.896 0.951 0787  0.794  0.919 0.989
b D2Q »MonoT5-3b  »DuoT5-3b GARrer 0.766  0.775  0.880 0.953 0.788 0793  0.905 0.993
+ TAS-B+D2Q [8] »MonoT5-3b  »DuoT5-3b 0.759 - 0882 - 0.783 - 089 -
Single-Model Systems

CoIBERT ANN  »CoIBERT  »ColBERT-PRF 0.739 0.764  0.871 0.907 0715 0746  0.884 0.946

SPLADE - - 0731 0.755  0.872 0.926 0720 0750  0.899 0.970
¢ BM25 »MonoT5-3b - GARpyps 0729 0.741  0.831 0.947 0.756  0.772  0.881 0.972

BM25 »MonoT5-3b - 0722 0.700  €0.755 0.944 0.749  €0.728  €0.805 0.980

TCT = - 0721 0708  0.830 0.914 €0.686  €0.689  0.848 0.931

ColBERT ANN  »ColBERT - 0.693  0.687  0.789 0.884 €0.687  €0.711  0.825 0.937
i ANCE = = 0.648 - 0755 0.851 0.646 - 0776 0.865

D20Q - - €0.615 €0.678  0.830 0.916 €0.608  €0.676  0.839 0.956

Table 6: Intra-List Similarity (ILS) among retrieved relevant
documents. Since the set of retrieved documents does not
change using typical Re-Ranking (RR), each value in this
column is only listed once. ILS scores that are statistically
equivalent to the RR setting are indicated with * (procedure
described in Section 6.5).

GARpMzs GARrcr
Pipeline RR  ¢=100 c=1k  ¢=100 c=1k
BM25»MonoT5-base 0.947 *0.946 *0.946 *0.947 *0.946
BM25»MonoT5-3b *0.946 *0.946 *0.946 *0.946
BM25»ColBERT *0.946 *0.946 *0.947 *0.946
TCT»MonoT5-base 0.969 *0.969 *0.968 *0.969 *0.969
TCT»MonoT5-3b *0.969 *0.968 *0.969 *0.969
TCT»ColBERT *0.969 *0.969 *0.969 *0.969
D2Q»MonoT5-base 0.969 *0.968 *0.968 *0.969 *0.968
D2Q»MonoT5-3b *0.968 *0.968 *0.968 *0.968
D2Q»ColBERT *0.968 *0.968 *0.969 *0.968
SPLADE»MonoT5-base  0.969 *0.968 *0.968 *0.969 *0.969
SPLADE»MonoT5-3b *0.968 *0.968 *0.968 *0.969
SPLADE»ColBERT *0.968 *0.969 *0.969 *0.969

models have largely relied on simple BM25 negative sampling (e.g.,
from the MS MARCO triples file) for training. Techniques like hard
negative sampling [40] and distillation [19] (employed to train mod-
els like SPLADE and TCT) have so far been largely unexplored for
cross-encoder models; these techniques may help them recognise
more relevant documents.

6.5 Diversity of Retrieved Passages

Next, we test whether GAR results in a more homogeneous set of
retrieved relevant passages, compared to typical re-ranking. Among
the set of relevant passages each system retrieved,!! we compute
the Intra-List Similarity (ILS) [41] using our TCT embeddings. ILS
is the average cosine similarity between all pairs of items in a set,

!1We are only concerned with the diversity among the relevant passages (rel = 2 or
rel = 3) because non-relevant passages are inherently dissimilar from relevant ones.

so a higher ILS values here indicate that the relevant documents are
more similar to one another. Table 6 compares the ILS of each initial
ranking function (BM25, TCT, D2Q, and SPLADE) with the GARpy,5
and GARrrcr counterparts. Using two-one-sided t-tests (TOSTs) with
bounds of 0.005 and p < 0.05 (including a Bonferonni correction),
we find that GAR yields statistically equivalent diversity to the
typical re-ranking system.

These results answer RQ5: despite using document similarity to
help choose additional documents to score, GAR does not result in
the system retrieving a more homogeneous set of relevant passages.

7 CONCLUSIONS AND OUTLOOK

In this paper we took a modern approach to the cluster hypoth-
esis, to consider nearest neighbour documents while re-ranking
using a neural re-ranker. In this way, the neural re-ranker feedbacks
how useful documents are, which allows to prioritise further the
next batch of documents to identify in an adaptive manner. Experi-
ments using nearest neighbour graphs computed using BM25 and
TCT-ColBERT-HNP demonstrated the promise of our Graph-based
Adaptive Re-ranking approach, with significant improvements in
precision- and recall-oriented measures on the TREC DL 2019 &
2020 passage ranking corpus. For instance, GAR can improve nDCG
by up to 8% (BM25»monoT5-base w/ TCT) and R@1000 up to 12%
(also BM25»monoT5-base w/ TCT).

We believe this work opens up several directions for the mod-
elling of adaptive re-ranking - indeed, it can be seen as a closed loop
modelling problem (as opposed to the classical open loop re-ranking
formulation), or as an explore/exploit scenario. Due to the effec-
tiveness and efficiency of the instantiations shown here, we leave
further advanced formulations to future work.
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