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ABSTRACT
A trajectory, defined as a sequence of location measurements, con-
tains valuable information about movements of an individual. Its
value of information (VOI) may change depending on the specific
application. However, in a variety of applications, knowing the
intrinsic VOI of a trajectory is important to guide other subsequent
tasks or decisions. This work aims to find a principled framework
to quantify the intrinsic VOI of trajectories from the owner’s per-
spective. This is a challenging problem because an appropriate
framework needs to take into account various characteristics of the
trajectory, prior knowledge, and different types of trajectory degra-
dation.We propose a framework based on information gain (IG) as a
principled approach to solve this problem. Our IG framework trans-
forms a trajectory with discrete-time measurements to a canonical
representation, i.e., continuous in time with continuous mean and
variance estimates, and then quantifies the reduction of uncertainty
about the locations of the owner over a period of time as the VOI
of the trajectory. Qualitative and extensive quantitative evaluation
show that the IG framework is capable of effectively capturing
important characteristics contributing to the VOI of trajectories.
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1 INTRODUCTION
The availability of mobile devices with location-tracking capability
has enabled individuals to generate a great amount of location data
from various types of signals, e.g., GPS, Wi-Fi, or cell service. A
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trajectory, which is a sequence of location measurements, is an
important type of location data that contains valuable information
about the owner’s locations and movements. For example, a trajec-
tory may indicate the owner’s moving behavior [20], e.g., a trip to
home, office, or favorite shops and time spent there; it may help
identify irregularities such as vacation days or house moving; it is
important for traffic, speed, and route inference [21].

Each trajectory gives information of some kind. The value of the
information (VOI) varies depending on the use and user of the data.
For example, the same trajectory may have one value for the owner
and another for an enterprise, and that same trajectory may also
have different values for different enterprises, such as a public or
private, especially for an ad-targeting company.

However, a trajectory also contains an intrinsic, formulaic VOI,
since it contains quantified locations of an individual over space
and time. For example, it is reasonable to assume that a home-to-
office trajectory with 1000 measurements from beginning to end
of the trip tends to have more information than another home-
to-office trajectory with only 2 measurements at home and office.
Our goal is to find a principled approach to quantify the intrinsic
VOI of trajectories from the owner’s perspective. To the best of our
knowledge, this is the first attempt at such a quantification.

Given a trajectory, there are natural questions about selling
it [10], sharing it, using it to train machine learning, storing it, or
examining it more closely. Quantifying its VOI helps measure how
valuable, revealing, informative [19], distinct, and surprising [21]
it is. A trajectory’s VOI can be a critical piece of metadata that
indicates its intrinsic value for a variety of tasks, both stand-alone
and as part of a collection.

This problem presents several interesting challenges:
• First, a trajectory has many characteristics contributing to its
VOI, and effectively capturing their complex relationships is
non-trivial. Examples of these characteristics are the number
ofmeasurements, temporal duration, and howmeasurements
distribute spatially and temporally.

• Second, a trajectory can be degraded for different purposes,
e.g., measurements can be perturbed by adding random noise
or completely removed to enhance the owner’s privacy be-
fore releasing or selling. It is challenging to capture the effect
of different types of degradation on the VOI of the trajectory.

• Third, the owner may assume different prior knowledge
about a trajectory, which may change its VOI from the
owner’s perspective. For example, if the owner has never
released any trajectory data before, meaning their trajectory
would give more information about their locations than if
they already released a perturbed version of the trajectory.

Some straightforward methods, e.g., using a trajectory’s charac-
teristics such as size or duration, fail to capture other characteris-
tics or prior knowledge. Previous work based on Spatial Privacy
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Pricing [12] can be adapted to sum the values of degraded mea-
surements of the trajectory. However, it also fails to capture some
characteristics (e.g, how measurements distribute over space) and
prior knowledge, because it ignores the mutual information of the
constituent points. The notion of correctness [17] also appears
promising. For this method, based on a degraded version 𝑍 of a
trajectory 𝑆 and prior knowledge, a probabilistic prediction is made
for each measurement. Then the correctness of the prediction, indi-
cating how close it is to the actual measurement, is aggregated to
derive the VOI of 𝑍 . However, this method is not applicable when
𝑍 = 𝑆 , because correctness is not available when there is no actual
measurement with which to compare the prediction.

The core idea behind our approach is that instead of computing
the VOI of a trajectory from its discrete location measurements over
time, we view VOI as how much the trajectory data helps recon-
struct locations of the owner. More specifically, the VOI corresponds
to how much the trajectory data helps reduce the uncertainty of
estimating its owner’s locations in continuous time. We use infor-
mation gain (IG) to quantify that reduction. Even though IG is a
known measure [14], it is not obvious how it should be used to
compare discrete-time trajectories with widely different charac-
teristics: long and short, dense and sparse, clean and noisy. Our
innovation here is that we transform each trajectory to a canonical
representation, i.e., continuous in time with continuous estimates
of mean and variance, which is necessary for comparing widely
different trajectories and comparing new data against prior data. IG
can only then be applied after all those steps are taken. We realize
this transformation by employing a reconstruction method that
can produce continuous-time probabilistic predictions along the
trajectory.

Consequently, we propose an IG framework as a principled way
to quantify the intrinsic VOI of a trajectory. The main idea is to
quantify the reduction of uncertainty about the owner’s continuous-
time locations, comparing a new trajectory to a previously released
degraded version or to prior information. Thus the IG framework
utilizes a reconstruction method to produce continuous probabilis-
tic predictions over time, and then it calculates the reduction of
uncertainty from those predictions compared to a reconstruction
from prior knowledge. The uncertainty is measured by (differential)
entropy. Our IG framework accepts any reasonable probabilistic
reconstruction method. Gaussian process is used as the reconstruc-
tion method in this paper due to its popularity and flexibility, but
is not necessarily the only choice.

Specifically, our contributions are:
• Propose the problem of quantifying intrinsic VOI of a trajec-
tory from the owner’s perspective

• Define characteristics that should be captured by an appro-
priate quantification method

• Show how alternate methods fail, even when they appear
reasonable initially

• Introduce a method to transform each trajectory to a canon-
ical representation, allowing us to examine the VOI with a
continuous location reconstruction and to compare trajecto-
ries with widely different characteristics

• Develop an IG framework over transformed trajectories as a
principled approach capable of effectively capturing various
trajectory characteristics, prior knowledge, and degradation

• Evaluate the proposed framework both qualitatively and
quantitatively with extensive experiments on a large, real-
world trajectory dataset

By providing a standard, comprehensive method for assessing the
VOI of a trajectory, we enable a deeper understanding of trajectories
and their utility for a wide variety of purposes.

2 PROBLEM SETTING
This section introduces the problem of quantifying the intrinsic
VOI of a trajectory from the owner’s perspective. We focus on the
most basic form of a trajectory, which is a sequence of location
measurements. Therefore, incorporating other information, such as
census data or points of interest, is beyond the scope of this work.

The owner can be anyone having access and right to use the data,
e.g., one whose phone recorded this trajectory, or a data collector
who aggregates location data from individuals. Without loss of
generality and to ease the discussion, from here on, we assume the
owner is the individual whose device recorded the trajectory.

A trajectory 𝑆 is a sequence of (potentially noisy) location mea-
surements 𝑆 = {𝒙1, 𝒙2, . . . , 𝒙 |𝑆 |}. Each measurement or data point
𝒙 (bold symbol) is a tuple 𝒙 =< lon, lat, t, 𝜎 > where 𝒙 .lon and 𝒙 .lat
are the longitude and latitude, 𝒙 .t is the timestamp, and 𝒙 .𝜎 is the
accuracy or uncertainty of the measurement. It is reasonable to
assume Gaussian noise for location measurements [5] such as GPS
points, so 𝒙 .𝜎 can be considered as the standard deviation of inde-
pendent Gaussian noise of longitude and latitude. Measurements
in 𝑆 are ordered by their timestamps, i.e, ∀𝒙𝑖 , 𝒙 𝑗 ∈ 𝑆, 1 ≤ 𝑖 ≤ 𝑗 ≤
|𝑆 |, 𝒙𝑖 .t ≤ 𝒙 𝑗 .t.

The owner can assume the potential recipient has some prior
knowledge Ω about the location 𝒙𝑖 , e.g., by gathering public data
or from some data already released from the owner before. This
prior knowledge is represented as a prior distribution 𝑃 (𝒙𝑖 |Ω) and
should be respected by the proposed methods. Intuitively, prior
knowledge about a point would tend to reduce the VOI of the point.

In addition to releasing raw trajectories, owners can also offer
their data at different quality levels, potentially enhancing their
privacy while reducing the trajectory’s VOI, e.g, a trajectory can
be degraded by adding noise or subsampling. More details about
degradation are discussed in Section 2.3. The methods to quantify
the VOI also need to reflect this quality degradation.

Our goal is to find a principled approach to quantify the VOI of a
trajectory from the owner’s perspective. It should capture different
characteristics of the raw trajectory, the prior knowledge, and the
effect of various degradation processes. Next, we described the char-
acteristics that an appropriate method should aim to capture. This
is an extensive but not exhaustive list of desirable characteristics,
thus we expect future work will study more characteristics. We will
then illustrate how several baseline methods fail to capture these
characteristics and how our new proposed framework succeeds.

2.1 Trajectory Characteristics
From the raw trajectory 𝑆 , certain characteristics can be derived that
should contribute to its VOI. These includes size, duration, spatial
distribution, temporal distribution, and measurement uncertainty.

Size. The size |𝑆 | is the number of measurements of 𝑆 . A larger
size often means there is more data to learn about the owners’
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locations and movements. Therefore, it is reasonable to assume that
a trajectory with a larger size tends to have more information.

Duration. The duration of a trajectory 𝑆 is the time difference
between the first and last measurements of 𝑆 , i.e, 𝐷 (𝑆) = 𝒙 |𝑆 | .𝑡 −
𝒙1 .𝑡 . Similar to the size, a trajectory with a longer duration often
means it may have more information about the owner’s locations
than one with a shorter duration.

Spatial distribution. The spatial distribution of 𝑆 indicates
how its measurements are distributed over space. For example, one
trajectory may have all measurements at one place, while another
trajectory may have measurements at multiple places (e.g, solely
at home vs. at home, then at a coffee shop, then at the office). A
trajectory visiting more places tends to give more information
about locations of the owner. The spatial distribution of 𝑆 can
be measured using spatial entropy 𝐻𝑆 (𝑆) over a grid of cells, say
10𝑚 × 10𝑚, covering the area of interest. 𝐻𝑆 (𝑆) is calculated by
creating a histogram of number of measurements of 𝑆 belonging
to each cell, converting this histogram to probabilities, and then
computing the Shannon entropy for the probabilities.

Temporal distribution. Similarly, the temporal distribution of
a trajectory 𝑆 indicates how its measurements are distributed over
time. For example, one trajectory may have many measurements
in the first few minutes and then a long gap before the next one.
Another trajectory may be distributed more uniformly over time,
e.g., one measurement every 30 seconds. Intuitively, when measure-
ments distribute more evenly over a longer period of time, they
tend to give more information. The temporal distribution of 𝑆 can
be measured using the temporal entropy 𝐻𝑇 (𝑆) calculated during
[𝒙1 .t, 𝒙 |𝑆 | .t] by computing a histogram of the number of measure-
ments of 𝑆 belonging to each temporal bin, say every 1 minute,
from 𝒙1 .t to 𝒙 |𝑆 | .t, converting the histogram to probabilities, and
then computing the Shannon entropy for the probabilities.

Measurement uncertainty.Measurements may have their own
uncertainty depending on how they were taken, e.g, an uncertainty
of several hundred meters with cell towers [2] or 1 to 5 meters for
GPS-enabled smartphones [13]. Since Gaussian noise is a reasonable
assumption for GPS [5], measurement uncertainty is defined as the
standard deviation 𝜎 of independent Gaussian noise of longitude
and latitude. In general, less accurate measurements (i.e, larger 𝜎)
tend to give less information about locations of the owner.

2.2 Prior Knowledge
As mentioned, the owner can assume there exists some available
prior knowledge about the location 𝒙𝑖 , e.g., from public data or from
previous releases from this owner. This knowledge is expressed
as a prior distribution 𝑃 (𝒙𝑖 |Ω) for each timestamp of interest. In
general, better prior knowledge often means the trajectory gives
less information compared to the case with poorer prior knowledge.

2.3 Trajectory Degradation
The owner can offer their trajectories at lower quality. The process
of lowering the quality of a trajectory is called degradation. The rea-
son for the owner to produce degraded trajectories is that a recipient
can still benefit from data at a certain quality depending on their
specific applications [12]. For example, estimating a neighborhood-
level origin-destination matrix may not need extremely accurate

measurements, thus the recipient with this application can poten-
tially spend less to purchase lower quality trajectories. In general, a
lower quality trajectory would give less information than a higher
quality one. A degraded version of a trajectory 𝑆 is denoted as 𝑍 .

In this work, we consider three types of degradation: perturbation,
truncation, and subsampling. Other types of degradations and other
variations of these degradations are beyond the scope of this paper
and considered as part of future work.

Perturbation. The perturbation process degrades a trajectory
𝑆 by adding independent random Gaussian noise with standard
deviation 𝜎𝑧 to each 𝒙𝑖 ∈ 𝑆 . Formally, a perturbed trajectory 𝑍 of 𝑆
consists of measurements 𝑧𝑖 s.t.

𝑧𝑖 .lon = 𝒙𝑖 .lon + 𝜂1 (1)
𝑧𝑖 .lat = 𝒙𝑖 .lat + 𝜂2 (2)
𝑧𝑖 .t = 𝒙𝑖 .t (3)

𝑧𝑖 .𝜎 =

√︃
(𝒙𝑖 .𝜎)2 + 𝜎2𝑧 (4)

𝜂1, 𝜂2 ∼ N(0, 𝜎2𝑧 ) (5)

Noise magnitude 𝑧𝑖 .𝜎 is called the total noise of 𝑍 .
Truncation. The truncation process degrades a trajectory 𝑆 by

truncating 𝑆 and only keeping a fraction 𝛼𝑡 ∈ [0, 1] of the first
measurements of 𝑆 . For example, if |𝑆 | = 100, an 𝛼𝑡 = 0.2 means
that the temporally first 20% of measurements are kept, which are
{𝒙1, . . . , 𝒙20}. The fraction 𝛼𝑡 is called the truncation ratio. The
retained measurements are kept in their raw form. Also, there is at
least one measurement retained.

Subsampling. Similarly, the subsampling process degrades a
trajectory 𝑆 by uniformly subsampling 𝑆 with probablity 𝛼𝑠 ∈ [0, 1],
called the subsampling ratio. More specifically, a measurement 𝒙𝑖 ∈
𝑆 is retained with probability 𝛼𝑠 ; otherwise, 𝒙𝑖 is discarded. Hence,
in expectation, a fraction 𝛼𝑠 of measurements of 𝑆 are retained. The
retained measurements are also kept in their raw form and at least
one measurement is retained.

3 BASELINES
This section discusses baseline techniques to quantify the VOI of a
trajectory. Each baseline is described along with which desirable
characteristics from Section 2 they can capture. Table 1 summarizes
which characteristics the baselines and our proposed method can
faithfully represent. Our proposed method, based on information
gain and shown in the last row of Table 1, is described in detail in
Section 4. A cross ( )/exclamation mark ( )/checkmark ( ) indi-
cates that the method in that row cannot/can partially/can fully
capture the characteristic in that column, respectively.

The following analysis shows how the baseline methods, while
appearing initially reasonable, fail to represent some important
characteristics of the VOI. For each characteristic, a method is first
evaluated qualitatively. In some cases, it is obvious that a method
can or cannot capture a characteristic, e.g., a size-based method
can capture the size but not prior knowledge. In other cases, it may
not be as clear. In those cases, the method is said to be capable of
capturing the characteristic if there is a strong correlation between
the output of the method and the characteristic. The correlation is
examined using Spearman’s rank correlation coefficient 𝜌 , which
quantifies strictly monotonic relationships between two variables
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Size Duration Spatial
Distribution

Temporal
Distribution

Measurement
Uncertainty

Prior
Knowledge Degradation

Fixed Value
Size-based
Duration-based
Travel Distance

Entropy-based * *
SPP-based [12]

Correctness-based [17] * *
Information Gain

Table 1: Potential methods to quantify the intrinsic VOI of a trajectory and the characteristics they can or cannot capture. Our
proposed method based on information gain can capture almost all of the desirable characteristics.

and is relatively robust against outliers [16]. An absolute magnitude
|𝜌 | in [0.4, 0.7) and [0.7, 1] indicates moderate and strong correla-
tion, respectively. The cutoff points are based on previous work [16].
The values of 𝜌 are calculated from a large real-world trajectory
dataset described in Section 5.1.

3.1 Fixed Value Method
One potential method is to set the same value for all trajectories.
While this method is straightforward and, in fact, was used in some
surveys about values of location data from a seller’s perspective [4,
18], this method ignores the fact that each trajectory may contain a
different VOI. For example, a 40-mile long commute from home to
work can be very different from a short trip to a nearby store. Hence,
this method does not capture any of the desirable characteristics.

3.2 Size-based Method
The size-based method uses the size |𝑆 | of a trajectory 𝑆 to quantify
the VOI of 𝑆 . It is reasonable to say that a trajectory with more
measurements tends to have more information. While this method
may distinguish trajectories with many or few measurements, the
size alone would fail to fully capture the VOI of a trajectory, because
the size |𝑆 | depends heavily on the sampling rate and the duration.
For example, the same trip from home to office if sampled every
1 second would have a size 5 times larger than if sampled every
5 seconds, while having roughly similar information about the
locations of the person along the trip.

Consequently, the size-based method successfully captures the
size characteristic of a trajectory, but not other aspects. For the
duration characteristic, because it only depends on the first and
last measurements of the trajectory, the size cannot fully capture it,
e.g., a trajectory with two measurements can be arbitrarily short
or long. However, the size can partially capture the duration if the
sampling rate is relatively similar among trajectories. The correla-
tion coefficient 𝜌 between size and duration of trajectories in our
dataset is 0.86, which indicates a strong correlation between them.

The size |𝑆 | also does not capture the spatial nor temporal dis-
tribution of 𝑆 , because it does not indicate how the measurements
are distributed. The same number of measurements can happen
at nearly the same place/time if the sampling rate is high, or at

different places/times if the sampling rate is low. It is also clear that
|𝑆 | does not indicate measurement uncertainty nor prior knowledge.
In fact, any method using solely trajectory characteristics would
fail to capture prior knowledge because prior knowledge is not
considered in that method. The size can capture some degradation
such as truncation, but not other degradation such as perturbation.

3.3 Duration-based Method
Another method is to use the duration 𝐷 (𝑆) of 𝑆 , i.e, 𝐷 (𝑆) =

𝒙 |𝑆 | .𝑡 − 𝒙1 .𝑡 , to quantify its VOI, as it is reasonable to assume
that a temporally longer trajectory tends to have more information.
However, using only duration would fail to fully capture the VOI
since it ignores all information between the start and end points.

Similar to the size-based method explained before, this method
can fully capture the duration but can only partially capture the size.
The duration also does not represent how the measurements distrib-
ute over space and time, and is unable to take into account measure-
ment uncertainty and prior knowledge. Duration can capture the
effect of truncation but not that of perturbation nor subsampling,
thus, only partially capturing the effects of degradation.

3.4 Travel Distance Method
This method computes the travel distance 𝐿(𝑆) of 𝑆 by summing
the distances between each pair of consecutive measurements. It is
reasonable to assume that a trajectory with longer distance tends
to have more information than a shorter one.

With the same mode of transportation (e.g., with bikes or cars),
travel distance likely reflects the duration. Thus, travel distance
can partially capture duration and the size of 𝑆 . With a longer
distance, the trajectory tends to go through more places and time
period. In our dataset, a strong correlation 0.89 and 0.78 between the
travel distance and spatial and temporal entropy indicate that travel
distance can partially capture the spatial and temporal distribution.

However, using travel distance would fail take into account mea-
surement uncertainty or any prior knowledge. It can capture some
degradation, e.g., truncation, but not others, thus, only partially
capturing the effect of degradation.
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3.5 Entropy-based Method
The spatial and temporal entropy 𝐻𝑆 (𝑆) or 𝐻𝑇 (𝑆) of 𝑆 , computed
from the Shannon entropy of the probabilities converted from the
histogram of number of measurements of 𝑆 belonging to each grid
cell or temporal bin, can be good candidates to quantify the VOI
given its extensive applications in information theory. A higher
spatial/temporal entropy likely indicates that the trajectory gives
more information about a person’s locations over space/time.

Since𝐻𝑆 (𝑆) or𝐻𝑇 (𝑆) are used to measure the spatial and tempo-
ral distribution of 𝑆 , respectively, a method combining both 𝐻𝑆 (𝑆)
or 𝐻𝑇 (𝑆) can capture these two characteristics. However, it is un-
clear how they should be combined, which is why there are asterisks
for the entropy-based row in Table 1.

While𝐻𝑆 (𝑆) and𝐻𝑇 (𝑆) do not fully capture the size and duration
(e.g., a trajectory with only two points but far apart from each other
can have a long duration but low entropy values), when 𝑆 has a
relatively high sampling rate, 𝐻𝑇 (𝑆) would be highly correlated
with the size and duration. In our dataset, the correlation coefficients
between𝐻𝑇 (𝑆) and size and duration are 0.89 and 0.97, respectively,
which indicate a very strong correlation.

However, since entropy reflects the uncertainty, when the mea-
surements have higher uncertainty (i.e., larger 𝒙 .𝜎), both 𝐻𝑆 (𝑆)
and 𝐻𝑇 (𝑆) tend to increase. This is opposite of what one might
expect, because a more uncertain measurement means less informa-
tion. Thus, entropy does not capture measurement uncertainty nor
degradation such as perturbation. Computing 𝐻𝑆 (𝑆) and 𝐻𝑇 (𝑆)
also ignores all prior knowledge. Another issue is that the entropy
can change significantly when arbitrary parameters for computing
entropy (i.e., size of grid cells or length of time bins) change.

3.6 Spatial Privacy Pricing-based Method
This method is based on the previous work on Spatial Privacy Pric-
ing [12] (SPP) where each measurement has the same value defined
by the owner, and the value can be reduced when the measurement
is perturbed by noise. The VOI of the trajectory is then calculated
by summing up the values of each individual measurement.

With the ability to change the value based on the noise in the
measurements, this method can capture the measurement uncer-
tainty and represent degradation. Summing the individual values
means this method is similar to the size-based method, but is also
sensitive to the perturbation parameters. Therefore, this method
has similar characteristics as the size-based method, which means
fully capturing size, partially capturing duration, and unable to
capture spatial and temporal distributions and prior knowledge.

3.7 Correctness-based Method
This method is based on the correctness of reconstructing the raw
measurements from available data [17]. Roughly speaking, when
calculating the VOI of a degraded version 𝑍 of 𝑆 , the owner can
assume the recipient is attempting to reconstruct eachmeasurement
𝒙𝑖 ∈ 𝑆 based on 𝑍 . The correctness is the expected error between
the actual points 𝒙𝑖 and the probabilistically reconstructed points
𝒙̂𝑖 . If the expected error is lower, then it would be reasonable to
assume a higher VOI of 𝑍 .

While this concept was proposed for a different problem setting,
some techniques can be used to adapt it to our problem. In fact,

our proposed framework, discussed later, also has a reconstruction
step that can capture prior knowledge and degradation. Thus a
correctness-based method can capture the prior knowledge and
degradation. The asterisks in the correctness-based row in Table 1
indicate that a correctness-based method needs some modifications
for the problem setting and techniques to be fit for our problem.

The main drawback of using correctness is that it requires some
ground-truth measurements of 𝑆 being available to evaluate the
correctness of the reconstructed trajectory made from the degraded
version 𝑍 and prior knowledge. So, it cannot measure the VOI of
the full, raw trajectory 𝑆 , because there is no ground-truth measure-
ment exists to evaluate correctness in that case. Consequently, since
the full, raw trajectory cannot be fully captured, which means there
are often some characteristics not fully captured (e.g., subsampling
changes the size and truncation changes the duration), this method
can only partially capture characteristics of a trajectory.

Another issue is that this method relies on the correctness of
discrete-time predictions, and it is unclear how the correctness of
each prediction should be aggregated to obtain the correctness of
the whole trajectory. For example, the correctness derived from
an 80% subsampled version is evaluated on each measurement of
the remaining 20% data, while the correctness derived from a 60%
subsampled version is evaluated on the remaining 40%. It is unclear
how the correctness should bemodified to reasonably quantify both,
and how the correctness of each prediction should be aggregated.

3.8 Other Potential Quantities
There are other potential quantities contributing to the VOI of a
trajectory. However, these are not considered as baselines because
they are either orthogonal (i.e., they can be used in conjunction
with other methods) or complicated (i.e., finding these quantities
requires techniques beyond the scope of this work). Examples are
time period, subjective sensitivity, and visits.

Time period. The time period that a trajectory 𝑆 was taken,e.g.,
weekdays or weekend, can be a factor contributing to its VOI. For
example, a person may often have commute-related trajectories
during weekdays but more leisure-related trajectories on weekends.
While time period does not represent actual locations, it can be used
in conjunctionwith other methods, e.g., an owner can have different
values for trajectories during weekdays compared to weekends
because of privacy concerns.

Subjective sensitivity. Each person may have their own sensi-
tivity for different types of locations, which may lead to different
sensitivity for different trajectories. For example, one may feel their
workplace is more sensitive than their favorite coffee shop, thus hav-
ing a higher sensitivity for the trajectory from home to work than
the one to the coffee shop. While this information can contribute
to the VOI of a trajectory, incorporating it requires additional in-
formation about the location measurements, which is not the focus
of this work. When this information is available, it can be used
in conjunction with the proposed methods in this work to better
quantify the VOI tailored to the owner’s subjective reasoning.

Visits. This method bases on the number of visits of a trajectory
to quantify the VOI. Its main drawback is how to define a visit. It
is often not feasible for the owner to manually define all visits for
all of their trajectories. On the other hand, complicated techniques
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to automatically find visits [20] are often used to segment a long
sequence of measurements into trajectories, which is beyond the
scope of this work. These techniques also often require additional
information and/or a complex set of parameters where a small
change of some parameters may result in a significantly different
number of visits, which is not desirable.

4 THE INFORMATION GAIN FRAMEWORK
This section describes the proposed framework to quantify the VOI
of a trajectory. The framework is based on the notion of informa-
tion gain (IG) which quantifies the reduction of uncertainty when
new information is available. Adopting IG to trajectories is not
straightforward, and we enable it by transforming each trajectory
to a canonical representation. This transformation is done by em-
ploying a reconstruction method that can produce continuous-time
probabilistic predictions along the trajectory. The Gaussian pro-
cess (GP) is used in this work as the reconstruction method and
discussed in the next section, but we emphasize that our IG frame-
work accepts any reasonable method of producing probabilistic
location inferences.

4.1 Trajectory Information Gain
We define information gain IG𝑇 (𝑍,Ω) of a degraded version 𝑍 of a
trajectory 𝑆 as the total reduction of uncertainty about locations of
the owner over time period 𝑇 compared to the uncertainty from
the prior knowledge Ω. For a typical human trajectory, there are
potentially several reasonable choices for 𝑇 . In this work, 𝑇 is
defined as the entire day covering the trajectory, because a typical
trajectory would not extend beyond a day. We propose IG𝑇 (𝑍,Ω) to
quantify the intrinsic VOI of 𝑆 and/or its degraded version 𝑍 . This
section describes how IG𝑇 (𝑍,Ω) is derived. In Section 5, we will
explain how IG𝑇 (𝑍,Ω) satisfies almost all of the criteria in Table 1,
making it a better choice than the previous methods we described.

Recall that the owner can assume that the recipient obtained
some prior knowledge Ω, e.g., from public data or from previous
noisier release of the same trajectory 𝑆 . From Ω, the owner can
assume that the recipient can derive a prior probability distribution
𝑃 (𝒙 |Ω) for the location of the owner at a specific time 𝒙 .t.

The owner can then assume that after receiving 𝑍 , the recipient
can use a model to reconstruct (or predict/interpolate) locations of
the owner in continuous time. This assumption is made, because
without knowledge of the recipient’s intent, the owner should act
conservatively and assume the recipient will exploit the new data
fully, such as with a maximally accurate reconstruction. Such an
inference can be represented as a posterior distribution 𝑃 (𝒙 |𝑍,Ω).

Subsequently, the information gain IGt (𝑍,Ω) at timestamp t =
𝒙 .t indicates the reduction of uncertainty from 𝑃 (𝒙 |Ω) to 𝑃 (𝒙 |𝑍,Ω).
The uncertainty is measured by differential entropy [3] (or contin-
uous entropy), because both the prior and posterior distributions
are likely continuous distributions in space.

The differential entropy ℎ(𝑋 ) of a random variable 𝑋 with prob-
ability density function 𝑃 whose support is a set X is defined as

ℎ(𝑋 ) = −
∫
X
𝑃 (𝑥) log 𝑃 (𝑥)𝑑𝑥 (6)

Several popular probability distributions have a closed-form expres-
sion for their differential entropy, e.g, if a 𝑋 is a Gaussian random

variable with distribution N(𝜇, 𝜎2), its differential entropy is

ℎ(𝑋 ) = 1
2
log 2𝜋𝑒𝜎2 (7)

The entropy values of latitude and longitude of 𝒙 are calculated sep-
arately using Equation 6, and summed to get ℎ(𝒙 |Ω) and ℎ(𝒙 |𝑍,Ω).

Thus the IG at time 𝑡 , IGt (𝑍,Ω), can be calculated as

IGt (𝑍,Ω) = ℎ(𝒙 |Ω) − ℎ(𝒙 |𝑍,Ω) (8)

Figure 1a illustrates IGt (𝑍,Ω) where the black dot shows the
prediction mean and the blue area shows the uncertainty as the
circle with a radius which is twice the standard deviation of the
predicted distribution 𝑃 (𝒙 |Ω). If𝑍 is available, the uncertainty is re-
duced to the smaller blue circle on the right representing 𝑃 (𝒙 |𝑍,Ω).
IGt (𝑍,Ω) quantifies the reduction and is illustrated as the red ring.

(a) IGt (𝑍,Ω) illustration
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Figure 1: Illustrations of information gain (a) at a single
timestamp and (b) over a time period. The reduced uncer-
tainty is shown in the red area minus the blue area.

Note that 𝒙 does not need to be in any trajectory, because the
probabilistic reconstruction is continuous in time. For example, 𝒙
can be in between two measurements 𝒙𝑖 , 𝒙𝑖+1 ∈ 𝑆 , thus, knowing
𝒙𝑖 and 𝒙𝑖+1 would help reduce the uncertainty of where 𝒙 can be.

Subsequently, the information gain IG𝑇 (𝑍,Ω) over a time period
𝑇 can be calculated by integrating IGt (𝑍,Ω) for all time t ∈ 𝑇 , i.e.,

IG𝑇 (𝑍,Ω) =
∫
t∈𝑇

IGt (𝑍,Ω)𝑑t (9)

Figure 1b illustrates IG𝑇 (𝑍,Ω) computed over a time period
𝑇 = [0, 10] with prior 𝑃 (𝒙 |Ω) = N(0, 100) for each timestamp.
Over this period, the red line shows the prediction mean of the
prior distributions, and the red area shows the prior uncertainty.
When 𝑍 , shown as two black crosses, is available, the uncertainty is
reduced to the blue area. The amount of such reduction is shown as
the red area minus the blue area and is quantified using IG𝑇 (𝑍,Ω).

4.2 Reconstruction Method
To compute IG𝑇 (𝑍,Ω), a probabilistic reconstruction method is
needed to reconstruct locations of the owner given Ω and/or 𝑍 . A
Gaussian process (GP) is used in this work as the reconstruction
method because of its flexibility to incorporate different types of
information. However, we emphasize that reconstruction is not the



Quantifying Intrinsic Value of Information of Trajectories SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

focus of this paper. The IG framework accepts any reasonable prob-
abilistic reconstruction method. Thus, we briefly discuss important
aspects of the GP. More details about GPs can be seen in [15].

For a scalar function 𝑓 (𝑡), a GP implies that any subset of points
sampled from 𝑓 (𝑡) is distributed according to a multidimensional
Gaussian. Two independent GPs are created for longitude and lati-
tude prediction. The input for a GP are pairs < 𝑡, 𝑓 (𝑡) > where 𝑓 (𝑡)
is longitude or latitude of the measurement at time 𝑡 . The output
for a set of timestamps T ∗ are predictions 𝑓 ∗ (𝑡) for each 𝑡 ∈ T ∗.

A GP depends on a scalar covariance kernel/function 𝑘 (𝑡, 𝑡 ′)
defining how much a measurement at time 𝑡 correlates with a
measurement at time 𝑡 ′. In general, the correlation decreases to zero
as |𝑡 − 𝑡 ′ | gets larger. A good kernel can help incorporate different
types of information into the model, especially when kernels can
be combined together. In our implementation, two common kernels
are summed together: the main kernel is a Matérn kernel that
captures the relationship betweenmeasurements as well as the prior
knowledge, and a white kernel to capture measurement uncertainty.

The formula of the Matérn kernel used in this work is

𝑘Matérn (𝑡, 𝑡 ′) = 𝜎2
𝑓

(
1 +

√
3
𝑙
|𝑡 − 𝑡 ′ |

)
exp

(
−
√
3
𝑙
|𝑡 − 𝑡 ′ |

)
(10)

Setting 𝜎𝑓 to the standard deviation of the prior distribution can
help capture the prior knowledge, so that when the model becomes
more uncertain, the standard deviation of the prediction will grad-
ually reach this value. The length scale 𝑙 is trained from data.

The formula of a white kernel is

𝑘𝑤ℎ𝑖𝑡𝑒 (𝑡, 𝑡 ′) =
{
𝜎2𝑚 if t = t’
0 otherwise

(11)

Setting 𝜎𝑚 to 𝒙 .𝜎 or 𝑧.𝜎 helps capture the measurement uncertainty.
The final kernel is

𝑘 (𝑡, 𝑡 ′) = 𝑘Matérn (𝑡, 𝑡 ′) + 𝑘𝑤ℎ𝑖𝑡𝑒 (𝑡, 𝑡 ′) (12)

Finally, a GP also depends on amean function𝑚(𝑡) which defines
the expected mean values of the measurements. In our adaption, the
mean function𝑚(𝑡) of a GP is set to be the regression line obtained
by running a linear regression on the data in Ω.

5 EVALUATIONS OF THE IG FRAMEWORK
This section provides an evaluation of how the IG framework can
capture each characteristic from Table 1, both qualitatively and
quantitatively. The quantitative evaluation is performed on the
Geolife dataset, which is a large, real-world trajectory dataset.

5.1 Dataset
The Geolife dataset [22] is used for experiments to quantitatively
justify claims in the paper. This is a trajectory dataset collected by
182 people carrying GPS loggers and GPS-phones in the Beijing
area from April 2007 to August 2012. A trajectory is represented
by a sequence of measurements containing the latitude, longitude,
and timestamp, with a variety of sampling rates. With this large,
real-world dataset, covering a large span in both space and time,
different types of devices, and a variety of sampling rates, we expect
it is representative of the observations in other real-world datasets.

Measurements in the Geolife dataset are filtered to retain only
ones within the Bejing area with longitude from 116.20 to 116.55

degrees and latitude from 39.80 to 40.06 degrees. This area covers
almost all measurements and, in total, more than 16 million mea-
surements were retained from all 182 people. The latitude/longitude
coordinates in each measurement are converted to local Euclidean
coordinates (𝑥,𝑦) in meters with the reference origin (𝑙𝑜𝑛0, 𝑙𝑎𝑡0)
arbitrarily chosen as the center of the aforementioned area. In lo-
cal Euclidean coordinates, the area has a lower left coordinate of
(−15000,−15000) and an upper right coordinate of (15000, 15000).

Measurements of each individual are separated into trajectories
by iterating through the ordered measurements and creating a new
trajectorywhenever the time gap between the currentmeasurement
and the next measurement is more than 𝜏 seconds. The maximum
time gap 𝜏 is arbitrarily chosen at 300 seconds or 5 minutes. The
actual value of 𝜏 does not significantly change the experimental
results. We also emphasize that finding trajectories is not the focus
of this work. Thus, more sophisticated methods to find trajecto-
ries from measurements can also be used as an alternative to this
segmentation approach. The final dataset has 45,831 trajectories.

5.2 Experiment Setup
The experiments were conducted on the aforementioned dataset
with various sets of parameters. The results, such as the correlation
coefficient or regression line, are computed from all trajectories.
Several outliers are removed for visual presentation purpose but still
included in all computations. The default size of grid cells/temporal
bins to calculate spatial/temporal entropy is 10 meters/one minute.

The raw measurements do not include uncertainty. However,
because they were recorded by GPS-equipped devices and the noise
for GPS-equipped smartphones is about 3 meters [13], each mea-
surement is assumed to have 𝒙𝑖 .𝜎 = 3. For perturbation degra-
dation, the noise is added such that the total noise (i.e., 𝑧𝑖 .𝜎) is
in {3, 10, 100, 200, 300, 400} meters. The ratios for truncation and
subsampling degradation (i.e., 𝛼𝑡 and 𝛼𝑠 ) are {0.8, 0.6, 0.4, 0.2, 0.05},
which mean {80%, 60%, 40%, 20%, 5%} of the raw trajectory. The sub-
sampling is implemented so that the subsampled data with a higher
ratio is a superset of the subsampled data with a smaller ratio.

A measurement is assumed to be inside the Beijing area. This
choice is reasonable for this dataset. However, it is not crucial to the
framework where any reasonable prior knowledge can be used (e.g.,
measurements can be anywhere on Earth) and would only change
the scale of IG. This prior knowledge is represented by a Gaussian
distribution with extremely high variance where the mean is at the
center of the area (i.e., coordinates (0, 0)) and the standard deviation
is 𝜎0 = 7500 meters (i.e., the distance from the center to an edge of
the area is twice this standard deviation). This is an uninformative
prior and called the Gaussian prior, i.e., for each timestamp, the
location is assumed to be N(0, 𝜎20 ) for each dimension.

It is also natural to consider any previously released data as prior
knowledge when computing the VOI of the data the owner still
retains. So we also consider previous releases as priors. This also
demonstrates an advantage of the IG framework, where any previ-
ous release can be naturally considered when computing the VOI of
the owner’s remaining data. To illustrate these cases, depending on
the nature of a degradation, different informative priors based on
previous releases are considered. For perturbation, two additional
priors are 400m noise and 300m noise priors, illustrating the cases
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Figure 2: An illustration of how IG can capture trajectory characteristics. The figures from left to right showing the effect of
measurement uncertainty, duration, size, temporal, and spatial distribution of a trajectory.

where the owner released their trajectories at those noise levels be-
fore. For example, with the 400m noise prior, when computing the
IG for a degraded version𝑍100 with 100m noise of a trajectory 𝑆 , the
owner may consider the prior knowledge is the degraded version
𝑍400 with 400m noise of 𝑆 . Thus, there are three priors for perturba-
tion in total: the uninformative Gaussian prior and two informative
priors 400m noise and 300m noise. Similarly, there are three priors
for truncation/subsampling: the uninformative Gaussian prior and
two informative 5% trajectory and 20% trajectory priors, illustrating
the cases when the owner released trajectories with 0.05 or 0.2
truncation/subsampling ratio before. Other prior knowledge, e.g.,
previously purchased trajectories, can also be considered as priors,
provided that they can be expressed as prior location distributions.

The GP is trained on the prior Ω (e.g., 300m prior), except when
the prior is the uninformative Gaussian prior, when it is then trained
on the new degraded version 𝑍 . The degraded version 𝑍 and prior
Ω are combined and then provided to the GP. For perturbation,
measurements 𝑍 and Ω of each timestamp are combined using
inverse-variance weighting [7]. For truncation and subsampling,
because the higher-ratio degraded version is always a superset
of a lower-ratio degraded version (e.g, 𝑍5% ⊂ 𝑍20% ⊂ 𝑍40%), the
combined data is 𝑍 . This is a reasonable approach for GP. There can
be other methods to better combine a prior and new data, especially
if another prediction model is used instead of GP; however, this is
not the focus of the paper.While we expect similar trends, especially
from models similar to GP such as a Kalman filter [9] or a particle
filer [6], absolute values from other models can be slightly different.

For GP kernels, 𝜎0 = 7500 is provided to the Matérn kernel. Total
noise 𝑧.𝜎 is provided to the white kernel. Length scale 𝑙 can take val-
ues in [0.01, 10] and is trained separately for each degraded version.
IG over the time period is computed using numerical integration
with the trapezoid rule. Finally, logarithms are base 2.

5.3 IG Capturing Trajectory Characteristics
For qualitative evaluation, Figure 2 illustrates the IG for different
cases in one spatial dimension. Starting from left to right with a
trajectory having two noisy measurements close to each other in
Figure 2a, the IG increases as expected when the measurements are
less noisy as in Figure 2b. When the duration increases, illustrated
by two measurements being farther apart in Figure 2c, the IG also
increases because these two measurements can also help reduce
uncertainty for the longer time in between these two measurements.

Whenmore measurements are available as in Figure 2d, these points
help reduce more uncertainty around them, thus increasing the
IG further. The IG keeps increasing when the measurements are
temporally distributed more evenly as shown in Figure 2e because,
for most of the duration along the trajectory, there are temporally
nearby measurements, thus helping reduce uncertainty. Finally, in
Figure 2f, the IG also slightly increases when measurements appear
in between the start and end locations (shown on the vertical axis),
thus making the movement less abrupt. However, if the locations
jump unpredictably, the uncertainty tends to increase compared
to, e.g., when the person stays at the same place, thus decreasing
the IG for that case. Therefore, the IG can only partially capture
the spatial distribution and can capture the size, duration, temporal
distribution, and measurement uncertainty, as reflected in Table 1.

For quantitative evaluation using the Geolife data, the correla-
tion coefficients of the IG with size, duration, and temporal entropy
are 0.85, 0.97 and 0.96, respectively, which show very strong cor-
relation. The correlation coefficients of the IG and spatial entropy
is 0.68 which is also close to a strong correlation. Figure 3 shows
the histograms of the IG and these characteristics on a log scale
of the number of trajectories, along with a linear regression line
indicating a clear trend between the IG and these characteristics.
The regression uses Huber loss [8] to mitigate the effect of outliers.
Quantitative evaluation shown in Figure 4 (explained in detail later)
also shows that the IG can capture measurement uncertainty, be-
cause when a trajectory has large measurement uncertainty (i.e.,
less informative), the IG tends to decrease. Computing IG took
around 2-4 seconds per trajectory on a single machine.

5.4 IG Capturing Prior Knowledge and
Degradation

The impact of prior knowledge and degradation can be effectively
captured by the IG framework. In general, when a trajectory is
degraded more (e.g., larger total noise), the IG tends to decrease,
matching the intuition that a lower quality trajectory gives lower in-
formation. Similar trends show in both the absolute value IG(𝑍,Ω)
and the ratio IG(𝑍,Ω)

IG(𝑆,Ω) of the IG compared to the raw trajectory 𝑆 .
We first discuss the results for perturbation. Figure 4 shows the IG

value IG(𝑍,Ω) and the IG ratio IG(𝑍,Ω)
IG(𝑆,Ω) in percentage with different

perturbations and prior knowledge. As discussed in Section 5.2, the
total noise ranges from 3 to 400 meters, and the prior knowledge
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Figure 3: Histogram of IG and (a) size, (b) duration, (d) spatial, (c) temporal entropy, and their correlation coefficients.
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Figure 4: (a) Absolute IG and (b) percentage IG change com-
pared to original trajectories for different values of total
noise and different types of prior knowledge.

scenarios are Gaussion, 400m noise, and 300m noise priors. Each
box plot in Figure 4a (or 4b) shows the IG value (or the IG ratio) of
𝑍 with the total noise shown on the 𝑥 axis given particular prior
knowledge. For example, the red, dotted box plot at total noise 100
in Figure 4a shows the IG values of a degraded version 𝑍100 of
𝑆 with total noise 100 meters, given that the prior knowledge is
another previously-released degraded version 𝑍400 of 𝑆 with total
noise 400 meters. It is clear that when total noise becomes larger, i.e.,
more degradation, the IG value and the IG ratio tend to decrease.

With a more informative prior, the absolute IG value tends to be
smaller. For example, the 400m noise prior is a more informative
prior than the Gaussian prior, thus the absolute IG value of the same
𝑍 with the 400-noise prior is smaller than with the Gaussian prior.
This also supports intuition: if one already has good information
about the location of a person, getting more data does not increase
such information as much as when one only has little information.
This is an important property that does not exist in other baselines.

Truncation and subsampling degradation also show similar ob-
servations as those from perturbation. Figures 5 and 6 show the
IG value and the percentage of IG change for truncation and sub-
sampling with different prior knowledge, respectively. The trun-
cation/subsampling ratios range from 0.8 to 0.05, which means
80% down to 5% of the original trajectory is retained. Because of
the 0.05 (or 1

20 ) ratio, these figures show the results from almost
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Figure 5: (a) Absolute IG and (b) percentage IG change com-
pared to original trajectories for different truncation ratios
and types of prior knowledge.
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Figure 6: (a) Absolute IG and (b) percentage IG change com-
pared to original trajectories for different subsampling ra-
tios and types of prior knowledge.

40,000 trajectories that have at least 20 measurements. As discussed
in Section 5.2, the prior knowledge scenarios are Gaussion prior,
5% trajectory prior and 20% trajectory prior. The IG also tends to
decrease when the trajectory is degraded more (i.e., lower ratio)
and when the prior gets better (e.g, 5% vs. 20% priors).

The decrease in IG with truncation is much stronger than with
subsampling. The reason is that knowing a measurement not only



SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Nguyen, et al.

reduces the uncertainty at the time of the measurement but also for
the time around that measurement. Thus when measurements are
more evenly distributed, they help reduce more uncertainty, which
means getting higher IG, as illustrated in Section 5.2. With the same
ratio, which means the same number of measurements are retained,
a truncation is similar to the case when measurements are close to
each other (Figure 2d) while (uniform) subsampling is similar to the
case when measurements are more evenly distributed (Figure 2e).
This property also highlights the difference and advantage of IG for
quantifying the VOI of a trajectory compared to other baselines.

Another observation is that by effectively capturing the impact of
degradation, one can find the equivalence classes of different types
of degradation for the same trajectory. For instance, given 𝑆 , which
truncation ratio produces the same VOI compared to perturbing
𝑆 at total 300 meter noise? Figure 7 shows an example of such
VOI equivalence for the first trajectory of the first owner in our
dataset. The intersection between the (interpolated) truncation and
perturbation lines indicates that truncating this trajectory at 65%
gives roughly similar VOI to perturbing it with total 130m noise.
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Figure 7: An example of VOI equivalence classes of different
types of degradation for a trajectory.

6 RELATEDWORK
Quantifying the value of location data has been an active line of
research. There have been several surveys of how individuals value
their location data [4, 18]. Aly et. al [1] showed how the value of a
location data point can be quantified from the buyer’s perspective
in a geo-marketplace. Also in a geo-marketplace context, Nguyen et.
al [12] proposed a framework allowing sellers to offer a location data
point at different qualities for different prices. However, previous
work focused on the monetary value of location data. To the best
of our knowledge, this is the first work that attempts to quantify
the intrinsic VOI of a trajectory in their most basic form, which is
a sequence of location measurements.

There is also extensive work on quantifying location privacy,
which also attempted to reconstruct the locations of individuals.
Krumm [11] surveyed a variety of computational location privacy
schemes and emphasized the importance of finding a single quan-
tifier for location privacy. Shokri et. al [17] proposed correctness
as the metric for quantifying location privacy. Location privacy
and the VOI of a trajectory can be related, e.g., a trajectory with
high VOI may reveal more about a person than one with lower VOI,

thus leaking privacy. However, location privacy does not exactly
correspond to the intrinsic VOI of a trajectory: the former concerns
more about semantic locations and is often more subjective, while
the latter concerns more about the location coordinates over time.
Correctness and subjective sensitivity, which are related to location
privacy, were also discussed in detail in Section 3.7.

7 CONCLUSION AND FUTUREWORK
The intrinsic VOI of trajectories plays an important role in many
applications. We proposed the IG framework and qualitatively and
quantitatively demonstrated its capability to effectively capture
important characteristics of raw trajectories, prior knowledge, and
various types of degradation. This shows that the IG is an appropri-
ate framework to quantify the intrinsic VOI of trajectories. There
are several potential directions for future work such as incorporat-
ing other features, or supporting other degradation types.
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