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ABSTRACT

Transformer achieves remarkable successes in understanding 1 and

2-dimensional signals (e.g., NLP and Image Content Understand-

ing). As a potential alternative to convolutional neural networks, it

shares merits of strong interpretability, high discriminative power

on hyper-scale data, and flexibility in processing varying length in-

puts. However, its encoders naturally contain computational inten-

sive operations such as pair-wise self-attention, incurring heavy

computational burdenwhen being applied on the complex 3-dimen

sional video signals.

This paper presents Token Shift Module (i.e., TokShift), a

novel, zero-parameter, zero-FLOPs operator, for modeling tempo-

ral relations within each transformer encoder. Specifically, the

TokShift barely temporally shifts partial [Class] token features

back-and-forth across adjacent frames. Then, we densely plug

the module into each encoder of a plain 2D vision transformer

for learning 3D video representation. It is worth noticing that

our TokShift transformer is a pure convolutional-free video trans-

former pilot with computational efficiency for video understand-

ing. Experiments on standard benchmarks verify its robustness,

effectiveness, and efficiency. Particularly, with input clips of

8/12 frames, the TokShift transformer achieves SOTA precision:

79.83%/80.40% on the Kinetics-400, 66.56% on EGTEA-Gaze+, and

96.80% on UCF-101 datasets, comparable or better than existing

SOTA convolutional counterparts. Our code is open-sourced in:

https://github.com/VideoNetworks/TokShift-Transformer.

CCS CONCEPTS

• Computing methodologies→ Activity recognition and un-

derstanding.
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(a) Video Tensor (b) Temporal Shift

(c) Patch Shift (d) Token Shift

Figure 1: Types of Shift for video transformer. A video em-

bedding contains two types of “words”: # [Patch] + 1 [Class]

Token. Hence, the Shift can be applied on: (a) Neither, (b)

Both, (c) Patch, and (d) [Class] Token along the temporal axis.

“�” indicates padding zeros.
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1 INTRODUCTION

“If a picture is worth a thousand words, is a video worth a million?”

[40]. This quote basically predicts that image and video can be po-

tentially interpreted as linguistical sentences, except that videos

contain richer information than images. The recent progress of ex-

tending linguistical-style, convolutional-free transformers [9] on

visual content understanding successfully verifies the quote’s prior

half, whereas the latter half for video remains an open hypothesis.

This paper studies the efficient and effective way of applying sim-

ilar transformers for video understanding and answer the quote’s

prophecy for videos.

As a potential alternative for convolutional neural networks,

the transformer achieves remarkable progress in both NLP [1, 2,

8, 17, 31] and vision tasks [3, 9, 28, 32, 35]. Particularly, language

and vision transformers show several merits over their CNN coun-

terparts, such as good interpretability (e.g., attention to highlight

http://arxiv.org/abs/2108.02432v1
https://github.com/VideoNetworks/TokShift-Transformer
https://doi.org/10.1145/3474085.3475272
https://doi.org/10.1145/3474085.3475272


core parts), unsaturated discriminatory power scalable with hyper-

scale data (e.g., million-scale language corpus[8, 31] or billion-scale

images[9]), and flexibility in processing varying length inputs [1,

17].

However, unlike signal understanding on 1 and 2-dimensional

data (i.e., NLP & static vision), the application of transformers on 3-

dimensional video signals is challenging. Specifically, each encoder

of a transformer naturally contains heavy computations such as

pair-wise self-attention; meanwhile, a video has a longer sequen-

tial representation (IIIE ∈ R)×(#+1)×� ) than an image (III8 ∈ R(#+1)×� )
due to an extra temporal axis. Consequently, directly applying gen-

eral transformers on flattened spatio-temporal video sequenceswill

introduce an exponential explosion of computations (e.g.,) 2· (#+1)2
2

pair-wise distance calculations1) in the training and inference phases.

To tackle this, we propose Token Shift Module (i.e., TokShift),

a novel zero-parameter, zero-FLOPs operator, for modeling tem-

poral relations within each video encoder. Specifically, the Tok-

Shift module barely temporally shifts partial [Class] token fea-

tures back-and-forth (Figure (1d)) across frames. Then, we densely

plug the TokShift module into each encoder of a plain 2D vision

transformer for learning 3D video representation.

Our TokShift is partially inspired by the success of spatial [6, 37,

41] and temporal [10, 20] shift operators for efficiency optimization

on CNNs, but bears its own uniqueness. Specifically, on CNNs, spa-

tial/temporal shift is uniformly applied across all spatial receptive

fields on a feature-map. Follow this imitation, a copycat of the Tem-

poral Shift Module for transformers is shown in Figure (1b), where

the shift is imposed on all patches and [Class] token features. How-

ever, we experimentally verify that, rather than temporally shifting

features of all reception fields, just shift [Class] token feature is

sufficient. As in Figure (1b-1d), our TokShift introduces minimum

modifications on original feature IIIE , and gets the most improve-

ment among all shift variants. More importantly, equipped with

the TokShift, a video transformer only needs to handle ) · (#+1)2
2

pair-wise calculations. Finally, we verify that the shift operator is

generalizable on transformers as it does on CNNs.

We try to intuitively explain the efficacy of the TokShift by draw-

ing an analogy between textual description and visual feature vec-

tor of each frame. Specifically, the text describing a frame usually

follow a similar linguistical form: “verb” + “noun” (e.g., “walking

the dog” in Figure (4)), where “verb” is dynamically correlated with

neighboring frames and “noun” are static. Correspondingly, the

TokShift exchanges partial visual features of a frame (in the form

of a token vector) temporally back-and-forth for motion capturing

while keeping the rest for static semantics modeling.

We conduct extensive experiments of the TokShift-xfmr on stan-

dard benchmarks, such as Kinetics-400 [4], EGTEA-Gaze+ [19] and

UCF-101 [26] datasets. Experiments demonstrate thatwith the Tok-

Shift, video transformers could perform comparable or better than

the best 3D-CNNs, reaching SOTA performance. Our contributions

are summarized below.

1) , # , 1, � denote time-stamps, spatial-patches, [Class] token and feature-dim

• Transformer for video classification.Our TokShift-xfmr

is an efficient pure convolutional-free transformer pilot ap-

plied for video classification.We repeat the successes of trans-

formers on 3D videos as on 1/2D texts/images, promoting

applications of transformers on different domains.

• Efficient TokShift for transformer encoder. We specif-

ically design a novel zero-parameter, zero-FLOPs TokShift

operator for the encoder. By merely manipulating global

frame representation (i.e., [Class] token vector) via shift op-

erations, we can reduce computations of pair-wise attention

in dealing with sequential flattening video representations

within transformers.

• State-of-the-artperformances.We test the TokShift-xfmr

on several standard benchmarks. Experiments show that the

TokShift-xfmr achieves SOTA top-1 accuracy 79.83%/80.40%

(8/12f) on Kinetics-400, 66.56% (8f) on EGTEA-Gaze+, and

96.80% (8f) on UCF-101 datasets, comparable or better than

the best 3D-CNNs available (TSM, SlowFast-R101-NL, X3D-

XXL).

2 RELATED WORKS

The TokShift-xfmr is closely relevant to research areas, including

3D-CNNs for video classification, shift strategies for convolutional

optimization, and 1/2D transformers for NLP/vision understand-

ing; we separately elaborate the related literature for each area as

below.

3D-CNNs for video classifications.Convolutional neural net-

works stepped into a prosperous age in the past few years [5, 16, 18,

24, 25, 27, 36, 38, 42–45]. Consequently, the 3D-CNN [4, 11, 12, 14,

15, 21–23, 30, 39] has become a de-facto standard for video content

understanding. Specifically, C3D [30] firstly inflates the convolu-

tional kernel from 2D to 3D, to facilitate temporal modeling. For

motion capturing, the two-stream network [23] fuses two CNNs

trained on optical-flow with RGB modalities. Furthermore, I3D [4]

deepens 3D-CNNs by inflating 3D kernels on inception-net, ac-

companied with a large-scale Kinetics dataset. To reduce computa-

tional overhead, Pseudo-3D [21] decomposes a 3D Spatio-temporal

convolution into Spatial-2D + Temporal-1D form. This decomposi-

tion greatly balances computations, parameters, and performances,

hence gain its popularity in later 3D-CNNs. S3D-G [39] scales chan-

nel elements with attention yielded by global feature. Non-local

networks [33] introduces self-attention on top of CNNs; further-

more, CBA-QSA CNN [15] extends self-attention with compact bi-

linear mapping for fine-grained action classification. SlowFast [12]

and X3D [11] are currently best two 3D-CNNs. The former designs

dual-paths CNNs, where each path receives input clip of slow/fast

sampling rate; the latter presents an efficient strategy to search for

optimal hyperparameters (e.g., spatial/temporal resolutions, chan-

nels, depth, etc.) on a template network (i.e., X2D).

Spatial/temporal shift for efficient CNNs. Mobile comput-

ing demands more efficiency than cloud computing. Thereby, the

Shift [6, 10, 20, 37, 41], a zero-parameter, zero-FLOPs operator for

local feature aggregation, is proposed to reduce the complexities

of CNNs. Specifically, Shift + 1D/2D convolution can lossily ap-

proximate a 2D/3D convolution. For example, in [37], Wu replaces

spatial convolution of 3×3 kernel with Shift + 1×1 kernel for vision



Figure 2: Token Shift Transformer: the input video is divided into multiple patch clips, according to the rigid spatial grids.

Patch clips are linear-projected, added with positional embeddings (���?>B ), and then concatenated with a [Class] token tensor

(2220) to form video embedding (III0). The III0 is fed into ! layers of identical TokShift encoders for learning video representation.

understanding. To further improve efficiency, ShiftAddNet [41] in-

troduces Shift + Add, eliminating all multiplications. For videos,

Lin [20] constructs TSM with Temporal Shift + spatial convolu-

tions; RubiksNet [10] further removes spatial convolutions and in-

troduces a learnable spatio-temporal shift operator.

Language & vision transformer. Firstly proposed in [31], the

transformer relies on residual attention& feedforward (FFN) in fea-

ture learning and outperforms CNNs to become the de-facto stan-

dard in NLP tasks [2, 8]. To tackle inputs of different/long length,

Reformer [17] and Longformer [1] introduce optimizations on at-

tention calculations. Recently, researchers repeat this success in vi-

sion tasks, including image classification [9, 28], object detection

[3], and segmentations [35]. Specifically, Dosovitskiy [9] proposes

the first pure convolutional-free vision transformer (i.e., ViT) for

image classification. To tackle the generalization problem caused

by insufficient data, they equip the pre-training phasewith a hyper-

scale internal dataset (JFT-300M). In [28], DeiT bypasses the ne-

cessity of pre-training transformer on hyper-scale data through

distillation. They introduce the token distillation for transformers

to teach “student” transformer from various “teachers” (i.e., con-

vnet or deeper transformer). For object detection and segmenta-

tion, as the transformer contains positional encodings under the

encoder/decodermechanism, it can be naturally extended to regress

coordinates [3] and masks [35]. Overall, transformers are strong

alternatives to CNNs and share merits like good interpretability,

unsaturated discriminative power and flexibility on input length.

3 METHOD

An overview of the Token Shift transformer (i.e., TokShift-xfmr)

is presented in Figure (2). Our TokShift-xfmr follows a general

pipeline of transformers, except for working on video inputs and

containing extra temporal processing modules (i.e., the TokShift).

To fit with transformer, a video EEE ∈ R)×�×,×3 is firstly re-

shaped into sequential tensor Ê̂ÊE ∈ R)×#×3 , where) , �/, , % sepa-

rately represent clip-length, spatial-resolutions and patch-size, and

# =
�×,
%2 , 3 = %2 × 3 denote the number of patches and the num-

ber of RGB pixels in a patch respectively. Then, each 8-th patch

GGG80 in Ê̂ÊE is linearly projected into embedding space by ��� and fur-

ther added with the corresponding spatial positional embeddings

���?>B . Similar as BERT [8] and ViT [9], an extra [Class] token tensor

2220 ∈ R)×� is concatenated with patches’ embedding to represent

per-frame global contents. Finally, the video Ê̂ÊE is embeded as III0
(Equation (1) and Figure (1a)).

III0 =
[

2220;GGG
1
0���;GGG

2
0���; ...;GGG

8
0���; ...;GGG

#
0 ���

]

+ ���?>B (1)

GGG80 ∈ R)×3 , 8 = 1, 2, ..., #

��� ∈ R3×� , ���?>B ∈ R(#+1)×�

III0 ∈ R)×(#+1)×�

The TokShift-xfmr (Figure (2)) contains ! replicated, identi-

cal encoders. An encoder consists of the TokShift module, Layer-

Norm (LN), Multi-Head Self-attention (MSA), and Feed-Forward

Network (FFN). The workflow for connecting them is shown by

Figure (2) or Equations (2-4 & 8-10). We will describe each module

separately as below.

The TokShift module (Equation (2) & (8)) serves to in-placed

manipulate global token 222/2̂̂2̂2;−1 along temporal axis, introducing

temporal interactions before feeding video embeddingIII/Î̂ÎI;−1 through
MSA/FFN. Hereby, the token 222/2̂̂2̂2;−1 is the special [Class] word of

III/Î̂ÎI;−1. We will present details of the TokShift and its variants in

section 3.1.

222;−1 = TokShift (222;−1) (2)

III;−1 = LN (III;−1) (3)

Î̂ÎI;−1 = MSA (III;−1) + III;−1, (4)

III/Î̂ÎI;−1 ∈ R)×(#+1)×�

222/2̂̂2̂2;−1 = R)×�

TheMSA (same for LN& FFN) acts in the sameway as in 2DViT

[9]. Specifically, its functions independently process each frame.

Pick III
(C)
;−1 ∈ R(#+1)×� at time-stamp C of III;−1 for example, func-

tions of MSA are performed within each frame (Equations (5)-(7)).



(a) ViT (video) (b) TokShift (c) TokShift-A (d) TokShift-B (e) TokShift-C

Figure 3: Integrations of TokShift module into ViT Encoder: the TokShift can be plugged in multiple positions of a vision

encoder: “prior residual” (TokShift), “prior layer-norm” (TokShift-A), “prior MSA/FFN” (TokShift-B), and “post MSA/FFN

(TokShift-C)”. Notably, a fronter position will affect the subsequent modules inside residual blocks more.

MSA
(

III
(C)
;−1

)

= Concat
[

head
(C)
1 , head

(C)
2 , ..., head

(C)
"

]

(5)

head
(C)
8 = Softmax

(

&&& (C)   (C)
√
�

)

+++ (C) (6)

&&& (C) ,   (C) ,+++ (C)
= III

(C)
;−1 ×,,, @ ,,,, : ,,,, E (7)

,,, @,,,, : ,,,, E ∈ R�×�

The FFN contains two linear projections and a GELU activation,

serving to project each frame’s feature independently.

2̂̂2̂2;−1 = TokShift (2̂̂2̂2;−1) (8)

Î̂ÎI;−1 = LN (Î̂ÎI;−1) (9)

III; = FFN (Î̂ÎI;−1) + Î̂ÎI;−1, ; = 1, 2, ..., ! (10)

Finally, a classification layer works on outputs (i.e., 222!) of the

last encoder. Specifically, the video label is obtained by averaging

frame-level predictions (Equation (11)), where FC represents fully-

connected layer of shape “� × Categories”.

~~~ =

1

)

)
∑

8=1

FC (222!) , 222! ∈ R)×� (11)

3.1 Shift Variants and the TokShift

We propose and compare several shift variants, including the Tok-

Shift module, customized for the video transformer paradigm.

Token Shift merely manipulates [Class] token tensors within

each encoder (Figure (1d)). Our motivation follows a principle that

the current frame’s partial contents are exchanged with prior/post

time-stamps for dynamic motion while the rest are kept for static

semantics. Coincidentally, the extra global [Class] token tensor, ag-

gregated from local features via weighted-sum (i.e., attention), is

appropriate for implementing the principle.

Given a token tensor 222; ∈ R)×� representing the global se-

quence of a clip, the TokShift works as follows: 222; is firstly split

into 3 groups along channel dimension (Equation (12)).

222; = [BBB0, BBB1 , BBB2 ] (12)

BBB0, BBB1 , BBB2 ∈ R)×0,R)×1 ,R)×2

0 + 1 + 2 = �

Then, channels of splitsBBB0/BBB2 are temporally shiftedwith prior/post

time-stamps. For the split BBB1 , its content remains unchanged (Equa-

tions (13)-(15)). The percentages of shifted channels are determined

by 0
� & 2

� .

BBB0 (C) = BBB0 (C − 1) (13)

BBB1 (C) = BBB1 (C) (14)

BBB2 (C) = BBB2 (C + 1) (15)

C = 1, 2, ..., )

Non Shift module can be obtained by relpacing “TokShift()”

with “Identity()” function in Equation (2) & (8). This modification

removes all temporal interactions and processes each frame inde-

pendently. We name this simple 2D vision transformer for videos

as ViT (video) for simplicity (i.e., Figure (1a) & (3a)).

Temporal Shift extension for the encoder is obtained by imitat-

ing spatial/temporal shifts [20, 37, 41] in CNN. Recall that a CNN

feature-map of image/video is a tensor collecting features from all

the receptive fields (spatial or spatio-temporal locations). A shift

operator then exchanges partial channels from neighboring recep-

tive fields for each location on the feature-map. Similarly, in Figure

(1b), temporal shift for encoder exchanges partial channels from

prior/post time-stamps for all “# patches” and “1 [Class] token”.

Patch Shift is a variant of the temporal shift. Since the [Class]

token is a global representation, we exempt it from shift operation

and only process patch embeddings (Figure (1c)).



We compare the four shift variants on a standard benchmark

and observe that theTokShift performs the best among them, show-

ing the potential of capitalizing [Class] tokens for temporal mod-

eling in video transformers. We claim that TokShift introduces the

minimum modifications on III; but grants the maximum benefits.

3.2 Integration into ViT Encoder

There aremultiple candidate positions in an encoder to implant the

TokShift module. The position is essential since it determines the

degree of motions involved in representation learning. Specifically,

from TokShift to TokShift-�/�/� (Figure (3b)-(3e)), the influence

of motions decreases as fewer modules work upon shifted features.

A general encoder contains two residual blocks: one for self-

attention, another for feature embedding (Figure (3a)). In each block,

the TokShift can be placed at “prior residual”, “prior layer-norm”,

“prior MSA/FFN” and “post MSA/FFN”. We experimentally verify

that placing TokShift at a front position (i.e., “prior residual”) brings

the best effect. This finding is different from TSM on CNN, where

the optimal position is “post residual".

4 EXPERIMENTS

We conduct extensive experiments on three standard benchmarks

for video classification and adopt Top-1/5 accuracy (%) as evalua-

tion metrics. We also report the model parameters and GFLOPs to

quantify computations.

4.1 Datasets

We adopt one large-scale (Kinetics-400) and two small-scale (EGTEA-

Gaze+&UCF-101) datasets as evaluation benchmarks. Belowpresents

their brief descriptions.

Kinetics-400 [4] serves as a standard large-scale benchmark for

video classification. Its clips are truncated into 10 seconds duration

with humans’ annotations. The training/validation set separately

contains ∼ 246k/20k clips covering 400 video categories.

EGTEA Gaze+ [19] is a First-Person-View video dataset cov-

ering 106 fine-grained daily action categories. We select split-1

to evaluate our model, and this split contains 8,299/2,022 train-

ing/validating clips, with an average clip length of 3.1 seconds.

UCF-101 [26] contains 101 action categories, such as “human-

human/object” interactions, sports and etc. We also select split-1

for performance reporting. This split contains 9,537/3,783 train-

ing/validating clips with average duration of 5.8 seconds.

4.2 Implementations

We implement a paradigm of shift-transformers, including the ViT

(video), TemporalShift/PatchShift/TokShift-xfmr, on top of 2D ViT

[9] with PyTorch. We also support backbones of various types or

depths.

All experiments share the same settings unless particularly spec-

ified. For ablations with higher resolutions, more frames, or heav-

ier backbones, we follow the “linear scaling rule” [13] to adjust lr

according to batch-size.

Training. Each clip, randomly cropped into 224×224 (256/384
for high resolutions), contains 8/16 frames with a temporal step

of 32. We apply training augmentations before cropping to reduce

overfitting, including random resize (with the short side in [244,

330] andmaintain aspect ratio), randombrightness, saturation, gamma,

hue, and horizontal-flip. We train the model for 18 epochs with

batch-size 21 per GPU. Base lr is set to 0.1, is decayed by 0.1 at

epoch [10, 15] during training. The Base-16 ViT [9] (contains 12

encoders) is adopted as the backbone and the shifted proportion is

set to 0
� ,

2
� =

1
4 . All experiments are run on 2/8× V100 GPUs.

Inference adopts the same testing strategies as [12]. Specifi-

cally, we uniformly sample 10 clips from a testing video. Each clip

are resized to short-side=224 (256/384), then cropped into three

224×224 sub-clips (from “left”, “center”, “right” parts). A video pre-

diction is obtained by averaging scores of 30 sub-clips.

4.3 Ablation Study

Our ablation studies the impacts of the shift-types, integrations,

hyperparameters of video transformers on the Kinetics-400 dataset.

Non Shift vs TokShift. We compare the Non Shift and TokShift

under various sampling steps. Specifically, we fix clip size () ) to 8

frames, but change sampling steps (() to cover variable temporal

duration.

Xfmr

Acc1 ) × (
8 × 8 8 × 16 8 × 32 8 × 64

ViT (video)[9] 76.17 76.32 76.02 75.73
TokShift 76.90 (0.73↑) 76.81 (0.49↑) 77.28 (1.26↑) 76.60 (0.87↑)

Table 1: NonShift vs TokShift under diffrent sampling strate-

gies (“T/S” refers to frames/sampling-step; Accuracy-1).

As in Tab. 1, the TokShift-xfmr outperforms ViT (video) under

all settings. We observe that the performance of TokShift varies

with different temporal steps. A smaller step makes TokShift not

effective in learning temporal evolution. On the other hand, a large

step of 64 frames results in a highly discontinuous frame sequence,

affecting learning effectiveness. A temporal step of 32 frames ap-

pears to be a suitable choice.

Integration. We study the impacts of implanting the TokShift

at different positions of an encoder. As mentioned in section 3.2, a

fronter position will affect the later modules inside residual blocks

more.

Model Words Shiftted ��!$%B ×+84FB Acc1 Acc5
(%) (%)

ViT (video) [9] None 134.7 × 30 76.02 92.52
TokShift-� Token 134.7 × 30 76.85 93.10
TokShift-� Token 134.7 × 30 77.21 92.81
TokShift-� Token 134.7 × 30 77.00 92.92
TokShift Token 134.7 × 30 77.28 92.91

Table 2: Comparisons of the TokShift residing in different

positions (GFLOPs, Accuracy-1/5).

Table 2 lists comparisons of the TokShift residing in different

positions. We observe that: (1). All models share the same GFLOPs,

which is consistent with our zero-FLOPs claims on the TokShift;

(2) Regardless of positions, the TokShift stably improves over the

ViT (video) baseline; (3). Placing the TokShift at “prior residual”, a

front position that affects all later modules, presents the best top-1

accuracy.

Words Shifted. We assess contributions of the token-specific

shift by comparing all shift variants in section 3.1.



Shift Type Words Shiftted ��!$%B ×+84FB Acc1 Acc5
(%) (%)

ViT (video) [9] None 134.7 × 30 76.02 92.52
TemporalShift Token + Patches 134.7 × 30 72.88 91.24
PachShift Patches 134.7 × 30 73.08 91.17
TokShift Token 134.7 × 30 77.28 92.91

Table 3: Comparisons of shifting different visual “Words”

(GFLOPs, Accuracy-1/5).

In Table 3, the TokShift exhibits the best top-1 accuracy. Addi-

tionally, consideration of patches in shift (TemporalShift & PatchShift)

reduces overall performance. The reason lies in that patches of the

same spatial grid across times incurs visual misalignment when

rigidly dividing a moving object.We verify this hypothesis by mea-

suring the mean cosine similarity between the patch and its tempo-

ral neighbor features on kinetics-400 val set with Temporal/Patch

Shift transformer and observe distances scores of 0.577/0.570. As

for [Class] token part, since it reflects global frame-level contents

without alignment concerns, the distance between neighboring tem-

poral tokens is 0.95. Consequently, for the TokShift or CNN-Shift,

the drawback is bypassed by global alignment or sliding window.

Proportion of shifted channels. This hyperparameter con-

trols the ratio of dynamic/static information in a video feature. We

evaluate 0
� , 2� in range [1/4, 1/8, 1/16] and present results in Table

4. We experimentally find that 1/4 is an optimal value, indicating

that half channels are shifted (1/4 back + 1/4 forth) while the rest
half remain unchanged.

Model Channels Shifted Acc1 Acc5
( 0
�

+ 2

�
) (%) (%)

TokShift 1/4 + 1/4 77.28 92.91
TokShift 1/8 + 1/8 77.18 92.95
TokShift 1/16 + 1/16 76.93 92.82

Table 4: Comparisons of the TokShift regarding to propor-

tions of shifted channels (Accuracy-1/5).

Word count is an essential factor in transformer learning since

more words indicate more details. As for videos, the number of

visual words is positively correlated with two factors: spatial reso-

lutions and temporal frames. We study the impacts of word count

on the TokShift-xfmr. Table 5 lists the detailed performances un-

der different word counts. Here, MR/HR represents middle/high

resolutions.

Model Res Words/Frame #Frames # Words Acc1
� ×, # + 1 ) ) · (# + 1) (%)

TokShift 224 × 224 142 + 1 6 1,182 76.72
TokShift 224 × 224 142 + 1 8 1,576 77.28
TokShift 224 × 224 142 + 1 10 19,70 77.56
TokShift 224 × 224 142 + 1 16 3,152 78.18

TokShift (MR) 256 × 256 162 + 1 8 2,056 77.68

TokShift (HR) 384 × 384 242 + 1 8 4,616 78.14

Table 5: Comparisons of the TokShift according to visual

word counts (Accuracy-1).

We observe that: (1). Increasing word counts by either introduc-

ing more frames or spatial grids will lead to improvement (e.g.,

76.72→78.18 or 77.68→78.14); (2). Increasing temporal resolution

is more economic than spatial resolution. The former performs

Model Backbone Res # Words Acc1
(� ×, ) ) · (# + 1) (%)

TokShift (HR) Base-16 384 × 384 8 · (242 + 1) 78.14
TokShift-Large (HR) Large-16 384 × 384 8 · (242 + 1) 79.83
TokShift-Large (HR) Large-16 384 × 384 12 · (242 + 1) 80.40

TokShift (MR) Base-16 256 × 256 8 · (162 + 1) 77.68
TokShift-Hybrid (MR) R50+Base-16 256 × 256 8 · (162 + 1) 77.55
TokShift-Hybrid (MR) R50+Base-16 256 × 256 16 · (162 + 1) 78.34

Table 6: Comparisons of the TokShift on different trans-

former backbones (Accuracy-1).

comparable (78.18 vs 78.14) with fewer words than the latter (3,152

vs 4,616).

On various backbones. We test the TokShift on transform-

ers of various depths and types. Specifically, we further evaluate

the TokShift-xfmr on Large-16 (24 encoders) and Hybrid-16 (12 en-

coders) ViTs. Compared to the Base-16, the Large-16 doubles the

number of encoders. Hybrid-16 shares the same number of en-

coders but replaces the linear projection layer (��� in Equation (1))

with three residual blocks of ResNet50. Notably, for the TokShift-

Large (HR), we set ) = 12 due to the memory limit.

Table 6 lists their comparisonswith base backbones. TheTokShift-

xfmr performs betterwith deeper layers (Base-16 vs Large-16).Whereas

hybridmodel achieves comparable performance as convolution free

transformers, indicating that transformer is independent of convo-

lutions. Additionally, performances further increase when using

more frames (79.83→80.40; 77.55→78.34)

4.4 Comparison with the State-of-the-Art

We compare our TokShift-xfmrs with current SOTAs on Kinetics-

400 datasets in Table 7. Since there is no prior work that purely

utilizes transformer, we mainly select 3D-CNNs, such as I3D, Non-

Local, TSM, SlowFast, X3D as SOTAs.

Compared to 3D-CNNs, transformers exhibit prominent perfor-

mances. Particularly, the spatial-only transformer, i.e., ViT (video),

achieves comparable or better performance (76.02) than strong 3D-

CNNs, such as I3D (71.1), S3D-G (74.7) and TSM (76.3). Moreover,

a comparison of our most slimed TokShift-xfmr (77.28) with TSM

(76.3) indicates that shift gains extra benefits on transformers than

CNNs. Thirdly, the TokShift-xfmr (MR) achieves comparable per-

formance (77.68) with Non-Local R101 networks (77.7) under the

same spatial resolutions (255) but using fewer frames (8 vs 128).

This is reasonable since both contain the attentions. Finally, we

compare TokShift-xfmr with the current best 3D-CNNs: SlowFast

and X3D. The two 3D-CNNs are particularly optimized by a dual-

paths or efficient network parameters searching mechanism. Since

both SlowFast & X3D introduce large structural changes over cor-

responding 2D nets, their authors prefer to train on videos with

sufficient epochs (256), rather than initialize from ImageNet pre-

trainedweights.We show that our TokShift-Large-xfmr (80.40) per-

forms better than SlowFast (79.80) and is comparable with X3D-

XXL (80.4), where models are under their best settings. Notably,

we only use 12 frames, whereas SlowFast/X3D-XXL uses 32/16+

frames.

In all, a pure transformer can perform comparable or better than

3D-CNNs for video classification. We additionally verify that tem-

poral modeling can be imposed just on global [Class] tokens rather

thanwhole video embeddings. Besides, the common computational

limitation of the transformer (appeared in NLP/vision task) also



Model Backbone Pretrain Inference Res # Frames/Clip GFLOPs×Views Params Accuracy-1 Accuracy-5
(� ×, ) ) (%) (%)

I3D [4] from [11] InceptionV1 ImageNet 224 × 224 250 108× NA 12M 71.1 90.3
Two-Stream I3D [4] from [11] InceptionV1 ImageNet 224 × 224 500 216× NA 25M 75.7 92.0
S3D-G [39] InceptionV1 ImageNet 224 × 224 250 71.3×NA 11.5M 74.7 93.4
Two-Stream S3D-G [39] InceptionV1 ImageNet 224 × 224 500 142.6×NA 11.5M 77.2 93.0
Non-Local R50 [33] from [11] ResNet50 ImageNet 256 × 256 128 282 × 30 35.3M 76.5 92.6
Non-Local R101[33] from [11] ResNet101 ImageNet 256 × 256 128 359 × 30 54.3M 77.7 93.3

TSM [20] ResNet50 ImageNet 256 × 256 8 33 × 10 24.3M 74.1 91.2
TSM [20] ResNet50 ImageNet 256 × 256 16 65 × 10 24.3M 74.7 -
TSM [20] ResNext101 ImageNet 256 × 256 8 NA×10 - 76.3 -

SlowFast 4 × 16 [12] ResNet50 None 256 × 256 32 36.1 × 30 34.4M 75.6 92.1
SlowFast 8 × 8 [12] ResNet50 None 256 × 256 32 65.7 × 30 - 77.0 92.6
SlowFast 8 × 8 [12] ResNet101 None 256 × 256 32 106 × 30 53.7M 77.9 93.2
SlowFast 8 × 8 [12] ResNet101+NL None 256 × 256 32 116 × 30 59.9M 78.7 93.5
SlowFast 16 × 8 [12] ResNet101+NL None 256 × 256 32 234 × 30 59.9M 79.8 93.9

X3D-M [11] X2D [11] None 256 × 256 16 6.2 × 30 3.8M 76.0 92.3
X3D-L [11] X2D [11] None 356 × 356 16 24.8 × 30 6.1M 77.5 92.9
X3D-XL[11] X2D [11] None 356 × 356 16 48.4 × 30 11M 79.1 93.9
X3D-XXL [11] X2D [11] None NA NA 194.1 × 30 20.3M 80.4 94.6

ViT (Video)[9] Base-16 ImageNet-21k 224 × 224 8 134.7 × 30 85.9M 76.02 92.52

TokShift Base-16 ImageNet-21k 224 × 224 8 134.7 × 30 85.9M 77.28 92.91
TokShift (MR) Base-16 ImageNet-21k 256 × 256 8 175.8 × 30 85.9M 77.68 93.55
TokShift (HR) Base-16 ImageNet-21k 384 × 384 8 394.7 × 30 85.9M 78.14 93.91
TokShift Base-16 ImageNet-21k 224 × 224 16 269.5 × 30 85.9M 78.18 93.78
TokShift-Large (HR) Large-16 ImageNet-21k 384 × 384 8 1397.6 × 30 303.4M 79.83 94.39
TokShift-Large (HR) Large-16 ImageNet-21k 384 × 384 12 2096.4 × 30 303.4M 80.40 94.45

Table 7: Comparison to state-of-the-arts on Kinetics-400 Val.

exists for videos. Though the TokShift introduces zero parame-

ters & FLOPs, the 2D transformer alone consumes more computa-

tions than 3D-CNNs. The reasons lie in: (1). Pair-wise distance cal-

culation in attention is computationally expensive; (2). 3D-CNNs

have been computationally optimized (TSM, P3D, etc.). Neverthe-

less, computation optimization for the transformer is already very

hot for NLP [1, 7] and image understanding [29]. As expected, com-

putation optimization for long-length videos also requires future

exploration.

4.5 Attention Visualization

An advantage of transformer over CNN is interpretability. Specifi-

cally, the self-attention emphasizes vital visual clues with high at-

tentions. Hence, we can visualize the attention map to infer what

the transformer values.

We adopt a public script2 to visualize the attentionmap from the

last encoder. Maps from multiple heads are averaged to a heat map.

We sample six clips, including daily and sports activities, from the

Kinetics-400 and show their maps in Figure (4). We keep half (4 of

8) frames for space-saving. Notably, most action categories follow

a form of “verb” + “noun” (e.g., “flying kites”), meeting our intu-

itive explantations. Our TokShift-xfmr learns to value core parts

such as “kites” in “flying kites”, “boy + dog” in “walking a dog” and

etc. Moreover, for “flying kites”, the transformer even highlights all

kites in the sky, indicating its potentials in counting applications.

4.6 Fine-tune on small-scale datasets

We study the impacts of pre-trainedweights on small-scale datasets.

Specifically, we fine-tune models on EGTEA Gaze+ and UCF-101

datasets with pre-weights from “None”, “ImageNet-21k” and “Kinetics-

400”. The sampling step is reduced to 8, as both small datasets have

a shorter duration (3/5s) than Kinetics-400 (10s). Training schemes

are also optimized (EGTEA: 18 epochs, decay at [10,15]) and UCF:

25 epochs, decay at [10, 20]).

2https://github.com/jeonsworld/ViT-pytorch/blob/main/visualize_attention_map.
ipynb

Model Modaility Pretrain Res # Frames EGAZ+
(� ×, ) ) Acc1 (%)

TSM [20] RGB Kinetics-400 224 × 224 8 63.45
SAP [34] RGB Kinetics-400 256 × 256 64 64.10
ViT (Video) [9] RGB ImageNet-21k 224 × 224 8 62.59

TokShift RGB None 224 × 224 8 28.90
TokShift RGB ImageNet-21k 224 × 224 8 62.85
TokShift* RGB ImageNet-21k 224 × 224 8 59.24
TokShift RGB Kinetics-400 224 × 224 8 63.69
TokShift* RGB Kinetics-400 224 × 224 8 64.82
TokShift OptFlow Kinetics-400 224 × 224 8 48.81
TokShift*-En OptFlow+RGB Kinetics-400 224 × 224 8 65.08

TokShift* (HR) RGB Kinetics-400 384 × 384 8 65.77
TokShift-Large* (HR) RGB Kinetics-400 384 × 384 8 66.56

Table 8: Impacts of various pretrained weights on EGTEA-

GAZE++ Split-1 dataset (“*” means freeze layer-norm).

Table (8) & (9) list their performances. Firstly, pre-training with

Kinetics-400 outperforms the rest (i.e., 64.82 vs 62.85 vs 28.90 on

EGTEA Gaze+; 95.35 vs 91.65 vs 91.60 on UCF-101). We project

features of 60 categories from EGTEA Gaze+ with large improve-

ments by t-SNE and find that the larger an upstream dataset is, the

more scattered a downstream features are (Figure (5)). Also, we

study the impacts of freezing norm. Freezing “layer-norms” is ben-

eficial for fine-tuning from Kinetics-400 weights, whereas harm-

ful for ImageNet-21k weights. Because the Kinetics-400 shares the

same modality (Video) with EGTEA Gaze+, while ImageNet-21k

is different (Image). We verify the efficacy of two-stream TokShift-

xfmr by adding the optical-flow (64.82→65.08). Finally, we com-

pare the TokShift with strong 3D-CNNs (I3D, P3D & TSM), and

verify its efficacy on small-scale datasets.

5 CONCLUSION

We propose a zero-parameter, zero-FLOPs TokShift operator for

constructing a pure convolutional-free video transformer. Specifi-

cally, our TokShift-xfmr alleviates intensive pair-wise distance cal-

culations of the Spatio-temporal attention,maintains the same com-

plexity as a common 2D ViT, while achieving better or compara-

ble performance (80.40%) as 3D-CNN SOTAs. More importantly,

TokShift firstly conducts temporal modeling on the global token

of video transformers. Since global [Class] token is aggregated by

https://github.com/jeonsworld/ViT-pytorch/blob/main/visualize_attention_map.ipynb
https://github.com/jeonsworld/ViT-pytorch/blob/main/visualize_attention_map.ipynb


(a) “Flying kite” (b) “Walking the dog”

(c) “Arranging flowers” (d) “Skiing”

(e) “Playing ice hockey” (f) “Juggling soccer ball”

Figure 4: Visualization of attention on sample clips from the Kinetics-400 dataset. The odd row presents original frames, and

the even presents corresponding attention maps.

Model Pretrain Res # Frames UCF101
(� ×, ) ) Acc1 (%)

I3D [4] Kinetics-400 224 × 224 250 84.50
P3D [21] Kinetics-400 224 × 224 16 84.20

Two-Stream I3D [4] Kinetics-400 224 × 224 500 93.40
TSM [20] Kinetics-400 256 × 256 8 95.90
ViT (Video) [9] ImageNet-21k 256 × 256 8 91.46

TokShift None 256 × 256 8 91.60
TokShift ImageNet-21k 256 × 256 8 91.65
TokShift* Kinetics-400 256 × 256 8 95.35

TokShift* (HR) Kinetics-400 384 × 384 8 96.14
TokShift-Large* (HR) Kinetics-400 384 × 384 8 96.80

Table 9: Impacts of various pretrained weights on UCF-101

Split dataset (“*” means freeze layer-norm).

weighted-sum all spatial patches’ embeddings and reflects global

visual content. Hence, modeling temporal interactions across frames

can be done through the tokens. Besides, we still face an inherent

computational burden of attention, within the 2D ViT, especially

in processing long-length video. We leave computational optimiza-

tion of video transformer as future works. Finally, with the help of

our TokShift-xfmr, we can partially answer the prophecy of the

quote on video: “A 10 seconds video is worthy of 3,152 visual words”.

EGTEA Gaze+

(a) None

EGTEA Gaze+

(b) ImageNet-21k

EGTEA Gaze+

(c) Kinetics-400

Figure 5: Visualizing feature distributionswith different pre-

trained weights via t-SNE.
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