
Compressed Oblivious Encoding for Homomorphically
Encrypted Search∗

Seung Geol Choi

United States Naval Academy

choi@usna.edu

Dana Dachman-Soled

University of Maryland

danadach@ece.umd.edu

S. Dov Gordon

George Mason University

gordon.dov@gmail.com

Linsheng Liu

George Washington University

lls@gwu.edu

Arkady Yerukhimovich

George Washington University

arkady@gwu.edu

ABSTRACT
Fully homomorphic encryption (FHE) enables a simple, attractive

framework for secure search. Compared to other secure search

systems, no costly setup procedure is necessary; it is sufficient for

the client merely to upload the encrypted database to the server.

Confidentiality is provided because the server works only on the

encrypted query and records. While the search functionality is

enabled by the full homomorphism of the encryption scheme.

For this reason, researchers have been paying increasing atten-

tion to this problem. Since Akavia et al. (CCS 2018) presented a

framework for secure search on FHE encrypted data and gave a

working implementation called SPiRiT, several more efficient real-

izations have been proposed.

In this paper, we identify the main bottlenecks of this framework

and show how to significantly improve the performance of FHE-

base secure search. In particular,

• To retrieve ℓ matching items, the existing framework needs

to repeat the protocol ℓ times sequentially. In our new frame-

work, all matching items are retrieved in parallel in a single
protocol execution.
• The most recent work by Wren et al. (CCS 2020) requires

𝑂 (𝑛) multiplications to compute the first matching index.

Our solution requires no homomorphic multiplication, instead
using only additions and scalar multiplications to encode all

matching indices.

• Our implementation and experiments show that to fetch 16

matching records, our system gives an 1800X speed-up over

the state of the art in fetching the query results resulting in

a 26X speed-up for the full search functionality.

KEYWORDS
secure search; encrypted database; fully homomorphic encryption

1 INTRODUCTION
As computing paradigms are shifting to cloud-centric technologies,

users of these technologies are increasingly concerned with the

privacy and confidentiality of the data they upload to the cloud.

Specifically, a client uploads data to the server and expects the

following guarantees:

(1) The uploaded data should remain private, even from the

server itself;

∗
A preliminary version of this paper will appear at ACM CCS ’21. Authors are named

alphabetically, and contributed equally.

In the above, J · K denotes an FHE-encrypted ciphertext.

Figure 1: The secure search framework in [1]

(2) The server should be able to perform computations on the

uploaded data in response to client queries;

(3) The client should be able to efficiently recover the results of

the server’s computation with minimal post-processing.

In this work, we will focus on the computational task of secure

search. In this application, the client uploads a set of records to the

server, and later posts queries to the server. Computation proceeds

in two steps called matching and fetching. In the matching step, the

server compares the encrypted search query from the client with

all encrypted records in the database, and computes an encrypted

0/1 vector, with 1 indicating that the corresponding record satisfies

the query. The fetching step returns all the 1-valued indexes and

the corresponding records, to the client for decryption.

While seemingly conflicting goals, the guarantees of (1), (2), (3)

can be simultaneously achieved for the secure search setting via

techniques such as secure multiparty computation and searchable

encryption. Recently, a line of works has focused on Fully Homo-

morphic Encryption (FHE)-based secure search, which we describe

next.

FHE-based secure search. The simplicity of the framework of

secure search on FHE encrypted data is attractive. Compared to other

secure search systems, no costly setup procedure is necessary; it is

sufficient for the client merely to upload the encrypted database

to the server. Confidentiality is provided because the server works

only on the encrypted query and records. The server can still per-

form the search correctly due to the powerful property of the full

homomorphism of the underlying encryption scheme.

For this reason, researchers have been paying increasing atten-

tion to this problem. In particular, Akavia et al. [1] introduce a

framework of performing secure search on FHE-encrypted data

(see Figure 1).

ar
X

iv
:2

10
9.

07
70

8v
1

 [
cs

.C
R

]
 1

6
Se

p
20

21

Informally, a secure, homomorphic encrypted search scheme has

the following Setup:

(1) (Setup) The client encrypts and uploads𝑛 items𝑥 = (𝑥1, . . . , 𝑥𝑛)
to the server. Let J𝑥K = (J𝑥1K, . . . , J𝑥𝑛K) . denote the en-

crypted data stored in the server.

Throughout the paper, we let J · K denote an FHE-encrypted

ciphertext. After the encrypted records have been uploaded, the

client can perform a secure search using three algorithms, (Query,

Match, Fetch).

(2) (Query) The client sends an encrypted query J𝑞K to the

server.

(3) (Match) The server homomorphically evaluates the query J𝑞K
on each record J𝑥𝑖K to obtain the encrypted matching results

J𝑏K = (J𝑏1K, . . . , J𝑏𝑛K) . That is, 𝑏𝑖 is 1 if item 𝑥𝑖 satisfies the

given query 𝑞; otherwise, 𝑏𝑖 is 0.

(4) (Fetch) Given J𝑏K, the server homomorphically computes

J𝑖∗K, where 𝑖∗ = min{𝑖 ∈ [𝑛] : 𝑏𝑖 = 1} which corresponds to

the first matching record index. It fetches J𝑥𝑖∗K (obliviously)
and sends (J𝑖∗K, J𝑥𝑖∗K) to the client for decryption.

Multiplications in the fetching step. Akavia et al. also provide

a construction that performs the fetching step in𝑂 (𝑛 log2 𝑛) homo-

morphic multiplications. Subsequently, more efficient algorithms

have been presented with 𝑂 (𝑛 log𝑛) multiplications [2] and 𝑂 (𝑛)
multiplications [45].

1.1 Motivation

Bottleneck: fetching records sequentially. Suppose a clientwants
to fetch all matching items. Under the above framework, the client

would first obtain the first matching index 𝑖∗ and its corresponding

item 𝑥𝑖∗ . To fetch the second matching item, the framework sug-

gests that the client should slightly change the original query 𝑞 to

a new query 𝑞′
𝑖∗ as follows:

• 𝑞′
𝑖∗ (𝑖, 𝑥𝑖) return true if 𝑞(𝑖, 𝑥𝑖) is true and 𝑖 > 𝑖∗.

Then, by executing a new instance of the protocol with the

encrypted query J𝑞′
𝑖∗K, the client will obtain the second matching

item. By repeating this procedure, the client will ultimately obtain

all the matching records.

Note that the query 𝑞′
𝑖∗ embeds 𝑖∗ in itself as a constant, which

implies that there is no way for the client to construct this query 𝑞′
𝑖∗

without obtaining 𝑖∗ first. In other words, the client can construct

the query for the second matching item, only after fetching the first
matching item. In this sense, the framework inherently limits the

client to fetch only a single matching record at a time in a sequential

manner.

If there are ℓ matching records, the client and server have to ex-

ecute ℓ instances of the Query, Match, and Fetch algorithms. Since

each Match and Search step requires costly homomorphic multi-

plications, the limitation of sequential protocol execution creates a

serious bottleneck with respect to the running time. This leads us

to ask the following natural question:

Is there a different secure search framework that allows the
client to fetch all the matching records by executing a smaller
number of protocol executions, possibly avoiding sequential
record fetching?

Reducinghomomorphicmultiplications.All previous schemes

have to perform Ω(𝑛) homomorphic multiplications in the fetching

step. Since homomorphic multiplications are costly operations, it

is desirable to reduce such computations, which begs the natural

following question:

Can you reduce the number of homomorphic multiplications
in the fetching step?

In this paper, we answer both of the above questions affirmatively.

1.2 Our Work

Parallelizing the Fetch procedure. To address the issues, we in-

troduce a new secure search framework where the matching items

are retrieved in parallel in a constant number of rounds. Our Setup,

Query and Match algorithms are the same as in prior work. How-

ever, we modify the Fetch procedure, dividing into two steps: En-

code and Decode. In the Encode step, the server homomorphically

inserts the matching items into a data structure - the particular

structure depends on the construction, as we provide 3 different

constructions, each using a different encoding. After receiving the

encrypted encoding, the client decrypts the encoding and runs the

Decode step to recover the items.

Compressed oblivious encoding. The encoding is computed ho-

momorphically, and, most importantly, allows to encode the full
result set, rather than just a single item. In particular, we introduce

a notion of Compressed Oblivious Encoding (COE). A compressed

oblivious encoding takes as input a large, but sparse, vector and

compresses it to a much smaller encoding from which the non-zero

entries of the original vector can be recovered. What makes this

encoding oblivious is that the encoding procedure is performed on

encrypted data. In certain constructions, the encoding includes the

data values (CODE, compressed oblivious data encoding), and in

others it only includes the indices (COIE, compressed oblivious

index encoding). In the latter case, the Decode procedure is interac-

tive, and allows the client to recover the values from the decoded

set of indices.

For simplicity, when describing the generic syntax of secure

search scheme, we denote the Encode procedure as taking both the

indices and the values as input, and we suppress the fact that when

the values are not used during Encoding, the Decoding step must

be interactive. Recall, we use J𝑏K = (J𝑏1K, . . . , J𝑏𝑛K) to denote the

encrypted bit vector that results from the Match step.

(4) (Encode) Let 𝑆 = {𝑖 ∈ [𝑛] : 𝑏𝑖 = 1}. Let 𝑉 = {𝑣𝑖 : 𝑖 ∈ 𝑆}. The
server homomorphically evaluates an Jencoding(𝑆,𝑉)K and
send it to the client.

(5) (Decode) The client decrypts Jencoding(𝑆)K and runs the

decoding procedure to recover (𝑆,𝑉).
We assume that the results set |𝑆 | is small (i.e., sublinear in 𝑛).

We would like the size of the compressed encoding to be sublinear

in 𝑛 to maintain meaningful communication cost.

Nomultiplications in the Encode step. To ensure minimal com-

putational cost for encoding the results, we also wish to minimize

the number of homomorphic multiplications. Recall, the best prior

rounds #Match hmult hadd smult communication plaintext modulus

LEAF [45] 𝑠 𝑠 𝑂 (𝑛𝑠) 𝑂 (𝑛𝑠 log𝑛) 0 𝑂 (𝑠 · log𝑛 · |𝐶 |) 2

Protocol w/ BF-COIE 3 1 0 𝑂 (𝑛 log 𝑛
𝑠) 0 𝑂 (𝑠1+𝜖 log 𝑛

𝑠 · |𝐶 | + 𝑝𝑖𝑟 (𝑠)) prime

Protocol w/ PS-COIE 3 1 0 𝑛 · 𝑠 𝑛 · 𝑠 𝑂 (𝑠 · |𝐶 | + 𝑝𝑖𝑟 (𝑠)) prime

Protocol w/ BFS-CODE 2 1 𝑛 𝑂 (𝜆𝑛) 0 𝑂 (𝑠𝜆 · |𝐶 |) prime

• 𝜆: statistical security parameter.

• 𝑛: number of uploaded encrypted records.

• 𝑠: number of matching records.

• 𝜖 : protocol parameter such that 0 < 𝜖 < 1.

• #Match: number of times the matching algorithm is executed.

• hmult: number of homomorphic multiplication operations used in the overall fetching step.

• hadd: number of homomorphic addition operations used in the overall fetching step.

• smult: number of scalar (plain) multiplication operations used in the overall fetching step.

• |𝐶 |: length of an FHE ciphertext.

• 𝑝𝑖𝑟 (𝑠): communication complexity required to retrieve 𝑠 records via a PIR protocol.

Figure 2: Performance Comparisons when 𝑠 records are fetched

work requires 𝑂 (𝑛) multiplications by the server. Somewhat sur-

prisingly, we demonstrate three encoding algorithms that can be

evaluated without any homomorphic multiplications!

Using PIR (Private Information Retrieval). The asymptotic

complexities and trade-offs of the search protocols are presented in

Figure 2.

In some of our protocols (i.e., the search protocols with BF-COIE

and PS-COIE; see Sections 4 and 6.3 for more detail), the indices and

actual records are fetched in separate steps. This allows us to focus

on optimizing the retrieval of the indices after which the values

can be fetched using an efficient (setup-free) PIR protocol resulting

in overall savings.

However, if reliance on PIR is undesirable, we also offer a variant

that fetches the values directly (i.e., the protocol w/ BFS-CODE in

Figure 2; see Sections 5 and 6.4 for more detail), as in prior work.

Implementation.We implement all of our proposed schemes and

compare their performance with that of prior work. Our experi-

ments show that our schemes outperform the fetching procedure

of prior work by a factor of 1800X when fetching 16 records, which

results in a 26X speedup for the full search functionality.

2 PRELIMINARIES
Let 𝜆 be the security parameter. For a vector 𝑎, let nzx(𝑎) denote
the set of all the positions 𝑖 such that 𝑎𝑖 is non-zero, i.e.,

nzx(𝑎) := {𝑖 : 𝑎𝑖 ≠ 0}.

Chernoff bound. We will use the following version of Chernoff

bound.

Theorem 2.1. Let 𝑋1, . . . , 𝑋𝑛 be independent random variables
taking values in {0, 1} such that Pr[𝑋𝑖 = 1] = 𝑝 . Let 𝜇 := Exp[∑𝑋𝑖] =
𝑛𝑝 . Then for any 𝛿 > 0, it holds

Pr

[
𝑛∑︁
𝑖=1

𝑋𝑖 ≥ (1 + 𝛿)𝜇
]
≤

(
𝑒𝛿

(1 + 𝛿) (1+𝛿)

)𝜇
.

FHE.We use a standard CPA-secure (leveled) fully homomorphic

encryption scheme (Gen, Enc,Dec). We refer readers to [2, 45] for

a formal definition. We use J𝑥K to denote an encryption of 𝑥 .

We also use + (resp. ·) to denote homomorphic addition (resp.,

multiplication). For example, J𝑐K := J𝑎K+ J𝑏K means that homomor-

phic addition of two FHE-ciphertexts J𝑎K and J𝑏K has been applied,

which results in J𝑐K.

PIR. A PIR protocol allows the client to choose the index 𝑖 and

retrieve the 𝑖th record from one (or more) untrusted server(s) while

hiding the index value 𝑖 [18].

Assume that each of the 𝑘 server has 𝑛 records 𝐷 = (𝑑1, . . . , 𝑑𝑛)
where all items 𝑑𝑖 have equal length. A single-round 𝑘-server PIR

protocol consists of the following algorithms:

• The query algorithms 𝑄 𝑗 (𝑖, 𝑟) → 𝑞 𝑗 for each server 𝑗 ∈ [𝑘],
which are executed by the client with input index 𝑖 and

randomness 𝑟 .

• The answer algorithms 𝐴 𝑗 (𝐷,𝑞 𝑗) → 𝑎 𝑗 for each server 𝑗 ∈
[𝑘], which is executed by the 𝑗th server.

• The reconstruction algorithm 𝑅(𝑖, 𝑟 , (𝑎1, . . . , 𝑎𝑘)) → 𝑑𝑖 .

The communication complexity of a PIR protocol is defined by the

sum of the all query lengths and answer lengths, i.e.,∑︁
𝑗 ∈[𝑘]

|𝑞 𝑗 | + |𝑎 𝑗 |.

A PIR protocol is correct if for any 𝐷 = (𝑑1, . . . , 𝑑𝑛) with |𝑑1 | =
· · · = |𝑑𝑛 |, and for any 𝑖 ∈ [𝑛], it holds that

Pr

𝑟

[
𝑅

(
𝑖, 𝑟 ,

{
𝐴 𝑗 (𝐷,𝑄 𝑗 (𝑖, 𝑟))

}𝑘
𝑗=1

)
= 𝑑𝑖

]
= 1.

A PIR protocol is private if for any 𝑗 ∈ [𝑘], for any 𝑖0, 𝑖1 ∈ [𝑛]
with 𝑖0 ≠ 𝑖1, the following distributions are computationally (or

statistically) indistinguishable:

{𝑄 𝑗 (𝑖0, 𝑟)}𝑟 ≈ {𝑄 𝑗 (𝑖1, 𝑟)}𝑟 .

2.1 Bloom Filter
A Bloom filter [9] is a well-known space-efficient data structure

that allows a user to insert arbitrary keywords and later to check

whether a certain keyword in the filter.

BF.Init(). The filter 𝐵 is essentially an ℓ-bit vector, where ℓ is a

parameter, which is initialized with all zeros. The filter is also

associated with a set of 𝜂 different hash functions

H = {ℎ𝑞 : {0, 1}∗ → [ℓ]}𝜂
𝑞=1

.

BF.Insert(B, 𝛼). To insert a keyword 𝛼 , the hash results are added

to the filter. In particular,

• For 𝑞 ∈ [𝜂] do the following:

Compute 𝑗 = ℎ𝑞 (𝛼) and set 𝐵 𝑗 := 1. Here 𝐵 𝑗 is the 𝑗th bit

of 𝐵.

BF.Check(B, 𝛽). To check whether a keyword 𝛽 has been inserted

to a BF filter 𝐵, one can just check the filter with all hash results. In

particular,

• For 𝑞 ∈ [𝜂] do the following:

Compute 𝑗 = ℎ𝑞 (𝛽) and check if 𝐵 𝑗 is set.

• If all checks pass output "yes". Otherwise, output "no".

The main advantage of the filter is that it guarantees there will

be no false negatives and allows a tunable rate of false positives:(
1 −

(
1 − 1

ℓ

)𝜂𝑠)𝜂
≈

(
1 − 𝑒−

𝜂𝑠

ℓ

)𝜂
,

where 𝑠 is the number of keywords in a Bloom filter.

Random oracle model for hash functions. We show our anal-

ysis in the random oracle model. That is, the hash functions are

modelled as random functions.

2.2 Algebraic Bloom Filter
In this work, we leverage a variant of the Bloom filter where, when

inserting an item, the bit-wise OR operation is replaced by addition.

There have been works using a similar idea of having each cell hold

an integer instead of holding a bit [21, 34].

Moreover, we consider a limited scenario where the upperbound
on the number of keywords to be inserted is known beforehand. In
particular, let 𝑠 denote such an upperbound.

As before, the filter is also associated with a set of 𝜂 different

hash functions H = {ℎ𝑞 : {0, 1}∗ → [ℓ]}𝜂
𝑞=1

. However, now the

filter 𝐵 is not an ℓ-bit vector but a vector where each element is in

[𝑠𝜂] (i.e., 𝐵 ∈ [𝑠𝜂]ℓ) 1. Therefore, the number of bits to encode 𝐵 is

now blown up by a multiplicative factor ⌈lg 𝑠𝜂⌉.
The BF operations are described below where differences are

marked by framed boxes.

BF.Insert(B, 𝛼). To insert a keyword 𝛼 , the hash results are added

to the filter. In particular,

• For 𝑞 ∈ [𝜂] do the following:

Compute 𝑗 = ℎ𝑞 (𝛼) and set 𝐵 𝑗 := 𝐵 𝑗 + 1 .

1
We can reduce 𝑠𝜂 further toΘ(𝜂 · (𝑠/ℓ) · log(𝑠/ℓ)) using a Chernoff bound to bound

the number of collisions contributing to the sum, but we will use 𝑠𝜂 for the sake of

simplicity of presentation.

BF.Check(B, 𝛽). To check whether a keyword 𝛽 has been inserted

to a BF filter 𝐵, one can just check the filter with all hash results. In

particular,

• For 𝑞 ∈ [𝜂] do the following:

Compute 𝑗 = ℎ𝑞 (𝛽) and check if 𝐵 𝑗 is greater than 0 .

• If all checks pass output "yes". Otherwise, output "no".

It is easy to see that this variant construction enjoys the same

properties as the original BF construction.

3 COMPRESSED OBLIVIOUS ENCODING
As our main building block, we introduce a new tool we call Com-

pressed Oblivious Encoding. A compressed oblivious encoding

takes as input a large, but sparse, vector and compresses it to a

much smaller encoding from which the non-zero entries of the orig-

inal vector can be recovered. What makes this encoding oblivious
is that the encoding procedure is oblivious to the original data; in

fact, in our constructions the original data will all be encrypted. An

efficient encoding must satisfy the following two performance re-

quirements: 1) The size of the encoding must be sublinear in the size

of the original array, and 2) constructing the encoding should be

computationally cheap. Our constructions only use (homomorphic)

addition and multiplication by constant (i.e. plaintext values).

A related notion is that of compaction over encrypted data [5, 8]

which aims to put all non-zero entries of a vector to the front

of the encoding. Our encoding can be viewed as a form of noisy

compaction where, in addition to keeping all the non-zero entries,

it allows a small number zero entries to be mixed in with the result.

Thus, a compressed encoding trades some inaccuracy in the output

for much cheaper construction costs.

We define two variants of compressed oblivious encodings, one

that encodes the indices of non-zero entries and one that encodes

the actual entries themselves.

3.1 Compressed Oblivious Index Encoding
A compressed oblivious index encoding (COIE) encodes the indices

or locations of all the non-zero entries in the input array. We begin

by defining the parameters and syntax for a COIE scheme.

Parameters. A COIE scheme is parametrized as follows.

• 𝑛: Input size – The dimension of the input vector 𝑣 .

• 𝑠 : Sparsity – Bound on the number on non-zero entries in 𝑣 .

• 𝑐: Compactness – The dimension of the output encoding.

• 𝑓𝑝 : False positives – The upperbound on the number of false

positives returned by the decoding algorithm.

Syntax. A (𝑛, 𝑠, 𝑐, 𝑓𝑝)-COIE scheme has the following syntax:

• J𝛾1K, . . . , J𝛾𝑐K ← Encode(J𝑣1K, . . . , J𝑣𝑛K). The Encode algo-
rithm takes as input a vector of ciphertexts with 𝑣𝑖 ∈ {0, 1}
for all 𝑖 ∈ [𝑛]. It outputs an encrypted encoding J𝛾1K, . . . , J𝛾𝑐K.
• 𝐼 ← Decode(𝛾1, . . . , 𝛾𝑐). The Decode algorithm takes the

encoding (𝛾1, . . . , 𝛾𝑐), in decrypted form, and outputs a set

𝐼 ⊆ [𝑛]

Correctness. Let (𝛾1, . . . , 𝛾𝑐) ← Dec(J𝛾1K, . . . , J𝛾𝑐K) denote a cor-
rect decryption of the encoding.

Definition 3.1. A (𝑛, 𝑠, 𝑐, 𝑓𝑝)-COIE scheme is correct, if the follow-
ing conditions are satisfied:

• (No false negatives) For all 𝑣 ∈ {0, 1}𝑛 with at most 𝑠 non-

zero positions, and for all 𝑖 ∈ nzx(𝑣), it should hold

𝑖 ∈ Decode(Dec(Encode(J𝑣1K, . . . , J𝑣𝑛K)))
with probability at least 1− negl(𝜆) where the random coins

are taken from Encode.
• (Few false positives) For all 𝑣 ∈ 𝐷𝑛

with at most 𝑠 non-zero

positions, consider the set of false positives

𝐸 = {𝑖 ∈ [𝑛] : 𝑣𝑖 = 0, but 𝑖 ∈ 𝐼 },
where 𝐼 = Decode(Dec(Encode(J𝑣1K, . . . , J𝑣𝑛K))).
We require that |𝐸 | ≤ 𝑓𝑝 with the overwhelming probability

over the randomness of Encode.

Efficiency. For efficiency, we look at the following three parameters

of a COIE:

• The type and number of operations used by the Encode
algorithm.

• The size of the encoding.

• The computation cost of the Decode algorithm.

For an efficient construction, we require that the latter two of

these are sublinear in the size of the input vector.

3.2 Compressed Oblivious Data Encoding
ACompressed Oblivious Data Encoding (CODE) scheme is very sim-

ilar to COIE except, rather than encoding the locations of non-zero

entries, it encodes the values of these entries. We give a definition

of CODE below where differences are marked by framed boxes.

Parameters. A CODE scheme is parametrized by the same four

parameters (𝑛, 𝑠, 𝑐, 𝑓𝑝) as a COIE.

Syntax. A (𝑛, 𝑠, 𝑐, 𝑓𝑝)-CODE scheme over domain 𝐷 has the fol-

lowing syntax:

• J𝛾1K, . . . , J𝛾𝑐K ← Encode(J𝑣1K, . . . , J𝑣𝑛K). The Encode algo-
rithm takes as input a vector of ciphertexts with 𝑣𝑖 ∈ 𝐷 for

all 𝑖 ∈ [𝑛]. It outputs an encrypted encoding J𝛾1K, . . . , J𝛾𝑐K.
• 𝑉 ← Decode(𝛾1, . . . , 𝛾𝑐). The Decode algorithm takes the

encoding (𝛾1, . . . , 𝛾𝑐), in decrypted form, and outputs a set

of values 𝑉 = {𝑣𝑖 : 𝑣𝑖 ≠ 0}

Correctness.

Definition 3.2. A (𝑛, 𝑠, 𝑐, 𝑓𝑝)-CODE scheme over domain 𝐷 is

correct, if the following conditions are satisfied:

• (No false negatives) For all 𝑣 ∈ {0, 1}𝑛 with at most 𝑠 non-

zero positions, and for all 𝑖 ∈ nzx(𝑣), it should hold

𝑣𝑖 ∈ Decode(Dec(Encode(J𝑣1K, . . . , J𝑣𝑛K)))

with probability 1 − negl(𝜆) where the random coins are

taken from Encode.
• (Few false positives) For all 𝑣 ∈ 𝐷𝑛

with at most 𝑠 non-zero

positions, consider the set of false-positive values

𝐸 = {𝑧 ∈ 𝑉 : 𝑧 ≠ 𝑣𝑖 for any 𝑖 ∈ nzx(𝑣)} ,

where 𝑉 = Decode(Dec(Encode(J𝑣1K, . . . , J𝑣𝑛K))) .

We require |𝐸 | ≤ 𝑓𝑝 with the overwhelming probability over

the randomness of Encode.

4 COIE SCHEMES
We assume the input index vector 𝑣 ∈ {0, 1}𝑛 is sparse. In particular,

throughout the paper, we assume 𝑠 = 𝑜 (𝑛).

4.1 A Warm-up construction
Using an algebraic BF, we can create an (𝑛, 𝑠, 𝑐, 𝑓𝑝)-COIE scheme

(the parameters 𝑐 and 𝑓𝑝 will be worked out after the description

of the scheme).

Encode(J𝑣1K, . . . , J𝑣𝑛K). The encoding algorithm works as follows:

(1) Initialize a BF J𝐵K := (J𝐵1K, . . . , J𝐵𝑐K) with 𝐵 𝑗 = 0 for all

𝑗 . Let H = {ℎ𝑞 : {0, 1}∗ → [𝑐]}𝜂
𝑞=1

be the associated hash

functions.

(2) For 𝑖 = 1, . . . , 𝑛:

(a) For 𝑞 = 1, . . . , 𝜂, do the following: Compute 𝑗 = ℎ𝑞 (𝑖) and
set J𝐵 𝑗 K := J𝐵 𝑗 K + J𝑣𝑖K.

Note that at step 2.a in the above, if 𝑣𝑖 = 0, then 𝐵 𝑗 stays the

same. On the other hand, if 𝑣𝑖 = 1, then 𝐵 𝑗 will be increased by 1.

This implies that 𝐵 will exactly store the results of the operations

{BF.Insert(𝐵, 𝑖) : 𝑖 ∈ nzx(𝑣)}.
Decode(𝐵1, . . . , 𝐵𝑐). Given the algebraic BF 𝐵, we can recover the

indices for the nonzero elements as follows:

• Initialize 𝐼 to be the empty set.

• For 𝑖 ∈ [𝑛]: if BF.Check(𝐵, 𝑖) = “yes", add 𝑖 to 𝐼 .

• return 𝐼 .

Parameters 𝑐 and 𝑓𝑝 . Since this is a warm-up construction, we

perform only a rough estimation on the false positive parameter

and the compactness parameter.

For reasons that will become clear later, we wish to keep the

upper bound on the number of false positives (𝑓𝑝) small. In par-

ticular, we use a BF with false-positive rate 1/𝑛. Since there are
𝑛 operations of BF.Check, the expected number of false positives

is 1, and from the Chernoff bound, the number of false positives

is bounded by Ω(log 𝜆) with overwhelming probability in 𝜆. This

implies that we have 𝑓𝑝 = Ω(log 𝜆) .
The dimension 𝑐 of the Bloom filter 𝐵 can be computed using

the following equation of BF false positive ratio:(
1 − 𝑒−

𝜂𝑠

𝑐

)𝜂
≤ 1

𝑛
,

Setting 𝑐 = 𝜂𝑠 · 𝑛
1

𝜂
will satisfy the equation. This can be verified

by using an equality 1 − 𝑒−𝑥 ≤ 𝑥 for 𝑥 ∈ [0, 1]; that is, 1 − 𝑒−
𝜂𝑠

𝑐 ≤
𝜂𝑠
𝑐 = 1/𝑛1/𝜂 .
Efficiency.
• The encoding algorithm uses 𝑛𝜂 homomorphic addition op-

erations, and 𝑛𝜂 hash functions.

• The dimension 𝑐 of the encoding is 𝜂𝑠 · 𝑛
1

𝜂
. Usually, 𝜂 is set

to between 2 and 32.

• The decoding algorithm uses 𝑛 operations of BF.Check.

In summary, we have reduced the encoding size 𝑐 to be sub-

linear in 𝑛 as desired. However, we still need to reduce the number

BF.Check operations in Decode to be sub-linear in 𝑛. We show how

to achieve that in our next construction.

4.2 BF-COIE
We now show how to improve the above construction to achieve

decoding in time 𝑜 (𝑛). The main idea of this improvement is to use

Bloom filters to represent a binary search tree, one BF per level

of the tree. We can then guide the decoding algorithm to avoid

decoding branches that do not contain non-zero entries. As most

branches can be truncated well before reaching the leaf-level Bloom

filter, this results in sublinear total cost.

Example. Before presenting the formal protocol for this construc-

tion we convey our idea through an example. Let 𝑛 = 32, and

suppose we wish to encode the indices 𝐼 = {1, 15, 16}. Denote

𝐼𝑘 =

{⌈ 𝑖

2
𝑘

⌉
: 𝑖 ∈ 𝐼

}
.

Intuitively, an element 𝑖 in 𝐼𝑘 can be thought of a range of length

2
𝑘
covering [(𝑖 − 1) · 2𝑘 + 1, 𝑖 · 2𝑘]. We have:

• 𝐼4 = {1}.
• 𝐼3 = {1, 2}.
• 𝐼2 = {1, 4}.
• 𝐼1 = {1, 8}.
• 𝐼0 = {1, 15, 16}.

Now, assume we insert each set 𝐼𝑘 into its own BF. We can

traverse these BF’s to decode the set 𝐼 as follows:

(1) Check 𝐼4 for all possible indices. The only possible indices at

this level are 1 and 2, since 𝑛 = 32 and 𝐼4 divides the original

indices by 2
4 = 16.

In the above example, When we query the BF for 𝐼4, it only

contains the index 1, which means that no values greater

than 16 are contained in 𝐼 . We can thus avoid checking any

such indices at the lower levels.

Now consider the BF at the next level (i.e., the BF for 𝐼3).

The only possible values at this level are 1,2,3,4, but since

we already know that there are no values greater than 16 in

𝐼 , we only need to check for values 1, 2 (since 3 · 8 > 16).

(2) Check 𝐼3 for indices 1, 2. The BF will show that indices 1

and 2 are both present, which means that we need to check

indices 1, 2 and 3, 4 in 𝐼2.

(3) Check 𝐼2 for indices 1, 2, 3, 4. The BF will show that indices 1

and 4 are present, which means that we only need to check

indices 1, 2 and 7, 8 in 𝐼1, all other indices can be skipped.

(4) Check 𝐼1 for indices 1, 2, 7, 8. The BF will show that indices

1 and 8 are present, which means that we need to check

indices 1, 2 and 15, 16.

(5) Check 𝐼0 for indices 1, 2, 15, 16, and output the final present

indices 1, 15, 16.

Assuming, for now, that there are no false positives, observe

that this approach checks at most 2 · |𝐼 | values at each level, and

there are lg𝑛 levels. Therefore, the decoding algorithm will check

𝑂 (|𝐼 | · lg𝑛) indices, which is sub-linear in 𝑛.

BF-COIE. We now describe our BF-COIE construction. As before,

we will work out the parameters after describing our construction.

The encoding algorithm is described in Algorithm 1.

Algorithm 1 BF-COIE.Encode(J𝑣1K, . . . , J𝑣𝑛K)
For simplicity, 𝑛 and 𝑠 are assumed to be powers of 2.

(1) 𝑡 := lg
𝑛
2𝑠

(2) For 𝑘 = 0, . . . , 𝑡 :

(a) Initialize J𝐵𝑘K = (J𝐵𝑘
1
K, . . . , J𝐵𝑘

ℓ
K) := (nil, . . . , nil).

(b) ChooseH𝑘 = {ℎ𝑘𝑞 : {0, 1}∗ → [ℓ]}𝜂
𝑞=1

at random.

(c) For 𝑖 ∈ [𝑛] and for 𝑞 ∈ [𝜂]:
𝑖 ′ := ⌈𝑖/2𝑘 ⌉, 𝑗 := ℎ𝑘𝑞 (𝑖 ′),
If J𝐵𝑘

𝑗
K is nil, then J𝐵𝑘

𝑗
K := J𝑣𝑖′K

Otherwise, J𝐵𝑘
𝑗
K := J𝐵𝑘

𝑗
K + J𝑣𝑖′K

(3) Output J𝐵0K, . . . , J𝐵𝑡 K.

Note that in steps (a) to (c) above, the warm-up construction is

used to construct BF 𝐵𝑘 for indices 𝐼𝑘 .

In order to reduce the size of the output encoding, we set 𝑡 to

be lg
𝑛
2𝑠 instead of lg𝑛 as described previously. Note that when 𝑡 is

set in this way, 𝐼𝑡 contains at most 𝑛/2𝑡 = 2𝑠 possible values thus

maintaining our invariant.

The decoding algorithm is described in Algorithm 2.

Algorithm 2 BF-COIE.Decode(𝐵0, . . . , 𝐵𝑡)

(1) Initialize 𝐼 , 𝐼0, . . . , 𝐼𝑡−1 := ∅
(2) Initialize 𝐼𝑡 := {1, . . . , 𝑛/2𝑡 } = [2𝑠]
(3) For 𝑘 = 𝑡, 𝑡 − 1, . . . , 1, and for 𝑖 ′ ∈ 𝐼𝑘 :

If BF.Check(𝐵𝑘 , 𝑖 ′) is “yes", add 2𝑖 ′ − 1, 2𝑖 ′ in 𝐼𝑘−1

(4) For 𝑖 ∈ 𝐼0:
If BF.Check(𝐵0, 𝑖) is “yes", add 𝑖 to 𝐼

(5) Output 𝐼

Useful lemma. The following lemma will be useful to analyze the

parameters 𝑐 and 𝑓𝑝 .

Lemma 4.1. Consider a Bloom filter with false positive rate 1

𝑚 ,
where𝑚 is an arbitrary positive integer. Suppose at most𝑚 BF.Check
operations are performed in the BF. Then, for any 𝛿 > 0, we have:

Pr[# false positives ≥ 1 + 𝛿] ≤ 𝑒𝛿

(1 + 𝛿) (1+𝛿)
.

The proof, by an application of the Chernoff bound, can be found

in Appendix A.

Regarding the above Lemma,we remark that setting𝛿 = Ω(log 𝜆),
we have

Pr

[
𝑚∑︁
𝑖=1

𝑋𝑖 ≥ 1 + 𝛿
]
= negl(𝜆).

Parameters 𝑐 and 𝑓𝑝 .We set the false positive upperbound 𝑓𝑝 :=

Ω(log 𝜆) for the BF-COIE scheme. In our experiments, we set 𝑓𝑝 =

16.

Now, let𝑚 = max(2𝑠, 𝑠 + 2𝑓𝑝), we set the BF false positive rate
to 1/𝑚. Recall that in the BF-COIE construction, the topmost BF

𝐵𝑡 performs the BF.Check operation with 2𝑠 times; see line (2) in

Algorithm 2. Using the above Lemma, the number of false positives

in the top level BF 𝐵𝑡 is at most 𝑓𝑝 with all but negligible probability

in 𝜆. Furthermore, the index 𝑖 in 𝐵𝑡 is expanded into two indices

2𝑖 − 1 and 2𝑖 in 𝐵𝑡−1. This means that the number of false indices

to be checked in 𝐵𝑡−1 due to the false positives in 𝐵𝑡 is at most 2𝑓𝑝 .

Now consider an index 𝑖 that belongs to 𝐵𝑡 . Algorithm 2 will

run BF.Check on the values 2𝑖 − 1 and 2𝑖 in 𝐵𝑡−1. Since at least one
of these values must actually belong to 𝐵𝑡−1, this leads to at most

one false index being checked. Thus, the maximum number of false

indices that would be checked in 𝐵𝑡−1 is at most 𝑠 + 2𝑓𝑝 (i.e., 2𝑓𝑝

from false positives of 𝐵𝑡 and 𝑠 from true positives of 𝐵𝑡).

The above argument applies inductively all the way to the bottom

most level, which means that the maximum number of false indices

that would be checked in each level BF 𝐵𝑖 will be at most 𝑠 + 2𝑓𝑝 . In
the end, the bottom BF will have at most 𝑓𝑝 false positives, and the

overall BF-COIE scheme will have at most 𝑓𝑝 false positives with

all but negligible probability in 𝜆.

For the compactness parameter 𝑐 , we must determine the dimen-

sion ℓ of each BF. Recall that we set the BF false positive rate to

1/𝑚 for𝑚 = max(2𝑠, 𝑠 + 2𝑓𝑝):(
1 − 𝑒−

𝜂𝑠

ℓ

)𝜂
≤ 1

𝑚
.

Setting ℓ = 𝜂 · 𝑠 ·𝑚
1

𝜂
would satisfy the above condition, which can

be verified using an inequality 1 − 𝑒−𝑥 ≤ 𝑥 for 𝑥 ∈ [0, 1]; that is,
1 − 𝑒−

𝜂𝑠

ℓ ≤ 𝜂𝑠
ℓ = (1/𝑚)1/𝜂 .

Since the encoding has 𝑡 + 1 BFs, the overall compactness param-

eter is as follows:

𝑐 = (𝑡 + 1) · ℓ = 𝑂

(
𝜂 · 𝑠1+

1

𝜂 · lg 𝑛

𝑠

)
.

Efficiency.

• The size 𝑐 of encoding is 𝑂

(
𝜂 · 𝑠1+

1

𝜂 · lg 𝑛
𝑠

)
. In our experi-

ment, we choose 𝜂 = 2.

• The encoding algorithm uses 𝑂 (𝜂 · 𝑛 · lg 𝑛
𝑠) homomorphic

addition operations and hash functions.

• The decoding algorithmusesBF.Check operations for𝑂 (𝑠 lg 𝑛
𝑠)

times.

In summary, assuming 𝑠 = 𝑜 (𝑛), we reduced the encoding size

𝑐 to be sub-linear in 𝑛. Moreover, we also reduced the number

BF.Check operations to be sub-linear in 𝑛.

Remark. Although this scheme has multiple BFs, the size of encod-

ing 𝑐 is smaller than that of the warm-up scheme! This is because

with multiple levels of BFs, we can relax the false positive ratio

for each BF. The encoding computation time was increased by a

multiplicative factor of lg
𝑛
𝑠 .

4.3 COIE Scheme Based on Power Sums

Removing false positives using power sums.We offer another

encoding scheme using quite different techniques that can eliminate

the false positives of the prior construction. To achieve this, we

abandon Bloom filters, and instead use a power sum encoding, as

has been done in several works using DC-Nets for anonymous

broadcast [33, 39].

PS-COIE.We describe a COIE scheme based on power sums, which

we call PS-COIE. As before, we will work out the parameters after

describing our construction. The encoding algorithm is shown

below.

Algorithm 3 PS-COIE.Encode(J𝑣1K, . . . , J𝑣𝑛K)
(1) For 𝑗 = 1, . . . , 𝑠:

Compute J𝑤 𝑗 K =
∑𝑛
𝑖=1 𝑖

𝑗 · J𝑣𝑖K
(2) Output J𝑤1K, . . . , J𝑤𝑠K.

Note that the values of 𝑖 𝑗 (modulo the underlying plaintext mod-

ulus) are publicly computable, so computing 𝑖 𝑗 · J𝑣𝑖K only requires

scalar multiplication and no homomorphic multiplication.

Recall that 𝑣𝑖 ∈ {0, 1}. If we let 𝐼 = {𝑖 : 𝑣𝑖 = 1} denote the indices
of the nonzero elements, then note that

𝑤 𝑗 =

𝑛∑︁
𝑖=1

𝑖 𝑗 · 𝑣𝑖 =
∑︁
𝑖∈𝐼

𝑖 𝑗 .

Therefore, this 𝑤 𝑗 is the 𝑗th power sum of the indices. Using the

power sums, we present the decoding algorithm in Algorithm 4.

Algorithm 4 PS-COIE.Decode(J𝑤1K, . . . , J𝑤𝑠K)

(1) Recall that we have 𝑤 𝑗 =
∑
𝑥 ∈𝐼 𝑥

𝑗 , for 𝑗 = 1, . . . , 𝑠 , and we

would like to reconstruct all 𝑥 ’s in 𝐼 .

(2) Let 𝑓 (𝑥) = 𝑎𝑠𝑥
𝑠 + 𝑎𝑠−1𝑥𝑠−1 + · · · + 𝑎1𝑥 + 𝑎0 denote the

polynomial whose roots are the indices in 𝐼 .

(3) Use Newton’s identities to compute the coefficients of this

polynomial 𝑓 (𝑥):
𝑎𝑠 = 1

𝑎𝑠−1 = 𝑤1

𝑎𝑠−2 = (𝑎𝑠−1𝑤1 −𝑤2)/2
𝑎𝑠−3 = (𝑎𝑠−2𝑤1 − 𝑎𝑠−1𝑤2 +𝑤3)/3

.

.

.

𝑎0 = (𝑎1𝑤1 − 𝑎2𝑤2 + · · ·𝑤𝑠)/𝑠
(4) Extract and output the roots of the polynomial 𝑓 (𝑥).

Parameters 𝑐 and 𝑓𝑝 . This COIE scheme has no false positives;

that is, 𝑓𝑝 = 0. The compactness parameter 𝑐 is equal to 𝑠 .

Efficiency.
• The encoding algorithm uses 𝑠 · 𝑛 homomorphic addition

operations and scalar multiplications
2
.

• The encoding consists of 𝑠 ciphertexts.

• The decoding algorithm computes coefficients in time𝑂 (𝑠2).
Roots of degree-𝑠 polynomial can be found in time𝑂 (𝑠3 log 𝑝),
where 𝑝 is the plaintext modulus of the underlying FHE, by

using the Cantor–Zassenhaus algorithm [13].

5 CODE SCHEME
In the previous section, we showed two constructions of COIE

schemes for encoding a vector of indices using sublinear storage.

We now turn to the construction of CODE schemes, which, instead

of encoding the indices of non-zero entries, encode the actual data

values.

2
We do not count the public multiplications to produce powers of 𝑖

Simplified key-value store. To construct our CODE scheme, we

first construct an auxiliary data structure that supports the follow-

ing operations:

• Init(). Initialize the data structure.
• Insert(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒). This operation allows the user to insert

an item based on its key and value.

• Values(). Returns all values that have been inserted thus far.

This data structure is simpler than a typical key-value store since

it doesn’t need to find an individual item by key. Note, however,

that this is still sufficient to serve our purpose of constructing a

CODE scheme.

5.1 BF Set
We now show how to instantiate a simplified key-value store using

a data structure we call a Bloom filter set (BFS) that is in turn based

on the algebraic Bloom filter presented in Section 2.2. To insert a

pair (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒), the Bloom filter set stores the actual 𝑣𝑎𝑙𝑢𝑒 rather

than an indicator bit. Items are inserted similar to before, by adding

their value to the locations indicated by the hashes of the 𝑘𝑒𝑦.

Input data format. For our construction we make an assumption

on the format of the inserted data. Specifically, we assume that all

inserted values contain a unique checksum (e.g., a cryptographic

hash of the value).We assume that this checksum is sufficiently long

that a random sum of checksums does not give a valid checksum

except with negligible probability (as a function of 𝜆).
Construction.We first describe the construction of the data struc-

ture. We show below how to choose parameters in such a way that

the client can extract all the matched items from this Bloom filter,

with overwhelming probability.

• BFS.Init() → (𝐵,H). Create an ℓ-dimensional vector 𝐵

where each element can store any possible value in the do-

main 𝐷 . Choose a set of 𝜂 different hash functionsH = {ℎ𝑞 :

{0, 1}∗ → [ℓ]}𝜂
𝑞=1

. Initialize 𝐵𝑖 := 0 for 𝑖 ∈ [ℓ].
• BFS.Insert(𝐵,H , 𝑘𝑒𝑦, 𝛼). To add (𝑘𝑒𝑦, 𝛼), we add 𝛼 to the

values stored at the locations indicated by the hashes of 𝑘𝑒𝑦.

Specifically,

– For 𝑞 ∈ [𝜂]:
Compute 𝑗 = ℎ𝑞 (𝑘𝑒𝑦) and set 𝐵 𝑗 := 𝐵 𝑗 + 𝛼 .

• BFS.Values(𝐵). Initialize a set 𝑉 to be the empty set. For

𝑗 ∈ [ℓ], if 𝐵 𝑗 has a valid checksum, add 𝐵 𝑗 to 𝑉 . Finally,

output 𝑉 .

We note that, as previously proposed by Goodrich [25], it is

possible to avoid the checksum by maintaining a counter of the

number of values inserted for each location. Then, BFS.Values only
returns values at locations with a counter of 1.

Parameters.We show how to set the Bloom filter parameters to

guarantee that all values can be recovered with all but negligible

probability. We assume that we know the upper bound 𝑠 on the

number of inserted values. We prove the following lemma.

Lemma 5.1. If at most 𝑠 values have been inserted in the BFS data
structure, then by setting 𝜂 and ℓ such that

ℓ ≥ 2(𝑠𝜂 − 1),
we can recover all 𝑠 values with probability at least 1 − 𝑠 · (1/2)𝜂 .

Proof. Consider a (key, value) pair (𝑘𝑖 , 𝛼𝑖). We say that this

pair has a total collision if every hash position for the pair is also

occupied by another inserted key, value pair. In this case, 𝛼𝑖 cannot

be recovered. On the other hand, if at least one hash position has

no collisions, then we can recover the value. Note that the collision

depends on the key 𝑘𝑖 but not the value 𝛼𝑖 .

For a given key 𝑘𝑖 , we define the event TCOL(𝑘𝑖):
TCOL(𝑘𝑖) = 1 if ∀𝑞 ∈ [𝜂], ∃(𝑘 ′, 𝑞′) ≠ (𝑘𝑖 , 𝑞) : ℎ𝑞 (𝑘𝑖) = ℎ𝑞′ (𝑘 ′) .

Here, 𝑘 ′ can be the key of any item that has been inserted in the set.

Since the set contains at most 𝑠 items, there are at most 𝑠 possible

keys for 𝑘 ′. Recall also that 𝜂 hash functions are applied for each

item.

Since for each 𝑘𝑖 , there are at most 𝜂𝑠 − 1 pairs of (𝑘 ′, 𝑞′)s that
are different from (𝑘𝑖 , 𝑞), we can bound the collision probability as

follows:

Pr[TCOL(𝑘𝑖)] ≤
(
(𝜂𝑠 − 1)

ℓ

)𝜂
Thus, if we choose 𝜂 and ℓ such that ℓ ≥ 2(𝑠𝜂 − 1), we have

Pr[TCOL(𝑘𝑖)] ≤ (1/2)𝜂

Taking a union bound over all 𝑠 inserted values, we have

Pr[∃𝑘𝑖 : TCOL(𝑘𝑖)] ≤ 𝑠 · (1/2)𝜂

. □

5.2 CODE Scheme Based on BF Set
In this section, we construct a CODE scheme. Recall that unlike

encoding the indices through a COIE scheme, a CODE scheme

encodes data in a compressed manner. The main idea of our con-

struction is simulating the operations of BFS; we call our scheme

BFS-CODE.

Pre-processing the input data. As mentioned in the description

of the BF Set construction, we need to pre-process the input data

so that each item is attached with its checksum. Although a data

item 𝑣 is represented as a single number, it is assumed that 𝑣 can

be parsed as 𝑣 .𝑣𝑎𝑙 for its actual value and 𝑣 .𝑡𝑎𝑔 for its checksum.

Moreover, we assume that the checksum is long enough, such that

a random linear combination of checksums is only negligibly likely

to produce a valid checksum (i.e., |𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 | = 𝜔 (𝜆)).
We stress that when our CODE scheme is used for secure search,

this pre-processing can be performed locally by the client prior to

encrypting his data. Moreover, computing checksum adds only a

tiny amount of overhead.

BFS-CODE. We now describe our (𝑛, 𝑠, 𝑐, 𝑓𝑝)-BFS-CODE construc-

tion over domain 𝐷 . As before, we will work out the parameters

after describing our construction. The encoding algorithm is shown

below.

Note that at step 4 in the above, if 𝑣𝑖 is 0, then 𝐵 𝑗 stays the

same. On the other hand, if 𝑣𝑖 is not 0, 𝐵 𝑗 will be increased by

𝑣𝑖 . This implies that 𝐵 will exactly hold the result of operations

{BFS.Insert(𝐵,H , 𝑖, 𝑣𝑖) : 𝑖 ∈ nzx(𝑣)}.
The decoding algorithm is simple, and it’s described in Algo-

rithm 6.

Correctness. This is immediate from the additive homomorphism

of the underlying encryption scheme and the parameters for the

Algorithm 5 BFS-CODE.Encode(J𝑣1K, . . . , J𝑣𝑛K)
(1) 𝜂 = 𝜆 + lg 𝑠; ℓ = 2(𝜂𝑠 − 1)
(2) Initialize J𝐵K = (J𝐵1K, . . . , J𝐵ℓK) := (J0K, . . . , J0K).
(3) ChooseH = {ℎ𝑞 : {0, 1}∗ → [ℓ]}𝜂

𝑞=1
at random.

(4) For 𝑖 ∈ [𝑛] and for 𝑞 ∈ [𝜂]:
𝑗 := ℎ𝑞 (𝑖); J𝐵 𝑗 K = J𝐵 𝑗 K + J𝑣𝑖K

(5) Output J𝐵K.

Algorithm 6 BFS-CODE.Decode(𝐵)
(1) Output BFS.Values(𝐵)

BFS. In particular, we set 𝜂 = 𝜆 + lg 𝑠 so that the probability of

recovery error is at most 2
𝜆
.

Parameters 𝑐 and 𝑓𝑝 . The checksums attached to the data items

ensure that we have no false positives with overwhelming probabil-

ity, that is, 𝑓𝑝 = 0. The compactness parameter 𝑐 is the dimension ℓ

of the BF, which is 𝑂 (𝜂𝑠).
Efficiency.
• The encoding algorithm uses ℓ = 𝑂 (𝜂𝑠) encryption opera-

tions, 𝜂 · 𝑛. addition operations, and 𝜂𝑛 hash functions.

• The encoding consists of ℓ ciphertexts.

• The decoding algorithm uses ℓ decryption operations.

Since by Lemma 5.1, the size ℓ of the Bloom filter only depends

on the number of matches 𝑠 and the number of hash function 𝜂,

we get that the communication complexity of the above protocol is

independent of the database size 𝑛.

6 SECURE SEARCH PROTOCOLS
We implement secure search protocols by using compressed oblivi-

ous encoding schemes. We begin by defining a relaxed notion of

correctness that allows for false positives, as is needed in some of

our constructions. we then define security of secure search.

6.1 (ℓ, 𝑓𝑝)-Relaxed Secure Search
We relax the correctness guarantee to allow the Client to retrieve

a superset of the matching records. Specifically, if S is the set of

indexes matching a Client’s query 𝑞, then at the end of the protocol,

we require the Client to obtain a set S′ such that:

• With all but negligible probability, S ⊆ S′
• With all but negligible probability, |S′ \ S| ≤ 𝑓𝑝 .

We parameterize a secure search scheme by (ℓ, 𝑓𝑝), where ℓ is
the amortized communication complexity permatching record, and

𝑓𝑝 is the number of “false positives,” as defined above.

6.2 Security of Setup-free Secure Search
To define security of our secure search schemes, we use a game-

based security definition similar to that of Akavia et al. [2]. The

game is between a challenger and an adversary A with regard to a

setup-free search scheme, sec-search, and an FHE scheme, FHE.

Gamesec-searchFHE (A):
(1) The challenger runs a key generation algorithm (with com-

putational security parameter 𝜅) and sends the evaluation

key to A so that A can perform homomorphic additions

and multiplications.

(2) A chooses either:

• Two databases 𝑥0 = (𝑥0
1
, . . . , 𝑥0𝑛) and 𝑥1 = (𝑥11 , . . . , 𝑥

1

𝑛) of
the same length, and a query 𝑞, or

• A single database 𝑥 = (𝑥1, . . . , 𝑥𝑛) and two queries 𝑞0, 𝑞1

of the same circuit size.

In both cases, we require that the sizes of the two result sets

(denoted by 𝑠) are equal.

(3) The challenger samples 𝑏 ← {0, 1}. Then, either
• Runs Setup on input 𝑥𝑏 and the search protocol from

sec-search on input 𝑞, or

• Runs Setup on input 𝑥 , and the search protocol from

sec-search on input 𝑞𝑏 .

(4) A outputs a bit 𝑏 ′

(5) We say that A has advantage

Advsec-searchFHE (A) = | Pr[𝑏 = 𝑏 ′] − 1/2|.
Definition 6.1. A setup-free (ℓ, 𝑓𝑝)-secure search scheme sec-search

is fully secure if every PPT adversary A controlling the server has

a negligible advantage Advsec-searchFHE (A) ≤ negl(𝜅) in the game

above.

6.3 From COIE to Secure Search
We next present our framework for obtaining Secure Search from

COIE. The intuition is likely already clear from the previous descrip-

tions: the encrypted client query is applied to the dataset, returning

an encrypted bit vector indicating where index matches lie. The

server homomorphically computes the hamming weight of this

vector, and sends it to the client for decryption. This provides the

result set size to the Server, allowing it to encode the result vector

in the COIE.
3
The encoding is sent to the client for decryption and

decoding.

Because the COIE only encodes the indices, and not the data

values, we then add a PIR step to fetch the corresponding data. Note

that if the COIE scheme admits false positives, it is possible that the

number of false positives, and therefore the number of PIR queries,

depends on the data, leaking something to the Server. To fix this

problem, the client pads the number of PIR queries as follows. It

fixes a bound 𝑓𝑝 on the number of false positives, and aborts if the

actual number of false positives exceeds this bound. Otherwise,

the client uses enough dummy queries to pad the number of PIR

queries to 𝑠 + 𝑓𝑝 .
Theorem 6.2. Given an FHE scheme, a (𝑛, 𝑠, 𝑐, 𝑓𝑝)-COIE scheme in

the random oraclemodel, and a PIR scheme in the random oraclemodel
with communication complexity ℓ𝑝 for records in {0, 1}𝑚 , the construc-
tion in Algorithm 7 yields a (ℓ, 𝑓𝑝)-secure search scheme for records

in {0, 1}𝑚 in the Random Oracle Model, where ℓ =
𝑐 ·ℓ𝑐+(𝑠+𝑓𝑝) ·ℓ𝑝

𝑠 , ℓ𝑐
is the length of an FHE ciphertext, and 𝑠 is the number of matching
records.

Proof. We begin by proving that the adversary cannot dis-

tinguish between two different queries. The adversary chooses

3
We note if we don’t wish to reveal this to the server, we can use a fixed, global upper

bound, or, if it is appropriate to the application, the client can add noise to provide

differential privacy. It is also worth pointing out that prior work leaks the result set

size as well.

Algorithm 7 Secure search with a (𝑛, 𝑠, 𝑐, 𝑓𝑝)-COIE scheme.

(1) Client runs the FHE key generation algorithm and encrypts data-

base 𝑥 = (𝑥1, . . . , 𝑥𝑛) with 𝑥𝑖 ∈ {0, 1}𝑚 . It then sends J𝑥K =

(J𝑥1K, . . . , J𝑥𝑛K) and the evaluation key to Server.

(2) Client sends an encrypted query J𝑞K.
(3) Server homomorphically evaluates the encrypted query J𝑞K on each

encrypted record. In particular, let J𝑏K = (J𝑏1K, . . . , J𝑏𝑛K) where
J𝑏𝑖K = J𝑞 (𝑥𝑖)K. Note that 𝑞 (𝑥𝑖) = 1 if record 𝑖 is a match and is

equal to 0 otherwise.

(4) Server homomorphically computes J𝑠K =
∑𝑛

𝑖=1 J𝑏𝑖K, and sends to

Client for decryption.

(5) Client decrypts J𝑠K to obtain 𝑠 , and sends 𝑠 to Server.

(6) Server calls COIE.Encode(J𝑏K) with sparsity parameter 𝑠 , to obtain

an encrypted encoding J𝐶K. It sends J𝐶K to Client.

(7) Client decrypts J𝐶K into𝐶 and calls COIE.Decode(𝐶) to obtain a

set S′ of size 𝑠+𝑒 indexes. If 𝑒 > 𝑓𝑝 , Client aborts. Otherwise, Client

adds 𝑓𝑝 − 𝑒 number of dummy indexes to S′.
(8) Client runs a PIR protocol with the Server to obtain the records

corresponding to the indexes in S′.

a database 𝑥 and two queries 𝑞0 and 𝑞1, with the promise that

𝑠 =
∑𝑛
𝑖=1 𝑞

0 (𝑥𝑖) =
∑𝑛
𝑖=1 𝑞

1 (𝑥𝑖).
The entire view of the adversary during the experiment can

be reconstructed efficiently given (1) the encrypted database J𝑥K
(2) the encrypted query J𝑞K, (3) 𝑠 + 𝑓𝑝 iterations of the PIR proto-

col, requesting indexes in S′
𝑏
, where 𝑠 is the number of matching

records.

Since the value of 𝑠 is the same for 𝑞0 and 𝑞1, the two things that

change in the view of the adversary when switching from 𝑏 = 0

to 𝑏 = 1 are (1) the encrypted query J𝑞𝑏K (2) the set of indexes S′
𝑏

(but not the number) requested during the PIR step.

We also note that the experiment only aborts when the number

of received false positives 𝑒 is greater than the bound 𝑓𝑝 , which

only happened with probability negl(𝜆) for a statistical security

parameter 𝜆. Thus, we ignore this possibility in the following.

We can now proceed via a standard hybrid argument:

• We first consider the real experiment with 𝑏 = 0.

• We then switch the encrypted query from 𝑞0 to 𝑞1, but leave

the set of indexes in the PIR step as S′
0
. Indistinguishability

of the adversary’s view follows from the IND-CPA security

of the FHE scheme.

• Next, we switch the set of indexes in the PIR step from S′
0
to

S′
1
. Indistinguishability of the adversary’s view now follows

from the security of the PIR scheme. This is now identical to

the real experiment with 𝑏 = 1.

We conclude that the probability the adversary outputs 0 or 1

differs by a negligible amount when 𝑏 = 0 versus 𝑏 = 1. Therefore,

the advantage of the adversary in guessing 𝑏 is negligible.

The proof that the adversary cannot distinguish between the

same query applied to two different databases follows nearly iden-

tically. □

6.4 From CODE to Secure Search
We next present our framework for obtaining Secure Search from

CODE.

Algorithm 8 Secure search with a (𝑛, 𝑠, 𝑐, 𝑓𝑝)-CODE scheme.

(1) Client runs the FHE key generation algorithm and encrypts database

𝑥 = (𝑥1, . . . , 𝑥𝑛) with 𝑥𝑖 ∈ 𝐷 . It then sends J𝑥K = (J𝑥1K, . . . , J𝑥𝑛K)
and the evaluation key to Server.

(2) Client sends an encrypted query J𝑞K.
(3) Server homomorphically evaluates the encrypted query J𝑞K on each

encrypted record. In particular, let J𝑏K = (J𝑏𝑖K, . . . , J𝑏𝑛K) where
J𝑏𝑖K = J𝑞 (𝑥𝑖)K. Note that 𝑞 (𝑥𝑖) = 1 if record 𝑖 is a match and is

equal to 0 otherwise.

(4) Server homomorphically computes J𝑠K =
∑𝑛

𝑖=1 J𝑏𝑖K and sends J𝑠K
to Client.

(5) Client decrypts J𝑠K to obtain 𝑠 and sends it back to the Server.

(6) Server computes J𝑑𝑖K = J𝑏𝑖K · J𝑥𝑖K for 𝑖 ∈ [𝑛]. Then, it applies
CODE.Encode(J𝑑1K, . . . J𝑑𝑛K) with sparsity parameter 𝑠 , to obtain

an encrypted encoding J𝐶K. It sends J𝐶K to Client.

(7) Client decrypts J𝐶K to𝐶 and decodes𝐶 to obtain a set S of size 𝑠

matching records.

Theorem 6.3. Given an FHE scheme, and a (𝑛, 𝑠, 𝑐, 𝑓𝑝)-CODE
scheme over domain 𝐷 in the random oracle model, the construction
in Algorithm 8 yields a (ℓ, 𝑓𝑝)-secure search scheme for records in

domain 𝐷 in the random oracle model, where ℓ =
𝑐 (𝑠) ·ℓ𝑐

𝑠 , ℓ𝑐 is the
length of an FHE ciphertext with plaintext space𝐷 , and 𝑠 is the number
of matching records.

The proof is similar to the COIE-based scheme and can be found

in Appendix B.

On the use of homomorphic multiplication. As described, our
CODE-based search scheme uses 𝑛 homomorphic multiplications

to create the vector J𝑑K. However, it may be the case that this

vector is already produced as part of the match step, for example

for arithmetic queries. In this case, our CODE scheme requires no

further homomorphic multiplications.

On volume attacks. In our secure search schemes, the client sends

the number 𝑠 of matching records to the server so that the server

can create an oblivious compress encoding. One recent line of works

has developed attacks using volume leakage (e.g., [7, 28, 31]), and

these types of attacks can be applied to our scheme in theory.

In our scheme, the volume attacks can be mitigated by hiding 𝑠

in a differentially private manner. In particular, the client can add a

small amount of noise to 𝑠 before sending it to the server. A similar

approach was used in previous work e.g., [37].

7 EVALUATION
7.1 Fetch time
We implemented our search protocols based on BF-COIE, PS-COIE,

and BFS-CODE schemes. All protocols were implemented using

PySEAL [43], which is a Python wrapper of the Microsoft research

SEAL library (version 3.6) [40] using the BFV encryption scheme [20].

We instantiated a single-server PIR protocol in our construction us-

ing SealPIR [4]. For the root finding step of the decoding procedure

in PS-COIE, we use an implementation based on SageMath 9.2 [42].

Measuring the Fetch step. Our search framework improves the

overall search time by executing the Match step only once, while

the LEAF protocol must execute the Match step 𝑠 times. However,

since we do not optimize the Match step itself over prior work, we

focus on measuring the cost of the Fetch procedure. That is, our ex-

periments measure the time from when the server holds encrypted

query results, i.e., (J𝑏1K, . . . , J𝑏𝑛K) with 𝑏𝑖 ∈ {0, 1}, to when the

client recovers all 𝑠 records matching the query. Specifically, we

measure the cost of steps 4 and up in Algorithms 7 and 8. Similarly,

for LEAF+, we only measure the cost of the Fetch step.

Database. To measure the performance of our protocols, we run

experiments with database size 𝑛 ranging from 1000 to 100,000 data

items and the result set size 𝑠 set to between 8 and 128. As in the

LEAF+ experiments [45], all data items are 16-bit integers.

BF-COIE parameters. For the BF-COIE secure search, we set the

parameters as indicated in Section 4.2.

• We set the false positive upperbound 𝑓𝑝 = 16. Recall that

the client aborts (without executing the PIR) if the actual

number of false positives exceeds this, but this only happens

with probability negligible in the security parameter, which

we set 𝜆 = 40.

• We set the number of hash function 𝜂 = 2 for each Bloom

filter, so each BF has size ℓ = 2𝑠 ·
√
2𝑠 . (If 2𝑠 < 𝑠 + 2𝑓𝑝 , we set

ℓ = 2𝑠 ·
√︁
𝑠 + 2𝑓𝑝).

BFS-CODE parameters. For BFS-CODE secure search, with 𝜆 =

40, the number of hash functions 𝜂 is set to 𝜆 + lg 𝑠 , and the Bloom

filter size is set to 2(𝜂𝑠 − 1). Additionally, each data item is attached

with a 40-bit checksum to guarantee a 2
−𝜆

probability of collision.

We used SHA2 to compute a checksum.

Implementing LEAF+. For a comparison we also implemented

the fetch step of the LEAF+ protocol [45], since their implementa-

tion is not publicly available.

Their protocol has 𝑂 (log log𝑛) depth of multiplications. There-

fore, they have to use bootstrapping techniques to reduce the ac-

cumulated noise. However, SEAL doesn’t provide a method for

bootstrapping, and we suspect that they added a customized imple-

mentation of bootstrapping on top of SEAL. Unfortunately, their

implementation is not available.

We address this issue by choosing to ignore the time for boot-

strapping when we measure the running time of our implementa-

tion of LEAF+. Of course, our implementation doesn’t output the

correct results, but the measured running time will be shorter than

the actual running time. Therefore, we believe that this measured

time serves as a good baseline.

Experiment environments.All our experiments were performed

on an Intel®Core 9900k @4.7GHz with 64GB of memory. For fair

comparison, the test was performed on a single thread with no

batching optimizations for computation. Networking protocol be-

tween server and clients is a 1Gbps LAN.

Results: Fetch time vs. database size. Figure 3 shows the per-

formance of our protocols as a function of database size, while the

result set size 𝑠 is fixed to 16. However, for LEAF+, we plot the time

for fetching only a single record, since fetching 𝑠 records takes

too long. In our implementation of LEAF+, fetching even a single

record when 𝑛 = 10, 000 requires 1872 seconds. We note that the

authors of LEAF+ report about 60 seconds for a single fetch [45].

For LEAF+, we plot the time for fetching only a single record, since
fetching 𝑠 records takes too long.

Figure 3: Fetch time vs. Database size with 𝑠 = 16.

We conjecture that they parallelize the scheme with 32 threads.

Here, we only use a single thread.

All three of our protocols greatly outperform LEAF+. Looking

at BF-COIE in particular:

• In BF-COIE search, fetching 16 records with 𝑛 = 10, 000

takes 16.7 seconds, compared to 1872 seconds for a single

record fetch in LEAF+. We believe that the speed up is due

to the fact that LEAF+ (with a single-record fetching) needs

𝑂 (𝑛 log𝑛) homomorphic additions and 𝑂 (𝑛) homomorphic

multiplications, while BF-COIE search needs only𝑂 (𝑛 log 𝑛
𝑠)

homomorphic additions with no homomorphic multiplica-
tions. In addition, as Figure 4 shows, the overhead of the PIR

step to retrieve the actual data is small.

• Due to the sequential limitation in LEAF+, fetching 16 records

with LEAF+ is extrapolated to take about 16 · 1872 = 29952

seconds. Overall, BF-COIE search is about 1800 times faster
than LEAF+.

The time for all three of our protocols is dominated by the

server’s computation during encode, which grows linearly with the

DB size.

Since the number of hash functions 𝜂 is larger in the BFS-CODE

protocol than in BF-COIE protocol, the encoding step of this proto-

col takes longer.

Results: fetch time vs. the result set size. Figure 4 shows the

performance of our protocols as a function of the result set size 𝑠

while 𝑛 is fixed to 10, 000. Here, again the performance is dominated

by the encoding step, but the relative costs have changed. Due to the

need to compute more power sums, the PS-COIE protocol performs

worse than BS-COIE and BFS-CODE when 𝑠 becomes moderately

large.

The time used for transmitting the data over network (green in

Figure 4) increases for larger 𝑠 . However, it still remains small for all

three schemes. In the scenario of having lower network bandwidth,

batching is recommended to pack a vector of ciphertexts into a

Figure 4: Fetch time vs. Result set size with 𝑛 = 10, 000.

single ciphertext with relatively low computation overhead. We

discuss communication costs further in Section 7.3.

7.2 Overall Running Time
Although we do not optimize the Match step itself over prior work,

we provide an estimated comparison of the running time for the

end-to-end flow.

Our search framework improves the overall search time by ex-

ecuting the Match step only once, while the LEAF protocol must

execute the Match step 𝑠 times. Based on this, we can extrapolate

the running time as follows:

• The overall running time for LEAF:

𝑇𝑖𝑚𝑒 (LEAF) = 𝑠 ·MT(LEAF) + 𝑠 · FT(LEAF).
Here, MT and FT denote the match time and fetch time

respectively.

• The overall running time for the BF-COIE scheme:

𝑇𝑖𝑚𝑒 (BF-COIE) = MT(BF-COIE) + FT(BF-COIE)
Although the implementation (nor the algorithm) of the match-

ing step of LEAF protocol is not available in [45], we expect that

it holdsMT(LEAF) ≈ MT(BF-COIE). In the experiment performed

in LEAF (see Figure 9 in [45]), we have𝑚 =
MT(LEAF)
FT(LEAF) ≈ 1.5. For

𝑠 = 16, setting FT(LEAF) = 1800 · FT(BF-COIE) based on the above

discussion, we can estimate the speed-up as follows:

𝑇𝑖𝑚𝑒 (LEAF)
𝑇𝑖𝑚𝑒 (BF-COIE) =

𝑠 · (𝑚 + 1)
𝑚 + 1/1800 .

Thus, with 𝑠 = 16, we estimate that our BF-COIE scheme has

roughly 26X end-to-end speed-up.

7.3 Communication
We now look at the communication required by each of our schemes

and by LEAF+. Figure 5 shows the network cost of the protocols

when the result set size 𝑠 is 16 and the size of the database is

𝑛 = 10, 000. In our implementations, the length of an FHE cipher-

text is approximately 103KB and the communication cost of PIR is

approximately 369KB.

To explain this table, we first need to explain how we determined

the costs of LEAF+ and PIR.

LEAF+ BF-COIE PS-COIE BFS-CODE

#ct’s 704 1323 17 1321

#PIR 0 32 16 0

#ct’s (w/ batching) 32 2 2 2

Figure 5: The communication costs (𝑛 = 10, 000 and 𝑠 = 16).

• LEAF+. Since LEAF+ fetches each data item and the corre-

sponding index one by one, LEAF+ needs to 16 rounds of

communication to retrieve 16 data items. Worse yet, LEAF+

requires the client to send the index of the previous match

(requiring lg𝑛 bits) in his next query to ensure correctness.

Finally, LEAF+ uses bitwise encryption requiring a cipher-

text for each bit of the encrypted communication. Thus, in a

single round, the client must send lg𝑛 = 14 ciphertexts and

the server returns 16 + lg𝑛 = 30 ciphertexts – 16 ciphertexts

for returning the matching data item, and lg𝑛 ciphertexts to

return its index. This amounts to 704 ciphertexts for fetching

16 items (excluding the query).

• PIR costs. We reduce the cost of PIR for the COIE-based

schemes by making a slight modification. In addition to stor-

ing the FHE-encrypted database, the server also stores a copy

of each record encrypted using a symmetric-key encryption

scheme (resulting in much shorter ciphertexts). Then, in

the PIR step, the client fetches this symmetrically encrypted

ciphertext instead of the FHE-encrypted one.

We use SealPIR for our PIR protocol, which requires 368.6

KB per request. We remark that a very recently introduced

SealPIR+ takes 80KB per request (see Table 1 in [3]), using

which we can reduce the communication further.

We can now compare the communication costs based on rows

1 and 2 of Figure 5. We see that the communication of BF-COIE

and BFS-CODE are roughly twice that of LEAF+, while PS-COIE

requires almost 10X less communication. The extra communication

needed by BF-COIE and BFS-CODE can likely be offset by the much

lower round complexity required by our protocol since the latency

costs are likely higher than the cost for the extra bandwidth.

Reducing communicationusing ciphertext batching.Wenow

describe an optimization to significantly reduce the communication

of our protocols at the cost of slightly increased server computation.

SEAL allows thousands of encrypted values to be packed together

into a single ciphertext. This allows us to pack the ciphertexts in

all of our protocols into just one a single ciphertext to be sent from

the server to the client. However, this does require the server to

do some additional computation to pack the ciphertexts prior to

sending them. We experimentally measured this packing, and it

requires approximately 3 seconds on a single threaded machine.

LEAF+ can also take advantage of packing to reduce the com-

munication of their protocols. However, since the results must be

returned one at a time, the best LEAF+ can do is to pack all ci-

phertexts that are sent in each round, resulting in a total of 32

ciphertexts.

We note that the cost of PIR is unchanged by this modification.

Thus, with the packing optimization, the communication of BFS-

CODE is roughly 1/16 of the communication needed by LEAF+,

but BF-COIE and PS-COIE require approximately 4X and 2X more

communication than LEAF+ respectively when SealPIR is used;

however, when SealPIR+ is used, both schemes have slightly less

communication than LEAF+.

8 RELATEDWORK
8.1 Techniques for Secure Search

Secure pattern matching (SPM) on FHE-encrypted data. In
SPM, given an encrypted query J𝑞K and𝑛 FHE-encrypted data items

(J𝑥1K, . . . , J𝑥𝑛K), it returns a vector of 𝑛 ciphertexts J𝑏1K, . . . , J𝑏𝑛K,
where 𝑏𝑖 indicates whether the 𝑖th data element is a match [16,

17, 32, 47]. Their works focus on optimizing the search circuits to

determine whether a data item matches the query, and therefore

the communication complexity and client’s running time are pro-

portional to the number of data items. Our work focuses on the

orthogonal problem of optimizing the retrieval of the matched data

items with sublinear communication and client computation.

Searchable encryption (SE). Searchable encryption [12, 41] al-

lows highly efficient search (usually in 𝑜 (𝑛) time) over encrypted

data. Efficient SE schemes have been proposed for a wide variety of

queries including equality queries [15, 19], range queries [29, 38],

and conjunctive queries [14, 36]. However, to achieve sublinear

query performance, SE schemes require significant preprocessing

and relax security, allowing some partial information about the

queries and data (e.g. access patterns) to leak to the server. For a

recent survey on SE constructions and security, see Fuller et al. [22].

In contrast, our work focuses on achieving preprocessing-free se-

cure constructions, leaking nothing about the queries or results

other than their sizes.

Property Preserving Encryption (PPE).As a different approach,
property-preserving encryption [35] produces ciphertexts thatmain-

tain certain relationships (e.g., equality, and order) of the underlying

plaintexts. This allows queries to be performed over ciphertexts in

the same way that they can be carried out over plaintexts. Exam-

ples of PPE include deterministic encryption [6] allowing equality

queries, and order-preserving encryption [10, 11] allowing range

queries. However, it has been shown [26, 27, 30] that such property-

preserving ciphertexts leak a lot of information about the underly-

ing plaintexts. See [22] for a survey of constructions and attacks.

8.2 General Techniques

Private information retrieval (PIR). PIR allows the client to

choose the index 𝑖 and retrieve the 𝑖th record from an untrusted

server while hiding the index 𝑖 [18]. However, this protocol by itself

provides only a limited search functionality requiring the client

to know the index of the data to retrieve. In this work, we aim at

protocols supporting any arbitrary search functionality.

Securemulti-party computation (MPC). Secure two-party com-

putation [23, 46] allows players to compute any function of their

private inputs without compromising privacy of their inputs. For

example, the client and the server can run a protocol for secure two-

party computation to solve the secure search problem. While there

has been much progress in improving efficiency of MPC protocols,

such protocols still require Ω(𝑛) communication and Ω(𝑛) client

computation per query. In this work, we aim to achieve protocols

with sublinear communication and client work.

Oblivious RAM (ORAM) and Oblivious data structure (ODS).
ORAM [24] is a protocol which allows a client to store an array of

𝑛 items on an untrusted server and to access an item obliviously,

that is, hiding contents and which item is accessed (i.e., the access

pattern). Likewise, ODS [44] allows the client to store and use a

data structure obliviously. One could implement secure search by

utilizing an ODS for a search tree. However, ODS constructions

typically need Ω(log2 𝑛) rounds for each operation. In this work,

we aim at achieving a constant round protocol.

9 CONCLUSION
We have presented several new constructions of secure search based

on fully homomorphic encryption. Prior constructions were inher-

ently sequential, returning only a single record from the result set,

and requiring a new query from the client that depended on the

index of the previous match. We have demonstrated several new

methods for encoding the entire result set at one time, removing

the added rounds, and allowing the server work to be parallelized.

Additionally, we have shown that this can be done without ho-

momorphic multiplication, ensuring low computational cost at the

server. Finally, we have implemented our constructions, and demon-

strated up to three orders of magnitude speed-up over prior work.

Additionally, we introduced the notion of compressed oblivious

encoding which may be of independent interest.

ACKNOWLEDGEMENTS
Dana Dachman-Soled is supported in part by NSF grants CNS-

1933033, CNS-1453045(CAREER), and by financial assistance awards

70NANB15H328 and 70NANB19H126 from the U.S. Department

of Commerce, National Institute of Standards and Technology; Se-

ung Geol Choi is supported by ONR N0014-20-1-2745 and NSF

grant CNS-1955319; S. Dov Gordon is supported by the NSF Grants

CNS-1942575 and CNS-1955264, by the Defense Advanced Research

Projects Agency (DARPA) and Space and Naval Warfare Systems

Center, Pacific (SSC Pacific) under Contract No. N66001-15-C-4070,

by the Blavatnik Interdisciplinary Cyber Research Center at Tel-

Aviv University and Israel National Cyber Directorate (INCD), and

by a Google faculty award; Arkady Yerukhimovich is supported by

NSF grant CNS-1955620, and by a Facebook Research Award.

REFERENCES
[1] Adi Akavia, Dan Feldman, and Hayim Shaul. 2018. Secure Search on Encrypted

Data via Multi-Ring Sketch. In ACM CCS 2018, David Lie, Mohammad Mannan,

Michael Backes, and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada,

985–1001. https://doi.org/10.1145/3243734.3243810

[2] Adi Akavia, Craig Gentry, Shai Halevi, and Max Leibovich. 2019. Setup-Free

Secure Search on Encrypted Data: Faster and Post-Processing Free. Proc. Priv.
Enhancing Technol. 2019, 3 (2019), 87–107. https://doi.org/10.2478/popets-2019-

0038

[3] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann,

Karn Seth, and Kevin Yeo. 2021. Communication–Computation Trade-offs in PIR.

Usenix Security (To appear). Available at https://ia.cr/2019/1483.

[4] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. 2018. PIR with

Compressed Queries and Amortized Query Processing. In 2018 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, San Francisco, CA, USA,

962–979. https://doi.org/10.1109/SP.2018.00062

[5] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and

Elaine Shi. 2020. OptORAMa: Optimal Oblivious RAM. In EUROCRYPT 2020, Part II
(LNCS, Vol. 12106), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg,

https://doi.org/10.1145/3243734.3243810
https://doi.org/10.2478/popets-2019-0038
https://doi.org/10.2478/popets-2019-0038
https://ia.cr/2019/1483
https://doi.org/10.1109/SP.2018.00062

Germany, Zagreb, Croatia, 403–432. https://doi.org/10.1007/978-3-030-45724-

2_14

[6] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. 2007. Deterministic

and Efficiently Searchable Encryption. In CRYPTO 2007 (LNCS, Vol. 4622), Alfred
Menezes (Ed.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 535–552.

https://doi.org/10.1007/978-3-540-74143-5_30

[7] Laura Blackstone, Seny Kamara, and Tarik Moataz. 2020. Revisiting Leakage

Abuse Attacks. In NDSS 2020. The Internet Society, San Diego, CA, USA.

[8] Marina Blanton and Everaldo Aguiar. 2011. Private and Oblivious Set andMultiset

Operations. Cryptology ePrint Archive, Report 2011/464. http://eprint.iacr.org/

2011/464.

[9] BurtonH. Bloom. 1970. Space/time trade-offs in hash codingwith allowable errors.

Commun. ACM 13, 7 (1970), 422–426. https://doi.org/10.1145/362686.362692

[10] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. 2009.

Order-Preserving Symmetric Encryption. In EUROCRYPT 2009 (LNCS, Vol. 5479),
Antoine Joux (Ed.). Springer, Heidelberg, Germany, Cologne, Germany, 224–241.

https://doi.org/10.1007/978-3-642-01001-9_13

[11] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. 2011. Order-

Preserving Encryption Revisited: Improved Security Analysis and Alternative

Solutions. In CRYPTO 2011 (LNCS, Vol. 6841), Phillip Rogaway (Ed.). Springer, Hei-
delberg, Germany, Santa Barbara, CA, USA, 578–595. https://doi.org/10.1007/978-

3-642-22792-9_33

[12] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.

2004. Public Key Encryption with Keyword Search. In EUROCRYPT 2004 (LNCS,
Vol. 3027), Christian Cachin and Jan Camenisch (Eds.). Springer, Heidelberg,

Germany, Interlaken, Switzerland, 506–522. https://doi.org/10.1007/978-3-540-

24676-3_30

[13] D. Cantor and H. Zassenhaus. 1981. A new algorithm for factoring polynomials

over finite fields. Math. Comp. 36 (1981), 587–592.
[14] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin

Rosu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryp-

tion with Support for Boolean Queries. In CRYPTO 2013, Part I (LNCS, Vol. 8042),
Ran Canetti and Juan A. Garay (Eds.). Springer, Heidelberg, Germany, Santa

Barbara, CA, USA, 353–373. https://doi.org/10.1007/978-3-642-40041-4_20

[15] Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled

Disclosure. In ASIACRYPT 2010 (LNCS, Vol. 6477), Masayuki Abe (Ed.). Springer,

Heidelberg, Germany, Singapore, 577–594. https://doi.org/10.1007/978-3-642-

17373-8_33

[16] Jung Hee Cheon, Miran Kim, and Myungsun Kim. 2016. Optimized Search-and-

Compute Circuits and Their Application to Query Evaluation on Encrypted Data.

IEEE Trans. Inf. Forensics Secur. 11, 1 (2016), 188–199. https://doi.org/10.1109/

TIFS.2015.2483486

[17] Jung Hee Cheon, Miran Kim, and Kristin E. Lauter. 2015. Homomorphic Compu-

tation of Edit Distance. In FC 2015 Workshops (LNCS, Vol. 8976), Michael Brenner,

Nicolas Christin, Benjamin Johnson, and Kurt Rohloff (Eds.). Springer, Heidelberg,

Germany, San Juan, Puerto Rico, 194–212. https://doi.org/10.1007/978-3-662-

48051-9_15

[18] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private

Information Retrieval. J. ACM 45, 6 (1998), 965–981. https://doi.org/10.1145/

293347.293350

[19] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Search-

able symmetric encryption: improved definitions and efficient constructions.

In ACM CCS 2006, Ari Juels, Rebecca N. Wright, and Sabrina De Capitani

di Vimercati (Eds.). ACM Press, Alexandria, Virginia, USA, 79–88. https:

//doi.org/10.1145/1180405.1180417

[20] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-

momorphic Encryption. IACR Cryptol. ePrint Arch. 2012 (2012), 144. http:

//eprint.iacr.org/2012/144

[21] Li Fan, Pei Cao, Jussara M. Almeida, and Andrei Z. Broder. 2000. Summary cache:

a scalable wide-area web cache sharing protocol. IEEE/ACM Trans. Netw. 8, 3
(2000), 281–293. https://doi.org/10.1109/90.851975

[22] Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily Shen, Ariel Ham-

lin, Vijay Gadepally, Richard Shay, John Darby Mitchell, and Robert K. Cunning-

ham. 2017. SoK: Cryptographically Protected Database Search. In 2017 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, San Jose, CA,

USA, 172–191. https://doi.org/10.1109/SP.2017.10

[23] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental

Game or A Completeness Theorem for Protocols with Honest Majority. In 19th
ACM STOC, Alfred Aho (Ed.). ACM Press, New York City, NY, USA, 218–229.

https://doi.org/10.1145/28395.28420

[24] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation

on Oblivious RAMs. J. ACM 43, 3 (1996), 431–473. https://doi.org/10.1145/233551.

233553

[25] Michael T. Goodrich. 2011. Data-oblivious external-memory algorithms for the

compaction, selection, and sorting of outsourced data. In SPAA 2011: Proceedings
of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures,
San Jose, CA, USA, June 4-6, 2011 (Co-located with FCRC 2011). 379–388. https:

//doi.org/10.1145/1989493.1989555

[26] Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas Ristenpart, and

Vitaly Shmatikov. 2016. Breaking Web Applications Built On Top of Encrypted

Data. In ACM CCS 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher

Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM Press, Vienna, Austria,

1353–1364. https://doi.org/10.1145/2976749.2978351

[27] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and

Thomas Ristenpart. 2017. Leakage-Abuse Attacks against Order-Revealing En-

cryption. In 2017 IEEE Symposium on Security and Privacy. IEEE Computer Society

Press, San Jose, CA, USA, 655–672. https://doi.org/10.1109/SP.2017.44

[28] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. 2019. Encrypted Databases:

NewVolume Attacks against Range Queries. InACMCCS 2019, Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, 361–378.

https://doi.org/10.1145/3319535.3363210

[29] Yuval Ishai, Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2016. Private

Large-Scale Databases with Distributed Searchable Symmetric Encryption. In

CT-RSA 2016 (LNCS, Vol. 9610), Kazue Sako (Ed.). Springer, Heidelberg, Germany,

San Francisco, CA, USA, 90–107. https://doi.org/10.1007/978-3-319-29485-8_6

[30] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access

Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation.

In NDSS 2012. The Internet Society, San Diego, CA, USA.

[31] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016. Generic

Attacks on Secure Outsourced Databases. In ACM CCS 2016, Edgar R. Weippl,

Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi

(Eds.). ACM Press, Vienna, Austria, 1329–1340. https://doi.org/10.1145/2976749.

2978386

[32] Myungsun Kim, Hyung Tae Lee, San Ling, Benjamin Hong Meng Tan, and Huax-

iong Wang. 2019. Private Compound Wildcard Queries Using Fully Homomor-

phic Encryption. IEEE Trans. Dependable Secur. Comput. 16, 5 (2019), 743–756.
https://doi.org/10.1109/TDSC.2017.2763593

[33] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate,

and Andrew K. Miller. 2019. HoneyBadgerMPC and AsynchroMix: Practical

Asynchronous MPC and its Application to Anonymous Communication. In ACM
CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan

Katz (Eds.). ACM Press, 887–903. https://doi.org/10.1145/3319535.3354238

[34] Michael Mitzenmacher. 2001. Compressed bloom filters. In 20th ACM PODC,
Ajay D. Kshemkalyani and Nir Shavit (Eds.). ACM, Newport, Rhode Island, USA,

144–150. https://doi.org/10.1145/383962.384004

[35] Omkant Pandey and Yannis Rouselakis. 2012. Property Preserving Symmetric

Encryption. In EUROCRYPT 2012 (LNCS, Vol. 7237), David Pointcheval and Thomas

Johansson (Eds.). Springer, Heidelberg, Germany, Cambridge, UK, 375–391. https:

//doi.org/10.1007/978-3-642-29011-4_23

[36] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Se-

ung Geol Choi, Wesley George, Angelos D. Keromytis, and Steve Bellovin.

2014. Blind Seer: A Scalable Private DBMS. In 2014 IEEE Symposium on Se-
curity and Privacy. IEEE Computer Society Press, Berkeley, CA, USA, 359–374.

https://doi.org/10.1109/SP.2014.30

[37] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2019. Mitigating

Leakage in Secure Cloud-Hosted Data Structures: Volume-Hiding for Multi-Maps

via Hashing. In ACM CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng

Wang, and Jonathan Katz (Eds.). ACM Press, 79–93. https://doi.org/10.1145/

3319535.3354213

[38] Daniel S. Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhimovich.

2016. POPE: Partial Order Preserving Encoding. In ACM CCS 2016, Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai

Halevi (Eds.). ACM Press, Vienna, Austria, 1131–1142. https://doi.org/10.1145/

2976749.2978345

[39] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. 2017. P2P Mixing and

Unlinkable Bitcoin Transactions. In NDSS 2017. The Internet Society, San Diego,

CA, USA.

[40] SEAL 2020. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL.

Microsoft Research, Redmond, WA.

[41] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. 2000. Practical

Techniques for Searches on Encrypted Data. In 2000 IEEE Symposium on Se-
curity and Privacy. IEEE Computer Society Press, Oakland, CA, USA, 44–55.

https://doi.org/10.1109/SECPRI.2000.848445

[42] W.A. Stein et al. 2020. Sage Mathematics Software (Version 9.2). The Sage

Development Team. http://www.sagemath.org.
[43] Alexander J. Titus, Shashwat Kishore, Todd Stavish, StephanieM. Rogers, and Karl

Ni. 2018. PySEAL: A Python wrapper implementation of the SEAL homomorphic

encryption library. arXiv:1803.01891 [q-bio.QM]

[44] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi, Emil

Stefanov, and Yan Huang. 2014. Oblivious Data Structures. In ACM CCS 2014,
Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM Press, Scottsdale, AZ,

USA, 215–226. https://doi.org/10.1145/2660267.2660314

[45] Rui Wen, Yu Yu, Xiang Xie, and Yang Zhang. 2020. LEAF: A Faster Secure Search

Algorithm via Localization, Extraction, and Reconstruction. In ACM CCS 20,
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM Press,

Virtual Event, USA, 1219–1232. https://doi.org/10.1145/3372297.3417237

https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1007/978-3-540-74143-5_30
http://eprint.iacr.org/2011/464
http://eprint.iacr.org/2011/464
https://doi.org/10.1145/362686.362692
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1109/TIFS.2015.2483486
https://doi.org/10.1109/TIFS.2015.2483486
https://doi.org/10.1007/978-3-662-48051-9_15
https://doi.org/10.1007/978-3-662-48051-9_15
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1145/1180405.1180417
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144
https://doi.org/10.1109/90.851975
https://doi.org/10.1109/SP.2017.10
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/1989493.1989555
https://doi.org/10.1145/1989493.1989555
https://doi.org/10.1145/2976749.2978351
https://doi.org/10.1109/SP.2017.44
https://doi.org/10.1145/3319535.3363210
https://doi.org/10.1007/978-3-319-29485-8_6
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1109/TDSC.2017.2763593
https://doi.org/10.1145/3319535.3354238
https://doi.org/10.1145/383962.384004
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1109/SP.2014.30
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1145/2976749.2978345
https://doi.org/10.1145/2976749.2978345
https://github.com/Microsoft/SEAL
https://doi.org/10.1109/SECPRI.2000.848445
https://arxiv.org/abs/1803.01891
https://doi.org/10.1145/2660267.2660314
https://doi.org/10.1145/3372297.3417237

[46] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended

Abstract). In 27th FOCS. IEEE Computer Society Press, Toronto, Ontario, Canada,

162–167. https://doi.org/10.1109/SFCS.1986.25

[47] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and

Takeshi Koshiba. 2013. Secure pattern matching using somewhat homomorphic

encryption. In CCSW’13, Proceedings of the 2013 ACM Cloud Computing Security
Workshop, Co-located with CCS 2013, Berlin, Germany, November 4, 2013, Ari Juels
and Bryan Parno (Eds.). ACM, 65–76. https://doi.org/10.1145/2517488.2517497

A PROOF OF LEMMA 4.1
LemmaA.1 (4.1). Consider a Bloom filter with false positive rate 1

𝑚 ,
where𝑚 is an arbitrary positive integer. Suppose at most𝑚 BF.Check
operations are performed in the BF. Then, for any 𝛿 > 0, we have:

Pr[# false positives ≥ 1 + 𝛿] ≤ 𝑒𝛿

(1 + 𝛿) (1+𝛿)
.

Proof. Let 𝛼𝑖 be the 𝑖th item that is checked through BF.Check.
That is, we consider a sequence of

BF.Check(𝛼1), . . . ,BF.Check(𝛼𝑚),
where 𝛼𝑖 is an arbitrary item. Since we wish to upper bound the

false positives (i.e., we don’t care about true positives), it suffices

to consider the case that for every 𝑖 , 𝛼𝑖 ∉ BF (i.e, 𝛼𝑖 has not been

inserted in the BF) as this maximizes the number of possible false

positives.

Let 𝑋1, . . . , 𝑋𝑚 be independent Bernoulli random variables with

Pr[𝑋𝑖 = 1] = 1/𝑚. Since the BF false positive rate is assumed to be

1/𝑚, we have for all 𝑖 ,

Pr[BF.Check(𝛼𝑖) = 1] = Pr[query 𝑖 is a false positive] ≤ 1/𝑚.

Thus, we can bound the number of false positives by

∑𝑚
𝑖=1 𝑋𝑖 .

Now, let 𝜇 := Exp[∑𝑋𝑖] =𝑚 · 1

𝑚 = 1. By applying the Chernoff

bound with 𝜇 = 1, we have:

Pr

[
𝑚∑︁
𝑖=1

𝑋𝑖 ≥ 1 + 𝛿
]
≤ 𝑒𝛿

(1 + 𝛿) (1+𝛿)
.

□

B PROOF OF THEOREM 6.3
Theorem B.1 (6.3). Given an FHE scheme, and a (𝑛, 𝑠, 𝑐, 𝑓𝑝)-CODE

scheme over domain 𝐷 in the random oracle model, the construction
in Algorithm 8 yields a (ℓ, 𝑓𝑝)-secure search scheme for records in

domain 𝐷 in the random oracle model, where ℓ =
𝑐 (𝑠) ·ℓ𝑐

𝑠 , ℓ𝑐 is the
length of an FHE ciphertext with plaintext space𝐷 , and 𝑠 is the number
of matching records.

Proof. We begin by proving that the adversary cannot dis-

tinguish between two different queries. The adversary chooses

a database 𝑥 and two queries 𝑞0, 𝑞1, with the promise that 𝑠 =∑𝑛
𝑖=1 𝑞

0 (𝑥𝑖) =
∑𝑛
𝑖=1 𝑞

1 (𝑥𝑖).
The entire view of the adversary during the experiment can be

reconstructed efficiently given (1) the encrypted database J𝑥K, (2)
the encrypted query J𝑞K, (3) the decrypted value of 𝑠 .

We note that the CODE scheme may return either more than 𝑠

values to the client (in case of a false positive) or less than 𝑠 values

(in case decoding fails), but both of these occur with probability at

most negl(𝜆) and thus we can ignore them in the following.

Since the value of 𝑠 is the same for 𝑞0 and 𝑞1, the only thing that

changes in the view of the adversary when switching from 𝑏 = 0 to

𝑏 = 1 is the encrypted query 𝑞𝑏 . Therefore, the adversary guesses

𝑏 with negligible advantage by the IND-CPA security of the FHE

scheme.

The proof that the adversary cannot distinguish between the

same query applied to two different databases follows nearly iden-

tically.

□

https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1145/2517488.2517497

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our Work

	2 Preliminaries
	2.1 Bloom Filter
	2.2 Algebraic Bloom Filter

	3 Compressed Oblivious Encoding
	3.1 Compressed Oblivious Index Encoding
	3.2 Compressed Oblivious Data Encoding

	4 COIE Schemes
	4.1 A Warm-up construction
	4.2 BF-COIE
	4.3 COIE Scheme Based on Power Sums

	5 CODE Scheme
	5.1 BF Set
	5.2 CODE Scheme Based on BF Set

	6 Secure Search Protocols
	6.1 (, fp)-Relaxed Secure Search
	6.2 Security of Setup-free Secure Search
	6.3 From COIE to Secure Search
	6.4 From CODE to Secure Search

	7 Evaluation
	7.1 Fetch time
	7.2 Overall Running Time
	7.3 Communication

	8 Related Work
	8.1 Techniques for Secure Search
	8.2 General Techniques

	9 Conclusion
	References
	A Proof of Lemma 4.1
	B Proof of Theorem 6.3

