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ABSTRACT
We propose a computational approach for recipe ideation, a down-
stream task that helps users select and gather ingredients for cre-
ating dishes. To perform this task, we developed RecipeMind, a
food anity score prediction model that quanties the suitability
of adding an ingredient to set of other ingredients. We constructed
a large-scale dataset containing ingredient co-occurrence based
scores to train and evaluate RecipeMind on food anity score pre-
diction. Deployed in recipe ideation, RecipeMind helps the user
expand an initial set of ingredients by suggesting additional ingre-
dients. Experiments and qualitative analysis show RecipeMind’s
potential in fullling its assistive role in cuisine domain.
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Figure 1: Overview of Recipe Ideation. RecipeMind guides
the user’s choices from food pairing (Step 1) shown on left
side in Recipe Ideation) to recipe completion (Step N). In the
middle of ideation (Step 3), RecipeMind recommends adding
baking soda to current set based on its score predictions.

1 INTRODUCTION
Professional chefs and home cooks have pursued to create new
dishes and formulate novel recipe ideas which are important tasks
in culinary domain. Some recipe ideas derive from existing dishes
while others are created from novel ingredient combinations. As
a recipe comprises a set of ingredients and sequence of cooking
instructions, onemaywant to brainstorm a recipe starting with a set
of few ingredients and consecutively expanding it with additional
ones. As illustrated in Figure 1 starting with buttermilk, we dene
these consecutive steps of selecting ingredients (our, chocolate
chips, baking soda) as recipe ideation, gradually leading to recipe
completion (Chocolate Chip Cookies).
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Recipe ideation is challenging due to vast space of cooking possi-
bilities and complexity for avor yet important for creative cooking
in culinary domain [44]. As multiple ingredients used for cooking
a dish form recipe context [38], choosing the right ingredient re-
quires comprehensive understanding in culinary aspects such as
aroma or avor [13]. A systematic approach towards recipe ideation
would involve initiating with the most basic recipe idea consisting
few ingredients and iteratively updating it with new additional
ingredients that goes well with its overall recipe context.

Computational approaches for assisting recipe ideation pro-
cess have recently become necessary to solve these issues in culi-
nary domain [21]. For instance, Kitchenette predicts food pairing
scores [40] and RecipeBowl retrieves the best ingredient given a
nearly completed recipe [24] which are deemed as earliest and
latest stage of recipe ideation respectively. A more versatile compu-
tational approach deployable in any stages of recipe ideation may
be desirable.

In this work, RecipeMind performs the ideation task by quantify-
ing the suitability of adding an ingredient to set of other ingredients.
Henceforth, we make the following denitions and formulate the
objective of recipe ideation task prior to introducing our proposed
model RecipeMind.

• Ingredient Space U: A union space containing available in-
gredients for recipe ideation.

• Ingredient Set S: An nite subset S ∈ U containing ingredi-
ents. In addition, S is a-sized ingredient set where |S | = 
and  ≥ 1.

• Additional Ingredient  : A single ingredient to be added to
current ingredient set where  ∈ U.

• Food Anity Score : A score that quanties the suitability
of adding  to S resulting S+1 = S ∪ {} where  ∈ R.

Problem 1 (Recipe Ideation Task). We dene the objective of
Recipe Ideation Task as nite steps of sequential ingredient set
expansion. Each step involves expanding the ingredient set S by
adding another ingredient  which results in S+1 = S ∪ {}.

To solve the above problem, we introduce the following two
tasks.

Task 1 (Food Affinity Score Prediction). Given an ingredient
set S and additional ingredient  , RecipeMind  predicts the food
anity score between S and {} through modeling  =  (S, ).

Task 2 (Additional Ingredient Recommendation). Given an
ingredient set S , all possible ingredients  ∈ U − S and RecipeMind
 , the recommended ingredient  to be added to S is based on the
top-ranked anity score predictions made by RecipeMind.

 = argmax


 (S, ) (1)

To train our RecipeMind model, we constructed a large-scale
dataset where each data instance is dened as (S, ,). The data
instances were built from the ingredient subset co-occurrences in
the Reciptor dataset containing 507,834 recipes and 2,391 ingredi-
ents deemed as Ingredient Space U [27]. The food anity scores
were calculated based on Signicant PMI based on Document Count
and were applied to our recipe ideation task [15, 16].

We adopted the Set Transformer framework when developing
the model architecture of RecipeMind [26]. To help RecipeMind

jointly learn cross-relational features between ingredients in S
and  , we developed Cascaded Set Transformer using Pooling by
Multihead Cross-Attention (PMX).

We evaluated RecipeMind’s food anity score prediction through
baseline and ablation experiments with expanding ingredient sub-
sets including unseen sizes in training set. We further analyzed
the recommendation results and attention heatmaps after deploy-
ing RecipeMind in example recipe ideation scenarios to explore its
understanding in recipe contexts.

As shown in Figure 1, RecipeMind encompasses from food pair-
ing to recipe completion as it chooses the most suitable ingredient
choices given any number of ingredients in current set. To the
best of our knowledge, this work is the rst attempt to introduce a
data-driven approach that assists ingredient choices at any stage
in recipe ideation. The major contributions of our work can be
summarized as follows,

• We formulated a downstream task called recipe ideation
which features and food anity score prediction and addi-
tional ingredient recommendation.

• We created a large-scale dataset that contains anity scores
for each pair of -sized ingredient set and additional ingre-
dient.

• We developed RecipeMind utilizing Cascaded Set Transform-
ers using Pooling by Multihead Cross-Attention.

• We empirically demonstrated RecipeMind’s robustness in
expanding set sizes through experiments and analyzed its
understanding in recipe contexts throughout recipe ideation
scenarios 1.

2 RELATEDWORKS
2.1 Representation Learning for Recipes
Previous works that have introduced various deep learning ap-
proaches for improved representation learning of cooking recipes.
Cross-modal or multimodal approaches incorporating recipe texts
with images have been introduced where some focused on improv-
ing representation learning on recipes [6, 8, 32, 33, 37, 48, 50, 53, 54].
Others utilized these features to improve recipe retrieval tasks [7,
9, 29, 58]. Few works have attempted to apply cross-modal feature
learning to recipe numeracy tasks such as predicting calories [28]
or food ingredient amounts [18].

Meanwhile, as recipes can be expressed as sets of ingredient,
recent works have proposed set representation learning methods
to eectively learn recipe-related contextual features [24, 27]. Our
work also proposes to apply set representation learning to recipe
ideation since it is crucial to understand various recipe context and
determine the optimal ingredient to be added for the next step.

2.2 Previous Approaches related to Recipe
Ideation

One of the downstream tasks related to our work is food pairing
which can be deemed as the fundamental form of recipe ideation.
Computational methods for food pairing have been introduced in-
cluding Kitchenette. Thesemethods utilize statistical co-occurrences

1The source code and demo web page for RecipeMind are open for public access.
(https://github.com/dmis-lab/RecipeMind , https://recipemind.korea.ac.kr)
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Figure 2: Distribution of sPMIr scores for each size of S =
S−1 ∪ {} where  ≥ 2. The mean values of sPMIr-based
anity scores are shown in the x-axis for each size of ingre-
dient subset. As  increases, the statistic mean of food anity
scores shifts toward negative while the overall distribution
becomes non-normal.

or chemical similarities of ingredient pairs [1, 39, 40]. Another
downstream task related to our work is recipe completion [14,
17, 24]. These methods optimized data-driven models to predict
ingredients given partial or nearly completed recipes. Our work en-
compasses both tasks as recipe ideation aims to guide users’ choices
on ingredient additions given dierent ingredient sets.

Other works have suggested approaches for generating recipes
containing cooking instructions and/or ingredients. Various gen-
erative models using dierent modalities of queries such as food
images, cooking videos and texts have been developed [19, 22, 43,
52, 57]. Recently, a system for recipe editing considering dietary
constraints was introduced [10]. While recipe ideation and genera-
tion have common traits such as creativeness, RecipeMind guides
users’ ingredient choices step by step based on its predicted food
anity scores for all expanding sizes of ingredient sets.

3 DATASET
3.1 Obtaining n-sized Ingredient Subsets from

Reciptor Dataset
Table 1 shows the dataset statistics involving -sized ingredient
subsets obtained from the Reciptor dataset. We extracted -sized
ingredient subsets from the Reciptor dataset containing 507,834
recipes which was originally used by Reciptor [27]. We adopted
Kitchenette’s approach by removing ingredients whose occurrence
count does not exceed 20 [40]. As a result, we obtained 2,391 unique
ingredients and used them to generate -sized subsets based on
their co-occurrence statistics in the Reciptor dataset [27].

While the number of possible 2-sized subsets (doublets) in our
dataset is

(2391
2
)
= 2, 857, 245, we adopted Kitchenette’s approach

by selecting doublets exceeding 5 occurrences in the dataset and
obtained 236,297. The same criteria was applied to obtaining 3
and 4-sized subsets which resulted in a total of 1,226,767 among(2391

3
)
and 1,952,345 among

(2391
4
)
possible subsets. Furthermore,

we obtained all available 5,6 and 7-sized ingredient subsets for only
testing purposes. Right side of Table 1 shows the obtained numbers
of -sized ingredient subsets.

3.2 Constructing Data Instances
For each -sized ingredient subset obtained from the Reciptor
dataset, we rstly split each -sized ingredient set S into a pair of
S−1 and its additional ingredient  where the total number of com-
binations is . Therefore, the total number of data instances built
from ingredient doublets, triplets and quadruplets is 236, 297 × 2,
1, 226, 767×3 and 1, 952, 345×4 respectively. The doublet-based data
instances are identical to ingredient pairings as the input ingredient
set is a singleton. Left side of Table 1 shows the actual numbers of
data instances contained in our dataset.

3.3 Generating sPMIr-based Food Anity
Scores

We generated the anity scores for each data instances consisting
a ingredient set and its additional ingredient. Kitchenette used Nor-
malized Point-wise Mutual Information (NPMI) [5, 40, 49] to formu-
lated food pairing scores. The scores represent the co-occurrence be-
tween two dierent ingredients and intuitively determine whether
each ingredient pair is suitable or not.

In this work, we adopted Damani’s Signicant PMI based on Docu-
ment Count (sPMId) score, an improved version of PMI considering
statistical signicance [15, 16]. The formulation of the sPMId score
between words x, y is mathematically expressed as,

sPMId(x, y) = log (x, y)
 (x) (y)

N +

max((x),(y)) ∗

√
ln
−2.0

(2)

where (x) is the number of documents that contain x at least once,
 is the total number of documents and  is the parameter varying
between 0 and 1. Prior to applying the sPMId-based score formula-
tion to our task, we substituted words with ingredient subsets of
varying sizes.

We propose a modied approach compatible with ingredient
subsets used in the Reciptor dataset [27]. The modications are the
following,

• The documents used to calculate occurrences are the recipes
which contain a full list of ingredients used for cooking.

• Given two disjoint ingredient subsets X and Y (|X ∩ Y| = 0),
a co-occurrence measure is dened based on their union’s
occurrence (X ∪ Y).

• As our task involves adding one ingredient to current to a  -
sized ingredient set, we introduced Signicant PMI based on
Recipe Count (sPMIr) to formulate anity scores for training
RecipeMind using the above modications.

The calculation of a sPMIr-based anity score when adding an
ingredient  to -sized ingredient set S is expressed as,

sPMIr(S, ) = log  (S⋉ ∪ {})
 (S ) ({ })

R +

max( (S),  ({})) ∗

√
ln
−2.0

(3)
where  (X) is the number of recipes that used ingredient set X

at least once,  is the total number of recipes,  is set as 0.2 and
|S ∩ {}| = 0 since our task involves adding new ingredients.
Unlike the pairing scores originally used in Kitchenette [40], the
food anity scores are not bounded since they are not normalized.
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Ingred. Subset Size
n (S = S−1 ∪ {})

Number of
Possible Subsets

(2391


) Number of
Obtained Subsets S

Number of Data Instances (S−1, ,)
Total Training Validation Test

2 (S2 = S1 ∪ {}) 2.86e06 236,297 472,594 378,074 23,630 70,890
3 (S3 = S2 ∪ {}) 2.28e09 1,226,767 3,680,301 2,944,239 184,017 552,045
4 (S4 = S3 ∪ {}) 1.36e12 1,952,345 7,809,380 6,247,504 390,472 1,171,404
5 (S5 = S4 ∪ {}) 6.48e14 1,567,562 7,837,810 0 0 7,837,810
6 (S6 = S5 ∪ {}) 2.57e17 897,874 5,387,244 0 0 5,387,244
7 (S7 = S6 ∪ {}) 8.78e19 439,348 3,075,436 0 0 3,075,436

Table 1: Statistics of RecipeMind dataset. The ltered 2391 ingredients were used to obtain -sized ingredient subsets S used in
the 507,834 recipes from the original Reciptor dataset. Only subsets whose ingredient co-occurrence count exceeds 5 were used.
The obtained -sized subsets were used to construct data instances for training RecipeMind where each consists a ( − 1)-sized
ingredient set S−1, its additional ingredient  and calculated food anity score y. The data instances based on S2, S3, S4 were
used for training, validation and testing while the remaining ones based on S5, S6, S7 were only used for testing.

Ingredient Set Expansion Ingredient Set S [#] Additional Ingredient  [#] sPMIr for S+1 = S ∪ {} [#]

Adding baking soda
to our, eggs our, eggs [20205]

baking soda [31840] 0.6887 [7510]
vanilla [29857] 0.6810 [6941]

nuts [5375] 0.6521 [1393]
romaine lettuce [2009] -1.5531 [6]

red wine vinegar [6999] -1.5546 [12]
cucumbers [4196] -1.5869 [6]

Adding nuts
to our, eggs, baking soda our, eggs, baking soda [7510]

nuts [5375] 0.7582 [941]
vanilla [29857] 0.7565 [3296]

buttermilk [8217] 0.7272 [1139]
parmesan cheese [29226] -1.8916 [8]

garlic powder [21429] -1.8993 [6]
garlic cloves [65879] -2.1562 [9]

Adding  to S3
given a xed set S4
our, eggs, baking soda, nuts

our eggs nuts [1393] baking soda [31840] 0.5669 [941]
our nuts baking soda [1443] eggs [77046] 0.3849 [941]
eggs nuts baking soda [1249] our [56501] 0.3155 [941]

Table 2: Examples of data instances from RecipeMind dataset with calculated scores and occurrence counts ([#]) in original
dataset. The rst two merged rows show ingredient set expansion examples based on calculated food anity scores (sPMIr)
where each example has a list of 3 highest- and lowest-scoring ingredients. For example, given flour and eggs, adding baking
soda gives the highest score (0.6887) while adding cucumbers gives the lowest (-1.5869). The last merged row shows sPMIr scores
being calculated dierently based on the selected additional ingredient within ingredient set (flour, eggs, baking soda, nuts).

3.4 Preliminary Analysis on Generated Food
Anity Scores

Figure 2 shows the distribution of sPMIr scores for each size of
S+1 = S ∪ {} where  ≥ 1. The sPMIr-based food anity scores
calculated based on ingredient doublets ( = 2) and triplets ( = 3)
show normal distributional behavior. However, the distribution
tends to become skewed towards negative as the size increases.
The shifting distribution of anity scores may pose challenges to
RecipeMind’s generalization in expanding sets.

Table 2 shows the calculated sPMIr-based anity scores for
example ingredient combinations actually used in the Reciptor
dataset. Given an ingredient set our and eggs, the top scoring
additional ingredients are baking soda, vanilla and nuts. These
three ingredients are known to be popularly used with our and
eggs in baking recipes [41, 47].

Higher co-occurrence counts between S and  have the ten-
dency to result in higher anity scores. For example, while nuts,
red wine vinegar and cucumbers have similar occurrences in the
dataset, adding nuts yields the highest anity score among them
due to its co-occurrence with our and eggs. The same applies
to adding vanilla compared to parmesan cheese, garlic cloves
given our, eggs and baking soda.

Moreover, adding relatively unpopular ingredients may be com-
pensated with higher scores as long as their co-occurrence with
current set of ingredients is relatively higher. For instance, while
adding vanilla yields a higher anity score than nuts, an expanded
set added with baking soda yields an opposite order of anity
scores. While nuts have been used less than vanilla fourfold, their
co-occurrence with our, eggs and baking soda is rewarded by
sPMIr-based score formulation.

The pairing scores for S2 are symmetric (i.e. adding x to {y} and
vice versa results the same score). However, dierent combinations
of (S, ), > 2 resulted in dierent food anity scores as shown
in the last 3 rows of table 2. These characteristics presented the
necessity of understanding the inter-relational features between
recipe context of S and  .

Inferring the missing relations between S and  from S+1 =
S ∪ {} is important in recipe ideation. We performed ingredient
subset-based data split for partitioning the -sized ingredients sub-
sets ( = 2, 3, 4) into training, validation and test purposes (8:0.5:1.5).
The validation data instances were used for searching the optimal
hyper-parameters for RecipeMind. We ensured that data instances
(S−1, , y) in dierent partitions do not share the same ingredient
subset S . The remaining ingredient subsets ( = 5, 6, 7) were used
for only testing purposes.
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Figure 3: Model Archtitecture of RecipeMind. S0, a0 is the
set of  ingredients n and its additional ingredient  both
encoded ingredient-wise by a shared MLP. S and a are inter-
mediate encoded representations while S and a are nal
contextual representations used to predict a food anity
score.

4 MODEL ARCHITECTURE OF RECIPEMIND
4.1 Overview
RecipeMind ( (S, ) = ) takes a -sized ingredient set S and an
additional ingredient  as input to predict the food anity score of
the updated ( + 1)-sized set S ∪ {}. It consists of three modules
which are the Ingredient Set encoder, Additional Ingredient encoder
and Anity Scoring module. Figure 3 shows an overall description
for RecipeMind’s model architecture.

Prior to introducing the model architecture of RecipeMind, we
refer to Kitchenette built on Siamese Neural Networks which pre-
dicts food pairing scores [40]. One of the main justications for this
model design choice is the homogeneity of two inputs (ingredients).
Meanwhile, Reciptor and RecipeBowl employed Set Transformers
eective representation learning of recipes [24, 27] where both
models handle ingredient sets.

As the additional ingredient  can be deemed as a 1-sized ingre-
dient set, we may merge two model design choices. However, we
propose an alternative approach by using Cascaded Set Transformers
with Pooling by Multihead Cross-Attention.

4.2 Ingredient Set Encoder Module
The initial word-based representations of ingredients in -sized
set S are encoded to S0 by a 2-layered element-wise multi-layer
perceptron (MLP) shared in both encoder modules. We used 300-
dimensional FlavorGraph embeddings previously trained based on
chemical relationships between food ingredients and avor com-
pounds [39]. The dimension sizes for the encoded ingredients are
uniformly set to ℎ = 128.

The sharedMLP that takes both representations S+1 = S∪{ }
ingredient-wise as input is mathematically expressed as,

H =  (Dropout(Linearℎ1 (S+1))) (4)
S0 ∪ {a0} =  (Dropout(Linearℎ2 (H))) (5)

where S0 ∈ R×128 and a0 ∈ R128 are the  128-dimensional en-
coded ingredient embeddings in the current set and 128-dimensional
additional ingredient embedding. Theweights and bias in Linearℎ1
and Linearℎ2 areℎ1 ∈ R300×128, ℎ1 ∈ R128 and
ℎ2 ∈ R128×128, ℎ2 ∈ R128 respectively.  is the Rec-
tied Linear Unit (ReLU) activation function while Dropout is
dropout layer with probability of 0.025.

The encoded ingredients in current set are propagated through
3 stacked Set Attention Blocks (SAB) followed by Sum Pooling [26].
Each successive SAB uses self-attention mechanism to encode
higher order ingredient-ingredient relations and form recipe con-
text based on the set of ingredients [24].

The Ingredient Set encoder in RecipeMind taking an -sized
encoded ingredient set S as input is mathematically expressed as

S0 = MLPℎ (S) (6)
S = SAB (S−1) ( = 1, 2, 3) (7)
S = SumPool(S3) (8)

S ∈ R×128 is a set of  128-dimensional ingredient embbedings
encoded by the th SAB (SAB ). S ∈ R128 is a 128-dimensional
contextualized embedding for the current ingredient set. SumPool
is a permutation-invariant sum pooling operator.

Each SAB is dened as a Multihead Attention Block (MAB) us-
ing the same elements as query, key and value [26, 51] and applies
self-attention to a set of elements. The SABs followed by the Sum
Pooling operator of the Recipe Idea Encoding Layer are mathemati-
cally expressed as,

SAB (S−1) = MAB (S−1, S−1) (9)
MAB(X,Y) = LayerNorm(H + RFF1 (X)) (10)
H = LayerNorm(X + RFF2 (MultiAttn(X,Y,Y))) (11)

SAB is the th Set Attention Block, MAB is the th Multihead
Attention Block, LayerNorm is layer-wise normalization [3] and
RFF is row-wise feedforward layer consisting three consecutive
MLPs without Dropout layer and using ReLU as non-linear activa-
tion function. MultiAttn is an attention mechanism module with 8
heads [51] where the attention weights in each head given query
vectors Q ∈ R×128, key vectors K ∈ R×128 and value vectors
V ∈ R×128 are calculated.
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(a) Set Attention Block (SAB) (b) Pooling by Multihead Attention (PMA) (c) Pooling byMultiheadCross-Attention (PMX)

Figure 4: Attention blocks used in Set Transformer framework and RecipeMind. The SAB (a) encodes the ingredients using
self-attention. The PMA (b) aggregates the set of elements using trainable seed vector. The PMX (c) used in RecipeMind’s
Cascaded Transformer encodes the additional ingredient based on its cross-attention against set of ingredients.

The aggregation of ingredient-wise representations S3 from the
last SAB is mathematically expressed as follows,

S = SumPool(S3) (12)

SumPool(S3) =
|S3 |∑
=0

  (13)

where SumPool is a permutation-invariant Sum Pooling operator
that performs element-wise summation of the ingredient represen-
tations   ∈ S3.

4.3 Additional Ingredient Encoder Module
The authors of Set Transformer framework introduced Pooling by
Multihead Attention (PMA) as illustrated in Figure 4b [26]. In this
block, element-wise representations in set are aggregated by attend-
ing them to a single trainable seed vector. Adopting the methods
proposed in PercieverIO and PICASO [23, 56], we devised Pooling
by Multihead Cross-Attention (PMX) to improve representation
learning on  in dierent recipe contexts. As shown in Figure 4c,
PMX is a variant of PMA where a set of items is aggregated based
on multihead attention applied on another item instead of the seed
vector [26].

The additional ingredient is rened through the shared MLP and
3 successive PMX blocks where each intermediate representation
 from the th  block and its corresponding set from the th
SAB in Ingredient Set encoder is fed to the next  + 1th PMX layer.
We denote this as Cascaded Set Transformer since Ingredient Set
and Additional Ingredient encoder are jointly connected.

The Additional Ingredient Encoder module taking the additional
ingredient  as input is mathematically expressed as,

a0 = MLPℎ ({}) (14)
a = PMX (a−1, S−1) ( = 1, 2, 3) (15)
a = a3 (16)

a ∈ R128 is a 128-dimensional ingredient embedding encoded by
the th PMX block (PMX ) based on cross-attention between a−1
and S−1. a ∈ R128 is a 128-dimensional contextualized embedding
for the additional ingredient.

The th   block that calculates cross-attention between −1
and a−1, and outputs the rened representation a is mathemati-
cally expressed as,

PMX (a−1, S−1) = MAB (a−1, S−1) (17)

where the  is th Multihead Attention Block that computes
the attention weights using a−1 as query vector and S−1 as key
and value vectors.

4.4 Anity Scoring Module
The Anity Scoring module concatenates the nal contextual rep-
resentations vector-wise from both sides of encoding layers (S , a )
to predict the ideation score ̂ of adding an ingredient to current
recipe idea and is mathematically expressed as follows,

̂ = MLP (S ⊕ a ) (18)

⊕ is vector-wise concatenation between two contextualized embed-
dings. MLP is a 2-layered MLP for predicting the food anity
score where only the intermediate layer uses Dropout and ReLU
as non-linear activation. The weights, bias in the rst and second
linear layer of MLP are1 ∈ R256×128, 1 ∈ R128

and2 ∈ R128×1, 2 ∈ R1 respectively.

4.5 Model Training
We used root mean squared error as loss objective for training
RecipeMind on predicting the food anity score y for given S and
 . The optimizer used in the training process is Adam [25] where
the learning rate and weight decay is set to 1e-4, 1e-5 respectively.
All RecipeMind and its ablations were trained to a maximum of 30
epochs with batch size of 1024 and early stopping.

5 EXPERIMENTS AND ANALYSIS
5.1 Model Baseline and Ablations
We conducted experiments to evaluate and compare our proposed
RecipeMind’s performance on anity score prediction with other
baselines and ablations. We rstly made naive predictions based on
the statistic mean or median of all anity scores in training set.

Since food anity score prediction is a newly formulated task,
we borrowed the architecture used in Kitchenette, Reciptor and
RecipeBowl [24, 27, 40]. As Kitchenette can only predict anity
scores when adding an ingredient to a 1-sized ingredient set (|S1 ∪
{} | = 2), we only trained and tested it on data instances only
based on doublets. In context of RecipeMind, both the Ingredient
Set and Additional Encoder Module have weight-sharing MLPs
while the Ideation Scoring Module has Wide-and-Deep layer [11].

For comparison involving larger ingredient sets, we replaced the
weight-sharing MLPs with the weight-sharing Set Transformers
used in Reciptor and RecipeBowl. Unlike Kitchenette, the Anity
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(a) Evaluation results of main experiments using RMSE↓. (b) Evaluation results of main experiments using PCORR↑.

Figure 5: Evaluation results of baseline experiments. The columns represent the expanded set size  after adding an ingredient
(S = S−1 ∪ {}) while colored ones indicate unseen ingredient set sizes. Darker colors in cells indicate better results.

(a) Evaluation results of ablation experiments using RMSE↓. (b) Evaluation results of ablation experiments using PCORR↑.

Figure 6: Evaluation results of ablation experiments.

Scoring Module has the same structure as RecipeMind’s. These
baseline models along with RecipeMind were trained and tested
on data instances based on 2,3,4-sized subsets (|S ∪ {} | = 2, 3, 4).
Furthermore, we performed zero-shot testing on unseen ingredient
set sizes (|S ∪ {} | = 5, 6, 7).

The models for our baseline experiment are summarized as the
following,

• Naive guessing by statistics (mean, median)
• Kitchenette
• Reciptor: Previously used for recipe representation learning,
this set transformer consists 2 Induced Set Attention Blocks
(ISABs) using 4 attention heads in their MABs followed by
Pooling by Multihead Attention using 2 seed vectors [27].
We denote this as Reciptor for brevity.

• RecipeBowl: Previously used for recipe completion task,
this set transformer consists 1 ISAB using 2 attention heads
followed by Pooling by Multihead Attention using 1 seed
vector [24]. We denote this as RecipeBowl for brevity.

We also conducted ablation experiments on RecipeMind’s En-
coder module and Set Pooling method in Ingredient Set Encoder
module. The model ablations for RecipeMind’s Encoder Modules
are the following,

• - PMX, + weight-sharing SABs: We performed this exper-
iment to assess the benets of using larger weight-sharing
Set Transformers. Note that RecipeMind’s Set Transformer
is larger than Reciptor’s or Recipebowl’s. We denote this as
RecipeMind w/o Cascaded PMX for brevity.

• - PMX, - SAB, + Rep the Set: We replaced the Set Trans-
former related blocks with Rep the Set [45]. Since the original
implementation of Rep the Set incurs heavily computational
costs, we used an approximated version of it instead. We
denote this as Rep the Set for brevity.

• - PMX, - SAB: We performed this experiment to verify em-
ploying deeper permutation-invariant models. This ablated
model aligns with Deep Sets [55] as it only uses MLP for
encoding elements. We denote this as Deep Sets for brevity.
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Step Ingredient Set Top 3 Recommendations by RecipeMind
1 carrots, onions celery bay leaves potatoes
2 + celery potatoes bay leaves cabbage
3 + potatoes cabbage beef stew meat bouillon
4 + cabbage cabbage heads tzatziki canning salt
5 + cabbage heads bouillon tzatziki stout beer

6 + bouillon seitan stout beer chicken
tenderloins

7 + seitan chicken
tenderloins string beans tzatziki

8 + chicken
tenderloins tzatziki string beans ditalini

Figure 7: Ingredient recommendations yielded by
RecipeMind starting with carrots and onions. Top 3
recommendations are based on their predicted food anity
scores when being added to current ingredient set. Red
colors indicate the initial set of ingredients given to
RecipeMind and rst step. The nal set of ingredients
implicate RecipeMind has formed recipe context related to
soups and stews.

Step Ingredient Set Top 3 Recommendations by RecipeMind
1 buttermilk, our baking soda vanilla baking powder
2 + baking soda baking powder vanilla cocoa
3 + baking powder eggs vanilla shortening
4 + eggs vanilla cocoa shortening
5 + vanilla cocoa shortening sour milk

6 + cocoa sour milk Crisco vanilla
avoring

7 + sour milk baking
chocolate apple jelly cherry juice

8 + baking
chocolate cherry juice candied fruit apple jelly

Figure 8: Ingredient recommendations yielded by
RecipeMind starting with buttermilk and our. The
nal set of ingredients implicate RecipeMind has formed
recipe context related to bakery products such as cakes.

5.2 Experimental Results on Food Anity Score
Prediction

All experiments were conducted on the same training-validation-
test split on data instances. We trained and tested the model with
dierent random seeds 5 times and calculated the mean and stan-
dard deviation of evaluation metrics which are root mean squared
error (RMSE) and Pearson’s correlation (PCORR).

Figure 5 shows the evaluation results of baseline experiments.
As shown in Figure 5 RecipeMind outperformed in almost all ex-
panding sizes of ingredient sets in both RMSE and PCORR while
Kitchenette achieved the best RMSE among other models given
|S−1 ∪ {} | = 2. While Reciptor and RecipeBowl achieved results
for |S−1 ∪ {} | = 2, 3, 4 sub par with RecipeMind, they failed to
demonstrate generalization in unseen set sizes |S ∪ {} | = 5, 6, 7,
falling far behind the naive guessing baselines.

The ablation results shown in Figure 6 further support our design
choices for RecipeMind’s Encoder Modules and Set Pooling in its
Ingredient Set Encoder module. Comparing with ablations on Set
Encoder modules, RecipeMind using Cascaded Set Transformers

Figure 9: Attention weights extracted from RecipeMind’s
ideation scenario (Figure 7).

Figure 10: Attention weights extracted from RecipeMind’s
ideation scenario (Figure 8).

with PMX showed better results than other Encoder ablations. Com-
paring with ablations on Set Pooling methods, while PMA or Max
Pooling showed similar performance when |S−1 ∪ {} | = 2, 3, 4,
both ablations failed to generalize when |S−1 ∪ {} | = 5, 6, 7
which supports our choice of Sum Pooling. Overall, the baseline
and ablation evaluative results show RecipeMind’s predictability
of food anity scores in expanding ingredient set sizes including
unseen ones ( = 5, 6, 7) in the training dataset.

5.3 Qualitative Analysis on RecipeMind
5.3.1 Methods

Throughout recipe ideation, recipe context may change continu-
ously due to dierent ingredient choices and combinatory features
in set of ingredients. To investigate this, we deployed RecipeMind in
two recipe ideation scenarios where (carrots, onions) and (butter
-milk, our) are given as initial set of ingredients S2. In each set
expansion step of ideation scenario, RecipeMind predicts food an-
ity scores for all available ingredients  ∈ U− S being added to S .
The highest scoring ingredient is selected and added to current set



RecipeMind : Guiding Ingredient Choices using Cascaded Set Transformer CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

( = argmax  (S, ), S+1 = S ∪ {}). We repeated this step 8
times yielding a total of 10 ingredients.

Figures 7 and 8 show the top 3 ingredient recommendations
for each step of set expansion in RecipeMind’s ideation scenario.
For example in Figure 7 at Step 1, RecipeMind given carrots and
onions predicted the highest food anity score for celery. Subse-
quently, celery is added to current set which is given to RecipeMind
for retrieving another ranked list of ingredient recommendations
(potatoes, bay leaves, cabbage) at Step 2.

Figures 9 and 10 show the cross-attention weights represented
in heatmaps. The attention weights between -sized current in-
gredient set S and additional ingredient  were extracted from
RecipeMind’s last PMX block and averaged head-wise [12, 42]. The
th row and th column represent the th ingredient set expansion
step and th ingredient in current set respectively. For example at
Step 1, when top-scoring celerywas added to current set of carrots
and onions, the cross-attention weights of these two ingredients
were calculated as 0.567 and 0.432 respectively. At Step 2, when
top-scoring potatoes was added, the cross-attention weights were
calculated as 0.365, 0.32 for carrots and onions respectively and
0.315 for the previously added celery. The cell colors represent the
ingredient’s rank of attention weight (i.e the higher, the darker).

5.3.2 Case Study 1: Narrowing Recipe Context
In the rst ideation scenario shown in Figures 7 and 9, RecipeMind

was given an initial set of two vegetables carrots and onionswhich
are used in a variety of dishes such soups & stews, salads or beef
recipes [31, 34, 46]. The attention weights in less skewed distribu-
tion from Step 1 (0.567, 0.433) to Step 2 (0.365, 0.320, 0.315) show that
RecipeMind hasn’t fully determined one of the 3 recipe contexts.

From Step 3 to Step 5, while the top 3 recommendations are di-
verse in ingredient categories, RecipeMind predicted higher anity
scores for adding vegetable ingredients. Previously added ingre-
dients potatoes (0.360), cabbage (0.288), cabbage heads (0.372)
were consecutively assigned with highest attention weights. We
speculated that RecipeMind focused on common ingredient char-
acteristics in determining food anities and narrowed its recipe
context to either soups & stews or salads.

After being added to the ingredient set at Step 6, bouillonwhich
is the core ingredient of soups [20], has remained dominantly atten-
tive throughout the rest of ideation (0.287, 0.214, 0.172). Follow-up
additions seitan and chicken tenderloins are possible ingredient
alternatives for cooking soups & stews dishes [2? ]. As RecipeMind
has further narrowed down its recipe context to soups & stews, we
expect future ingredient additions to be highly relevant to it.

5.3.3 Case Study 2: Main and Supportive Recipe Context
In the rst ideation scenario shown in Figures 8 and 10, RecipeMind

was given initial set of buttermilk and our as they are essen-
tial ingredients for bakery recipes [4, 35]. From Step 1 to Step 5,
RecipeMind suggested more essential ingredients (baking soda,
baking powder, eggs, vanilla) while maintaining its main bakery
recipe context based on buttermilk.

Throughout ideation, the attention weights assigned to butter-
milk did not relatively decay as much as the initial ingredients in
rst scenario (0.694, 0.542, ... , 0.185, 0.137). The top 3 recommenda-
tions from Step 6 to Step 8 were mostly supportive ingredients such

as cherry juice (beverage) and apple jelly (sweet sauces). More-
over, the previously added ingredients cocoa (0.238), sour milk
(0.193), baking chocolate (0.172) were consecutively assigned with
highest attention weights, implicating their own supportive recipe
context. Merging these two recipe contexts will likely lead to choco-
late cake recipes [? ] served with cherry juice recommended at
Step 8.

5.3.4 Summary
We deployed RecipeMind in two recipe ideation scenarios to

examine its ingredient set expansion process and interpret the cal-
culated cross-attention weights. Our analysis demonstrate dierent
ingredient choices in recipe ideation lead to dierent recipe con-
texts and completion. The attention weights from each the two
ideation scenarios show dierent changes in RecipeMind’s under-
standing of recipe context. However, we speculate that RecipeMind
is open to vast possibilities of recipe ideation and its completion
depending on users’ choices on ingredients.

6 CONCLUSION AND FUTUREWORK
We devised a computational approach for recipe ideation by propos-
ing two tasks; food anity score prediction and additional ingre-
dient recommendation. We implemented RecipeMind using the
Cascaded Set Transformer to help it jointly learn features between
current ingredient set and its additional ingredient. We then trained
it on our constructed dataset containing food anity scores. Ex-
perimental results including ablations demonstrate RecipeMind’s
robustness in predicting anity scores for expanding ingredient
sets. Qualitative analysis provides insight in how RecipeMind un-
derstands recipe context in set of ingredients.

While our denition of recipe ideation is conned to adding
ingredients to current set, we may expand this into combining two
,-sized ingredient sets, creating dierent combinations of recipe
context and deriving novel recipe ideas in the end. Since the food
anity scores are mainly based on co-occurrence statistics, our next
step is improving RecipeMind with other important food-related
aspects such as nutrition and avor chemistry. We plan to add
nutrition constraints for addressing health benets and incorporate
prior knowledge on avor chemistry to enhance RecipeMind’s
robustness.

Our work is part of a collaboration with Sony AI and their Gas-
tronomy Flagship Project, and the aim is to deploy RecipeMind in
food-related applications in order to interactively help chefs create
delicious, healthy and sustainable dishes by uncovering vast new
opportunities in ingredient combination. We expect RecipeMind to
benet the cuisine domain and accelerate food industry develop-
ment in the future.
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